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It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled
qubit pairs cannot preserve separability. This “entanglement no-cloning” principle naturally suggests that some
approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a
separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits,
resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of
entanglement per clone.
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Quantum entanglement is known to be a resource that is
central to many quantum information processes such as
quantum teleportation, quantum cryptography, or quantum
computing[1]. In view of this, much work has been devoted
to defining measures of entanglement or to investigating the
best information-theoretical use of entanglement. Despite the
fact that entanglement is a very fragile resource, extremely
sensitive to decoherence, several techniques have been de-
veloped in order to overcome decoherence, namely, quantum
error correction or entanglement purification(see Ref.[2]).
Out of these many studies of entanglement, none has so far
addressed the issue of whether(and how well) entanglement
can be cloned.

There has been a vast literature about the question of
cloning quantum states. First of all, theno-cloningtheorem
has been stated[3], which precludes the perfect copying of
an arbitrary quantum state. Then, imperfect quantum cloning
machines(QCM) have been introduced, which duplicate an
arbitrary qubit state with the highest possible fidelity[4].
Since then and more recently, a large variety of QCMs have
been devised, with the purpose of cloning equally well a
given set of states in a space of arbitrary dimension(see, e.g.,
Ref. [5]).

In this paper, we raise the question of whether quantum
entanglement itself can be cloned or not. In order to simplify
our analysis, we restrict ourselves to qubit pairs(dimension
232). We show that the requirement of perfectly cloning the
entanglement carried by a qubit pair in an arbitrary maxi-
mally entangled(ME) state is incompatible with the require-
ment that separable qubit pairs remain unentangled via clon-
ing. Of course, if we restrict ourselves to four orthogonal ME
states such as the Bell states

uF±l = su00l ± u11ld/Î2, uC±l = su01l ± u10ld/Î2, s1d

then we can very well make a Bell measurement of the origi-
nal pair and subsequently prepare an arbitrary number of
clones in the measured ME state. However, this procedure
does not work properly on the linear combinations of Bell
states that are ME since the clones will then be in a mixture
of Bell states. Even if the clones are not required to be close

to the original ME two-qubit state but solely to be entangled,
it remains impossible to fully preserve entanglement.

Here we show that it is nevertheless possible to clone part
of the original entanglement, much in the same way quantum
states can be cloned imperfectly. We define the optimal en-
tanglement cloner as a machine that preserves separability
while, for maximally entangled input states, it produces two
qubit pairs with the same and highest amount of entangle-
ment regardless of their actual state. We construct a QCM
that is universal over the set of ME two-qubit states and
argue that it affects an optimal cloning of entanglement. For
this purpose, we exploit the property that the set of ME two-
qubit states is isomorphic to the set ofreal states in four
dimensions[2], from which we construct an optimal sym-
metric cloner that is covariant under local unitaries. Finally,
we consider asymmetric QCMs and investigate how en-
tanglement is distributed among the clones by these transfor-
mations.

Entanglement no-cloning principle. Entanglement cannot
be cloned perfectly, that is, if a quantum operation can be
found that perfectly duplicates the entanglement of all ME
states, then it necessarily does not preserve separability
(some separable states become entangled after cloning).

Proof. We restrict ourselves to two qubits and consider
two orthogonal ME states, e.g.,uF±l. Assume that the en-
tanglement of these states is perfectly cloned, i.e., the output
states of the clones remain ME even though they may differ
from the input state. The most general cloning transforma-
tion U preserving the entanglement of these two states can be
written as

uF±luAl→
U

uea
±lueb

±luA±l, s2d

whereuAl denotes the initial state of the ancilla and the blank
copy, while uA±l is the ancilla state after cloning. Thus, the
states of the two clonesuea

±l and ueb
±l are some ME states.

Now, the linear combination uF̃l=suF+l+ i uF−ld /Î2
=seip/4u00l+e−ip/4u11ld /Î2 is still a ME state. By linearity,
the above transformation yields the following output state:
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uF̃luAl→
U

suea
+lueb

+luA+l + i uea
−lueb

−luA−ld/Î2. s3d

In order to preserve the full entanglement within each clone,
a necessary condition is that eitheruea

+l= uea
−l or ueb

+l= ueb
−l.

However, in each of these two cases, at least one of the
clones is left in a ME state that is independent of the input
stateswithin the space spanned byuF±ld regardless of it be-
ing separable or not. For example, in the first case, if the
input is the separable state obtained as the linear combination
usl=suF+l+ uF−ld /Î2=u00l, then the transformation gives

usluAl→
U

uealsueb
+luA+l + ueb

−luA−ld/Î2. s4d

Clearly, the separability is not preserved here since the first
clone is maximally entangled. We therefore conclude that no
perfect cloning of entanglement is possible. j

As a consequence, only imperfect QCMs that approxi-
mately reproduce the entanglement while preserving separa-
bility can be implemented. In the rest of this paper, we will
be interested in separability-preserving QCMs that yield
clones with the highest achievable entanglement for all ME
input states. As shown later on, finding these QCMs is
strongly related to finding transformations that clone opti-
mally and equally well the set of two-qubit ME states. Con-
sider an arbitrary two-qubit pure state

uFl = o
i=0

3

niueil, s5d

written in the orthonormal basis made of the Bell states with
particular phasesssometimes referred to as the magic basis
f2gd:

ue0l = uF+l, ue1l = i uF−l, ue2l = i uC+l, ue3l = uC−l,

s6d

where the amplitudesni are normalized asoi=0
3 uniu2=1. In

this basis, the entanglement of formationE of the stateuFl
can be expressed in a very simple way as

E„CsFd… = Hs 1
2 + 1

2
Î1 −CsFd2d, s7d

whereH is the binary entropy function and

CsFd = uo
i

ni
2u s8d

is called the concurrencef2,7g. Clearly, anyreal linear com-
binationsup to an irrelevant global phased of the magic basis
elements is a ME state sinceC sand thereforeEd is then equal
to 1. Furthermore,everyME state can be expressed as a real
linear combination of the magic basis elements. For this rea-
son, the problem of cloning the set of ME two-qubit states
boils down to constructing a transformation that optimally
clones all real four-dimensional states in the magic basis.

This particular transformation can be found by following
a method inspired from Ref.[8]. Our mathematical descrip-
tion of the cloning transformation is based on the isomor-
phism between quantum operations and states. Imagine that
the qubit pair to be cloned is itself maximally entangled with

a reference qubit pair. The most general joint state describing
the referenceR, the output clonesa andb, and an ancillaA
after the cloning transformation reads

uSlR,a,b,A = o
i,j ,k,l=0

3

sijkl ullRuilau jlbuklA. s9d

sThe reference, the two clones, and the ancilla are all four-
dimensional systems here.d This state serves to completely
define the cloning transformation: the result of cloning the
ME stateuFl=oiniueil swith realni’sd is obtained by project-
ing R onto the complex conjugateuF*l swhich is equal to
uFl hered f8g. Thus, the most general cloning transformation
is defined as

uFl → o
i,j ,k,l=0

3

sijkl nluilau jlbuklA. s10d

At this point, we impose the additional condition that the
QCM is covariant under SUs2d3SUs2d in the computa-
tional basissor, equivalently, under SOs4d in the magic
basisd. This means that the QCM acts similarly in all bases
connected by local unitaries to the computational basis.
This restriction is natural since it guarantees that all states
equivalent up to local unitariessthereby having the same
entanglementd result in equally entangled clones. A suffi-
cient condition for covariance isf6g

uSlR,a,b,A = R^4uSlR,a,b,A, s11d

whereR is any real rotation matrix in SOs4d. This require-
ment implies thatsijkl is an invariant tensor of rank 4, that
is, sijkl =Rii8Rjj 8Rkk8Rll8si8 j8k8l8. A main simplification here
results from the fact that the generic form of such a tensor
is

sijkl = Adild jk + Bd jldik + Cdkldi j , s12d

with the normalization condition on Eq.s10d imposing that

4suAu2 + uBu2 + uCu2d + 2 ResAB* + AC* + BC*d = 1. s13d

For a symmetric cloner, the permutation symmetry between
the two clones imposes furthermore thatA=B, so that we are
left with a transformation depending on two parameters,A
andC. If we use the cloning fidelity as a figure of merit, Eqs.
s10d and s12d result in

F = kFura,buFl = 7uAu2 + uCu2 + 4 ResAC*d, s14d

whererasbd denotes the reduced density matrix of cloneasbd.
This expression can be maximized under the normalization
constraint Eq.s13d, giving

A =
1

3S1

2
+

1
Î13

D1/2

, C =
A

2
sÎ13 − 3d, s15d

with the corresponding fidelity
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F =
5 +Î13

12
. 0.7171. s16d

Interestingly, this maximization procedure yields a fidelity
that saturates the upper bound derived from the no-signaling
condition in Ref.f6g. We therefore conclude that the optimal
covariant cloner of ME two-qubit states is characterized by
Eq. s15d and yields the fidelitys16d. This is slightly higher
than the fidelity of the universal four-dimensional cloner,
namely F=7/10 f5,8g, as expected since the ME states
form a subset of the two-qubit states.

We now generalize Eq.(14) to asymmetric cloning trans-
formationssAÞBd. The cloning fidelities become

Fa = 4uAu2 + uBu2 + uCu2 + 2 ResAB* + AC* + BC*d,

Fb = 4uBu2 + uAu2 + uCu2 + 2 ResAB* + AC* + BC*d.

AssumingA, B, andC to be real, we eliminateA andC from
Eqs.(13) and (17), to get

FasB,Fbd = − 3B2 +
Fb + 1

2
+

Î− 3B2 + Fb − B

2

3s18B2 + 18BÎ− 3B2 + Fb − 15Fb + 6d1/2.

s18d

We then maximizeFa over B as a function ofFb. Figure 1
displays the resultingFa as a function ofFb. The midpoint
value of this curve lies atFa=Fb=F, as expected. We also
confirm that the fidelity of a clone is equal to 1 when the
other one is in a completely mixed state, i.e., when its fidel-
ity equals 1/4.

We have numerically confirmed the optimality of this
class of asymmetric cloners with the use of a technique based
on semidefinite programming[9,10]. The cloning transfor-
mation is a linear trace-preserving completely positive(CP)

map that can be represented by a positive semidefinite op-
eratorS on the tensor-product space of the input and output
states. The cloning fidelities can be expressed asFasbd
=TrfSRasbdg, with appropriately definedRasbdù0 [10]. The
optimal asymmetric cloner can be obtained by maximizing
F=pFa+s1−pdFb, wherepP f0,1g is the asymmetry param-
eter. The resulting fidelities coincide with those obtained
from Eq. (18) up to the machine precision.

Let us now investigate the entanglement properties of this
cloning transformation and show that it is also optimal with
respect to our original goal, namely, cloning the amount of
entanglement. Let us start by checking that it preserves sepa-
rability. For the ansatz(9), we haveS=TrAsuSlkSud, and the
CP map that describes the relationship between the input and
the cloneasbd can be characterized bySasbd=TrbsadfSgù0.
Since the positive partial transpose(PPT) criterion is a nec-
essary and sufficient separability condition for a qubit pair, a
sufficient condition for these two maps to preserve separabil-
ity is that Sa andSb represent PPT operations[11]. The map
Sasbd is PPT if Sasbd

T1,18ù0, whereT1,18 denotes partial transpo-

sition with respect to the first qubit of the original and the
clone asbd. An explicit analytical calculation shows that if
sijkl is an invariant rank-four tensor(12), then Sasbd

T1,18=Sasbd

ù0, hence a covariant cloner necessarily preserves separa-
bility.

It is therefore natural to maximize the output entangle-
ment for the other extreme case, namely, when the original
qubit pair is maximally entangled. The amount of entangle-
ment left in the clones will be measured here by the en-
tanglement of formationE, which can be evaluated by using
the extended definition of the concurrenceC for mixtures[7].
The entanglement of formation of an arbitrary two-qubit
state r is given by Esrd=E(Csrd), where Csrd=maxs0,l1

−l2−l3−l4d and theli’s are the eigenvalues, in decreasing
order, of the Hermitian matrixr̃;sÎrr*Îrd1/2. Herer* de-
notes the complex conjugate ofr when expressed in the
magic basis[7]. For a generic covariant cloner, Eq.(12), the
reduced density matrices of the clones of an input ME state
ueil can always be written as

ra,b = Fa,bueilkeiu +
1 − Fa,b

3 o
jÞi

uejlkeju, s19d

so the clones are left in a mixture ofsgeneralizedd Bell states,
or more precisely in a Werner state. This is consistent with
the fact thatra,b are real density matrices in the magic basis
because the input state is realf7g. Hence,r̃a,b=ra,b so the
concurrence of the clones simply reduces toCa,b
=maxs0,2Fa,b−1d. Therefore, for a covariant cloner, maxi-
mizing E reduces to maximizingF. Consequently, the
cloner characterized by Eq.s15d is the entanglement
cloner we were looking for, provided that covariance is
taken for granted.

The corresponding entanglement of formation of the
clonesEa andEb is shown in Fig. 1 for different values ofFb.
As expected, the entanglement of formation of cloneb van-
ishes forFbø1/2. Conversely, the entanglement of forma-
tion of clone a vanishes whenFbù0.8984 (that is, when

FIG. 1. Fidelity (dotted line) of clonea as a function of that of
clone b for the optimal two-qubit entanglement cloner. The two
fidelities coincide atFa=Fb=s5+Î13d /12. Entanglement of forma-
tion of clonesa andb (solid line) and their sum(dashed line) as a
function of the fidelity of cloneb. The two curves intersect atEa

=Eb=0.2847.
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Faø1/2). Note that the entanglement of formation of a
clone is equal to 1 only when its fidelity is 1, thus confirming
that a fully asymmetric cloner(a trivial cloner which outputs
the original and a random clone) is the only solution if we
want to fully conserve the original entanglement of 1 ebit.
Finally, note that the sum of the entanglement of formation
of the two clones(also shown in Fig. 1) never exceeds 1,
meaning that the entanglement cloner does not create more
entanglement than that contained in the original ME state.

For the symmetric cloner, the entanglement of formation
of both clones is equal toEa=Eb=0.2847 bits. The optimal-
ity of this result has been verified using numerical optimiza-
tion where the structure of the cloning transformation was
based on the parametrization proposed in Ref.[8] and the
maximized quantity was the concurrence instead of the fidel-
ity. The optimization was carried out without imposing the
covariance of the cloning machine. Up to irrelevant local
unitaries(which decreaseF while keepingC andE constant),
we recovered the same cloning transformation. This strongly
suggests that restricting ourselves to covariant QCMs is jus-
tified, so the cloner of ME states indeed optimally clones the
amount of entanglement.

Finally, the properties of our entanglement cloner can be
analyzed in the intermediate case of nonmaximally entangled
input states. In Fig. 2, we plot the entanglement of formation
of the clones as a function of that of the original state
au00l+Î1−a2u11ls0øaø1d for the symmetric cloner. No
entanglement is cloned below a critical valueEin
=0.161 bits. Then, the output entanglement increases mono-
tonically to reach its maximumEout=0.2847 bits atEin
=1 bit.

In conclusion, we have shown that the quantum entangle-
ment of an unknown ME qubit pair cannot be perfectly
cloned if, at the same time, product states are required to be
cloned into unentangled qubit pairs. In other words, a
separability-preserving QCM cannot perfectly duplicate the
entanglement of the set of ME states. Only imperfect QCMs
do exist. As a first step, we have constructed an optimal
symmetric entanglement cloner which is universal over the
set of ME states, and whose fidelity saturates the no-
signaling upper bound[6]. This cloner yields imperfect
clones with 0.285 ebits if the original qubit pair contains

1 ebit, while unentangled pairs are cloned into separable
states. The distribution of entanglement among the clones
has also been investigated using an asymmetric cloner. Simi-
larly to the situation that prevails when cloning quantum
states, this no-go theorem for entanglement cloning might be
exploited in order to imagine new quantum key distribution
schemes. For example, one could imagine a protocol where
the eavesdropper is only able to apply alocal cloning on a
ME state instead of the above global cloning. One can check
that applying the optimal universal qubit cloner[4] locally
on each qubit of a ME state reduces the fidelity of the clones
to 7/12. Since the reduced density matrix of the clones is
again a Werner state, we obtainC=1/6 leading to only about
0.060 ebits per clone. Thus, the fact that independent local
operations on each qubit are less efficient than joint opera-
tions could be used to give an advantage to the authorized
parties.
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FIG. 2. Entanglement of the clones vs the entanglement of the
input state for the symmetric cloner.
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