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Cloning the entanglement of a pair of quantum bits
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It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled
qubit pairs cannot preserve separability. This “entanglement no-cloning” principle naturally suggests that some
approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a
separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits,
resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of
entanglement per clone.
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Quantum entanglement is known to be a resource that it the original ME two-qubit state but solely to be entangled,
central to many quantum information processes such ai$ remains impossible to fully preserve entanglement.
quantum teleportation, quantum cryptography, or quantum Here we show that it is nevertheless possible to clone part
computing[1]. In view of this, much work has been devoted of the original entanglement, much in the same way quantum
to defining measures of entanglement or to investigating thetates can be cloned imperfectly. We define the optimal en-
best information-theoretical use of entanglement. Despite theanglement cloner as a machine that preserves separability
fact that entanglement is a very fragile resource, extremelyhile, for maximally entangled input states, it produces two
sensitive to decoherence, several techniques have been dpibit pairs with the same and highest amount of entangle-
veloped in order to overcome decoherence, namely, quantument regardless of their actual state. We construct a QCM
error correction or entanglement purificatiggee Ref.[2]). that is universal over the set of ME two-qubit states and
Out of these many studies of entanglement, none has so fargue that it affects an optimal cloning of entanglement. For
addressed the issue of whetli@and how welj entanglement this purpose, we exploit the property that the set of ME two-
can be cloned. qubit states is isomorphic to the set @fal states in four

There has been a vast literature about the question afimensions[2], from which we construct an optimal sym-
cloning quantum states. First of all, ti@-cloningtheorem  metric cloner that is covariant under local unitaries. Finally,
has been statef8], which precludes the perfect copying of we consider asymmetric QCMs and investigate how en-
an arbitrary quantum state. Then, imperfect quantum cloninganglement is distributed among the clones by these transfor-
machinesg QCM) have been introduced, which duplicate an mations.
arbitrary qubit state with the highest possible fideljgj. Entanglement no-cloning principlé&ntanglement cannot
Since then and more recently, a large variety of QCMs havée cloned perfectly, that is, if a quantum operation can be
been devised, with the purpose of cloning equally well afound that perfectly duplicates the entanglement of all ME
given set of states in a space of arbitrary dimengse®, e.g., states, then it necessarily does not preserve separability
Ref. [5]). (some separable states become entangled after cjoning

In this paper, we raise the question of whether quantum Proof. We restrict ourselves to two qubits and consider
entanglement itself can be cloned or not. In order to simplifytwo orthogonal ME states, e.g$*). Assume that the en-
our analysis, we restrict ourselves to qubit paifsnension tanglement of these states is perfectly cloned, i.e., the output
2X2). We show that the requirement of perfectly cloning thestates of the clones remain ME even though they may differ
entanglement carried by a qubit pair in an arbitrary maxi-from the input state. The most general cloning transforma-
mally entangledME) state is incompatible with the require- tion U preserving the entanglement of these two states can be
ment that separable qubit pairs remain unentangled via clorwritten as
ing. Of course, if we restrict ourselves to four orthogonal ME
states such as the Bell states U
_ _ |D%)|A)—eD]eDlA®), 2)
|D*) = (J00) £ |11)/V2, [¥*) = (|01 £]|10)/\2, (1)

then we can very well make a Bell measurement of the OrlglWhere|A> denotes the initial state of the ancilla and the blank

nal pair and subsequently prepare an arbitrary number oY while|A®) is the an(+:|lla statg after cloning. Thus, the
clones in the measured ME state. However, this procedur@tates of the two clonefg;) and |e5>~are some ME sta’t_es.
does not work properly on the linear combinations of BellNow, the linear combination |®)=(|d")+i[®7))/\2

states that are ME since the clones will then be in a mixture (€7400)+e7™411))/12 is still a ME state. By linearity,

of Bell states. Even if the clones are not required to be closéhe above transformation yields the following output state:
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~ U FTTENTUI ~ a reference qubit pair. The most general joint state describing
|)|A)— (e |ep)| AT +ileep| A2, (3 the referencer, the output clonea andb, and an ancillad

In order to preserve the full entanglement within each clone@fter the cloning transformation reads

a necessary condition is that eithief)=|e;) or |e})=|e,). 3
However, in each of these two cases, at least one of the T

- ) AN ) S = > szl K) 4. 9
clones is left in a ME state that is independent of the input [S)m.ap.4 i,j,k,l:osjk|| Irlidalidelko.a ©

state(within the space spanned b$*)) regardless of it be-
ing separable or not. For example, in the first case, if thgThe reference, the two clones, and the ancilla are all four-
input is the separable state obtained as the linear combinatiatimensional systems heyeThis state serves to completely
|s)=(|®*)+|®"))/y2=|00), then the transformation gives define the cloning transformation: the result of cloning the
v ME state|®)=3n;|e) (with real ni'sd) is obtained by project-
A+ -\ A\ /[ ing R onto the complex conjugatd”) (which is equal to
1A=l (e)A7) + el ADN2. @ |®) here [8]. Thus, the most general cloning transformation
Clearly, the separability is not preserved here since the firgs defined as
clone is maximally entangled. We therefore conclude that no
perfect cloning of entanglement is possible. | o
As a consequence, only imperfect QCMs that approxi- [®) — E Sk N[DalDDolk).4- (10
mately reproduce the entanglement while preserving separa- L kl=0
bility can be implemented. In the rest of this paper, we wil t this point, we impose the additional condition that the
be interested in separability-preserving QCMs that yiel QCM is cov:'slriant under S@2) X SU(2) in the computa-
clones with the higﬂest aThievabIe ?nfjanglerr:]ent for all MEtionaI basis(or, equivalently, under S@) in the magic
input states. As shown later on, finding these QCMs i . . ' ' . )
strongly related to finding transformations that clone opti-Cgrs]:?é;?}g g]e?gsaﬁhs:;tg?igscg ?ﬁtes ;Tr:lalzgt'igﬁgl b;:;i
mally and equally well the set of two-qubit ME states. Con-2., . J Dy K : : P )
This restriction is natural since it guarantees that all states

sider an arbitrary two-qubit pure state equivalent up to local unitarieghereby having the same

3

3 entanglementresult in equally entangled clones. A suffi-
|D)y=> nile), (5)  cient condition for covariance ig]
i=0
[S)r.ab.4=R*S)r,ap.4: (11)

written in the orthonormal basis made of the Bell states with

particular phasegsometimes referred to as the magic basisWhereR is any real rotation matrix in S@). This require-

[2]): ment implies thas is an invariant tensor of rank 4, that
legy =D, en =i|®7), |e)=il¥"), |ey)=|¥), iS, Siju =Ri’Rjj'RaeRi/S/jrerr- A main simplification here
©) results from the fact that the generic form of such a tensor
is
where the amplitudes; are normalized a&?  nj?=1. In
this basis, the entanglement of formatiBrof the state/®) S = A G + By Gy + Cdydj. (12

can be expressed in a very simple way as . o . . .
P y P y with the normalization condition on E@10) imposing that

EC(®)) =H(E + 31 -c(@)?), 7
(PN =HE oV =C®)) ) 4(|A2+ B2 +|C]) + 2 REAB +AC +BC) = 1. (13
whereH is the binary entropy function and
For a symmetric cloner, the permutation symmetry between
C(P) = |E ni2| (8) the two clones imposes furthermore thatB, so that we are
i left with a transformation depending on two parametérs,
andC. If we use the cloning fidelity as a figure of merit, Egs.

is called the concurrend@,?]. Clearly, anyreal linear com- _
(10) and(12) result in

bination(up to an irrelevant global phasef the magic basis
elements is a ME state sin€gand thereforé) is then equal
to 1. FurthermoregeveryME state can be expressed as a real
linear combination of the magic basis elements. For this rea- . :
son, the problem of cloning the set of ME two-qubit statesWh_erepa(b) de_notes the reduce_:d _densny matrix of Clmb_)' )
boils down to constructing a transformation that optimally This expression can be maximized under the normalization
clones all real four-dimensional states in the magic basis. constraint Eq(13), giving

This particular transformation can be found by following 12
a method inspired from Ref8]. Our mathematical descrip- A= l(l + i_) C= é(\;f; -3 (15)
tion of the cloning transformation is based on the isomor- 3\2 13/ 2 ’
phism between quantum operations and states. Imagine that
the qubit pair to be cloned is itself maximally entangled withwith the corresponding fidelity

F=(®[pyp/®) = 7|A+|C[*+ 4 RgAC),  (14)
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1.00 j ' ' 1.00 map that can be represented by a positive semidefinite op-
eratorS on the tensor-product space of the input and output
states. The cloning fidelities can be expressedFas)

075 =TSRy, with appropriately definedR,y =0 [10]. The
optimal asymmetric cloner can be obtained by maximizing
F=pF,+(1-p)F,, wherep [0, 1] is the asymmetry param-

0.75

F o0 00E  eter. The resulting fideliies coincide with those obtained
a from Eg. (18) up to the machine precision.
; Let us now investigate the entanglement properties of this
0.25 0.25 . . o . .
cloning transformation and show that it is also optimal with
respect to our original goal, namely, cloning the amount of
0.00 0.00 entanglement. Let us start by checking that it preserves sepa-
0o . Y F o . o0 rability. For the an§at29), we ha.veS:.Tr A(|SXS)), anq the
b CP map that describes the relationship between the input and

the clonea(b) can be characterized by, =Try,[S]=0.

FIG. 1. Fidelity(fjotted ling of_clonea as a function of that of  gjnce the positive partial transpo&ePT) criterion is a nec-
clone b for the optimal two-qubit entanglement cloner. The two gggary and sufficient separability condition for a qubit pair, a
fidelities coincide aF,=F,=(5+y13)/12. Entanglement of forma- g ¢icient condition for these two maps to preserve separabil-
tion of clonesa andb (solid line) and their sumdashed lingas a ity is that S, and S, represent PPT operatiofi&l]. The map
function of the fidelity of cloneb. The two curves intersect &, . Ty B

Syp) is PPT |fsa(5) =0, whereT, ;, denotes partial transpo-

=E,=0.2847.
sition with respect to the first qubit of the original and the
clone a(b). An explicit analytical calculation shows that if

=0.7171. (16)  Sju is an invariant rank-four tensai?), then Sl(lg,f=3a(b)
=0, hence a covariant cloner necessarily preserves separa-

Interestingly, this maximization procedure yields a fidelity bility.

that saturates the upper bound derived from the no-signaling It is therefore natural to maximize the output entangle-
condition in Ref[6]. We therefore conclude that the optimal ment for the other extreme case, namely, when the original
covariant cloner of ME two-qubit states is characterized bydubit pair is maximally entangled. The amount of entangle-
Eq. (15) and yields the fidelity(16). This is slightly higher ~ment left in the clones will be measured here by the en-
than the fidelity of the universal four-dimensional cloner, tanglement of formatioie, which can be evaluated by using
namely F=7/10 [5,8], as expected since the ME statesthe extended definition of the concurreriéor mixtures[7].

£ 5+V13

form a subset of the two-qubit states. The entanglement of formation of an arbitrary two-qubit
We now generalize Eq14) to asymmetric cloning trans- Statep is given by E(p)=E(C(p)), where C(p)=max0,\;
formations(A+ B). The cloning fidelities become —N\2—N3—\,4) and the\;’s are the eigenvalues, in decreasing
. . . order, of the Hermitian matrig= (\pp"Vp)Y2 Herep" de-
Fa=4|A”+|B[*+|C[* + 2 R{AB + AC +BC)), notes the complex conjugate @f when expressed in the
magic basig7]. For a generic covariant cloner, E4.2), the
Fp= 4|B|2 + |A|2 + |C|2 +2 REAB +AC +BC). reduced density matrices of the clones of an input ME state

le) can always be written as
AssumingA, B, andC to be real, we eliminaté& andC from

1-F
545 (13 and(1?). o get pan=Fale)e| + =S le)el. (19
., Fyt1 \-3B+F,-B !
Fa(B,Fp) = =3B+ 5t 5 so the clones are left in a mixture @feneralizediBell states,
’ or more precisely in a Werner state. This is consistent with
X (1882 + 188\ - 3B? + F, — 15F, + 6)*/2, the fact thatp,, are real density matrices in the magic basis

(18) because the input state is rd&l. Hence,p,,=p,p SO the
concurrence of the clones simply reduces
We then maximizeF, over B as a function ofF,. Figure 1 =max0,2F,,—1). Therefore, for a covariant cloner, maxi-
displays the resulting-, as a function ofF,. The midpoint mizing E reduces to maximizing=. Consequently, the
value of this curve lies afF,=F,=F, as expected. We also cloner characterized by Eq(l5) is the entanglement
confirm that the fidelity of a clone is equal to 1 when the cloner we were looking for, provided that covariance is
other one is in a completely mixed state, i.e., when its fideltaken for granted.
ity equals 1/4. The corresponding entanglement of formation of the
We have numerically confirmed the optimality of this clonesk, andE, is shown in Fig. 1 for different values &f,.
class of asymmetric cloners with the use of a technique basedls expected, the entanglement of formation of clbnean-
on semidefinite programminf®,10. The cloning transfor- ishes forF,<1/2. Conversely, the entanglement of forma-
mation is a linear trace-preserving completely positi@®)  tion of clone a vanishes wherF,=0.8984 (that is, when
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F,=<1/2). Note that the entanglement of formation of a ' ' ' '
clone is equal to 1 only when its fidelity is 1, thus confirming 025
that a fully asymmetric clonga trivial cloner which outputs
the original and a random clonés the only solution if we 020 |
want to fully conserve the original entanglement of 1 ebit.
Finally, note that the sum of the entanglement of formation 0415 |
of the two clonegalso shown in Fig. Lnever exceeds 1, E(out)
meaning that the entanglement cloner does not create mor 0.0 [
entanglement than that contained in the original ME state.
For the symmetric cloner, the entanglement of formation 0.05 E(in)‘= 0.161
of both clones is equal tB,=E,=0.2847 bits. The optimal-
ity of this result has been verified using numerical optimiza- 0.00 - L L L .
tion where the structure of the cloning transformation was 0.0 0.2 04 E(in) 06 08 10

based on the parametrization proposed in R&f.and the
maximized quantity was the concurrence instead of the fidel- FiG. 2. Entanglement of the clones vs the entanglement of the
ity. The optimization was carried out without imposing the input state for the symmetric cloner.
covariance of the cloning machine. Up to irrelevant local
unitaries(which decreas€& while keepingC andE constany,
we recovered the same cloning transformation. This strong|
suggests that restricting ourselves to covariant QCMs is jusﬁ
tified, so the cloner of ME states indeed optimally clones thq
amount of entanglement.

Finally, the properties of our entanglement cloner can b

ebit, while unentangled pairs are cloned into separable
tates. The distribution of entanglement among the clones
as also been investigated using an asymmetric cloner. Simi-
arly to the situation that prevails when cloning quantum

estates, this no-go theorem for entanglement cloning might be

analyzed in the intermediate case of nonmaximally entangle8XpIOItGd in order ta imagine new quantum key distribution
schemes. For example, one could imagine a protocol where

input states. In Fig. 2, we plot the entanglement of formatior[he cavesdropper is only able to applyoal cloning on a

Zjogi sFllci—erTlS?Oi ;ugclt;ofr;rotfhéhzt rr?:ngt]r?c ocrllg:]r;e:l ;tsteME state instead of the above global cloning. One can check

N A Y i . that applying the optimal universal qubit clongt] locally

Er&tirggil%men;h IS <r:]|oned below ? cr|t|c_a| valug, on each qubit of a ME state reduces the fidelity of the clones

t_on'ically ':3' re:cnﬁ tit: ﬁ;&%iﬁng:eomzeﬂ;n&{:azﬁémon?é 7112. Since the reduced density matrix of the clones is
out— - in again a Werner state, we obtair 1/6 leading to only about

:1Ir?lgonclusion we have shown that the quantum entan IeQ.OGO ebits per clone. Thus, the fact that independent local
’ . : q 9 operations on each qubit are less efficient than joint opera-
ment of an unknown ME qubit pair cannot be perfectly

. ; . tions could be used to give an advantage to the authorized
cloned if, at the same time, product states are required to b rties 9 9

cloned into unentangled qubit pairs. In other words, &

separability-preserving QCM cannot perfectly duplicate the We thank T. Durt and S. Iblisdir for helpful discussions.
entanglement of the set of ME states. Only imperfect QCM3/Ne acknowledge funding from the Communauté Frangaise
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