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Abstract

An intramolecular computing model is presented that is based on the quantum time evolution of a single molecule

driven by the preparation of a non-stationary single-electron state. In our scheme, the input bits are encoded into the

coupling constants of the Hamiltonian that governs the molecular quantum dynamics. The results of the computation

are obtained by carrying out a quantum measurement on the molecule. We design reliable and, xor, and half-adder

logic gates. This opens new avenues for the design of more complex logic circuits at a single-molecular scale.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Recent remarkable experimental advances in the
field of atomic scale technology [1,2] have opened
a way to the design of novel devices at the scale of
a single molecule. Particular attention has been
paid to the possibility to integrate inside a single
molecule the logic gates and circuits that could
provide an interesting alternative to the currently
used microelectronic devices based on silicon
technology [3]. The molecular logic gates could
offer an unprecedented miniaturization [4] and
may be also superior in terms of energy consump-
tion [5]. So far, the attempts to build molecular
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logic gates have been mostly based on the direct
analogue with the standard electronic circuitry
where the input and output signals are voltages
and/or currents in some circuit that involves the
molecule [6]. It was shown that it is indeed possible
to design molecules that could mimic the behavior
of the electronic logic gates [7]. However, this
approach currently suffers form the disadvantage
that the predicted resulting signal current or
voltage is usually very small [8].
In this paper we propose a novel design of the

intramolecular logic gates in which the computa-
tion is driven by the quantum evolution of a non-
stationary state of the molecule. In practice, this
may involve, for example, the tunneling of
electrons through the molecule. In addition, the
encoding of the input and output bits significantly
differs from the previous proposals. We suggest to
d.
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encode the values of the input bits into the
coupling constants of the Hamiltonian that
governs the molecular quantum dynamics. This
can be achieved, for example, by switching
between several conformations of the molecule
with the use of a scanning tunneling microscope
(STM) [9]. We consider two alternative readouts of
the output of the computation. One option is to
read the population of some molecular quantum
levels at some predetermined time T after the
computation start. Thus, the calculation result is
obtained by carrying out a quantum measurement
on the molecular system. An alternative option
consists in coupling the molecule to an auxiliary
system (e.g., a reservoir), and looking at the
populations of the auxiliary quantum levels in
order to read out the calculation result.
In short, the main idea behind the present

proposal is to explore the rich and complex
structure of the Hilbert space of the molecular
states. This makes it possible to implement rather
complicated logical gates such as the half-adder
gate without needing to increase the spatial size of
the molecule. We also emphasize from the outset
that our goal is to design classical logic gates
driven by quantum evolution, not quantum gates.
The present paper is organized as follows. The

model of the Hamiltonian intra-molecular logic
gate is described in Section 2. In Section 3 we
derive extremal equations for the interaction
Hamiltonian that describes (in the tight-binding
approximation) the molecular logic gate. The tools
developed in Section 3 are employed to design the
xor gate, and gate, and half-adder gate. The
corresponding results are reported in Section 4,
where the readout of the computational result is
performed on the molecule. A more realistic model
where the readout is performed by measuring the
state of some auxiliary systems attached to the
main molecule is considered in Section 5. Finally,
the conclusions are drawn in Section 6.
|1〉
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Fig. 1. Schematic model of the six-level system that represents

the Hamiltonian intra-molecular logic gate.
2. Model of the intramolecular logic gate

In this paper, the molecule is described in the
tight-binding approximation by several effective
quantum levels that are mutually coupled. The
abstract model system is depicted in Fig. 1. To
provide enough flexibility for a logic-gate design
we consider a six-level system, initially prepared in
a (non-stationary) state j1S: In what follows, we
design logic gates with two input bits and one or
two output bits. We shall assume that the input
bits are encoded into the values of the coupling
constants a12 and a13: By selectively switching
between two values að0Þnn0 and að1Þnn0 that correspond to
the logical values 0 and 1; respectively, we can
encode a single input bit into the interaction
between states jnS and jn0S: In practice, the
coupling strength can be modified e.g. by changing
the conformation of the molecule, which can be
accomplished with the tip of an STM [9].
More generally, we can switch between N

different global settings of the coupling constants,
which means that the computation can have N

different inputs. The computation is driven by the
temporal evolution of the quantum system in-
duced by the total Hamiltonian Htot: To make our
model sufficiently general we assume that Htot

consists of three different contributions:

Hj;tot ¼ Hj þ Hc þ H0: ð1Þ

Here j labels all possible inputs and the part Hj

contains the encoded input bits. For the system
depicted in Fig. 1, we have

Hj ¼ að jÞ
12 ðj1S/2j þ j2S/1jÞ

þ að jÞ
13 ðj1S/3j þ j3S/1jÞ: ð2Þ

In contrast, H0 is a fixed Hamiltonian, which
cannot be modified or changed at will. This
Hamiltonian describes the part of the system that
cannot be freely designed, so it imposes constraints
on the design of the gate. In our particular model,
we assume that the molecule is partially symmetric
in a sense that the levels j4S and j5S are coupled
to the level j6S similarly as j2S and j3S are
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coupled to j1S;

H0 ¼ bðj4S/6j þ j6S/4jÞ

þ bðj5S/6j þ j6S/5jÞ: ð3Þ

Finally, Hc is also a fixed Hamiltonian that does
not depend on the values of the input bits.
However, in contrast to H0; Hc can be chosen
freely in order to tune the desired logic gate
operation. In our case, Hc couples the ‘‘central’’
levels j2S; j3S; j4S; and j5S:
In our simplified model, the result of the

computation is read out at a time T after the
beginning of the computation by performing a
quantum measurement on the system. The mea-
surement is described by a positive operator
valued measure (POVM) that is characterized with
M operators PkX0 ðk ¼ 1;y;MÞ which sum up
to the identity operator

XM

k¼1

Pk ¼ I : ð4Þ

If the Hamiltonian of the system is set to Hj ; then
we should, ideally, observe the outcome Pkð jÞ

where the functional dependence kð jÞ specifies the
computational task to be performed by the system.
Consider, as an illustrative example, the xor gate.
In this case, the computation should yield two
outcomes 0 or 1; hence the measurement on the
system is a two-component POVM fP0;P1g: The
ideal functional dependence is k ¼ 0 for j ¼ 00 or
11; and k ¼ 1 for j ¼ 01 or 10: We will see that, by
choosing Hc appropriately, this functional depen-
dence can be achieved in the molecule with a very
high fidelity.
Consider now the gate operation. At time t ¼ 0

the system is prepared in the input state rin and
evolves for time T according to the Hamiltonian
Hj;tot to the output state (we work in units _ ¼ 1)

rj;out ¼ e�iHj;totTrine
iHj;totT : ð5Þ

The probability to obtain the correct measurement
outcome Pkð jÞ is given by the trace,

Pðkð jÞj jÞ ¼ Tr½Pkð jÞrj;out�: ð6Þ

In order to design the Hamiltonian logical gate, we
must first define a figure of merit that quantifies its
performance. In the following, we use as a figure of
merit the average probability of success:

F ¼
1

N

XN

j¼1

Pðkð jÞj jÞ ¼
1

N

XN

j¼1

Tr½Pkð jÞrj;out�; ð7Þ

where the average is taken over all N possible
values of the input bits. It holds that 0pFp1 and
the gate is perfect if F ¼ 1:
The measurement at time T should, in fact,

discriminate some subsets of the states rj;out that
are generated from the input state rin via N

different evolutions governed by Hamiltonians
Hj;tot: We can thus say that the purpose of the
measurement is effectively to discriminate some
subsets of the N different unitary evolutions
[10,11]. This is, for instance, the case of the xor

gate, where we only need to distinguish whether
the Hamiltonian of the system belongs to the
subset fH00;H11g (the output should be 0) or to
the subset fH10;H01g (the output should be 1), but
we need not to distinguish between the Hamilto-
nians in each subset.
3. Design of the optimal intramolecular

Hamiltonian

We now proceed to the determination of the
intramolecular coupling Hamiltonian Hc that
maximizes the fidelity of the molecular logic gate
at a given fixed time T : This is certainly a non-
trivial optimization problem, which generally
cannot be solved analytically. We therefore resort
to a numerical optimization procedure. We first
derive a variation dF of the gate fidelity F that
corresponds to a small change dHc of the
Hamiltonian Hc: From the variation, we will be
able to extract dHc that increases the value of F :
This permits an easy numerical optimization based
on a steepest ascend algorithm.
The variation of F is most easily derived within

the framework of the time-dependent first-order
perturbation theory. Let us focus on a single term
Pðkj jÞ of the gate fidelity. For the sake of notation
simplicity, we do not explicitly write the depen-
dence of k on j in what follows. Let jfjlS and ljl

denote the eigenstates and eigenvalues of the
unperturbed Hamiltonian Hj;tot: We can expand
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an arbitrary pure input state jcS in the basis jfjlS;

jcð0ÞS ¼
X

l

clð0ÞjfjlS: ð8Þ

In the Schr .odinger picture, this state evolves in
time according to

jcðtÞS ¼
X

l

clðtÞe�iljl tjfjlS; ð9Þ

where the time dependence of clðtÞ is due to the
perturbation term dHc: In the first order approx-
imation, we obtain from the Schr .odinger equation

i
d

dt
cl ¼

X
m

/fjl jdHcjfjmSe
�iðljm�ljl Þtcmð0Þ: ð10Þ

A straightforward integration yields

clðtÞ ¼ clð0Þ þ
X

m

dH
ð jÞ
c;lm

e�iðljm�ljl Þt � 1

ljm � ljl

cmð0Þ; ð11Þ

where dH
ð jÞ
c;lm ¼ /fjl jdHcjfjmS: We can now de-

termine the variation of the unitary transforma-
tion dUj defined as

dUj ¼ e�iðHj;totþdHcÞt � e�iHj;tott: ð12Þ

If we compare the left- and right-hand sides of the
formula

dUj jcð0ÞS ¼
X

l

½clðtÞ � clð0Þ�e�iljl tjfjlS; ð13Þ

then we immediately find that

dUjE
X
l;m

dH
ð jÞ
c;lm

e�iljmt � e�iljl t

ljm � ljl

jfjlS/fjmj: ð14Þ

Since we are interested in small variation, we have
only kept the terms linear in dHc:
The calculation of the variation dPðkj jÞ is now

straightforward. On combining Eqs. (5) and (6),
we have

dPðk; jÞ ¼ dTr½UjrinUw
j Pk�

¼Tr½dUrinUw
j Pk þ UjrindUw

j Pk�

¼Tr½dHcXj þ dHw
c X w

j �: ð15Þ

Here we have used

dHc ¼
X
l;m

dH
ð jÞ
c;lmjfjlS/fjmj ð16Þ
and we have defined the operators

Xj ¼
X

lm

/fjmjrinUw
j Pkð jÞjfjlS

�
e�iljmt � e�iljl t

ljm � ljl

jfjmS/fjl j: ð17Þ

The total variation of the gate fidelity can then be
expressed as a sum of N variations, namely

dF ¼
1

N

XN

j¼1

Tr½dHcðXj þ X w
j Þ� ; ð18Þ

where Xj is evaluated at t ¼ T and we have taken
into account that Hc is Hermitian operator (hence,
the variation dHc should also be Hermitian). We
can see from Eq. (18) that the value of fidelity will
increase if we change the intramolecular Hamilto-
nian Hc according to

Hc-Hc þ e
XN

j¼1

ðXj þ X w
j Þ: ð19Þ

The value of e can be optimized at each iteration
step to maximize the increase of F : Therefore,
Eq. (19) gives a prescription for a simple iterative
algorithm that finds the optimal Hc that maximizes
the gate fidelity. Note that this method only yields
a local maximum. The determination of the global
maximum of F (which is a complicated non-linear
function of Hc) is a very hard problem which
cannot be easily solved even numerically. In our
numerical experiments, we started the iterations
from many randomly chosen initial Hc’s, and
selected the best among the solution Hamiltonians.
So far, we have not placed any constraints on

the Hamiltonian Hc: However, according to the
scheme shown in Fig. 1, Hc should couple only
certain subsets of the levels. This constraint can
be easily incorporated into the present formalism.
Suppose that the Hamiltonian Hc is of the
form

Hc ¼
X

ðn;n0ÞAM

Hc;nn0 jnS/n0j; ð20Þ

where M is a set of the ordered pairs ðn; n0Þ: To
preserve this structure during the iterations, we
replace *Xj ¼ Xj þ X w

j by

*X0
j ¼

X
ðn;n0ÞAM

/njðXj þ X 0
j Þjn

0SjnS/n0j ð21Þ
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so the iteration step is thus modified to Hc-Hc þ
e
P

j
*X0

j : In our numerical experiments, we also
imposed the constraint that Hc is real in the
basis fjnSg; which can be easily taken into
account in the iterations by adding the step
Hc-ðHc þ H�

c Þ=2:
4. Numerical results

In this section, we present the results of the
design of the xor, and and half-adder intra-
molecular gates. In all the examples, the input bits
are encoded into the values of the coupling
constants. We will start with the and gate and
then proceed to the xor gate. Finally, we will
design a half-adder gate, which simultaneously
outputs the xor and and of the input bits. The
half-adder logic gate is a basic building block of
the digital circuit that adds two binary numbers, so
it can be viewed as a benchmark to intramolecular
computing. Note that the electronic circuit realiza-
tion of a half-adder gate requires at least six
transistors so it can be considered as a relatively
complex gate.

4.1. Intramolecular AND gate

Here, we design the Hamiltonian and gate in a
six-level molecular system as depicted in Fig. 1.
The input bits are encoded into the amplitude of
the coupling constants a12 and a13: The particular
encoding that we have chosen is shown in Table 1,
with the parameters a and q being specified later
on. The quantum system is initially prepared in
state j1S: The and gate outputs a single bit which
is obtained by measuring the system in the basis
fj1S;y; j6Sg at time T : Here, we assume that the
output bit is represented by the occupation of the
Table 1

Encoding of the input bits into the coupling constants of the

intramolecular Hamiltonian

Bit value a12 a13

0 a a
1 a=q a=q
level j5S at time T : If we find that the system is in
state j5S then the output is 1; otherwise it is 0:
More formally, the POVM describing this gate
reads

P00 ¼ P01 ¼ P10 ¼ I � j5S/5j;

P11 ¼ j5S/5j: ð22Þ

We have performed the optimization for many
different readout times T ; choosing for the
parameters a ¼ 2; q ¼ 3; and b ¼ 0:5: The optimi-
zation was repeated many times for each T with
different initial values of Hc: Typically, several
hundreds of iterations (19) are required to reach a
(local) maximum of F : For each T ; we picked the
largest obtained fidelity. We have found that F

almost monotonically grows with T until it reaches
a plateau. Gate fidelities F as high as 99% can be
obtained.
A typical example for the readout time

T ¼ 3p ¼ 9:4 is provided by the intramolecular
Hamiltonian

Hc;AND

¼

�1:8216 0:0544 0:3387 0:4986

0:0544 �0:1686 �0:5702 �0:6595

0:3387 �0:5702 1:8583 �0:1297

0:4986 �0:6595 �0:1297 �0:0444

0
BBB@

1
CCCA;

where we only display the non-zero elements of
Hc; i.e. the projection onto the subspace spanned
by j2S; j3S; j4S; j5S: Note that the matrix
elements of the optimal Hc are of the order of jaj
or jbj: In Fig. 2, we plot the time evolution of the
probability of obtaining correct outcome (6) when
performing the measurement at time t: The gate
fidelity at T ¼ 3p ¼ 9:4 exceeds 99%, so the and

gate is practically perfect. This illustrates that
reliable logic gates can be obtained within this
framework.

4.2. Intramolecular XOR gate

One can similarly devise an xor gate for this six-
level molecule using the amplitude encoding as
given in Table 1. An example of the numerically
found optimal intramolecular Hamiltonian is
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Fig. 2. Time dependence of the probability of correct outcome of the intramolecular and gate. At T ¼ 3p ¼ 9:4 the gate is practically
perfect, as the fidelity is larger than 99%. The figures are labeled by the values of the two input bits. The parameters are a ¼ 2; b ¼ 0:5;
and q ¼ 3:
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given by

Hc;XOR

¼

1:4607 �3:2687 3:7692 0:3011

�3:2687 1:2413 3:9233 0:2816

3:7692 3:9233 �0:7491 1:9971

0:3011 0:2816 1:9971 0:6331

0
BBB@

1
CCCA

The parameters of the gate are the same as before,
and T ¼ 2p ¼ 6:3: The time evolution of the
probabilities of correct outcome is shown in
Fig. 3. Notice the sharp peaks at T ¼ 2p ¼ 6:3;
where the gate achieves its optimal performance.
This xor gate also attains a very high fidelity
F ¼ 97%.

4.3. Intramolecular HALF-ADDER gate

The and and xor gates form the basic building
blocks of the digital half-adder. However, instead
of combining the two Hamiltonian gates as
constructed above, a more integrated solution is
to incorporate the whole half-adder into a single
molecular system. The design of the half-adder
proceeds basically along the same lines as before
except that the output consists of two bits. An
important step is then to explore certain symmetry
in the half-adder by choosing a convenient
representation of the outcomes. The half-adder
outputs two bits, namely the xor bit and the
and bit. However, only three different outcomes
are actually possible as it never happens that
xor=and=1. Thus, the outcomes of the half-
adder can be determined by performing a three-
component POVM on the system.
In our example we assume the measurement in

the basis fj1S;y; j6Sg; and we focus on the
populations of the levels j4S; j5S; and the rest of
the system at time T : It is convenient to associate
the most probable outcome (xor=1, and=0)
with the case where neither j4S nor j5S are
populated. Thus, the three possible outputs of
the half-adder are given by: system is in state
j4S; system is in state j5S; and system is in
some other state. The details are given in
Table 2.
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Table 2

Definition of the outcomes of the intramolecular half-adder

gate

The observed state xor and

j4S 0 0

j1S; j2S; j3S; j6S 1 0

j5S 0 1
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Fig. 3. Time dependence of the probability of correct outcome of the intramolecular xor gate. At T ¼ 2p ¼ 6:3 the gate fidelity is

almost 97%. The figures are labeled by the values of the two input bits. The parameters are a ¼ 2; b ¼ 0:5; and q ¼ 3:
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Mathematically, the POVM associated with this
gate reads

P00 ¼ j4S/4j;

P01 ¼ P10 ¼ I � j4S/4j � j5S/5j;

P11 ¼ j5S/5j: ð23Þ

With this particular encoding, we have been able
to design a half-adder gate which achieves a
fidelity of 91:5% by choosing for the readout time
T ¼ 4p ¼ 12:6: The optimal intramolecular
Hamiltonian reads

Hc ¼

�1:8606 0:3592 �0:7026 0:9935

0:3592 �2:3734 2:7535 �0:1064

�0:7026 2:7535 0:4484 �0:0508

0:9935 �0:1064 �0:0508 �0:7542

0
BBB@

1
CCCA

The parameters of the gate are similar as in the
previous cases. The time evolution of the prob-
ability of correct outcome of the gate is plotted in
Fig. 4 for the four possible values of the input bits.
Although the fidelity of this half-adder gate is

reasonably high, this construction is not entirely
satisfactory. One particular disadvantage is the
peculiar representation of the outcomes. Another
drawback is that the errors are asymmetrically
distributed. While the gate is almost perfect for
input bits 01 and 10; an error of about 20% occurs
for the input 11: Moreover, the probability of
correct outcome P exhibits rather narrow peaks so
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Fig. 4. Time dependence of the probability of correct outcome of the intramolecular half-adder gate. At T ¼ 4p ¼ 12:6 the gate

achieves average fidelity 91.5%. The figures are labeled by the values of the two input bits. The parameters of the system are a ¼ 2;
b ¼ 0:5 and q ¼ 3:
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Fig. 5. Schematic model of the six-level main molecular system

coupled to the ancilla qubit A used for the readout.
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that the reliable readout of the result of the
computation would require a quite precise timing.
A possible way of overcoming—at least par-

tially—these obstacles is to monitor the average
population of the molecular levels over the time
period T : This is discussed in Ref. [12]. An
alternative approach is to consider a more refined
model where the molecular system interacts with
some ancillas (auxiliary systems). The outcome of
the computation is then determined by measuring
the state of these ancillas at time T : This approach
to the construction of Hamiltonian logic gates will
be the subject of the next section.
5. Intramolecular logic gates with ancillary readout

Here we shall consider a design that involves the
interaction of the main system with one or more
ancillas. The output bits are determined by
measurements applied on the ancillas at some
time T : The simplest example with single-qubit
ancilla is given in Fig. 5. Loosely speaking, the
ancilla monitors the population of the molecular
level j4S: Suppose, for instance, that a fluorescence
center is attached to the molecule. The presence of
the tunneling electron in (say) state j4S may
influence the state of the fluorescence center. In
particular, we may expect that the electron could
cause a transition between the dark state jdS and a
bright state jbS of the center. These two states jdS
and jbS span a basis of a single-qubit ancillary
system A: The output of the computation is read
out by measuring the state of the ancillary system
in the computational basis j0S; j1S 
 jdS; jbS:
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More generally, we may envision a situation
where some local probe is used to monitor the
occupation of the level j4S of the molecular
system. The qubit is conceptually the simplest
model of such a probe, although other (and
possibly more realistic) models, such us a harmo-
nic oscillator system, may also be considered. The
purpose of the probe is essentially to carry out a
continuous quantum non-demolition measure-
ment of the population of level j4S via appropriate
interaction. Here, we model this coupling in such a
way that the ancillary qubit may change its state if
the main system is in state j4S;

Hint;A ¼ gAj4SM/4j#ðj0SA/1j þ j1SA/0jÞ; ð24Þ

where gA is the coupling strength, and the index M

stands for the main molecular system.

5.1. AND gate

The and gate involves the main six-level system
depicted in Fig. 1 with a single qubit ancilla A

attached to the state j4S; see Fig. 5. The total
Hilbert space is 12-dimensional and the whole
system is initially prepared in a product state
j1SM j0SA: The evolution is governed by the
Hamiltonian

Hj;tot ¼ ðHj þ Hc þ H0Þ#IA þ Hint;A; ð25Þ

where Hj and H0 are given by formulas (2) and (3),
respectively. The Hamiltonian Hc that we shall
optimize only acts on the main molecular system,
and IA in Eq. (25) denotes the identity on the
Hilbert space of the ancilla qubit. The input bits
are encoded into the values of the coupling
constants a12 and a13 in the same manner as in
the preceeding section.
We have optimized Hc by maximizing the

average gate fidelity (7) where jAf00; 01; 10; 11g
and the relevant POVM elements are given by

P00 ¼ P01 ¼ P10 ¼ IM#j0SA/0j;

P11 ¼ IM#j1SA/1j: ð26Þ

Here IM denotes the identity operator on the
Hilbert space of the main molecular six-level system.
A typical result of the numerical optimization is

shown in Fig. 6. The designed and gate achieves a
fidelity of about 95%. The optimal Hamiltonian
Hc explicitly reads

Hc

¼

0:9084 0:3454 0:9110 0:6394

0:3454 �0:5976 �0:9833 �0:4852

0:9110 �0:9833 �0:3055 �0:9283

0:6394 �0:4852 �0:9283 �3:2269

0
BBB@

1
CCCA:

ð27Þ

We note that the ancilla serves as a sort of
integrator, which is sensitive to the average
population of the level j4S in the time interval
½0;T � rather than at a specific time. In fact, for the
particular Hamiltonian (27) the average popula-
tion of level j4S is about 25% on the time interval
½0;T � when both input bits are equal to 1 and only
about 5% in the remaining three cases when at
least one input bit is equal to 0:

5.2. HALF-ADDER gate

The half-adder gate can be designed similarly
as the and gate in the case of ancillary readout.
However, we have not been able to find a reliable
half adder with a six-level system and a real
Hamiltonian Hc: Better results have been obtained
for an extended seven-level main system, see Fig. 7.
In what follows we present the optimized half-
adder for the level scheme depicted in Fig. 7. As
the half adder has two output bits, we need to use
two ancillary qubits A and B that are coupled to
levels j4S and j5S of the main molecular system,
respectively.
The total Hamiltonian of the system is given by

Hj;tot ¼ ðHj þ Hc þ H0Þ#IA#IB

þ Hint;A#IB þ Hint;B#IA; ð28Þ

where Hj is given by Eq. (2), the interaction of the
main system with ancillas A and B is described by

Hint;A ¼ gAj4S/4j#ðj0SA/1j þ j1SA/0jÞ;

Hint;B ¼ gBj5S/5j#ðj0SB/1j þ j1SB/0jÞ; ð29Þ

and we have

H0 ¼ bðj4S/7j þ j5S/7j þ j6S/7jÞ þ h:c: ð30Þ

Here again it is helpful to exploit the symmetry of
the half-adder gate when assigning the values of
the coupling constants to the values of the input
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Fig. 7. Schematic model of the seven-level main molecular

system coupled to two ancilla qubits A and B which are used for

the readout.

Table 3

Truth table for the digital half-adder and the encoding of the

input bits into the values of the coupling constants

Bit 1 a12 Bit 2 a13 xor and

0 a 0 a=q 0 0

0 a 1 a 1 0

1 a=q 0 a=q 1 0

1 a=q 1 a 0 1
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Fig. 6. The time dependence of the probability of correct output P of the intramolecular and gate with ancillary readout. The bit

encoding is described in the text, a ¼ 2; q ¼ 3; b ¼ 1; gA ¼ 1 and T ¼ 2p ¼ 6:3: The output bit is read by measuring the ancilla in the

computational basis j0S; j1S: If at least one of the input bits is 0; then the ancilla almost remains in state j0S; while, if both input bits
are equal to 1; then the population of the ancilla state j1S builds up in time and reaches a maximum higher than 90%:
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bits. Recall that the first input bit is encoded in
coupling constant between levels j1S and j2S;
while the second bit is encoded as the value of
coupling constant between j1S and j3S: Our
particular encoding is specified in Table 3. We
can see from Table 3 that in 50% of the cases
(when the two input bits have different parity), the
output should be xor=1 and and=0. The xor

bit is determined by measuring the state of ancilla
qubit A; while the and bit is found by measuring
on the ancilla qubit B in the computational basis.
It is convenient to assume that the ancilla qubits
are initially prepared in the state that corresponds
to the most probable outcome. We assume that
initially A and B are prepared in state j0SAj0SB;
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which implies the logical encoding of the output
bits that is specified in Table 4.
We have numerically determined the optimal Hc

that couples the five internal levels of the main
molecular system shown in Fig. 7. The optimiza-
tion has been carried on for the readout time T ¼
4p ¼ 12:6 and results in

Hc

¼

2:5540 2:4640 0:0478 1:0959 0:2433

2:4640 2:2345 0:4547 �1:5868 0:0966

0:0478 0:4547 �1:1264 0:0821 �0:1190

1:0959 �1:5868 0:0821 �0:6702 �0:0640

0:2433 0:0966 �0:1190 �0:0640 0:2795

0
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Fig. 8. The time dependence of the probability of correct output P of

bit encoding is described in Table 3, a ¼ 2; q ¼ 3; b ¼ 0:5; gA ¼ gB ¼
ancillas A and B in the computational basis j0SA;B; j1SA;B and the re

Table 4

Logical encoding of the output bits

xor ðAÞ Level and ðBÞ Level

0 j1SA 0 j0SB

1 j0SA 1 j1SB
With this Hamiltonian the half-adder intramo-
lecular gate operates with a mean fidelity
F ¼ 86%. The time evolution of the probability
of correct outcomes for the four possible combina-
tions of the input bits is plotted in Fig. 8. The
calculation also reveals that a significant average
population of the level j4S or j5S in time interval
½0; 4p� occurs only if the correct operation of the
half-adder gate requires flipping of the initial state
of the corresponding ancilla qubit.
6. Conclusions and outlook

These results demonstrate how the rich structure
of the quantum Hilbert space makes it possible to
compute with a single molecule. By coupling the
effective quantum levels that describe the molecule
in the tight-binding approximation, it is possible to
design reliable xor and and gates using only six
quantum levels. This is even more interesting for
the half-adder gate whose integrated design
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the intramolecular half-adder gate with ancillary readout. The

1 and T ¼ 4p: The two output bits are read by measuring the

sults are interpreted according to Table 4.
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requires much less levels than a simple combina-
tion of the and and xor gates. This opens new
avenues for the design of more complex logic
functions with a minimal number of quantum
levels. This also puts forward the need to
experimentally design real molecular structures
that are characterized by the desired Hamilto-
nians, and to develop measurement schemes to
access internal molecular levels.
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