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Following a recent theoretical propogdl FiurdSek and N. J. Cerf, Phys. Rev. L&8, 063601(2004)], we
experimentally implement a scheme to measure the squeezing and purity of a single-mode squeezed vacuum
state without an interferometric homodyne detection. The suggested setup is based on only a tunable beam
splitter and a direct single-photon detector to fully characterize the generated Gaussian states. We discuss the
experimental implementation of this procedure and compare it to other reference methods. A detailed exploi-
tation of our results highlights some practical limitations of this method. This experimental work is followed by
a detailed numerical analysis to derive the conditions required for the procedure to succeed. In particular, it is
found that an overall single-photon detection efficiency of about 50% is needed, which is difficult to achieve
in the present experiment.
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I. INTRODUCTION formation schemes based on squeezed vacuum states, no in-

Squeezed states of light play an important role in the detérferometric stability is required to determine the squeezing
velopment of quantum information processing with continu-@nd purity, unlike with homodyne detection schemes.
ous variableg1], where the information is encoded in two  Hereafter, we will focus on the important case of a single-
conjugate quadratures of an optical field mode. These staté8ode squeezed vacuum state and discuss the experimental
may, for example, be used as a main resource for quantuif@asibility and relevance of this photon-counting character-
cryptographic protocolg§see[2,3] and references thergin ization procedure. The experiment—carried out with state-
They may also serve as an entanglement source since comi-the-art techniques—comes up with some practical limita-
bining two squeezed states at a beam splitter creates an efiens. For the rather generic states that we considered, the
tangled two-mode squeezed state such as those required fsace of the covariance matrix can be accurately determined
quantum teleportatiof4] or dense coding5]. In addition, by our setup, while the determinant of the covariance matrix
squeezing has been shown to be an irreducible resource féielated to the state purityequires a much higher overall
realizing an arbitrary linear canonical transformat[6i single-photon detection efficiency. A detailed numerical

Any attempt to process squeezed states in quantum conanalysis is then performed, showing that the present limita-
munication or computation systems will necessarily face thdions might be overcome with an overall detection efficiency
problem of characterizing these states. A possible completef about 50%. However, as discussed in the last section, this
description of a general quantum state is obtained by recorgonstraint appears to be rather difficult to meet in the present
structing its Wigner function using quantum tomographicexperiment.
procedureg7-9]. Alternatively, for a Gaussian state, which ~ Some useful notations to describe a squeezed vacuum
is fully described by its first- and second-order momentspeam are introduced in Sec. Il. Section Il then presents the
another complete characterization is provided by the meaaxperimental setup together with two classical and homo-
values of the conjugate quadratuseandp together with the ~ dyne measurement procedures that are used as a reference to
associated covariance matryx From this, one may compute characterize the generated squeezed vacuum states. In Sec.
various relevant parameters such as the maximum observadlé we briefly review the photon-counting characterization
squeezindg10] or the degree of purityl1,17. Finally, let us  method applied to the special case of a single-mode Gaussian
also mention that a lot of attention has been recently devotestate (more details can be found ifiL7]). In Sec. V, we
to measurements of the photon statistics of quantum statggesent the experimental results of this characterization
[13-14. method, while Sec. VI discusses the constraints on the global

In this paper, we follow an idea originally due to two of detection efficiency that are set by this method. Numerical
the present authors that consists of measuring the squeezisgnulations are used to illustrate the photon-counting method
and purity of a Gaussian state without homodyne detectiorfor values of the global detection efficiency that are presently
that is, without any strong local oscillator beam providing aunreachable with our standard experimental setup.
phase referenc§l?7]. The suggested setup relies only on
beam splitters and single-photon detectors. It generally re-
quires a joint measurement of two copies of the Gaussian
state, but single-copy measurements suffice if iaipriori Theoretically, a general Gaussian state with zero mean
known that the mean values of the quadratures vanish. Thusalues of quadratures is fully characterized by its covariance
in the latter case, which actually applies to all quantum in-matrix y, which comprises the second moments of the con-

Il. SQUEEZED VACUUM DESCRIPTION
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FIG. 1. General single-mode Gaussian state generatiode-
notes the intensity gain of the phase-independent amplifierGand oggf,:;,,,
stands for the intensity gain of the phase-dependent amplifier. Homodyne detection

. + o . FIG. 2. Simplified experimental setup. SHG, second harmonic
jugate quadratures=a+a’ and p=(a-a’)/i, with [X,p]  generation module; OPA, degenerate optical parametric amplifier;
=2i. For states with zero mean values of quadratures, thRpp, avalanche photodiode photon-counting module.
covariance matrixy can be expressed as follows:

2 1 .
. (1 bz px)). W Viaime= 5 TH) £ TR ~adet)].  (8)
2xp+px (P9

In order to determine the squeezing and purity, we need t§nally, the purityP=Tr[p?] of a mixed statep is, for any
measure only the two invariants of the covariance matrixSingle-mode Gaussian state, directly linked to the average
namely, the trace Ty) and determinant déj). photon number of thermal noise=H-1:

From a more physical point of view, one can use the fact 1 1
that the most general single-mode Gaussian state {jth P= ] = H-1 9
=(p)=0 can be expressed as a squeezing operator applied to
a Gaussian thermal staf#2,19. Translated into an optical Equivalently, in terms of the covariance matrix, we have
setup, this is implemented by two simple linear amplifiers as

depicted in Fig. 1: gphase-insensitivamplifier of gainH = 1 ) (10)
followed by aphase-sensitivamplifier of gainsG and 1/G Vdet(y)

(in the following we takeG,H>1). In other words, the

physics of the optical parametric amplifi€OPA) can be Ill. REFERENCE CLASSICAL AND HOMODYNE

modeled by a “black box” squeezer which is parametrized by CHARACTERIZATION METHODS

H and G. These two parameters are equivalent to the two ) ) )
phase-insensitive parameters firand dety) of the Gauss- A different scheme for pulsed squeezed light generation

ian state generated by the black box from the vacuum. ~ has recently been develop¢ti8] and will be used here to
Let us describe the transformation effected by the ampli€ompare the photon-counting characterization method to
fier depicted in Fig. 1. First, one can express the conjugatéta”dard methods. The experimental setup is depicted in Fig.

quadrature variables at the output of the OPA as 2. The initial pulses are obtained from a titanium-sapphire
laser delivering nearly Fourier-transform-limited pulses cen-

1~ — tered on 846 nm, with a duration of 150 fs, a typical energy
Xout= E“HXW# VH = DXand, @ of4a0nJ anda repetition rate of 780.4 kHz. These pulses are
frequency doubled in a single pass through a tAid0 wm)
=, = o crystal of potassium niobate&KNbQO3), cut and temperature-
Pout= VG(VHPyac— VH = 1pand., (3 Y P 3 P

tuned for noncritical type-l phase matching. The second har-
where we chose,, (Pou) as the squeezethntisqueezed monic power is large enough to obtain a significant single-
quadrature, ane,,. and x,,. denote the vacuum and ancilla pass parametric gain in a similar KNh@rystal used in a
quadratures at the input ports of the total amplifier, respectype-l spatially degenerate configuration.

tively. One can then express the variances of the squeezed The squeezed beam can then be directed onto two differ-

and antisqueezed quadratures at the output of the OPA as ent detection modules using a removable mirror.
(i) Homodyne detection moduléhe squeezed vacuum

Vinin= (2H - 1)/G, (4)  beam interferes with the local oscillator beam in a balanced
homodyne detection setup. A main feature of our experiment
Vmax=(2H - 1)G. (5) is that all the processing is done in the time domain, not in

the frequency domain. For each incoming pulse, the fast ac-

The trace and determinant of the covariance matrix read quisition board samples one value of the signal quadrature in

Tr() = Vinin + Vinaxe (6) phase with the local oscillatqd 8].
(i) Photon counting modulethe squeezed vacuum beam
dety) = Vi Vi @) is transmitted via a beam splitter of tunable transmittahice

and then passes through a spatial fijteade of two Fourier-
This system of equations can be inverted, and the squeezednjugated pinholgsand a 3 nm spectral filter centered at
and antisqueezed variances can be expressed in terms of tie laser wavelength, before being detected by a silicon ava-
trace and the determinant of lanche photodiodéAPD).
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To start the characterization procedure, a basic measure- (@ 297 ¢ Classical _ -
ment is to monitor the classical amplification and deamplifi- 18- [ ® Homodyne -7
cation of a probe taken from the fundamental beam. This is

easily done by direct detection of a probe beam averaged 1.6
power on a photodiode. Setting the relative phase between
the probe and the second harmonic pump beam allows us to
tune the classical gain from the minimum deamplification 12
intensity gainGn,;, to the maximum gairg,,,,. The measure-
ment of the classical gair,;, andG.x gives an estimate of

G andH, 0.0 05 1.0 15
Pump average power (mW)

1.4 —

1.0 ¢

—
G = NGmad Gmin, (11) (b) 112

1.10 1

H = \GmaGmin- (12) 1.08 -

The experimental results of the squeezed vacuum character- T 1.06
ization for different values of the pump power are shown in 1.04 —
Figs. 3 and 4, marked as “Classic#@black disks. 1.02 -

Following the principle of quantum tomography, a pow-
erful approach is to completely characterize the squeezed
vacuum by conjugate quadratures homodyne measurements. 0.0 0.5 1.0 1.5
The time-resolved balanced homodyne detection allows us to Fumiveragepower ()
measure the squeezed and antisqueezed quadrature variances (c) 100~
Vhom,min@NdViom max IMperfections and losses in this detec-
tion are modeled by a beam splitter of transmissigg, (in 0.95 =
intensity). The procedure to measure the detection efficiency

1.00 ==

is well established from squeezing experimej2§], and it 5 0.50
can be cross-checked by comparing the classical parametric

gain and the measured degree of squeezing. We note the f.ee
homodyne detection efficiency,om= mnﬁnD:0.76tO.01, 060 -

where the overall transmissiop,=0.92, the mode-matching T T T T
visibility 7,=0.935, and the detector efficienay,=0.945 0.0 05 1.0 15
are independently measured. Given this efficiency, one can Pump average power (mW)
correct for losses and deduce the squeezed and antisqueezedt . 3. parametric gain&, H, and purity P versus average

quadrature variances at the output port of the OPA, namelyyymp power at 423 nm. The solid line corresponds to a fit on the
— lassical results according to plane wave theory. “Classical” stands
Vinin = Vhommin— 1 + 1 ¢
min = (Vhom,min hom)/ Thom: (13 for the classical probe gain measuremefttack disk3; “Homo-
_ dyne” stands for the balanced homodyne detection variance mea-
Vimax= (Vhom,max_ 1 + 7nom)! Thom: (14) surementggray squares The bounds inferred from the photon-

This allows the full characterization of the state parameter§°unting method, to be described in Sec. IV, are indicated by the
[Tr(y),dety)] or the OPA parameter&,H) following the two dashed linegsee further explanations in Sec).V

above formulas. The experimental results of this secondoynting, which are derived from the original procedure pre-
characterization method are also displayed in Figs. 3 and 4ented in17]. We will restrict our attention to a single-mode
marked as “Homodyne(gray squaregs As one can notice in - Gaussian state with zero coherent displacemet (p)=0,
Figs. 3 and 4, for high pump powers the *homodyne” andywhich is the case in the present experiment depicted in Fig.
“classical” values do not well overlap within their respective 2. The squeezed vacuum mode impinges on a beam splitter
error bars. A main reason for this is that the “black-box” with tunable transmittanc& before being measured by an
model developed above is basicallysagle-modemodel, avalanche photodiode that is sensitive to single photons and
and thus suffers from fundamental limitations, while for high can respond with two measurement outcomes, either a click
pump powers the physics involved in parametric deamplifi-or a no-click. This detector with overall detection efficiency
cation is known to fall into a multimode reginj21]. 7app CaN be modeled as a beam splitter with transmittance
In the following, we will use these “classical” and “ho- 7,pp followed by an ideal detector that performs a dichoto-
modyne” methods as references to check the validity of thenic measurement described by the projectdgs=|0)(0| (a
photon-counting characterization. no-click) andI1;=1-TI, (a click). In the rest of this section,
we assume that the detector is ideal, whilg;p# 1 can be
taken into account by substituting— 7appT.
The probability of no-click of an ideal detector is given by
Let us briefly introduce the methods implemented here fol?=(0|p|0). It can be determined from the HusiQifunction
measuring the properties of a Gaussian state by photowhich provides a phase-space representation of the state

IV. PHOTON-COUNTING CHARACTERIZATION
METHOD
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FIG. 4. Trace Tfy) and determinant dey) versus average
pump power at 423 nm. The annotations are the same as in Fig.

For ease of viewing, the trace values obtained from the photon-

counting methodgray diamondgare linked by a dash-dotted line
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measurements oP; for only two different transmittances
simply suffice to determine the trace and the determinant, as
the system of linear equatioli$7) can easily be solved and
yields

T, T, 2
T2 YT T
T,PT TP T, T,

Tr( ):T —T(
2 1

(2-TP(2-Ty
T,T, '

2—T2_2—T1>+

2
def(y) =
™ Tl—Tz(Tlpi T,P2

(19

Then, having obtained the determinant and trace, @fe can
determine the squeezing properties of the state from(&q.
as well as its purity(10).

Dealing with a real world experiment, with unavoidable
noises and uncertainties, a more realistic procedure would
consist in performing the experiment for as many transmis-
sion valuesT; as possible and then trying to get the most
information from these various measurements. One possibil-
ity to gain information from more than two measurements is
to implement a maximum-likelihoogML ) parameter estima-
jon method(for a review, see, for instance, Ref22-24).
his procedure provides the values of the parametefg) Tr
and dety) that are the most likely to yield the observed

in (a). In (b), the two dashed lines indicate the limits on the deter-€XPerimental data. In mathematical terms, this boils down to

minant knowledge obtained from the photon-counting metlsee
further details in Sec. ¥

p: Q(w) is defined as the overlap pfwith a coherent state

|a). The Q function of a Gaussian state with zero mean val-
ues of quadratures is a Gaussian function centered at trhq

origin,

Q(r) )exp(— %I’T('y+ I)‘lr), (15)

- 2mVdet(y+1

wherer =(x, p) andl is the identity matrix. Since the vacuum

finding the maximum of the joint probability density

n

L(Tr(y), dety)) =[] PM=Ci(1 - P)S,
j=1

(20)

which is called the likelihood function of the given experi-
ental data. HereC; denotes the number of photodetector
clicks per second for transmittande and Ny, is the pulse
repetition rate. The probabilit; is linked to TKy),dely),
andT; by Eq.(17). Actually, we also have to take into ac-
count some additional constraints on the parametets)Tr
and dety). The fact that the covariance matrixis positive

is just a special case of a coherent state, the probability afefinite and must satisfy the generalized Heisenberg uncer-

projecting the stat€l5) onto vacuum readB=47Q(0) and,
on insertingr=0 in Eg.(15), we obtain
2

\dety+1)’ 1o

tainty relation dety) =1 sets the constraints

Tr(7)>2

The next section now presents and discusses the results of

1<defy) < ( (21)

The characterization method works by carrying out meathis characterization procedure from its experimental imple-

surements of the probabilities of no-cli€k for several dif-
ferent transmittance3;. The covariance matrixy; of the
state after passing through the beam splitter regdsT;y
+(1-Tj)l, where y is the covariance matrix of the input
state. On insertingy; into Eq. (16), we obtain after some
simple algebra

=
P

We thus find thaP; depends of; (or, more generally, on

T2 dely) + Ti(2-T)Tr(y) +(2-T)% (17

mentation.

V. EXPERIMENTAL RESULTS

Hereafter, we denote by only the transmittance of the
(losslesy variable beams plitter. Nonunit transmissions of
the spectral and spatial filters and imperfect detection effi-
ciency are taken into account by the overall efficiency pa-
rameteryapp Of the APD detection.

A first step is to estimate this overall efficieneypp in

7applj) @and on the determinant and trace of the covarianc@rder to apply the characterization method. Setting the

matrix y of the input state. Note that A’f is alinear func-
tion of the two unknown quantities det and T«Ky). Thus,

supplementary beam splitter to a transmittance ofydsp
can be estimated from the measurement of the number of

053812-4
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800 —
dTr 4
w. 4 (23)

Z 600 dP, 7appP1
&

. dde -16
§ ) _ ~16 (24)
o dpP; 7apoP1
& 200

This shows that in our experimental setup the determinant is
about 400 times more sensitive to small uncertaintie$pn
- 015 1l0 1l5 than the trace. o _ _
) Pump average power (mW) In order to gain information on the determinant of the
covariance matrix as well as to increase the accuracy of the
FIG. 5. Number of photon-detection events per second versuestimate of its trace, we used the full set of measurements for
average pump power for maximum transmission of the variablehe different beam splitter transmittances by performing a
beam splitterT=1. The solid line is a fit following Eq(22), from  maximum-likelihood estimation as introduced in the previ-
which we extracted an estimate of the photon-counting detectopus section. The logarithm of the likelihood functigrgiven
efficiency 7app=0.84x 10°2£0.013x< 1072, by Eqg.(20) was computed from the measured data, the above
estimate of the overall detection efficienaypp, and the
photon-counting events detected per secdiighs, for dif-  values of the transmittancg; obtained from direct power
ferent pump powers. In the limit of lowapp’s, the number  transmission of the probe beam. The global maximum of
of clicks detected per second can be approximated as  log(£) was then found by a brute force numerical search.
The experimental results of the estimatedyJrfor several
Nejoks = EWAPDNre;{(H -1/2(G+1/G)-1], (22  different pump powers are shown in Figat and fully co-

2 incide with the values inferred from the classical gain mea-
surements. Out of the three trace-estimation procedures, the
photon-counting method associated with log-likelihood
maximization provides the lowest uncertainty on the result.

Unfortunately, given the low detection efficieneypp of
our experimental setup, the likelihood function is almost flat

X 1072+0.013x 10°2. This value can be cross-checked with 2> & function of dét) in the region thgt Is alloyved by the
the overall efficiency inferred from transmission factors of anconstralnts(Zl). Consequently, no reliable estimate of the

intense probe beam: the spatial and spectral filters transmftj},?termmam could be_ol_atalned from our exp_erlmental Qata,
e log-likelihood maximization method returning essentially

. 0 ; ;
respectively, 16% and 17% of the probe beam, while thé random value between 1 afidir(y)/2]2. Similarly, our

APD quantum efficiency is estimated to about 50%, Ieadingz ) tal dat ‘e bound v th i
to an overall detection efficiency of the probe of about 1.4%. xpermental data providé bounds on only thé parametric
ainsG andH given the sole knowledge of the trace(7r.

The difference between the latter value and the above estf

where the dependence @fandH versus the pump power is
obtained from the curve fit on the “classical”’ results pre-
sented in Figs. @) and 3b), while N,,=780.4 kHz is the
repetition rate. With our experimental resulsee Fig. Hthe

fit of Ngicks Versus the pump power givegapp=0.84

mate of7app May be explained by slight differences between Tr(y) + \m 12
the modes of the probgset for maximal classical deamplifi- 1=sGs , > , (25)
cation) and the squeezed vacuum. Tr(y) —\Tr(»)" -4

In our experiment, we used between four and six different
settings for the beam splitter transmittarice For eachT;, 1<H< M (26)
we performed 100 measurements of the number of clicks per 4

second to get a good statistical accuracydprAs a result of . N
an appropriate gating of the detection, the dark count ratél’hus, the dasr:\ec: l'neﬁ n Flgs{a;, 3(b), 3;(?] adnd 4b)_take b
remained reasonably logabout 20 sY) and was subtracted Into account the fact that no estimate of the determinant bet-

from the data. ter than the bound&1) could be obtained by the photon-

As shown above, only two different settings of the beamcounting method given the estimate of the trace. We also
. X ' tried various other numerical methods—such as least—
splitter transmittance]; and T,, are enough to extract the : . . ; .
value of dety) and Txy) following Egs.(18) and(19). Ac- squares inversion—but none provided a reliable estimate of

. . det(y).
tually, formula (18) indeed leads to an estimate of(9) . . S .
which is satisfactorily close to the values obtained from ei- Some better insight into the intrinsic difficulty of getting

ther homodyne or classical measurement. However, as far é”lsn estimate of déy) can be obtained by rewriting E¢L7)

the determination of déy) is concerned, the formulél9)
does not give any reliable estimate. This results from the fact 4 _

— - 2_ T2 - :
that, in the experiment, we have to work with small detection p2 ~ L4€{Y) = Tr(¥) * L 7aepTy + 2Tr(y) = 2l 7appT; + 4.
efficiencies 7app<<1 so that small uncertainties on

P,,P,,T,,T, have much larger influence on dgt than on @7
Tr(y). For instance, if we take the derivative of(3¥ and It becomes clear that the determinant is linked to the second-
dety) with respect toP,, we find order dependence dﬁj‘z in the transmittance, while the trace

053812-5
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can be directly obtained from the linear dependenc®;6f 1
The basic difficulty of estimating def) results from the fact \ "
that the relevant information is hidden in terms of order -
(mappT)?, Which are very small for our experimental data 10 .
given the low values o#jpp. o .
One could then try to increase the overall APD detection 10
efficiency napp by releasing either the spatial or spectral
filtering conditions. However, from an experimental point of 10
view, this does not seem realistic for several reasons. 00 02 04 06 08 1.0
First, we would move to a region where the physics be- Narp
comes multimode, which is clearly outside the framework of
the developed model. In principle, the photon-countingd
method allows one to check whether the single-mode def
scription of the experiment is appropriate or not. If only a
single mode is detected, thén? should be a quadratic poly-
nomial in 7,ppT [cf. EQ.(27)]. More generally, if the detec-
tor effectively registers light fronN modes in a Gaussian
state, therP~2 becomes a polynomial ofNth order in7appT

FIG. 6. The dependence of the variangg, of the estimation of
ef(y) on the detector efficiencypp in cases when the parameters
j and 7,pp are known exactlycircles and when the experimental
uncertainties off; are 0.5% and the relative uncertainty gfpp is
1% (squares See text for further details.

fine the deviation of the estimate from the true value as

[17]. So after measuring as a function ofpappT One could aldet: ([dety)est— del V) yuel?),
perform a fitting to determine the minimal number of modes
N that is necessary for the description of the observed signal. 02, = [Tr(Y)est— TH(V)truel?) (28)

However, a successful application of this technique would

require a very high precision in the measuremen®aind a  Where() indicates averaging over an ensemble of experi-

high 7pp. ments. In practice, we simulated 1000 times the whole ex-
A second problem with removing the spatial and/or specPeriment, from data acquisition to ML estimation, and we

tral filters is that we would lose any possibility of cross- then calculated Eq(28) by averaging over the ensemble.

checking our results with classical parametric gain or homoSince the total number of measuremeNjg was very large,

dyne measurements. Last, even in the case of no spatial filtéfe approximated the binomial distribution Gf by a normal

and 10 nm spectral filter, the overall APD detection effi- distribution with the same mean and variance.

ciency will remain low given our experimental setup, and we [N addition to the statistical fluctuations @; and the

do not expect to gain much according to our numerical simuintrinsic difficulty of estimating dety) at low detection effi-

lations of the constraints on the global efficiency presente@iencies, other factors contribute to the estimation errors,
below. namely, the uncertainty in the knowledgeTgfand 7app. TO

isolate the errors stemming from lowupp, We have first
assumed that all parametefs and 7,pp are known pre-
cisely; hence the statistical fluctuations ©f are the only
We have seen that the low APD detection efficiengy,  source of errors. The resulting,,is plotted as circles in Fig.
precludes a reliable estimate of @@t via the photon- 6. For very lownspp, the estimates of deg) are randomly
counting method. It is thus important to determine the effi-distributed in the interval [1,[Tr(y)]?/4] and oy
ciency napp that should be attained in order to be able tOz%[Trz(y)M—l]. The estimation error rapidly decreases as
estimate dety) with acceptably small errors. More generally, 7,0, grows, and our numerical simulations reveal that a re-
it is interesting to investigate the dependence of the estimdiable estimate of dét) with o< 1072 could be obtained
tion errors onzupp. For this purpose, we have carried out for y,pp>15%.
extensive numerical simulations of the experiment for sev- The uncertainties of; and 7pp significantly increase the
eral values ofypp, the other parameters of the simulation estimation error for highempp. We have performed nu-
being chosen in accordance with the experimental values. Imerical simulations taking into account thBts are known
particular, we have assumed a measurement repetition rajgith an uncertainty of 0.5%, and the relative uncertainty of
Nrep=780.4 kHz and a total measurement titsel00 s for 7,5, is 1%, which corresponds to the actual experimental
each transmittancg;. The total number of measurements for situation. The resultingrye is plotted as squares in Fig. 6.
eachT; is then given byN;;;=N,e 4. We have further assumed We observe thatry is much higher than in the previous
that measurements were carried out for four different transecase, except for the region of very smallpp. To obtain a
mittancesT,=1, T,=0.75, T3=0.5, andT,=0.25, and we satisfactorily accurate estimate of @gt with o~2x 1072,
used the experimentally obtained values(glgt 1.156 and e needyapp=50%.

Tr(y)=2.321 as a typical exampleorresponding to a pump  In order to demonstrate thajapp=50% is indeed suffi-
average power of 1.21 myV cient for the whole range of values of the pump power, we
The determinant and the trace pfwere estimated from have simulated the results of an experimentyatp=50%
the simulated experimental data with the help of thefor the same values of the pump power as in Figs. 3 and 4.
maximum-likelihood technique described in the precedingThe results are given in Fig. 7 which shows the mean esti-
section. Since the ML estimator is generally biased, we demated values of déy) as well as the resulting error bars. We

VI. NUMERICAL SIMULATIONS
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1.5 — Unless a special effort is made, these filters will have a low
overall transmissiorga few percent in our experimentand

145 thus the direct detection method will fail to determine the
£ 134 state purity. In principle, there are various ways for improve-
e 5 3 ¢ ment, which are open for further experimental work. Ideally,
z the source itself should emit single-mode light, which might

114 « E be obtained by appropriate phase-matching conditions in a
10de ¢ * x? nonlinear crystal. On the filtering side, interferometric
T T T T multidielectric filters provide transmission values which are

0.0 0.5 1.0 1.5 much higher than those of standard slits and grating setups.

FUMp SVSTEGRFames (T A combination of these various techniques will be probably

FIG. 7. Results of the estimation of de} from simulated needed to reach the high overall efficiencies needed for many

photon-counting measurement assuming overall detection eﬁ‘ipOtentlal appllca_tlons_. .
ciency napp=50%. This figure has been scaled so as to be easily As a conclusion, it appears that a broad variety of tech-

compared to the experimental results presented on Fiy. 4 niques is proposed to characterizg quantum continuous vari-
ables, and that these methods will certainly continue to de-
velop for applications in quantum cryptography, quantum

find that these estimates are in very good agreement with th@ommunications and possibly quantum computing. Perhaps
true values used in the simulation. ’

Finally, note that our numerical simulations also confirmthe most appealing application of the -photon-counting

that the estimate of Tg) is very accurate: we have found method is the direct determination of the entanglement of
2 v y : two-mode Gaussian states by measuring only the purity of
that o, <107 even for yapp as low as 1%.

the two-mode state and the marginal purities of the single-
mode states on each sifi€7,25. All these purities can be
VIl. CONCLUSIONS determined with the photon-counting method using only lo-

In this paper, we have discussed the experimental imple‘?al measurements. The distinct feature of this approach is

mentation of a direct photon counting method to fully char-th_at no interferometric stability is re_quirgd if one is d_ealing
acterize squeezed vacuum states. In contrast to homodyningith squeezed vacuum states, which is the case in many
this method does not require any interferometric detection t&XPeriments. This may be an important advantage in the
evaluate the squeezing and purity of the squeezed Vacuuﬁparacterlzathn of ente_anglement distribution over long-
state. For the rather generic states that we considered, tiStance continuous-variable guantum communication net-
trace of the covariance matrix can be accurately determined/0"ks:
even with an overall detection efficiency in the percent
range, while its determinartelated to the state purityre-
quires a much highes, typically around 50%. ACKNOWLEDGMENTS
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