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We investigate the probabilistic cloning and purification of quantum states. The performance of these
probabilistic operations is quantified by the average fidelity between the ideal and actual output states. We
provide a simple formula for the maximal achievable average fidelity and we explicitly show how to construct
a probabilistic operation that achieves this fidelity. We illustrate our method on several examples such as the
phase covariant cloning of qubits, cloning of coherent states, and purification of qubits transmitted via depo-
larizing channel and amplitude damping channel. Our examples reveal that the probabilistic cloner may vyield
higher fidelity than the best deterministic cloner even when the states that should be cloned are linearly
dependent and are drawn from a continuous set.
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I. INTRODUCTION only if the set consists of linearly independent std&524q.

The recent spectacular development of the quantum infor- However, one may hope that the probabilistic machines
mation theory has revealed that information processing basé§ay Yield better results also for the sets of linearly depen-
on the laws of quantum mechanics enables implementatiofent quantum states and even for infinié@ntinuous sets.
of tasks that are impossible or very hard to accomplish clastere, we investigate the probabilistic cloning of linearly de-
sically. The prime examples are the quantum cryptographpendent states and we establish a general theory of the opti-
which allows unconditionally secure distribution of a secretmal probabilistic cloning machines. We provide a simple for-
key[1] and the exponential speedup of certain computationaiula for the maximal average fidelity of the probabilistic
tasks, such as the factoring of integi?k On the other hand, machine and we also show how to construct the optimal
the linearity of quantum mechanics also imposes certain coreloning transformations.
straints on the processing of quantum information that have In fact, our formalism is very general and it concerns
no classical counterpart. Perhaps the most famous exampledgtimal probabilistic implementations of arbitrary transfor-
the no-cloning theorem which states that an unknown quanmations whose outputs should ideally be pure states. Besides
tum state cannot be copi¢8]. However, this restriction pro- cloning, this includes also universal NOT gate for qubits
vides, in fact, a valuable resource explored in the quanturf27,2§, and, perhaps even more importantly, probabilistic
key distribution protocols, because it forbids an eavesdroppurification of mixed quantum stat¢29-31. In what fol-
per to gain information on the distributed secret key withoutlows we first establish the general formalism and then we
introducing errors. work out several explicit examples that will illustrate our

Since exact copying is forbidden, a natural problem arisegnethod.
what is the optimal approximate cloning transformation. This
question was first asked by Buzek and Hillery in their semi- |I. OPTIMAL PROBABILISTIC TRANSFORMATIONS
nal papel4] and since then it has been addressed by numer- o . ) ) )
ous authors who considered various cloning scenarios, such 1h€ probabilistic machines investigated in the present pa-
as cloning of qubitg5,6], cloning of d-dimensional systems Per optimally (in a sense defined belgvapproximate the
(qudits [7-11 and cloning of continuous variablgs2—14. ~ Map from a se§, of input (generally mixeglstatesp;, to the
Much attention has been recently paid also to the cloning of®tSout Of the output pure statélgou,
subsgts of Hilbert space, suph as the phase covariant cloning pin — Youl D)+ (1)
machine for equatorial qubitgl5-18 and cloning of real
states[19] or maximally entangled statdg0]. Remarkably, ~Where o= |ou{Woul is a short-hand notation for the den-
the cloning machines turned out to be very efficient or eversity matrix of a pure state. I§, is a set of pure statgsuch
optimal eavesdropping attacks on many quantum cryptoas in the case of cloninghen we replace;, with ¢;,. The
graphic protocol§21-24 and their investigation is largely most general probabilistic transformation in quantum me-
motivated by these practical aspects. chanics is a linear trace decreasing completely positG®

Typically, the cloner is assumed to be a deterministic mamap[32] that transforms operators on the input Hilbert space
chine that always produces an output. Nevertheless, one céi,, onto the operators on the output Hilbert spa¢g,. In
consider also probabilistic cloning machines that sometimewhat follows we will exploit the isomorphism between a CP
fail and do not provide any outcome. The probabilistic clon-mappq=E&(pin) and a positive semidefinite opera®on the
ers have been discussed in the literature in the context dflilbert spaceH =H;,® Hq, [33,34. Let|j) denote a basis in
cloning of a discrete finite set of quantum states and it was d-dimensional Hilbert spacé{;,. The operatotE can be
shown that an exact probabilistic cloning is possible if andobtained from the maximally entangled state A ® H,,,
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|<IJ>:EJ":l [iYali)e, if we apply the magf to one part of ®).
We haveE=7,® Eg(P) whereZ denotes the identity map.

The transformatiom,,=&(p;,) can be rewritten in terms
of E as follows:

Pout= Trin[EPi-lr; ® loud, (2

where Ty, denotes the partial trace over the input Hilbert

space and stands for the transposition in the bagjs The

map must be trace decreasing which means thfp,Jt

<Tr(p;,) for all p;,=0. This implies thaE must satisfy the
inequality

Trout(E) = Jlinv (3)

wherel denotes the identity operator and the equalitydn
is achieved by deterministigrace preservingCP maps.

Consider a particular inpup;,. The normalized output
statepoy is given bypou= poutl Ppin) Where

P(pin) = TI’[Ep;Ir—] ® Loy (4)

is the probability of successful application of the m&po
pin- The performance of the mafpfor the particular inpup;,
can be conveniently quantified by the fidelity between th
actual and the ideal outputs

Flpin) = <¢out|50ut| Woup - (5
Expressed in terms d&& we have
1 T
Fpin) = =—Tr(E pin ® You)- (6)

P(pin)

We assume that the s&, is endowed with ara priori
probability distributiondp;, such thatfsmdpinzl. Here and in
what follows we assume that the s®t is continuous. Of

e

PHYSICAL REVIEW A70, 032308(2004

R f Pin ® Your dpin- (10)

n

Taking everything together, we want to firiel that maxi-
mizes the mean fidelity

_Tr(ER
T TrEA)’

11

where R=0 and A>0 are defined above. The positive
semidefinite operatoE representing a trace-decreasing CP
map must satisfy the constraif®). However, this constraint
is irrelevant as far as the mean fidelit¥1) is concerned
because the value &f does not change under the renormal-
ization,

E—E=GLE

where e,,,=maxeig(Tr,,E)], eig(X) denotes the set of ei-
genvalues ofX, andE’ satisfies the inequality3) by con-
struction. This fact greatly simplifies the analysis. Strictly
speaking, these arguments are valid only for finite dimen-

sional Hilbert spaces where,,, is always finite andP’

(12)

=Tr E’A]>0 sinceA>0. As we will see in the next section,
a little extra care is needed when dealing with infinite dimen-
sional systems.

The above argumentation shows that we have to maxi-
mize the fidelity(11) under the constrainE=0. We now
show that the optimdE can always be assumed to be a rank
one operatoa pure state Suppose thakE represents the
optimal CP map. SincE=0 we can express it as a convex
mixture of rank one operator&=X; g|E;}(E;| with ¢>0.

Let F;=Tr(ER)/Tr(E;A) denote the mean fidelity corre-
sponding to the map;= |Ej><Ej|. On inserting the expansion

course, all formulas remain valid also for discrete sets, on®f E into Eq.(11) we obtain

simply must replace the integrals with corresponding sum-

mations over the elements §f,.
The average probability of success is defined as

P= | Plondpn=TrEA], ™

n

where

A (8)

= f Pi-[l ® loydpin-

Sin

We now introduce the mean fidelify of the transformation
£ as the average of the fideliti€%p;,), with proper weights

P(pin)dpinlﬁ
J F(pin)

n

P(pin) d

F

(9)

Pin-

The mean fidelity is the figure of merit considered in the
present paper and in what follows we shall look for the op-

timal mapé& that maximized-.
If we insert the expressio(6) into Eq. (9) we obtainF

=E/EWhereF=Tr[ER] and

2]- PiF;
F= < maxF)),

Ek P !

wherep;=¢; Tr(E;A)>0. If E is optimal map, then Eq13)
implies that all the fidelities=j=F and, consequently, the
maximum mean fidelityF is achieved by each rank-one op-
erator E;. We can thus assume=|E)(E| and we introduce

new statdE)=AY2E) and rewrite(11) as follows:

(13

<E|A—1/2RA—1/2|E>
Fer—eoeor——. (14
(E[E)
It follows that the optimal vectoiE) is the eigenvector
|tmay Of M=A"Y2RAY? that corresponds to the maximal
eigenvalueu,,,, of M. The maximal achievable mean fidelity
is equal to the maximal eigenvalue,

Frax= Ma{eig A Y?RA?)]. (15)

This formula is one of the the main results of the present
paper. The transformation that achievieg,, is explicitly
given by
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E= e;laﬁ—ﬂmea))(Mma)JA—l/Z, (16) G, dp;,=dg. Under these assumptions, it |§ possible to con-
vert any optimal mag into a universal mag that achieves
the same fidelity a€ by the twirling operation. One first
applies randomly a unitary(h) to the input and then this is
undone by applyiny%(h) to the output. The composition of
the twirling operation with the mag yields

where we have normalized according(®) so thatE is a
trace-decreasing map. If the largest eigenvalyg, is non-
degenerate, then this is the unique optiBaind the problem
is thus completely solved. However, if the eigenvalyg,, is
n-fold degenerate, witH,umaxp, j=1,...)n being then

eigenvectors, then there exist many different transformations
that saturate the fidelity bound5). It can be proved by Poul9) = f VI(h) Tri[Epi(hg) ® 1o, V(h)ydh, (21)
direct substitution into Eq(11) that any operator G
n and the probability of success reads
E= E EjkA_l/2|ﬂmaxJ><Mmaxk|A_1/2 (17) _
b=t P'lpn(@)]= f THEpn(hg) ® loJdh=P. (22
G

yields the maximal fidelityF =, Let K be the Hilbert

space spanned by the vect&s4 i, ;). ThenE can be  Here, we used the group composition law(h)U(g)
any positive semidefinite operator dhthat satisfieg3). In  =y(hg) to obtainU(h)p;,(9)U'(h)=p;,(hg), and the substitu-
this case, we would like to find the m&pthat maximizes the  tjon q=hg, dg=dh. Similarly, we find that

average probability of succegswhile reaching the fidelity

Fmax The optimization problem that must be solved can be F'(p,) = lf THEpL(hg) ® You(hg)ldh=F, (23)
formulated as follows: " ple " o '

maximize P= TH{EA] under the constraints which confirms that the twirling operation results in a uni-
versal machine that works equally well for all possible input
E=0, EeB(K), Tr,E]l<I1, (18)  States.

whereB(K) denotes the set of linear bounded operators on

K. This is an instance of the so-called semidefinite program Ill. PROBABILISTIC CLONING
(SDP that can be very efficiently solved numerically and by . . .
means of the duality lemma one can easily check that the Having established the. general formahsm_, we now turn
global maximum was foun35]. In this context it is worth our attent'lon to the e.XpI'C't examples. of appllcagon. Let us
noting that many optimization problems in quantum informa—f'r‘c.’t con5|der.the unlversal.symmetnc—'iM c!onmg ma-
tion theory can be formulated as semidefinite programs. Thighlne for qu'tS-;,) Here, the Input state s a s_lngle auisit
includes several separability criterji86,37), calculation of =co49/2)|0)+€’sin(8/2)|1), uniformly d|str.|buted over
distillable entanglemeni38], optimization of the teleporta- the surfape of the _BIOCh spherézpin:(l/{lw)3|rj ¥ dd dé.
tion protocols with mixed entangled statg89], determina- 1 he cloning ®r'\r/|1ach|ne should produdé identical clones,
tion of optimal POVM for discrimination of quantum states NeNC&%u= i, and?,yis the fully symmetric subspace of

[40,41, derivation of optimal trace-preserving CP maps forM qubits. The operator® and A can be easily determined
cloning [42,43, construction of local hidden variable theo- with the help of Schur’s lemma which states that an operator
ries [44], etc. which commutes with all elements of an irreducible repre-

sentation of a group is proportional to the identity operator. It
can be shown that the integration over the surface of the
Bloch sphere yields the same result as the integration over

Generally, the fidelity(p;,) will depend onp;,. However,
there is an important class of sets of input stafgsand

transformationg1) such that the optimal CP map is univer- he whol ith the i :
sal. By universality we mean that the probability of succesdh® Whole group SI2) with the invariant Haar measurkg.

P(p;,) as well as the fidelitF(p;,) is independent ofy,. This ~ consider the operatoX =gy [ #(g)]*« dg, where [19)
occurs whenever the set of the input and output states can 5&J(9)|0) andg e SU(2). The support oX is the fully sym-
obtained as orbits of some group. Consider a compact Mmetric subspace df qubits and lefl, x denote the projector
group G with elementsg. Let U(g) andV(g) denote unitary Onto  this  subspace. ~ The  representatiorv(g)
representations dB on H;, andH,,, respectively. The uni- =11 x[U(@)]*"IL, « of the group S2) on the fully sym-

tary U(g) generates the set of input states, metric subspace df qubits is irreducible and the operatér
; commutes with all unitarie¥/(g) (this follows from the in-
pin(9) = U(9)pin(90U'(9), (19 variance of the Haar measyré&chur’s lemma then implies

wheregy is the identity element of the group atilgy)=1.  thatX=IL,x/(K+1), where the normalization prefactor was
We also assume that the set of output states can be obtainégtérmined from TiX)=1. Using this result, we obtain
from ¥ou(gg) as follows: 1
R= ——
Youl @) = V(Q) Yol 90V (9) (20 M+2
andV(gg) =1. The final assumption is that the distribution of where T, indicates partial transposition with respect to the
the inputs coincides with the invariant measure on the groufirst (input) qubit. On inserting the operato(24) into Eq.

(H+,M+1)Tla A= %Jlin ® Loy (24)
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(15) we find thatF,,,,=2/(M+1). As shown in Ref[7] the min(N,M-y) N/ M
optimal deterministic cloning machine saturates this bound, [Pyny,)= X (k )(k+y>|N’k>m|M’y+ Kout:

hence it is impossible to improve the fidelity via probabilistic k=max(0,-y)
cloning. (28)
Let us now consider the transposition operation for qudits,

; ; : d|N,k) denotes a totally symmetric state Nfqubits with
i.e., a map that produces a transposed qudit gthtén some andjiv, k) S
fixed basis from N copies ofy, ¢*N— yT. For qubits, this k qubits in the statdl) and N—k qubits in the statd0).

map is unitarily equivalent to the universal NOT gat&N Similarly, one gets

— i, [27,28. The Hilbert spacéH;, is the fully symmetric 1 NN
subspace of the Hilbert space Nf qudits andH,, is the A= —NE( >|N,k><N,k| ® Loy (29)
Hilbert space of a single qudit. In the formulé® and(10) 250 \k

for A andR we average over alls, that are represented as
orbits of the group SWl) according to Eq(19). The prob-
ability densitydys, = dg, wheredg s the invariant Haar mea-
sure on the group SWd). With the help of Schur’s lemma
one easily finds

Since the stateEDM,N,y> are mutually orthogonal, the matrix

R is diagonal and, consequently, al$d=A"Y’RA? js
diagonal. The maximal eigenvalue can thus be easily deter-
mined and the maximal fidelity is given by

N M

12 M—N} , (30)

1 M
2V o | k+
k=0 |: 2

“D(N+1d)

A FmadN,M) =

In®low R %, (25

1

“ D(N,d)
where[x] denotes the integer part ®f For N> 1, the fidelity

where Hf?m is the projector onto symmetric subspace of(30) is higher than the fidelity of the optimal deterministic

N+1 qudits andD(N+1,d):('§f‘1’) is the dimension of this phase covariant cloner that was given in R&¥]. The maxi-

subspace. The optimal fidelity obtained from Efj5) reads mal improvement of the fidelity is of the order of 1%.

Fmax=(N+1)/(N+d), which is exactly the fidelity of the op- The optimal probabilistic cloning transformation can be
timal deterministicestimation of the qudit state frold cop-  written as
ies [45]. Hence the optimal approximate transposition map =
simply consists of the optimal estimation ¢ffollowed by K 1 M N A K 3

. . |Ny >_) |M! MN+ >l ( 1)
the preparation of the transposed estimated state. Note also N Vik+Ayy/\k

that the fidelityF,,,,=2/(d+1) of the optimal deterministic

transposition map foN=1 was recently derived in Rei46]. whereAyn=[(M-N)/2] and

In all the above examples the optimal probabilistic ma- M N1
chine could not outperform the deterministic machines. This N= maX\/< )( ) (32
can be attributed to the very high symmetry present in all the k k+Aun/\k

aboye consjdered example§. The qyestion Is Wheﬁher theyg 4 normalization prefactor. M —N is even, then Eq.31) is
are interesting cases whé& is a continuous set of linearly

7 the unique optimal phase-covariant probabilistic cloning

) s L &Fansformation that optimally matches the input state’N
higher fidelity than the deterministic one. Below we answerg o the ideal outpy)®M. For oddM —N, however, we can

this qgestion in affirmative by.providing explicit _examples. obtain another optimal operation by replacitg,y with
We will focus on phase covariant cloning machines, where, = . 1 jn Egs(31) and(32). This implies that the suppokt
the underlying group is the Abelian grougl). Specifically, e optimal operatoE is two dimensional and the optimal
we shall first consider probabilistis— M phase covariant map that maximizes the success probability must be calcu-
cloning of qubits[15,17. Here, the input stat¢y)=(|0)  |ated by solving the semidefinite progratts).
+€?1))/12 lies on the equator of the Bloch sphere and is A second example where the probabilistic cloner outper-
characterized by a single parameter, the phaskloreover,  forms the deterministic one is the-1M copying of coherent
Jdg=J3" d¢/(27). The input and output states are given bystatesJa) on a circle. Recall thdw:e_la‘zlzﬁff—o &N/t |ny,
where|n) is the n-photon Fock state. Since we assume that
i = N, o= M. (26) |a) lie on a cirqle, th_e ampli_tude:|a| is fixed while the
phasep=arda) is arbitrary. First of all, we observe that the
perfect cloning is equivalent to noiseless amplification, be-
cause the output state)®™ can be unitarily mapped onto
the statdyMa)®|0)®™~* by an array oM -1 beam splitters
[14]. Thus the cloning is equivalent tv)—|[VMa). The

The integration appearing in the express{d@0) can easily
be carried out and one arrives at

M

1 operatorsA andR are calculated as averages over the phase
RzW > |¢M,N,y><CDM,N,y|’ (27) ¢ and one finds that the maximum eigenvalue Mf is
y="N Mmax=1 which indicates that an exact probabilistic cloning is
possible. However, we must be careful because we deal with
where infinite dimensional Hilbert space and it turns out that the
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fidelity F=1 can be achieved only in the limit of zero prob- qubit, I1, ;. andIL, ;. are projectors on the symmetric sub-
ability of succes$? — 0. Nevertheless, arbitrarily high fidel- space of two qubitg,k or three qubits,j,k, respectively,

ity can be reached with finite success probability if we firstand T5 stands for the partial transposition with respect to the
project the input state onto the subspace spanned by the firgtird qubit. From Eq(15) we obtain the maximal achievable
N+1 Fock statef0), ...,|N) and then apply a diagonal filter purification fidelity,

that approximates the noiseless amplificationn) 3+ 4n+ 72
—MON2y n=0, ... N. The fidelity 27 (35)
2(3+177)
raa M7 . N
F=egMa™y Z (33)  which is larger than the original fidelityro=(up|¢)=(1
no N +7)/2, for all 0<#n<1. As shown in Refs[29-3], the

optimal purification strategy is to project the two-qubit state

p®? onto the symmetric subspace and then throw away one

of the qubits. This procedure achieves the optimal fidelity

(35). Let us now demonstrate that this protocol can be de-

rived by solving the semidefinite prograib8). The maximal

eigenvalue of the matriM is doubly degenerate and the
Another important application of the optimization tech- basis states that span the two-dimensional Hilbert space

nique developed in Sec. Il consists in the design of the optiare given by

mal protocols for purification of mixed quantum states. Sup- 1 -

pose that Alice and Bob can communicate via a noisy ley) = =(2|¥,)[0) + 2|1D)|1)),

quantum channef. Alice wants to send to Bob a quantum V6

state ¢ from some setS,,. However, since the channel is .

noisy, Bob receives mixed staiﬂ=.C(z,//). To partla!ly com- ley) = = (V2| ,)[1) + 2/00)|0)), (36)

pensate for the effects of the noisy channel, Alice sddds \6

copies of the statey to Bob who subsequently attempts to — .

extracty from the state®N. The purification of qubits trans- where[W,)=(|01)+|10))/v2. From Eq/(7) and the definition

mitted through the depolarizing channgk: 7y+3(1-7)1,  of A we find thatP=Tr,[\X], where\=/g pi, dp, and X

has been analyzed in detail in Ref29,30. Very recently, =Try(E). SinceE=3;_; , cyle;)(g it follows that the sup-

the optimal purification protocol for two copies of the qubit port of X is the symmetric subspace of two qubits. From Eq.

has been demonstrated experimentally for the polarizatiops) we thus haveX<Il, ;, The maximumP is obtained

states of single photons by exploiting the interference of tWwqynen x=11, ;,, which can be achieved by the following
photons on a balanced beam spliftét]. Applications of the  ¢nhoice ofE: |

purification procedure to the quantum state estimation and 3
transmission have been discussed in Rgfg,49. Here, we E=3(le){e| +[ex(e,]).
demonstrate that the present optimization procedure can B eaqy 1o check that this trace-decreasing CP map indeed
used to straightforwardly determine the optimal prObabi”Sticdescribes the projection of two qubits onto the symmetric
purification proto_col. Then we will consider the same pmb'subspace followed by tracing over the second qubit.
lem for the amplitude damping channel. The strategy to send the staife)) is not the only possible
option how Alice can encode the stag into the two qubits
A. Depolarizing channel that she sends to Bob via depolarizing channel. For instance,
For the sake of simplicity we illustrate the method on theshe can send him the stal)[,), where(y|¢,)=0. As
case when Alice sends two copies of the sfateto Bob, shown by Gisin and Popes¢@7], the statey) can be esti-
hence Bob’s input mixed state reaﬂ§:[7ﬂr/j+%(l—7]ﬂ]]®2_ mated with higher fidelity from a single copy of the state
The ideal output is a single-qubit pure state Assuming |##.) than from a single copy dfij+). We cannot therefore
uniform distribution of ¢ over the surface of the Bloch @ Priori rule out that sending the stafigy,) can be advan-
sphere, one obtains the following expressions for the operd@geous also in the present context. If Alice sejds, ) then

can be arbitrarily close to 1 d&8— . Clearly, this probabi-
listic cloning achieves even higher fidelity for the coherent
states inside the circle, whefe|<r.

IV. PURIFICATION OF MIXED STATES

tors A andR: Bob’s input mixed state reads
1- 1-
1 1-7° = L) U
A= (57721—[+’12+ Tnll ) ]2) ® 1s, Pin (77(//"' 2 l) ® (77‘/& + 2 l)-
The calculation of the optimal purification fidelity is com-
7 (1-7)? pletely similar to the case of sendihgy). The integralg8)
R's= ZH+,123+ ) l123 and (10) yielding the relevant operato’s, andR, can be

easily evaluated with the help of the substitutign=1-

t @@t Loy, (34 and we obtain

_ 1+ 1, )
where 1 and 2 label the input qubits while 3 labels the output AL= ( g 1837l e ls,
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0.06 - . . - 1 (27
Anp = 2_f PBOB( #) ® Loy dop,
m™Jo
0.04} 2
- 1 &N
S Rap = Z_I peor(— @) ® Y H)de. (39
- mJo
'S
0.02f T T~ 1 We now prove that when determining the maximum achiev-
- ~ ops . . . .
L7 S able purification fidelity, we can assume that the optimal map
.7 AN - £ is a composition of two mapg,=£- Py, where the maPy
0.00 ’ . . . L~ projects the input stateSgB onto the symmetric subspace of
00 02 04 5 06 08 ! N qubits . y and € maps operators of, \ onto operators

on the Hilbert space of single output qubit. By definition, the
operatorsA,p and Ryp commute with arbitrary permutation
operatorll; that changes the order of the input qubits.
Suppose thaE le)e| is an optimal map yielding maximal
fidelity Fp,ayx WhICh is equal to the maximum eigenvalue of
matrix Map=AsH?RapAsn’ As shown in Sec. II, the corre-
Rla= _ 121'[ N 1- 7721 sponding opt|mal eigenvectdu) of M is related tole) as

S St - T follows: |u)=A2le). Let us now consider a symmetrized
state|x) that we obtain fromje) by making a linear superpo-

+ g(l + )l ® 10, 15— g(l — 1, @11, 5 (37)  sition of all NI permutations oN input qubits,
X) = E I1; @ 1,de). (40)

FIG. 1. The maximal possible improvements of fidelk¥(7)
(solid line) and AF | (#) (dashed lingthat can be achieved by pu-
rification when the two-qubit statey) or |, ), respectively, is
sent through the depolarizing channel with parameter

The maximal fidelityF , is determined as the maximum ei-
genvalue of the operatax %R, AT"2.

The results of numerical calculations are given in Fig. 1.It is easy to show thaA,ﬁ’§|x> is an eigenstate d¥1,p with
For comparison we plot on this figure the gains in fidelity eigenvalueF,, We have
AF | =F | (n)—-Fy(n) and AF=F(%)-Fy(7) achieved when

. . 12 12 12
Alice sends the stati@/y, ) or |y, respectively. We can see ABX) = A/ltDAADRADE 1AL )
that as far as the purification is concerned, it is strictly better
for any 0< <1 to send the stat@jy) than |y, ). The :A%Z HjA/Rlo/ZFmaJm

nonzero values oAF (%) clearly show that purification is
possible also when Alice sends the stiaté ) but the fidel-

— 1/2
ity improvement is much smaller than when sending the state =Fmaanl), (42)
4. where we have used that bo#f), and Ry commute with
IT;. Thus the mapX=|x)(x| achieves the maximal fidelity
B. Amplitude damping channel Fmax It holds that Tg,(X) € B(H. \) which proves that we

can restrict our attention to the maﬁswhen calculating the
fmaX|maI fidelity of purified state.
The calculations can be further c0n5|derably simplified by

To further illustrate the utility and universality of our op-
timization method, let us now consider a different class o
noisy channels, namely, an amplitude-damping channel that

maps a pure statg onto a mixed state the observation that the optimal mSpcan be made phase-
s covariant[16,17), that is, invariant under the twirling opera-
772CO§E 7gsin 0 ele tion,
pap(t @) = . (38 ~ [(?™d ¢ T )
i E= \% E V 42
gsin 9ds 1- ,]zcogz . UT(¢) ® VI(HEU (¢) ® V(¢), (42

This channel may arise, for instance, when the qubit is rep¥here U($)IN, k)= €“INK), k=0,...N and V(g)|j)
resented by the ground and excited atomic stigeand|e)  =€'¢|j), j=0,1. This implies that the operatdE can be ex-
where|e) can decay tdg) via spontaneous emission. In order pressed as a direct sum,
to preserve the covarian¢g9) that guarantees the universal-

ity of the optimal purification protocol, we shall assume that -0 E (43)
Alice is sending to BobN copies of a statey(¢))=(|0) -y
+€71))/2 that lies on the equator of the BIoch sphere, i.e.,
the setS,, consists of the stateﬁOB d)=px (77/2 ®). where the support of the operatE|; is a two-dimensional
The operatorR,p and A,p are obtained by integrating Hilbert spaceH,, k=0,... N-1 spanned byN,k)|0) and

over the phasep, IN,k+1)|1) and
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~ ; ; 1/2 ; ;
E ., =e ,[N.OXN,0 ® [1)(1], optimal eigenvectorsh,jle) of M all satisfy the relation
1= €[N, OXN, 0] & |1)(1] Trouf€] € B(H, ») SO we can in fact consider only the maps
~ of the form (45) without any loss of generality.
Exn = en[N,NXN,N| ® [0)(0]. (44) If only a single qubit is sent to Bob, then the only option
The decompositioi43) implies that we can perform the op- 1S k=0_and the best filter is obtained by setting o
o =~ =nl\2—7? which achieves a fidelityF;=2(1+1/\2-7?).
timization of each CP map, separately and then choose the h ificati ds with b bl'l' 2%
k that yields the highest fidelity. It is easy to see that the tracJ € purification succeeds with proba '.'Bﬁ_ 7.
) ~ ~ L For N=2 the maximum fidelityF, is given by
decreasing CP majis ; andEy lead to very low purification

fidelity % so it is optimal for allN to sete_;=ey=0. Without 1 2
loss of generality, we can assume that the optiﬁais a Fa= 5(1 3- ,72) (49)
rank-one operatoE, = |Ek)<Ek|, where
_ One option how to achieve, is to choosek=0 and a, g
|Ew) =[N, K)0) + ay (1) [N,k + 1)[1). (45)  =n/y3-77 The second alternative ik=1 and a,;

. . . =m\3-77/(2-7%). The Hilbert spaceC of the admissible
The action of this operation can be understood as follows, . : . ; :
First theN-qubit state is projected onto two-dimensional sub-opt'mal operationg is thus two dimensional and spanned by

space ofH, y spanned byN,k) and|N,k+1) and then the basis states,

following transformation is carried out: ler) = [00)]0) + ay W.)[1),
INK) = [0), [Nk + 1) — any(7)[1). (46)
&) =[W,)[0) + ap4[1D)[1). (50

The unnormalized density matrix of the purified qubit ob-
tained by applying the mag@!6) reads

N) (N i
_ O'(k,k aN,ko'(k,k)+le '
Pout=

(N) A 2 _(N) :
aN,kUk,k+le¢ | and “Oler1 ket

To find E that maximizes? we must solveg18).
It follows from (42) and(43) that the optimaE is diago-
(47 hal in basis ley,ley), E=p.e;+p,e,. Consequently, the
semidefinite progranil18) reduces to a linear program and
The relevant matrix elements we have to maximize

o = (N, j|pRb (2, 0N, k)

51 1
. o P=3py7* + 3P277°(3 = 7)
can be expressed in terms of a finite series,

under the constraints

k
K\[N-k
(N) = o=N_ 2N-2k 2- 2 _
Tkk 7 §)<|)<k_|)( 7 Osp; =1, ngzsaz?l, Osp1a§’0+p2sl.

‘ For < nn=(7-117)Y/2/2 the optimal coefficients reag
N — N N2kl [KHD ki N-k _ 2\ =0, p=1 while for »>nu, we have p;=(aj
Oks1=2 "7 XE 2-7). > 2 2 2,1
’ N-k H\I/\k+1-] -1 /(a;g05 1) and p=a,. For all 0<zn=<1 the optimal

. . L probability is given by a simple formula
The optimal ay(7) that maximizes the fidelity of the

purified state(47) with respect to the original pure state P,= 1743 -1P. (52)
(|0y+€411))/\2 is given by any=\oy} /o)., and the ?

fidelity of purified qubit reads Finally, when Alice sends three qubits to Ba=3), then

the optimal fidelity of Bob’s purified qubit is given by

1 O'E‘\:(Ll
FN,k_ E 1+ —J’ NN . (48) B 1 5— 2772
VOkk Okt kel Fs=7 1+W 52|
—N2-7

(52
2

The maximum achievable fidelity can be found as a maxi-

mum over allk, Fy ma=maxFy . Based on numerical cal- and the only way to reacks is to choosek=1 and ag

culations we conjecture that for odd the best fidelity is = ,/.\2-,2. The purification succeeds with probabiligs

reached fork=(N-1)/2 while for evenN there are two al- =4 ,6/4.

ternatives leading to the same optinfal namely k=N/2 The dependence of the optimal fidelities giis plotted in
-1 andk=N/2. For N<10 we have checked that these Fig. 2(a) which clearly illustrates that the purification results
choices ofk are optimal which supports this conjecture. in a significant improvement of the fidelity. The relative im-

We shall now present explicit results fdt=1,2,3. Be-  provement is maximal whep— 0 but this is reached at the
sides the maximal fidelity, we are interested also in the maxiexpense of very low probability of success, see Fig).2
mal probabilityP of optimal purification. We have therefore Note also that lim)_,P;=3/4. If Bob possesses three noisy
carried out full calculations of the operatakg, andRap for  qubits and tries to extract one qubit, then his optimal proba-
N=1,2,3 anddetermined the degeneracy of the maximalbilistic strategy will have a finite probability of failure for
eigenvalue of matrixM. These calculations reveal that the arbitrarily low damping.
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efficient attack on several quantum key distribution proto-

(a) cols. In particular, the 2»3 phase-covariant cloning is ex-
plored for eavesdropping purposes in Rgf4]. Thus, the
095 N=3 probabilistic phase-covariant cloning discussed in the present
. paper may be possibly used as a new eavesdropping attack.
N N=2 Moreover, the general theory of optimal probabilistic trans-

0.9 ; formations developed in the present paper has much broader
range of applications than just cloning. In particular, it pro-

Nei F vides a method to engineer optimal protocols for purification
= 0

0.85F ] of mixed quantum states.
0 02 04 06 08 y We have seen on the example of the amplitude damping
n channel that the optimal probabilistic purification may result
1 ] i ] ] in a dramatic improvement of the fidelity of the final Bob’s
(b) state with respect to the original state that was sent to him by
o8t ] Alice via a noisy channel. However, the large improvement
of the fidelity is typically accompanied by a very low prob-
0.6t ability of success. It is therefore highly desirable to optimize
Py the probabilistic transformation also with respect to the av-
0.4t erage success probability which leads to a semidefinite pro-
gram that can be very efficiently solved numerically. For the
0.2} particular cases of purification of mixed states investigated in
the present paper, we have been able to solve the resulting
0 - X X SDP analytically, by exploiting the symmetries inherent to
0 0.2 0.4 n 0.6 0.8 1 the problem_

The protocol considered in the present paper can be even
FIG. 2. (a) Maximal fidelity of the purified qubit when Alice further generalized as follows. One can imagine a scenario
sendsN copies of the qubit via amplitude damping channel param-where the average fidelitlf of the operation is maximized

etrized by . For comparison, the curve labelég displays the ¢, 5 fixeq chosen average probability of succBsr vice
fidelity of the single qubit after passing through the chanfgl, versa, these two alternatives are clearly equivalent. Gener-

=(1+m)/2. (b) The corresponding maximal probability of success- .
ful purification. ally, there will always be a trade-off betweéhand F and
the optimal fidelity will be some function d?. One can then

. _ . . 3 choose the working point on thE(E) curve that is most
In this paper we have investigated the optirpaibabilis- fitting for the particular task at hand. The determination of

tic realizations of several important quantum-lnformatlon-maximalF obtainable for some fixeR can be formulated as

processing tasks such as the optimal cloning of quantu PP o .
states and purification of mixed quantum states. We havr% sem|q§f|r!|te program similar to that given .by IEqB).'The
eterministic machines and the probabilistic machines that

derived a simple formula for the maximum achievable aver-"~ " : ; S
age fidelity and we have provided an explicit prescriptiona‘Ch_'eVe the maximum possible fidelity represent two extreme
how to construct a trace-decreasing CP map that reaches tfRgImes of such a more general scenario.

fidelity Fnha. We have demonstrated that the fidelity of
probabilistic cloning can be strictly higher than the maximal

fidelity of deterministic cloning even if the set of the cloned ) _
states is linearly dependent and continuous. However, it 1h€ author would like to thank Nicolas J. Cerf for many

should be stressed that this improvement in fidelity issumu}atmg discussions. Financial support from the Commu-
achieved at the expense of a certain fraction of unsuccessflifuté Francaise de Belgique under Grant No. ARC 00/05-
events when the probabilistic transformation fails and doe251, from the IUAP program of the Belgian Government
not produce any output state. under Grant No. V-18, from the EU under project CHIC

The optimal probabilistic maps may find a variety of ap- (IST-2001-33578 and from Grant No. LNOOAO15 of the
plications. For instance, the phase covariant cloning is af©zech Ministry of Education, is acknowledged.

V. CONCLUSIONS

ACKNOWLEDGMENTS

[1] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. [3] W. K. Wootters and W. H. Zurek, Naturé&ondon 299 802
Phys. 74, 145 (2002. (1982; D. Dieks, Phys. Lett92A, 271(1982.

[2] P. W. Shor, inProceedings of the 35th Annual Symposium on [4] V. BuZek and M. Hillery, Phys. Rev. /54, 1844(1996.
the Foundations of Computer Scienedited by S. Goldwasser [5] N. Gisin and S. Massar, Phys. Rev. Lef9, 2153(1997).
(IEEE Computer Society Press, New York, 199d. 124. [6] D. Bruss, A. Ekert, and C. Macchiavello, Phys. Rev. Létt,

032308-8



OPTIMAL PROBABILISTIC CLONING AND... PHYSICAL REVIEW A 70, 032308(2004)

2598(1998. [30] M. Keyl and R. F. Werner, Ann. Inst. Henri Poincare, Anal.
[7]1 R. F. Werner, Phys. Rev. A8, 1827(1998. Non Lineaire 2, 1 (2001).
[8] V. Buzek and M. Hillery, Phys. Rev. LetB1, 5003(1998. [31] M. Ricci, F. De Martini, N. J. Cerf, R. Filip, J. Fiurasek, and C.
[9] M. Keyl and R. F. Werner, J. Math. Phyd0, 3283(1999. Macchiavello, e-print quant-ph/0403118.

[10] N. J. Cerf, J. Mod. Opt47, 187 (2000.

. . ) [32] We assume that there is no correlation between the device that
[11] S. L. Braunstein, V. Buzek, and M. Hillery, Phys. Rev.&8,

prepares the input stateg, and the degrees of freedom that

052313(200)). . :
subsequently interact withy,.
[12] 2'7';4 ((2:(%3 A. Ipe, and X. Rottenberg, Phys. Rev. Lé&, 55 5 5amiolkowski, Rep. Math. Physs, 275(1972.

[34] M.-D. Choi, Linear Algebr. Appl.10, 285(1975.

13] S. L. Braunsteiret al, Phys. Rev. Lett.86, 4938(2001).
[13] y (2003 [35] L. Vandenberghe and S. Boyd, SIAM Re88, 49 (1996.

[14] J. FiurdSek, Phys. Rev. Let&6, 4942(2001).

[15] D. Brusset al, Phys. Rev. A62, 012302(2000). [36] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys. Rev.
[16] G. M. D'Ariano and P. Lo Presti, Phys. Rev. A4, 042308 Lett. 88, 187904(2002.
(2009 [37] H. J. Woerdeman, Phys. Rev. 87, 010303(2003.
[17] G. M. D'Ariano and C. Macchiavello, Phys. Rev. &7,  [38] E. M. Rains, IEEE Trans. Inf. Theord7, 2921(200D.
042306(2003. [39] F. Verstraete and H. Verschelde, Phys. Rev.68, 022307
[18] J. Fiurasek, Phys. Rev. &7, 052314(2003. (2002; Phys. Rev. Lett.90, 097901(2003,.
[19] P. Navez and N. J. Cerf, Phys. Rev.68, 032313(2003. [40] M. JeZek, J.Reh&ek, and J. FiurdSek, Phys. Rev. 85,
[20] L.- P. Lamoureux, P. Navez, J. FiuraSek, and N. J. Cerf, Phys.  060301R) (2002.
Rev. A 69, 040301(2004). [41] Y. C. Eldar, A. Megretski, and G. C. Verghese, IEEE Trans.
[21] C. A. Fuchset al, Phys. Rev. A56, 1163(1997. Inf. Theory 49, 1007 (2003.
[22] C.- S. Niu and R. B. Griffiths, Phys. Rev. 80, 2764(1999. [42] K. Audenaert and B. De Moor, Phys. Rev. 85, 030302R)
[23] N. J. Cerfet al, Phys. Rev. Lett.88, 127902(2002. (2002.
[24] A. Acin, N. Gisin, and V. Scarani, Phys. Rev. 89, 012309 [43] J. FiuraSek, S. Iblisdir, S. Massar, and N. J. Cerf, Phys. Rev. A
(2004). 65, 040302(2002.
[25] L. M. Duan and G. C. Guo, Phys. Lett. 43 261 (1998 [44] B. M. Terhal, A. C. Doherty, and D. Schwab, Phys. Rev. Lett.
Phys. Rev. Lett.80, 4999(1998. 90, 157903(2003.
[26] A. Chefles and S. M. Barnett, J. Phys. 21, 10097 (1998); [45] D. Bruss and C. Macchiavello, Phys. Lett. 263 249(1999.
Phys. Rev. A60, 136(1999. [46] F. Buscemi, G. M. D’Ariano, P. Perinotti, and M. F. Sacchi,
[27] N. Gisin and S. Popescu, Phys. Rev. L&8, 432(1999. Phys. Lett. A314, 374(2003.
[28] V. Buzek, M. Hillery, and R. F. Werner, Phys. Rev. 80, [47] H. Mack, D. G. Fischer, and M. Freyberger, Phys. Re\62
R2626(1999. 042301(2001).
[29] J. I. Cirac, A. K. Ekert, and C. Macchiavello, Phys. Rev. Lett. [48] D. G. Fischer, H. Mack, and M. Freyberger, Phys. Re\6&
82, 4344(1999. 042305(200D).

032308-9



