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Following a recent theoretical proposal[J. Fiurášek and N. J. Cerf, Phys. Rev. Lett.93, 063601(2004)], we
experimentally implement a scheme to measure the squeezing and purity of a single-mode squeezed vacuum
state without an interferometric homodyne detection. The suggested setup is based on only a tunable beam
splitter and a direct single-photon detector to fully characterize the generated Gaussian states. We discuss the
experimental implementation of this procedure and compare it to other reference methods. A detailed exploi-
tation of our results highlights some practical limitations of this method. This experimental work is followed by
a detailed numerical analysis to derive the conditions required for the procedure to succeed. In particular, it is
found that an overall single-photon detection efficiency of about 50% is needed, which is difficult to achieve
in the present experiment.
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I. INTRODUCTION

Squeezed states of light play an important role in the de-
velopment of quantum information processing with continu-
ous variables[1], where the information is encoded in two
conjugate quadratures of an optical field mode. These states
may, for example, be used as a main resource for quantum
cryptographic protocols(see [2,3] and references therein).
They may also serve as an entanglement source since com-
bining two squeezed states at a beam splitter creates an en-
tangled two-mode squeezed state such as those required for
quantum teleportation[4] or dense coding[5]. In addition,
squeezing has been shown to be an irreducible resource for
realizing an arbitrary linear canonical transformation[6].

Any attempt to process squeezed states in quantum com-
munication or computation systems will necessarily face the
problem of characterizing these states. A possible complete
description of a general quantum state is obtained by recon-
structing its Wigner function using quantum tomographic
procedures[7–9]. Alternatively, for a Gaussian state, which
is fully described by its first- and second-order moments,
another complete characterization is provided by the mean
values of the conjugate quadraturesx andp together with the
associated covariance matrixg. From this, one may compute
various relevant parameters such as the maximum observable
squeezing[10] or the degree of purity[11,12]. Finally, let us
also mention that a lot of attention has been recently devoted
to measurements of the photon statistics of quantum states
[13–16].

In this paper, we follow an idea originally due to two of
the present authors that consists of measuring the squeezing
and purity of a Gaussian state without homodyne detection,
that is, without any strong local oscillator beam providing a
phase reference[17]. The suggested setup relies only on
beam splitters and single-photon detectors. It generally re-
quires a joint measurement of two copies of the Gaussian
state, but single-copy measurements suffice if it isa priori
known that the mean values of the quadratures vanish. Thus,
in the latter case, which actually applies to all quantum in-

formation schemes based on squeezed vacuum states, no in-
terferometric stability is required to determine the squeezing
and purity, unlike with homodyne detection schemes.

Hereafter, we will focus on the important case of a single-
mode squeezed vacuum state and discuss the experimental
feasibility and relevance of this photon-counting character-
ization procedure. The experiment—carried out with state-
of-the-art techniques—comes up with some practical limita-
tions. For the rather generic states that we considered, the
trace of the covariance matrix can be accurately determined
by our setup, while the determinant of the covariance matrix
(related to the state purity) requires a much higher overall
single-photon detection efficiency. A detailed numerical
analysis is then performed, showing that the present limita-
tions might be overcome with an overall detection efficiency
of about 50%. However, as discussed in the last section, this
constraint appears to be rather difficult to meet in the present
experiment.

Some useful notations to describe a squeezed vacuum
beam are introduced in Sec. II. Section III then presents the
experimental setup together with two classical and homo-
dyne measurement procedures that are used as a reference to
characterize the generated squeezed vacuum states. In Sec.
IV, we briefly review the photon-counting characterization
method applied to the special case of a single-mode Gaussian
state (more details can be found in[17]). In Sec. V, we
present the experimental results of this characterization
method, while Sec. VI discusses the constraints on the global
detection efficiency that are set by this method. Numerical
simulations are used to illustrate the photon-counting method
for values of the global detection efficiency that are presently
unreachable with our standard experimental setup.

II. SQUEEZED VACUUM DESCRIPTION

Theoretically, a general Gaussian state with zero mean
values of quadratures is fully characterized by its covariance
matrix g, which comprises the second moments of the con-
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jugate quadraturesx=a+a† and p=sa−a†d / i, with fx,pg
=2i. For states with zero mean values of quadratures, the
covariance matrixg can be expressed as follows:

g = S kx2l 1
2kxp+ pxl

1
2kxp+ pxl kp2l

D . s1d

In order to determine the squeezing and purity, we need to
measure only the two invariants of the covariance matrix,
namely, the trace Trsgd and determinant detsgd.

From a more physical point of view, one can use the fact
that the most general single-mode Gaussian state withkxl
=kpl=0 can be expressed as a squeezing operator applied to
a Gaussian thermal state[12,19]. Translated into an optical
setup, this is implemented by two simple linear amplifiers as
depicted in Fig. 1: aphase-insensitiveamplifier of gainH
followed by aphase-sensitiveamplifier of gainsG and 1/G
(in the following we takeG,H.1). In other words, the
physics of the optical parametric amplifier(OPA) can be
modeled by a “black box” squeezer which is parametrized by
H and G. These two parameters are equivalent to the two
phase-insensitive parameters Trsgd and detsgd of the Gauss-
ian state generated by the black box from the vacuum.

Let us describe the transformation effected by the ampli-
fier depicted in Fig. 1. First, one can express the conjugate
quadrature variables at the output of the OPA as

xout =
1

ÎG
sÎHxvac+ ÎH − 1xancd, s2d

pout = ÎGsÎHpvac− ÎH − 1pancd, s3d

where we chosexout spoutd as the squeezed(antisqueezed)
quadrature, andxvac andxanc denote the vacuum and ancilla
quadratures at the input ports of the total amplifier, respec-
tively. One can then express the variances of the squeezed
and antisqueezed quadratures at the output of the OPA as

Vmin = s2H − 1d/G, s4d

Vmax= s2H − 1dG. s5d

The trace and determinant of the covariance matrix read

Trsgd = Vmin + Vmax, s6d

detsgd = VminVmax. s7d

This system of equations can be inverted, and the squeezed
and antisqueezed variances can be expressed in terms of the
trace and the determinant ofg,

Vmax,min=
1

2
fTrsgd ± ÎTr2sgd − 4 detsgdg. s8d

Finally, the purityP=Trfr2g of a mixed stater is, for any
single-mode Gaussian state, directly linked to the average
photon number of thermal noisen̄=H−1:

P =
1

2n̄ + 1
=

1

2H − 1
. s9d

Equivalently, in terms of the covariance matrix, we have

P =
1

Îdetsgd
. s10d

III. REFERENCE CLASSICAL AND HOMODYNE
CHARACTERIZATION METHODS

A different scheme for pulsed squeezed light generation
has recently been developed[18] and will be used here to
compare the photon-counting characterization method to
standard methods. The experimental setup is depicted in Fig.
2. The initial pulses are obtained from a titanium-sapphire
laser delivering nearly Fourier-transform-limited pulses cen-
tered on 846 nm, with a duration of 150 fs, a typical energy
of 40 nJ, and a repetition rate of 780.4 kHz. These pulses are
frequency doubled in a single pass through a thins100 mmd
crystal of potassium niobatesKNbO3d, cut and temperature-
tuned for noncritical type-I phase matching. The second har-
monic power is large enough to obtain a significant single-
pass parametric gain in a similar KNbO3 crystal used in a
type-I spatially degenerate configuration.

The squeezed beam can then be directed onto two differ-
ent detection modules using a removable mirror.

(i) Homodyne detection module:the squeezed vacuum
beam interferes with the local oscillator beam in a balanced
homodyne detection setup. A main feature of our experiment
is that all the processing is done in the time domain, not in
the frequency domain. For each incoming pulse, the fast ac-
quisition board samples one value of the signal quadrature in
phase with the local oscillator[18].

(ii) Photon counting module:the squeezed vacuum beam
is transmitted via a beam splitter of tunable transmittanceT
and then passes through a spatial filter(made of two Fourier-
conjugated pinholes) and a 3 nm spectral filter centered at
the laser wavelength, before being detected by a silicon ava-
lanche photodiode(APD).

FIG. 1. General single-mode Gaussian state generation.H de-
notes the intensity gain of the phase-independent amplifier andG
stands for the intensity gain of the phase-dependent amplifier.

FIG. 2. Simplified experimental setup. SHG, second harmonic
generation module; OPA, degenerate optical parametric amplifier;
APD, avalanche photodiode photon-counting module.
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To start the characterization procedure, a basic measure-
ment is to monitor the classical amplification and deamplifi-
cation of a probe taken from the fundamental beam. This is
easily done by direct detection of a probe beam averaged
power on a photodiode. Setting the relative phase between
the probe and the second harmonic pump beam allows us to
tune the classical gain from the minimum deamplification
intensity gainGmin to the maximum gainGmax. The measure-
ment of the classical gainsGmin andGmax gives an estimate of
G andH,

G = ÎGmax/Gmin, s11d

H = ÎGmaxGmin. s12d

The experimental results of the squeezed vacuum character-
ization for different values of the pump power are shown in
Figs. 3 and 4, marked as “Classical”(black disks).

Following the principle of quantum tomography, a pow-
erful approach is to completely characterize the squeezed
vacuum by conjugate quadratures homodyne measurements.
The time-resolved balanced homodyne detection allows us to
measure the squeezed and antisqueezed quadrature variances
Vhom,min andVhom,max. Imperfections and losses in this detec-
tion are modeled by a beam splitter of transmissionhhom (in
intensity). The procedure to measure the detection efficiency
is well established from squeezing experiments[20], and it
can be cross-checked by comparing the classical parametric
gain and the measured degree of squeezing. We note the
homodyne detection efficiencyhhom=hThH

2 hD=0.76±0.01,
where the overall transmissionhT=0.92, the mode-matching
visibility hH=0.935, and the detector efficiencyhD=0.945
are independently measured. Given this efficiency, one can
correct for losses and deduce the squeezed and antisqueezed
quadrature variances at the output port of the OPA, namely,

Vmin = sVhom,min− 1 +hhomd/hhom, s13d

Vmax= sVhom,max− 1 +hhomd/hhom. s14d

This allows the full characterization of the state parameters
fTrsgd ,detsgdg or the OPA parameterssG,Hd following the
above formulas. The experimental results of this second
characterization method are also displayed in Figs. 3 and 4,
marked as “Homodyne”(gray squares). As one can notice in
Figs. 3 and 4, for high pump powers the “homodyne” and
“classical” values do not well overlap within their respective
error bars. A main reason for this is that the “black-box”
model developed above is basically asingle-modemodel,
and thus suffers from fundamental limitations, while for high
pump powers the physics involved in parametric deamplifi-
cation is known to fall into a multimode regime[21].

In the following, we will use these “classical” and “ho-
modyne” methods as references to check the validity of the
photon-counting characterization.

IV. PHOTON-COUNTING CHARACTERIZATION
METHOD

Let us briefly introduce the methods implemented here for
measuring the properties of a Gaussian state by photon

counting, which are derived from the original procedure pre-
sented in[17]. We will restrict our attention to a single-mode
Gaussian state with zero coherent displacement,kxl=kpl=0,
which is the case in the present experiment depicted in Fig.
2. The squeezed vacuum mode impinges on a beam splitter
with tunable transmittanceT before being measured by an
avalanche photodiode that is sensitive to single photons and
can respond with two measurement outcomes, either a click
or a no-click. This detector with overall detection efficiency
hAPD can be modeled as a beam splitter with transmittance
hAPD followed by an ideal detector that performs a dichoto-
mic measurement described by the projectorsP0= u0lk0u (a
no-click) andP1=1−P0 (a click). In the rest of this section,
we assume that the detector is ideal, whilehAPDÞ1 can be
taken into account by substitutingT→hAPDT.

The probability of no-click of an ideal detector is given by
P=k0uru0l. It can be determined from the HusimiQ function
which provides a phase-space representation of the state

FIG. 3. Parametric gainsG, H, and purityP versus average
pump power at 423 nm. The solid line corresponds to a fit on the
classical results according to plane wave theory. “Classical” stands
for the classical probe gain measurements(black disks); “Homo-
dyne” stands for the balanced homodyne detection variance mea-
surements(gray squares). The bounds inferred from the photon-
counting method, to be described in Sec. IV, are indicated by the
two dashed lines(see further explanations in Sec. V).
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r : Qsad is defined as the overlap ofr with a coherent state
ual. TheQ function of a Gaussian state with zero mean val-
ues of quadratures is a Gaussian function centered at the
origin,

Qsrd =
1

2pÎdetsg + Id
expS−

1

2
rTsg + Id−1rD , s15d

wherer =sx,pd andI is the identity matrix. Since the vacuum
is just a special case of a coherent state, the probability of
projecting the state(15) onto vacuum readsP=4pQs0d and,
on insertingr =0 in Eq. (15), we obtain

P =
2

Îdetsg + Id
. s16d

The characterization method works by carrying out mea-
surements of the probabilities of no-clickPj for several dif-
ferent transmittancesTj. The covariance matrixg j of the
state after passing through the beam splitter readsg j =Tjg
+s1−TjdI, where g is the covariance matrix of the input
state. On insertingg j into Eq. (16), we obtain after some
simple algebra

4

Pj
2 = Tj

2 detsgd + Tjs2 − TjdTrsgd + s2 − Tjd2. s17d

We thus find thatPj depends onTj (or, more generally, on
hAPDTj) and on the determinant and trace of the covariance
matrix g of the input state. Note that 4/Pj

2 is a linear func-
tion of the two unknown quantities detsgd and Trsgd. Thus,

measurements ofPj for only two different transmittances
simply suffice to determine the trace and the determinant, as
the system of linear equations(17) can easily be solved and
yields

Trsgd =
2

T2 − T1
S T2

T1P1
2 −

T1

T2P2
2D + 2 −

2

T1
−

2

T2
, s18d

detsgd =
2

T1 − T2
S2 − T2

T1P1
2 −

2 − T1

T2P2
2 D +

s2 − T1ds2 − T2d
T1T2

.

s19d

Then, having obtained the determinant and trace ofg, we can
determine the squeezing properties of the state from Eq.(8)
as well as its purity(10).

Dealing with a real world experiment, with unavoidable
noises and uncertainties, a more realistic procedure would
consist in performing the experiment for as many transmis-
sion valuesTj as possible and then trying to get the most
information from these various measurements. One possibil-
ity to gain information from more than two measurements is
to implement a maximum-likelihood(ML ) parameter estima-
tion method(for a review, see, for instance, Refs.[22–24]).
This procedure provides the values of the parameters Trsgd
and detsgd that are the most likely to yield the observed
experimental data. In mathematical terms, this boils down to
finding the maximum of the joint probability density

L„Trsgd, detsgd… = p
j=1

n

Pj
Nrep−Cjs1 − PjdCj , s20d

which is called the likelihood function of the given experi-
mental data. Here,Cj denotes the number of photodetector
clicks per second for transmittanceTj and Nrep is the pulse
repetition rate. The probabilityPj is linked to Trsgd ,detsgd,
and Tj by Eq. (17). Actually, we also have to take into ac-
count some additional constraints on the parameters Trsgd
and detsgd. The fact that the covariance matrixg is positive
definite and must satisfy the generalized Heisenberg uncer-
tainty relation detsgdù1 sets the constraints

1 ø detsgd ø STrsgd
2

D2

. s21d

The next section now presents and discusses the results of
this characterization procedure from its experimental imple-
mentation.

V. EXPERIMENTAL RESULTS

Hereafter, we denote byT only the transmittance of the
(lossless) variable beams plitter. Nonunit transmissions of
the spectral and spatial filters and imperfect detection effi-
ciency are taken into account by the overall efficiency pa-
rameterhAPD of the APD detection.

A first step is to estimate this overall efficiencyhAPD in
order to apply the characterization method. Setting the
supplementary beam splitter to a transmittance of 1,hAPD
can be estimated from the measurement of the number of

FIG. 4. Trace Trsgd and determinant detsgd versus average
pump power at 423 nm. The annotations are the same as in Fig. 3.
For ease of viewing, the trace values obtained from the photon-
counting method(gray diamonds) are linked by a dash-dotted line
in (a). In (b), the two dashed lines indicate the limits on the deter-
minant knowledge obtained from the photon-counting method(see
further details in Sec. V).
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photon-counting events detected per second,Nclicks, for dif-
ferent pump powers. In the limit of lowhAPD’s, the number
of clicks detected per second can be approximated as

Nclicks =
1

2
hAPDNrepfsH − 1/2dsG + 1/Gd − 1g, s22d

where the dependence ofG andH versus the pump power is
obtained from the curve fit on the “classical” results pre-
sented in Figs. 3(a) and 3(b), while Nrep=780.4 kHz is the
repetition rate. With our experimental results(see Fig. 5) the
fit of Nclicks versus the pump power giveshAPD=0.84
310−2±0.013310−2. This value can be cross-checked with
the overall efficiency inferred from transmission factors of an
intense probe beam: the spatial and spectral filters transmit,
respectively, 16% and 17% of the probe beam, while the
APD quantum efficiency is estimated to about 50%, leading
to an overall detection efficiency of the probe of about 1.4%.
The difference between the latter value and the above esti-
mate ofhAPD may be explained by slight differences between
the modes of the probe(set for maximal classical deamplifi-
cation) and the squeezed vacuum.

In our experiment, we used between four and six different
settings for the beam splitter transmittanceTj. For eachTj,
we performed 100 measurements of the number of clicks per
second to get a good statistical accuracy onCj. As a result of
an appropriate gating of the detection, the dark count rate
remained reasonably low(about 20 s−1) and was subtracted
from the data.

As shown above, only two different settings of the beam
splitter transmittance,T1 and T2, are enough to extract the
value of detsgd and Trsgd following Eqs.(18) and (19). Ac-
tually, formula (18) indeed leads to an estimate of Trsgd
which is satisfactorily close to the values obtained from ei-
ther homodyne or classical measurement. However, as far as
the determination of detsgd is concerned, the formula(19)
does not give any reliable estimate. This results from the fact
that, in the experiment, we have to work with small detection
efficiencies hAPD!1 so that small uncertainties on
P1,P2,T1,T2 have much larger influence on detsgd than on
Trsgd. For instance, if we take the derivative of Trsgd and
detsgd with respect toP1, we find

d Trsgd
dP1

=
4

hAPDP1
3 , s23d

d detsgd
dP1

=
− 16

hAPD
2 P1

3 . s24d

This shows that in our experimental setup the determinant is
about 400 times more sensitive to small uncertainties onP1
than the trace.

In order to gain information on the determinant of the
covariance matrix as well as to increase the accuracy of the
estimate of its trace, we used the full set of measurements for
the different beam splitter transmittances by performing a
maximum-likelihood estimation as introduced in the previ-
ous section. The logarithm of the likelihood functionL given
by Eq.(20) was computed from the measured data, the above
estimate of the overall detection efficiencyhAPD, and the
values of the transmittanceTj obtained from direct power
transmission of the probe beam. The global maximum of
logsLd was then found by a brute force numerical search.
The experimental results of the estimated Trsgd for several
different pump powers are shown in Fig. 4(a), and fully co-
incide with the values inferred from the classical gain mea-
surements. Out of the three trace-estimation procedures, the
photon-counting method associated with log-likelihood
maximization provides the lowest uncertainty on the result.

Unfortunately, given the low detection efficiencyhAPD of
our experimental setup, the likelihood function is almost flat
as a function of detsgd in the region that is allowed by the
constraints(21). Consequently, no reliable estimate of the
determinant could be obtained from our experimental data,
the log-likelihood maximization method returning essentially
a random value between 1 andfTrsgd /2g2. Similarly, our
experimental data provide bounds on only the parametric
gainsG andH given the sole knowledge of the trace Trsgd:

1 ø G ø STrsgd + ÎTrsgd2 − 4

Trsgd − ÎTrsgd2 − 4
D1/2

, s25d

1 ø H ø
Trsgd + 2

4
. s26d

Thus, the dashed lines in Figs. 3(a), 3(b), 3(c), and 4(b) take
into account the fact that no estimate of the determinant bet-
ter than the bounds(21) could be obtained by the photon-
counting method given the estimate of the trace. We also
tried various other numerical methods—such as least–
squares inversion—but none provided a reliable estimate of
detsgd.

Some better insight into the intrinsic difficulty of getting
an estimate of detsgd can be obtained by rewriting Eq.(17)
as

4

Pj
2 = fdetsgd − Trsgd + 1ghAPD

2 Tj
2 + 2fTrsgd − 2ghAPDTj + 4.

s27d

It becomes clear that the determinant is linked to the second-
order dependence ofPj

−2 in the transmittance, while the trace

FIG. 5. Number of photon-detection events per second versus
average pump power for maximum transmission of the variable
beam splitterT=1. The solid line is a fit following Eq.(22), from
which we extracted an estimate of the photon-counting detector
efficiencyhAPD=0.84310−2±0.013310−2.
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can be directly obtained from the linear dependence ofPj
−2.

The basic difficulty of estimating detsgd results from the fact
that the relevant information is hidden in terms of order
shAPDTd2, which are very small for our experimental data
given the low values ofhAPD.

One could then try to increase the overall APD detection
efficiency hAPD by releasing either the spatial or spectral
filtering conditions. However, from an experimental point of
view, this does not seem realistic for several reasons.

First, we would move to a region where the physics be-
comes multimode, which is clearly outside the framework of
the developed model. In principle, the photon-counting
method allows one to check whether the single-mode de-
scription of the experiment is appropriate or not. If only a
single mode is detected, thenP−2 should be a quadratic poly-
nomial in hAPDT [cf. Eq. (27)]. More generally, if the detec-
tor effectively registers light fromN modes in a Gaussian
state, thenP−2 becomes a polynomial of 2Nth order inhAPDT
[17]. So after measuringP as a function ofhAPDT one could
perform a fitting to determine the minimal number of modes
N that is necessary for the description of the observed signal.
However, a successful application of this technique would
require a very high precision in the measurement ofP and a
high hAPD.

A second problem with removing the spatial and/or spec-
tral filters is that we would lose any possibility of cross-
checking our results with classical parametric gain or homo-
dyne measurements. Last, even in the case of no spatial filter
and 10 nm spectral filter, the overall APD detection effi-
ciency will remain low given our experimental setup, and we
do not expect to gain much according to our numerical simu-
lations of the constraints on the global efficiency presented
below.

VI. NUMERICAL SIMULATIONS

We have seen that the low APD detection efficiencyhAPD
precludes a reliable estimate of detsgd via the photon-
counting method. It is thus important to determine the effi-
ciency hAPD that should be attained in order to be able to
estimate detsgd with acceptably small errors. More generally,
it is interesting to investigate the dependence of the estima-
tion errors onhAPD. For this purpose, we have carried out
extensive numerical simulations of the experiment for sev-
eral values ofhAPD, the other parameters of the simulation
being chosen in accordance with the experimental values. In
particular, we have assumed a measurement repetition rate
Nrep=780.4 kHz and a total measurement timet=100 s for
each transmittanceTj. The total number of measurements for
eachTj is then given byNtot=Nrept. We have further assumed
that measurements were carried out for four different trans-
mittancesT1=1, T2=0.75, T3=0.5, andT4=0.25, and we
used the experimentally obtained values detsgd=1.156 and
Trsgd=2.321 as a typical example(corresponding to a pump
average power of 1.21 mW).

The determinant and the trace ofg were estimated from
the simulated experimental data with the help of the
maximum-likelihood technique described in the preceding
section. Since the ML estimator is generally biased, we de-

fine the deviation of the estimate from the true value as

sdet
2 = kfdetsgdest− detsgdtrueg2l,

sTr
2 = kfTrsgdest− Trsgdtrueg2l, s28d

where k l indicates averaging over an ensemble of experi-
ments. In practice, we simulated 1000 times the whole ex-
periment, from data acquisition to ML estimation, and we
then calculated Eq.(28) by averaging over the ensemble.
Since the total number of measurementsNtot was very large,
we approximated the binomial distribution ofCj by a normal
distribution with the same mean and variance.

In addition to the statistical fluctuations ofCj and the
intrinsic difficulty of estimating detsgd at low detection effi-
ciencies, other factors contribute to the estimation errors,
namely, the uncertainty in the knowledge ofTj andhAPD. To
isolate the errors stemming from lowhAPD, we have first
assumed that all parametersTj and hAPD are known pre-
cisely; hence the statistical fluctuations ofCj are the only
source of errors. The resultingsdet is plotted as circles in Fig.
6. For very lowhAPD, the estimates of detsgd are randomly
distributed in the interval [1,fTrsgdg2/4] and sdet

< 1
2fTr2sgd /4−1g. The estimation error rapidly decreases as

hAPD grows, and our numerical simulations reveal that a re-
liable estimate of detsgd with sdet,10−2 could be obtained
for hAPD.15%.

The uncertainties ofTj andhAPD significantly increase the
estimation error for higherhAPD. We have performed nu-
merical simulations taking into account thatTj’s are known
with an uncertainty of 0.5%, and the relative uncertainty of
hAPD is 1%, which corresponds to the actual experimental
situation. The resultingsdet is plotted as squares in Fig. 6.
We observe thatsdet is much higher than in the previous
case, except for the region of very smallhAPD. To obtain a
satisfactorily accurate estimate of detsgd with s<2310−2,
we needhAPD*50%.

In order to demonstrate thathAPD=50% is indeed suffi-
cient for the whole range of values of the pump power, we
have simulated the results of an experiment athAPD=50%
for the same values of the pump power as in Figs. 3 and 4.
The results are given in Fig. 7 which shows the mean esti-
mated values of detsgd as well as the resulting error bars. We

FIG. 6. The dependence of the variancesdet of the estimation of
detsgd on the detector efficiencyhAPD in cases when the parameters
Tj andhAPD are known exactly(circles) and when the experimental
uncertainties ofTj are 0.5% and the relative uncertainty ofhAPD is
1% (squares). See text for further details.
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find that these estimates are in very good agreement with the
true values used in the simulation.

Finally, note that our numerical simulations also confirm
that the estimate of Trsgd is very accurate: we have found
that sTrø10−2 even forhAPD as low as 1%.

VII. CONCLUSIONS

In this paper, we have discussed the experimental imple-
mentation of a direct photon counting method to fully char-
acterize squeezed vacuum states. In contrast to homodyning,
this method does not require any interferometric detection to
evaluate the squeezing and purity of the squeezed vacuum
state. For the rather generic states that we considered, the
trace of the covariance matrix can be accurately determined,
even with an overall detection efficiencyh in the percent
range, while its determinant(related to the state purity) re-
quires a much higherh, typically around 50%.

In principle, such efficiencies are well within the reach of
silicon photon-counting avalanche photodiodes, but an im-
portant problem remains: most sources do not emit single-
mode Gaussian light, but rather multimode light. This is not
a problem when a homodyne detection is used, because the
local oscillator acts as a very efficient single-mode filter. On
the other hand, a photon counter detects photons in any
mode. Therefore, detecting a good approximation of a single-
mode state requires appropriate spatial and spectral filters,
respectively obtained from pinholes and diffraction gratings.

Unless a special effort is made, these filters will have a low
overall transmission(a few percent in our experiment), and
thus the direct detection method will fail to determine the
state purity. In principle, there are various ways for improve-
ment, which are open for further experimental work. Ideally,
the source itself should emit single-mode light, which might
be obtained by appropriate phase-matching conditions in a
xs2d nonlinear crystal. On the filtering side, interferometric
multidielectric filters provide transmission values which are
much higher than those of standard slits and grating setups.
A combination of these various techniques will be probably
needed to reach the high overall efficiencies needed for many
potential applications.

As a conclusion, it appears that a broad variety of tech-
niques is proposed to characterize quantum continuous vari-
ables, and that these methods will certainly continue to de-
velop for applications in quantum cryptography, quantum
communications, and possibly quantum computing. Perhaps
the most appealing application of the photon-counting
method is the direct determination of the entanglement of
two-mode Gaussian states by measuring only the purity of
the two-mode state and the marginal purities of the single-
mode states on each side[17,25]. All these purities can be
determined with the photon-counting method using only lo-
cal measurements. The distinct feature of this approach is
that no interferometric stability is required if one is dealing
with squeezed vacuum states, which is the case in many
experiments. This may be an important advantage in the
characterization of entanglement distribution over long-
distance continuous-variable quantum communication net-
works.
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