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We investigate the probabilistic cloning and purification of quantum states. The performance of these
probabilistic operations is quantified by the average fidelity between the ideal and actual output states. We
provide a simple formula for the maximal achievable average fidelity and we explicitly show how to construct
a probabilistic operation that achieves this fidelity. We illustrate our method on several examples such as the
phase covariant cloning of qubits, cloning of coherent states, and purification of qubits transmitted via depo-
larizing channel and amplitude damping channel. Our examples reveal that the probabilistic cloner may yield
higher fidelity than the best deterministic cloner even when the states that should be cloned are linearly
dependent and are drawn from a continuous set.
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I. INTRODUCTION

The recent spectacular development of the quantum infor-
mation theory has revealed that information processing based
on the laws of quantum mechanics enables implementation
of tasks that are impossible or very hard to accomplish clas-
sically. The prime examples are the quantum cryptography
which allows unconditionally secure distribution of a secret
key [1] and the exponential speedup of certain computational
tasks, such as the factoring of integers[2]. On the other hand,
the linearity of quantum mechanics also imposes certain con-
straints on the processing of quantum information that have
no classical counterpart. Perhaps the most famous example is
the no-cloning theorem which states that an unknown quan-
tum state cannot be copied[3]. However, this restriction pro-
vides, in fact, a valuable resource explored in the quantum
key distribution protocols, because it forbids an eavesdrop-
per to gain information on the distributed secret key without
introducing errors.

Since exact copying is forbidden, a natural problem arises
what is the optimal approximate cloning transformation. This
question was first asked by Bužek and Hillery in their semi-
nal paper[4] and since then it has been addressed by numer-
ous authors who considered various cloning scenarios, such
as cloning of qubits[5,6], cloning ofd-dimensional systems
(qudits) [7–11] and cloning of continuous variables[12–14].
Much attention has been recently paid also to the cloning of
subsets of Hilbert space, such as the phase covariant cloning
machine for equatorial qubits[15–18] and cloning of real
states[19] or maximally entangled states[20]. Remarkably,
the cloning machines turned out to be very efficient or even
optimal eavesdropping attacks on many quantum crypto-
graphic protocols[21–24] and their investigation is largely
motivated by these practical aspects.

Typically, the cloner is assumed to be a deterministic ma-
chine that always produces an output. Nevertheless, one can
consider also probabilistic cloning machines that sometimes
fail and do not provide any outcome. The probabilistic clon-
ers have been discussed in the literature in the context of
cloning of a discrete finite set of quantum states and it was
shown that an exact probabilistic cloning is possible if and

only if the set consists of linearly independent states[25,26].
However, one may hope that the probabilistic machines

may yield better results also for the sets of linearly depen-
dent quantum states and even for infinite(continuous) sets.
Here, we investigate the probabilistic cloning of linearly de-
pendent states and we establish a general theory of the opti-
mal probabilistic cloning machines. We provide a simple for-
mula for the maximal average fidelity of the probabilistic
machine and we also show how to construct the optimal
cloning transformations.

In fact, our formalism is very general and it concerns
optimal probabilistic implementations of arbitrary transfor-
mations whose outputs should ideally be pure states. Besides
cloning, this includes also universal NOT gate for qubits
[27,28], and, perhaps even more importantly, probabilistic
purification of mixed quantum states[29–31]. In what fol-
lows we first establish the general formalism and then we
work out several explicit examples that will illustrate our
method.

II. OPTIMAL PROBABILISTIC TRANSFORMATIONS

The probabilistic machines investigated in the present pa-
per optimally (in a sense defined below) approximate the
map from a setSin of input (generally mixed) statesrin to the
setSout of the output pure statesucoutl,

rin → coutsrind, s1d

wherecout;ucoutlkcoutu is a short-hand notation for the den-
sity matrix of a pure state. IfSin is a set of pure states(such
as in the case of cloning) then we replacerin with cin. The
most general probabilistic transformation in quantum me-
chanics is a linear trace decreasing completely positive(CP)
map[32] that transforms operators on the input Hilbert space
Hin onto the operators on the output Hilbert spaceHout. In
what follows we will exploit the isomorphism between a CP
maprout=Esrind and a positive semidefinite operatorE on the
Hilbert spaceH=Hin ^ Hout [33,34]. Let u jl denote a basis in
a d-dimensional Hilbert spaceHin. The operatorE can be
obtained from the maximally entangled state onHin ^ Hin,
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uFl=o j=1
d u jlAu jlB, if we apply the mapE to one part ofuFl.

We haveE=IA ^ EBsFd whereI denotes the identity map.
The transformationrout=Esrind can be rewritten in terms

of E as follows:

rout = TrinfErin
T

^ 1outg, s2d

where Trin denotes the partial trace over the input Hilbert
space andT stands for the transposition in the basisu jl. The
map must be trace decreasing which means that Trfroutg
øTrsrind for all rinù0. This implies thatE must satisfy the
inequality

TroutsEd ø 1in, s3d

where1 denotes the identity operator and the equality in(3)
is achieved by deterministic(trace preserving) CP maps.

Consider a particular inputrin. The normalized output
stater̃out is given byr̃out=rout/Psrind where

Psrind = TrfErin
T

^ 1outg s4d

is the probability of successful application of the mapE to
rin. The performance of the mapE for the particular inputrin
can be conveniently quantified by the fidelity between the
actual and the ideal outputs

Fsrind = kcoutur̃outucoutl. s5d

Expressed in terms ofE we have

Fsrind =
1

Psrind
TrsE rin

T
^ coutd. s6d

We assume that the setSin is endowed with ana priori
probability distributiondrin such thateSin

drin=1. Here and in
what follows we assume that the setSin is continuous. Of
course, all formulas remain valid also for discrete sets, one
simply must replace the integrals with corresponding sum-
mations over the elements ofSin.

The average probability of success is defined as

P̄ =E
Sin

Psrinddrin = TrfEAg, s7d

where

A =E
Sin

rin
T

^ 1outdrin. s8d

We now introduce the mean fidelityF of the transformation
E as the average of the fidelitiesFsrind, with proper weights

Psrinddrin / P̄,

F =E
Sin

Fsrind
Psrind

P̄
drin. s9d

The mean fidelity is the figure of merit considered in the
present paper and in what follows we shall look for the op-
timal mapE that maximizesF.

If we insert the expression(6) into Eq. (9) we obtainF

=F̄ / P̄ whereF̄=TrfERg and

R=E
Sin

rin
T

^ cout drin. s10d

Taking everything together, we want to findE that maxi-
mizes the mean fidelity

F =
TrsERd
TrsEAd

, s11d

where Rù0 and A.0 are defined above. The positive
semidefinite operatorE representing a trace-decreasing CP
map must satisfy the constraint(3). However, this constraint
is irrelevant as far as the mean fidelity(11) is concerned
because the value ofF does not change under the renormal-
ization,

E → E8 = emax
−1 E, s12d

whereemax=maxfeigsTroutEdg, eigsXd denotes the set of ei-
genvalues ofX, and E8 satisfies the inequality(3) by con-
struction. This fact greatly simplifies the analysis. Strictly
speaking, these arguments are valid only for finite dimen-

sional Hilbert spaces whereemax is always finite andP̄8
=TrfE8Ag.0 sinceA.0. As we will see in the next section,
a little extra care is needed when dealing with infinite dimen-
sional systems.

The above argumentation shows that we have to maxi-
mize the fidelity (11) under the constraintEù0. We now
show that the optimalE can always be assumed to be a rank
one operator(a pure state). Suppose thatE represents the
optimal CP map. SinceEù0 we can express it as a convex
mixture of rank one operators,E=o j ejuEjlkEju with ej .0.
Let Fj =TrsEjRd /TrsEjAd denote the mean fidelity corre-
sponding to the mapEj ;uEjlkEju. On inserting the expansion
of E into Eq. (11) we obtain

F =
o j

pjFj

ok
pk

ø max
j

sFjd, s13d

wherepj =ej TrsEjAd.0. If E is optimal map, then Eq.(13)
implies that all the fidelitiesFj =F and, consequently, the
maximum mean fidelityF is achieved by each rank-one op-
eratorEj. We can thus assumeE= uElkEu and we introduce

new stateuẼl=A1/2uEl and rewrite(11) as follows:

F =
kẼuA−1/2RA−1/2uẼl

kẼuẼl
. s14d

It follows that the optimal vectoruẼl is the eigenvector
ummaxl of M =A−1/2RA−1/2 that corresponds to the maximal
eigenvaluemmax of M. The maximal achievable mean fidelity
is equal to the maximal eigenvalue,

Fmax= maxfeigsA−1/2RA−1/2dg. s15d

This formula is one of the the main results of the present
paper. The transformation that achievesFmax is explicitly
given by
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E = emax
−1 A−1/2ummaxlkmmaxuA−1/2, s16d

where we have normalized according to(12) so thatE is a
trace-decreasing map. If the largest eigenvaluemmax is non-
degenerate, then this is the unique optimalE and the problem
is thus completely solved. However, if the eigenvaluemmax is
n-fold degenerate, withummax,jl, j =1, . . . ,n being the n
eigenvectors, then there exist many different transformations
that saturate the fidelity bound(15). It can be proved by
direct substitution into Eq.(11) that any operator

E = o
j ,k=1

n

EjkA
−1/2ummax,jlkmmax,kuA−1/2 s17d

yields the maximal fidelityF=mmax. Let K be the Hilbert
space spanned by the vectorsA−1/2ummax,jl. Then E can be
any positive semidefinite operator onK that satisfies(3). In
this case, we would like to find the mapE that maximizes the

average probability of successP̄ while reaching the fidelity
Fmax. The optimization problem that must be solved can be
formulated as follows:

maximize P̄ = TrfEAg under the constraints

E ù 0, E P BsKd, TroutfEg ø 1, s18d

whereBsKd denotes the set of linear bounded operators on
K. This is an instance of the so-called semidefinite program
(SDP) that can be very efficiently solved numerically and by
means of the duality lemma one can easily check that the
global maximum was found[35]. In this context it is worth
noting that many optimization problems in quantum informa-
tion theory can be formulated as semidefinite programs. This
includes several separability criteria[36,37], calculation of
distillable entanglement[38], optimization of the teleporta-
tion protocols with mixed entangled states[39], determina-
tion of optimal POVM for discrimination of quantum states
[40,41], derivation of optimal trace-preserving CP maps for
cloning [42,43], construction of local hidden variable theo-
ries [44], etc.

Generally, the fidelityFsrind will depend onrin. However,
there is an important class of sets of input statesSin and
transformations(1) such that the optimal CP map is univer-
sal. By universality we mean that the probability of success
Psrind as well as the fidelityFsrind is independent ofrin. This
occurs whenever the set of the input and output states can be
obtained as orbits of some groupG. Consider a compact
groupG with elementsg. Let Usgd andVsgd denote unitary
representations ofG on Hin andHout, respectively. The uni-
tary Usgd generates the set of input states,

rinsgd = Usgdrinsg0dU†sgd, s19d

whereg0 is the identity element of the group andUsg0d=1.
We also assume that the set of output states can be obtained
from coutsg0d as follows:

coutsgd = Vsgdcoutsg0dV†sgd s20d

andVsg0d=1. The final assumption is that the distribution of
the inputs coincides with the invariant measure on the group

G, drin=dg. Under these assumptions, it is possible to con-

vert any optimal mapE into a universal mapẼ that achieves
the same fidelity asE by the twirling operation. One first
applies randomly a unitaryUshd to the input and then this is
undone by applyingV−1shd to the output. The composition of
the twirling operation with the mapE yields

routsgd =E
G

V†shdTrinfErin
T shgd ^ 1outgVshddh, s21d

and the probability of success reads

P8frinsgdg =E
G

TrfErin
T shgd ^ 1outgdh= P̄. s22d

Here, we used the group composition lawUshdUsgd
=Ushgd to obtainUshdrinsgdU†shd=rinshgd, and the substitu-
tion q=hg, dq=dh. Similarly, we find that

F8srind =
1

P̄
E

G

TrfErin
T shgd ^ coutshgdgdh= F, s23d

which confirms that the twirling operation results in a uni-
versal machine that works equally well for all possible input
states.

III. PROBABILISTIC CLONING

Having established the general formalism, we now turn
our attention to the explicit examples of application. Let us
first consider the universal symmetric 1→M cloning ma-
chine for qubits. Here, the input state is a single qubitucl
=cossq /2du0l+eifsinsq /2du1l, uniformly distributed over
the surface of the Bloch sphere,dcin=s1/4pdsin q dq df.
The cloning machine should produceM identical clones,
hencecout=cin

^M andHout is the fully symmetric subspace of
M qubits. The operatorsR and A can be easily determined
with the help of Schur’s lemma which states that an operator
which commutes with all elements of an irreducible repre-
sentation of a group is proportional to the identity operator. It
can be shown that the integration over the surface of the
Bloch sphere yields the same result as the integration over
the whole group SUs2d with the invariant Haar measuredg.
Consider the operatorX=eSUs2dfcsgdg^K dg, where ucsgdl
=Usgdu0l andgPSUs2d. The support ofX is the fully sym-
metric subspace ofK qubits and letP+,K denote the projector
onto this subspace. The representationVsgd
=P+,KfUsgdg^KP+,K of the group SUs2d on the fully sym-
metric subspace ofK qubits is irreducible and the operatorX
commutes with all unitariesVsgd (this follows from the in-
variance of the Haar measure). Schur’s lemma then implies
that X=P+,K / sK+1d, where the normalization prefactor was
determined from TrsXd=1. Using this result, we obtain

R=
1

M + 2
sP+,M+1dT1, A = 1

21in ^ 1out, s24d

whereT1 indicates partial transposition with respect to the
first (input) qubit. On inserting the operators(24) into Eq.
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(15) we find thatFmax=2/sM +1d. As shown in Ref.[7] the
optimal deterministic cloning machine saturates this bound,
hence it is impossible to improve the fidelity via probabilistic
cloning.

Let us now consider the transposition operation for qudits,
i.e., a map that produces a transposed qudit statecT (in some
fixed basis) from N copies ofc, c^N→cT. For qubits, this
map is unitarily equivalent to the universal NOT gatec^N

→c' [27,28]. The Hilbert spaceHin is the fully symmetric
subspace of the Hilbert space ofN qudits andHout is the
Hilbert space of a single qudit. In the formulas(8) and (10)
for A andR we average over allcin that are represented as
orbits of the group SUsdd according to Eq.(19). The prob-
ability densitydcin;dg, wheredg is the invariant Haar mea-
sure on the group SUsdd. With the help of Schur’s lemma
one easily finds

A =
1

DsN,dd
1in ^ 1out, R=

1

DsN + 1,dd
P+,N+1

sdd , s25d

where P+,N+1
sdd is the projector onto symmetric subspace of

N+1 qudits andDsN+1,dd= s N+d
d−1

d is the dimension of this
subspace. The optimal fidelity obtained from Eq.(15) reads
Fmax=sN+1d / sN+dd, which is exactly the fidelity of the op-
timal deterministicestimation of the qudit state fromN cop-
ies [45]. Hence the optimal approximate transposition map
simply consists of the optimal estimation ofc followed by
the preparation of the transposed estimated state. Note also
that the fidelityFmax=2/sd+1d of the optimal deterministic
transposition map forN=1 was recently derived in Ref.[46].

In all the above examples the optimal probabilistic ma-
chine could not outperform the deterministic machines. This
can be attributed to the very high symmetry present in all the
above considered examples. The question is whether there
are interesting cases whenSin is a continuous set of linearly
dependent states and the probabilistic machine achieves
higher fidelity than the deterministic one. Below we answer
this question in affirmative by providing explicit examples.
We will focus on phase covariant cloning machines, where
the underlying group is the Abelian group Us1d. Specifically,
we shall first consider probabilisticN→M phase covariant
cloning of qubits [15,17]. Here, the input stateucl=su0l
+eifu1ld /Î2 lies on the equator of the Bloch sphere and is
characterized by a single parameter, the phasef. Moreover,
edg=e0

2p df / s2pd. The input and output states are given by

cin = c^N, cout = c^M . s26d

The integration appearing in the expression(10) can easily
be carried out and one arrives at

R=
1

2M+N o
y=−N

M

uFM,N,ylkFM,N,yu, s27d

where

uFM,N,yl = o
k=maxs0,−yd

minsN,M−yd ÎSN

k
DS M

k + y
DuN,klinuM,y + klout,

s28d

and uN,kl denotes a totally symmetric state ofN qubits with
k qubits in the stateu1l and N−k qubits in the stateu0l.
Similarly, one gets

A =
1

2No
k=0

N SN

k
DuN,klkN,ku ^ 1out. s29d

Since the statesuFM,N,yl are mutually orthogonal, the matrix
R is diagonal and, consequently, alsoM =A−1/2RA−1/2 is
diagonal. The maximal eigenvalue can thus be easily deter-
mined and the maximal fidelity is given by

FmaxsN,Md =
1

2M o
k=0

N 1 M

k + FM − N

2
G 2 , s30d

wherefxg denotes the integer part ofx. ForN.1, the fidelity
(30) is higher than the fidelity of the optimal deterministic
phase covariant cloner that was given in Ref.[17]. The maxi-
mal improvement of the fidelity is of the order of 1%.

The optimal probabilistic cloning transformation can be
written as

uN,kl → 1

NÎS M

k + DMN
DSN

k
D−1

uM,DMN + kl, s31d

whereDMN=fsM −Nd /2g and

N = max
k
ÎS M

k + DMN
DSN

k
D−1

s32d

is a normalization prefactor. IfM −N is even, then Eq.(31) is
the unique optimal phase-covariant probabilistic cloning
transformation that optimally matches the input stateucl^N

onto the ideal outputucl^M. For oddM −N, however, we can
obtain another optimal operation by replacingDMN with
DMN+1 in Eqs.(31) and(32). This implies that the supportK
of the optimal operatorE is two dimensional and the optimal
map that maximizes the success probability must be calcu-
lated by solving the semidefinite program(18).

A second example where the probabilistic cloner outper-
forms the deterministic one is the 1→M copying of coherent
statesual on a circle. Recall thatual=e−uau2/2on=0

` aN/În! unl,
where unl is then-photon Fock state. Since we assume that
ual lie on a circle, the amplituder = uau is fixed while the
phasef=argsad is arbitrary. First of all, we observe that the
perfect cloning is equivalent to noiseless amplification, be-
cause the output stateual^M can be unitarily mapped onto
the stateuÎMal ^ u0l^M−1 by an array ofM −1 beam splitters
[14]. Thus the cloning is equivalent toual→ uÎMal. The
operatorsA andR are calculated as averages over the phase
f and one finds that the maximum eigenvalue ofM is
mmax=1 which indicates that an exact probabilistic cloning is
possible. However, we must be careful because we deal with
infinite dimensional Hilbert space and it turns out that the
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fidelity F=1 can be achieved only in the limit of zero prob-
ability of successP→0. Nevertheless, arbitrarily high fidel-
ity can be reached with finite success probability if we first
project the input state onto the subspace spanned by the first
N+1 Fock statesu0l , . . . ,uNl and then apply a diagonal filter
that approximates the noiseless amplification,unl
→Msn−Nd/2unl, n=0, . . . ,N. The fidelity

F = e−Muau2o
n=0

N
Mnuau2n

n!
s33d

can be arbitrarily close to 1 asN→`. Clearly, this probabi-
listic cloning achieves even higher fidelity for the coherent
states inside the circle, whereuau, r.

IV. PURIFICATION OF MIXED STATES

Another important application of the optimization tech-
nique developed in Sec. II consists in the design of the opti-
mal protocols for purification of mixed quantum states. Sup-
pose that Alice and Bob can communicate via a noisy
quantum channelC. Alice wants to send to Bob a quantum
state c from some setSin. However, since the channel is
noisy, Bob receives mixed stater=Cscd. To partially com-
pensate for the effects of the noisy channel, Alice sendsN
copies of the statec to Bob who subsequently attempts to
extractc from the stater^N. The purification of qubits trans-
mitted through the depolarizing channel,r=hc+ 1

2s1−hd1,
has been analyzed in detail in Refs.[29,30]. Very recently,
the optimal purification protocol for two copies of the qubit
has been demonstrated experimentally for the polarization
states of single photons by exploiting the interference of two
photons on a balanced beam splitter[31]. Applications of the
purification procedure to the quantum state estimation and
transmission have been discussed in Refs.[47,48]. Here, we
demonstrate that the present optimization procedure can be
used to straightforwardly determine the optimal probabilistic
purification protocol. Then we will consider the same prob-
lem for the amplitude damping channel.

A. Depolarizing channel

For the sake of simplicity we illustrate the method on the
case when Alice sends two copies of the stateucl to Bob,
hence Bob’s input mixed state readsrin=fhc+ 1

2s1−hd1g^2.
The ideal output is a single-qubit pure statec. Assuming
uniform distribution of c over the surface of the Bloch
sphere, one obtains the following expressions for the opera-
tors A andR:

A = S1

3
h2P+,12+

1 − h2

4
11 ^ 12D ^ 13,

RT3 =
h2

4
P+,123+

s1 − hd2

8
1123

+
h

6
s1 − hds11 ^ P+,23+ 12 ^ P+,13d, s34d

where 1 and 2 label the input qubits while 3 labels the output

qubit, P+,jk and P+,i jk are projectors on the symmetric sub-
space of two qubitsj ,k or three qubitsi , j ,k, respectively,
andT3 stands for the partial transposition with respect to the
third qubit. From Eq.(15) we obtain the maximal achievable
purification fidelity,

F =
3 + 4h + h2

2s3 + h2d
, s35d

which is larger than the original fidelityF0=kcurucl=s1
+hd /2, for all 0,h,1. As shown in Refs.[29–31], the
optimal purification strategy is to project the two-qubit state
r^2 onto the symmetric subspace and then throw away one
of the qubits. This procedure achieves the optimal fidelity
(35). Let us now demonstrate that this protocol can be de-
rived by solving the semidefinite program(18). The maximal
eigenvalue of the matrixM is doubly degenerate and the
basis states that span the two-dimensional Hilbert spaceK
are given by

ue1l =
1
Î6

sÎ2uC+lu0l + 2u11lu1ld,

ue2l =
1
Î6

sÎ2uC+lu1l + 2u00lu0ld, s36d

whereuC+l=su01l+ u10ld /Î2. From Eq.(7) and the definition

of A we find thatP̄=TrinflXg, wherel=eSin
rin

T drin and X
=TroutsEd. SinceE=o j=1,2 cjkuejlkeku it follows that the sup-
port of X is the symmetric subspace of two qubits. From Eq.

(3) we thus haveXøP+,12. The maximumP̄ is obtained
when X=P+,12, which can be achieved by the following
choice ofE:

E = 3
2sue1lke1u + ue2lke2ud.

It is easy to check that this trace-decreasing CP map indeed
describes the projection of two qubits onto the symmetric
subspace followed by tracing over the second qubit.

The strategy to send the stateuccl is not the only possible
option how Alice can encode the stateucl into the two qubits
that she sends to Bob via depolarizing channel. For instance,
she can send him the stateucluc'l, where kc uc'l=0. As
shown by Gisin and Popescu[27], the stateucl can be esti-
mated with higher fidelity from a single copy of the state
ucc'l than from a single copy ofuccl. We cannot therefore
a priori rule out that sending the stateucc'l can be advan-
tageous also in the present context. If Alice sendsucc'l then
Bob’s input mixed state reads

rin = Shc +
1 − h

2
1D ^ Shc' +

1 − h

2
1D .

The calculation of the optimal purification fidelity is com-
pletely similar to the case of sendinguccl. The integrals(8)
and (10) yielding the relevant operatorsA' and R' can be
easily evaluated with the help of the substitutionc'=1−c
and we obtain

A' = S1 + h2

4
11 ^ 12 −

1

3
h2P+,12D ^ 13,
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R'
T3 = −

h2

4
P+,123+

1 − h2

8
1123

+
h

6
s1 + hd12 ^ P+,13−

h

6
s1 − hd11 ^ P+,23. s37d

The maximal fidelityF' is determined as the maximum ei-
genvalue of the operatorA'

−1/2R'A'
−1/2.

The results of numerical calculations are given in Fig. 1.
For comparison we plot on this figure the gains in fidelity
DF'=F'shd−F0shd and DF=Fshd−F0shd achieved when
Alice sends the stateucc'l or uccl, respectively. We can see
that as far as the purification is concerned, it is strictly better
for any 0,h,1 to send the stateuccl than ucc'l. The
nonzero values ofDF'shd clearly show that purification is
possible also when Alice sends the stateucc'l but the fidel-
ity improvement is much smaller than when sending the state
uccl.

B. Amplitude damping channel

To further illustrate the utility and universality of our op-
timization method, let us now consider a different class of
noisy channels, namely, an amplitude-damping channel that
maps a pure statec onto a mixed state

rADsq,fd =1 h2cos2
q

2

h

2
sin q e−if

h

2
sin q eif 1 − h2cos2

q

2
2 . s38d

This channel may arise, for instance, when the qubit is rep-
resented by the ground and excited atomic statesugl and uel
whereuel can decay tougl via spontaneous emission. In order
to preserve the covariance(19) that guarantees the universal-
ity of the optimal purification protocol, we shall assume that
Alice is sending to BobN copies of a stateucsfdl=su0l
+eifu1ld /Î2 that lies on the equator of the Bloch sphere, i.e.,
the setSin consists of the statesrBOB

^N sfd=rAD
^Nsp /2 ,fd.

The operatorsRAD and AAD are obtained by integrating
over the phasef,

AAD =
1

2p
E

0

2p

rBOB
^N s− fd ^ 1out df,

RAD =
1

2p
E

0

2p

rBOB
^N s− fd ^ csfddf. s39d

We now prove that when determining the maximum achiev-
able purification fidelity, we can assume that the optimal map

E is a composition of two maps,E= Ẽ +PN, where the mapPN
projects the input staterBOB

^N onto the symmetric subspace of

N qubitsH+,N and Ẽ maps operators onH+,N onto operators
on the Hilbert space of single output qubit. By definition, the
operatorsAAD andRAD commute with arbitrary permutation
operatorP j that changes the order of theN input qubits.
Suppose thatE= uelkeu is an optimal map yielding maximal
fidelity Fmax which is equal to the maximum eigenvalue of
matrix MAD=AAD

−1/2RADAAD
−1/2. As shown in Sec. II, the corre-

sponding optimal eigenvectoruml of M is related touel as
follows: uml=AAD

1/2uel. Let us now consider a symmetrized
stateuxl that we obtain fromuel by making a linear superpo-
sition of all N! permutations ofN input qubits,

uxl = o
j

P j ^ 1outuel. s40d

It is easy to show thatAAD
1/2uxl is an eigenstate ofMAD with

eigenvalueFmax. We have

MADAAD
1/2uxl = AAD

1/2AAD
−1 RADo

j

P jAAD
−1/2uml

=AAD
1/2o

j

P jAAD
−1/2Fmaxuml

=FmaxAAD
1/2uxl, s41d

where we have used that bothAAD and RAD commute with
P j. Thus the mapX= uxlkxu achieves the maximal fidelity
Fmax. It holds that TroutsXdPBsH+,Nd which proves that we

can restrict our attention to the mapsẼ when calculating the
maximal fidelity of purified state.

The calculations can be further considerably simplified by

the observation that the optimal mapẼ can be made phase-
covariant[16,17], that is, invariant under the twirling opera-
tion,

Ẽ =E
0

2p df

2p
UTsfd ^ V†sfdẼU*sfd ^ Vsfd, s42d

where UsfduN,kl=eikfuN,kl, k=0, . . . ,N and Vsfdu jl
=eij fu jl, j =0,1.This implies that the operatorẼ can be ex-
pressed as a direct sum,

Ẽ = %
k=−1

N

Ẽk, s43d

where the support of the operatorẼk is a two-dimensional
Hilbert spaceHk, k=0, . . . ,N−1 spanned byuN,klu0l and
uN,k+1l u1l and

FIG. 1. The maximal possible improvements of fidelityDFshd
(solid line) andDF'shd (dashed line) that can be achieved by pu-
rification when the two-qubit stateuccl or ucc'l, respectively, is
sent through the depolarizing channel with parameterh.
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Ẽ−1 = e−1uN,0lkN,0u ^ u1lk1u,

ẼN = eNuN,NlkN,Nu ^ u0lk0u. s44d

The decomposition(43) implies that we can perform the op-

timization of each CP mapẼk separately and then choose the
k that yields the highest fidelity. It is easy to see that the trace

decreasing CP mapsẼ−1 andẼN lead to very low purification
fidelity 1

2 so it is optimal for allN to sete−1=eN=0. Without

loss of generality, we can assume that the optimalẼk is a

rank-one operator,Ẽk= uẼklkẼku, where

uẼkl = uN,klu0l + aN,kshduN,k + 1lu1l. s45d

The action of this operation can be understood as follows.
First theN-qubit state is projected onto two-dimensional sub-
space ofH+,N spanned byuN,kl and uN,k+1l and then the
following transformation is carried out:

uN,kl → u0l, uN,k + 1l → aN,kshdu1l. s46d

The unnormalized density matrix of the purified qubit ob-
tained by applying the map(46) reads

rout = S sk,k
sNd aN,k

* sk,k+1
sNd e−if

aN,ksk,k+1
sNd eif uaN,ku2sk+1,k+1

sNd D . s47d

The relevant matrix elements

s j ,k
sNd = kN, j urAD

^Nsp/2,0duN,kl

can be expressed in terms of a finite series,

sk,k
sNd = 2−Nh2N−2ko

l=0

k Sk

l
DSN − k

k − l
Ds2 − h2dl ,

sk,k+1
sNd = 2−Nh2N−2k−1Î k + 1

N − k
3 o

l=0

k Sk

l
DS N − k

k + 1 − l
Ds2 − h2dl .

The optimal aN,kshd that maximizes the fidelity of the
purified state(47) with respect to the original pure state
su0l+eifu1ld /Î2 is given by aN,k=Îsk,k

sNd /sk+1,k+1
sNd and the

fidelity of purified qubit reads

FN,k =
1

2S1 +
sk,k+1

sNd

Îsk,k
sNdsk+1,k+1

sNd D . s48d

The maximum achievable fidelity can be found as a maxi-
mum over allk, FN,max=maxkFN,k. Based on numerical cal-
culations we conjecture that for oddN the best fidelity is
reached fork=sN−1d /2 while for evenN there are two al-
ternatives leading to the same optimalF, namely k=N/2
−1 and k=N/2. For Nø10 we have checked that these
choices ofk are optimal which supports this conjecture.

We shall now present explicit results forN=1,2,3. Be-
sides the maximal fidelity, we are interested also in the maxi-

mal probabilityP̄ of optimal purification. We have therefore
carried out full calculations of the operatorsAAD andRAD for
N=1,2,3 anddetermined the degeneracy of the maximal
eigenvalue of matrixM. These calculations reveal that the

optimal eigenvectorsAAD
1/2uel of M all satisfy the relation

TroutfegPBsH+,Nd so we can in fact consider only the maps
of the form (45) without any loss of generality.

If only a single qubit is sent to Bob, then the only option
is k=0 and the best filter is obtained by settinga1,0

=h /Î2−h2 which achieves a fidelityF1= 1
2s1+1/Î2−h2d.

The purification succeeds with probabilityP1=h2.
For N=2 the maximum fidelityF2 is given by

F2 =
1

2
S1 +Î 2

3 − h2D . s49d

One option how to achieveF2 is to choosek=0 and a2,0
=h /Î3−h2. The second alternative isk=1 and a2,1
=hÎ3−h2/ s2−h2d. The Hilbert spaceK of the admissible
optimal operationsE is thus two dimensional and spanned by
basis states,

ue1l = u00lu0l + a2,0uC+lu1l,

ue2l = uC+lu0l + a2,1u11lu1l. s50d

To find E that maximizesP̄ we must solve(18).
It follows from (42) and(43) that the optimalE is diago-

nal in basis ue1l , ue2l, E=p1e1+p2e2. Consequently, the
semidefinite program(18) reduces to a linear program and
we have to maximize

P̄ = 1
2p1h4 + 1

2p2h2s3 − h2d

under the constraints

0 ø p1 ø 1, 0ø p2 ø a2,1
−2 , 0 ø p1a2,0

2 + p2 ø 1.

For høhth;s7−Î17d1/2/2 the optimal coefficients readp1

=0, p2=1 while for h.hth we have p1=sa2,1
2

−1d / sa2,0
2 a2,1

2 d and p2=a2,1
−2 . For all 0,hø1 the optimal

probability is given by a simple formula

P2 = 1
2h2s3 − h2d. s51d

Finally, when Alice sends three qubits to BobsN=3d, then
the optimal fidelity of Bob’s purified qubit is given by

F3 =
1

2F1 +
5 − 2h2

s4 − h2dÎ2 − h2G , s52d

and the only way to reachF3 is to choosek=1 and a3,1
=h /Î2−h2. The purification succeeds with probabilityP3
=h4−h6/4.

The dependence of the optimal fidelities onh is plotted in
Fig. 2(a) which clearly illustrates that the purification results
in a significant improvement of the fidelity. The relative im-
provement is maximal whenh→0 but this is reached at the
expense of very low probability of success, see Fig. 2(b).
Note also that limh→1P3=3/4. If Bob possesses three noisy
qubits and tries to extract one qubit, then his optimal proba-
bilistic strategy will have a finite probability of failure for
arbitrarily low damping.
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V. CONCLUSIONS

In this paper we have investigated the optimalprobabilis-
tic realizations of several important quantum-information-
processing tasks such as the optimal cloning of quantum
states and purification of mixed quantum states. We have
derived a simple formula for the maximum achievable aver-
age fidelity and we have provided an explicit prescription
how to construct a trace-decreasing CP map that reaches the
fidelity Fmax. We have demonstrated that the fidelity of
probabilistic cloning can be strictly higher than the maximal
fidelity of deterministic cloning even if the set of the cloned
states is linearly dependent and continuous. However, it
should be stressed that this improvement in fidelity is
achieved at the expense of a certain fraction of unsuccessful
events when the probabilistic transformation fails and does
not produce any output state.

The optimal probabilistic maps may find a variety of ap-
plications. For instance, the phase covariant cloning is an

efficient attack on several quantum key distribution proto-
cols. In particular, the 2→3 phase-covariant cloning is ex-
plored for eavesdropping purposes in Ref.[24]. Thus, the
probabilistic phase-covariant cloning discussed in the present
paper may be possibly used as a new eavesdropping attack.
Moreover, the general theory of optimal probabilistic trans-
formations developed in the present paper has much broader
range of applications than just cloning. In particular, it pro-
vides a method to engineer optimal protocols for purification
of mixed quantum states.

We have seen on the example of the amplitude damping
channel that the optimal probabilistic purification may result
in a dramatic improvement of the fidelity of the final Bob’s
state with respect to the original state that was sent to him by
Alice via a noisy channel. However, the large improvement
of the fidelity is typically accompanied by a very low prob-
ability of success. It is therefore highly desirable to optimize
the probabilistic transformation also with respect to the av-
erage success probability which leads to a semidefinite pro-
gram that can be very efficiently solved numerically. For the
particular cases of purification of mixed states investigated in
the present paper, we have been able to solve the resulting
SDP analytically, by exploiting the symmetries inherent to
the problem.

The protocol considered in the present paper can be even
further generalized as follows. One can imagine a scenario
where the average fidelityF of the operation is maximized

for a fixed chosen average probability of successP̄, or vice
versa, these two alternatives are clearly equivalent. Gener-

ally, there will always be a trade-off betweenP̄ and F and

the optimal fidelity will be some function ofP̄. One can then

choose the working point on theFsP̄d curve that is most
fitting for the particular task at hand. The determination of

maximalF obtainable for some fixedP̄ can be formulated as
a semidefinite program similar to that given by Eq.(18). The
deterministic machines and the probabilistic machines that
achieve the maximum possible fidelity represent two extreme
regimes of such a more general scenario.
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