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Abstract. We propose a feasible optical setup allowing for a loophole-free Bell test with efficient homodyne detection. A non-
Gaussian entangled state is generated from a two-mode squeezed vacuum by subtracting a single photon from each mode,
using beam splitters and standard low-efficiency single-photon detectors. A Bell violation exceeding 1% is achievable with
6 dB of squeezing, a photodetector efficiency around 10%, and an homodyne efficiency around 95%. A feasibility analysis,
based upon the recent generation of single-mode non-Gaussian states via photon subtraction, suggests that this method opens
a promising avenue towards a complete experimental Bell test.

INTRODUCTION

The discrepancy between quantum mechanics and the concept of “local realism” has puzzled physicists since the
seminal paper by Einstein, Podolsky, and Rosen (EPR) [1]. The discussion concerning local realism gained a firm
ground when John Bell derived inequalities which must be satisfied within the framework of any local realistic theory
while quantum mechanics predicts their violation under certain circumstances [2]. Since then, the violation of Bell
inequalities has been observed in many experiments. However, all these experimental tests suffered from either a low
efficiency of the detectors [3] or the measurements were not space-like separated as required in a proper Bell test [4].
Due to the resulting so-called detector-efficiency loophole and locality loophole, the observed experimental data may
be in fact explained in terms of local realistic theories.

Two most promising alternatives of performing a loophole-free Bell test consist of either closing the detection
loophole in an optical experiment or closing the locality loophole in an experiment with trapped ions. Recently, it was
proposed theoretically to entangle two distant trapped ions via entanglement swapping by first preparing an entangled
state of an ion and a photon on each side and then projecting the two photons on a singlet state [5]. This way, the
locality loophole in the Bell test with ions could be closed, but the entanglement swapping would require interference
of two photons emitted by two different ions, which is experimentally very challenging.

In the optical experiments, it is quite hard to achieve the very high efficiency of single-photon detectors required for
a loophole-free Bell test. On the other hand, a balanced homodyne detector can exhibit a very high detection efficiency
[6], which could close the detector loophole. However, in order to observe Bell violation with homodyning, one has
to use a state having a Wigner function which is negative in some regions of the phase space, because otherwise the
Wigner function would provide an explicit local hidden variable model. In particular, this implies that the entangled
two-mode squeezed vacuum state with positive Gaussian Wigner function cannot be directly employed in a Bell test
with homodyne detectors. It was shown theoretically that Bell inequality violation with homodyning can be observed
if very specific entangled light states such as pair-coherent states [7] or specifically tailored finite superpositions of
Fock states [8, 9], are available. However, no feasible experimental scheme is known that could generate those states.

Recently, we have shown that a surprisingly simple and experimentally feasible non-Gaussian state obtained from
two-mode squeezed vacuum by conditionally removing a single photon from each mode can exhibit Bell violation with
homodyning [10]. An essential feature of our proposal is that the photon subtraction can be successfully performed
with low-efficiency single-photon detectors, such as the commonly used avalanche photodiodes. In fact, the basic
element of our setup, the subtraction of a single photon from a single-mode squeezed vacuum, has been recently
successfully implemented experimentally [11]. In what follows, we describe the proposed setup and briefly present
the main results, the details can be found in [10, 12].
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FIGURE 1. Proposed experimental setup.

BELL-CHSH INEQUALITY

The usual experimental setup for a test of Bell inequality violation involves two distant parties, Alice and Bob,
who simultaneously perform measurements on parts of a shared bipartite quantum system that is distributed to them
from some source. Alice and Bob should randomly and independently choose between one of two different quantum
measurements a1,a2 and b1,b2. In the simplest scenario, each of these measurements has only two possible outcomes,
+1 or −1. In this case, the incompatibility of the experimental data with local realism can be demonstrated with
the help of the Bell-CHSH inequality [13]. Let us introduce the Bell factor S which is a linear combination of the
correlations between Alice’s and Bob’s data,

S = 〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉−〈a2b2〉. (1)

Here 〈a jbk〉 denotes the average over the subset of experimental data where Alice measured a j and, simultaneously,
Bob measured bk. If the observed correlations can be explained within the framework of the local-hidden variable
theories, then S must satisfy the Bell-CHSH inequality |S| ≤ 2.

PROPOSED EXPERIMENTAL SETUP

The proposed experimental setup is shown in Figure 1. The two-mode squeezed vacuum in modes A and B is generated
in a non-degenerate optical parametric amplifier (OPA) which is pumped by a second-harmonic of the master laser
frequency doubled in a nonlinear crystal (SHG) and spectrally filtered (F). A single photon is subtracted from each
mode A and B [14, 15, 16] with the use of an unbalanced beam splitter BSA (BSB) with a high transmittance T∼0.90
which reflects a small part of the beam onto a photodetector PDA (PDB). A successful photon subtraction is heralded
by a click of both photodetectors PDA and PDB. Note that commonly employed photodetectors exhibit a single-photon
sensitivity but not a single photon resolution. This, however, is not a problem here because in the limit of high T the
most probable event leading to the click of a photodetector is precisely that a single photon has been reflected from
the squeezed beam on the beam splitter.

After generation of the non-Gaussian state, the beam A (B) together with the appropriate local oscillator LOA
(LOB) is sent to Alice (Bob), who then randomly and independently measures one of two rotated quadratures
xA

θ1,2
= xA cosθ1,2 + pA sinθ1,2 (xB

φ1,2
= xB cosφ1,2 + pB sinφ1,2) where the relative phase θ1,2 (φ1,2) between the beam

A (B) and the local oscillator LOA (LOB) can be switched, e.g., by means of a fast electro-optical modulator. In order
to use the Bell-CHSH inequality, the quadratures are converted into binary outcomes as follows, a1,2 = sign(xA

θ1,2
) and

b1,2 = sign(xB
φ1,2

), where sign(x) = 1 if x > 0 and sign(x) = −1 if x ≤ 0. To avoid the locality loophole, the whole
experiment has to be carried out in a pulsed regime and a proper timing is necessary. In particular, the measurement
events on Alice’s and Bob’s sides (including the choice of phases) have to be space-like separated, and cannot influence
the "event-ready" detectors PDA and PDB.
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FIGURE 2. Violation of Bell-CHSH inequality with the conditionally-prepared non-Gaussian state. (a) Bell parameter S as a
function of the squeezing λ of the initial two-mode squeezed vacuum. The curves are plotted for perfect detectors (η = ηBHD =
100%) with T = 0.9 (solid line), T = 0.95 (dashed line), and T = 0.99 (dot-dashed line). (b) Probability PG of successful generation
of the non-Gaussian state for perfect detectors. Considering realistic single-photon detectors, the probability would be reduced by a
factor η2

PD. (c) Bell parameter S as a function of the efficiency ηPD of the single-photon detectors, for λT = 0.57 and ηBHD = 100%.
(d) Bell parameter S as a function of the efficiency ηBHD of the balanced homodyne detectors, for λT = 0.57 and ηPD = 30%.

After registering a large number of events, the partners discard all events not corresponding to an "event-ready"
double-click of PDA and PDB. From the remaining events they calculate the four correlations 〈a jbk〉 and check if the
Bell factor S violates the Bell-CHSH inequality.

RESULTS

The correlation 〈a jbk〉 can be calculated from the joint probability distribution of the quadratures xA
θ j

and xB
φk

,

P(xA
θ j
,xB

φk
)≡ 〈xA

θ j
,xB

φk
|ρc,AB|xA

θ j
,xB

φk
〉, where ρc,AB denotes the (normalized) conditionally generated non-Gaussian state

of modes A and B. We have
〈a jbk〉=

∫ ∞

−∞

∫ ∞

−∞
sign(xA

θ j
xB

φk
)P(xA

θ j
,xB

φk
)dxA

θ j
dxB

φk
, (2)

The joint probability P(xA
θ j
,xB

φk
) can be obtained as a marginal distribution from the Wigner function of ρc,AB, which

can be expressed as a linear combination of four Gaussian functions. For a detailed calculation, see [12].
The results plotted in Figure 2 were obtained for the optimal choice of angles θ1 = 0, θ2 = π/2, φ1 = −π/4,

φ2 = π/4. Figure 2 (a) illustrates the dependence of the Bell factor S on the squeezing parameter λ defined as
λ = tanh(r), where r is the squeezing constant. The figure shows that the Bell-CHSH inequality |S| ≤ 2 can be violated
with the proposed setup and there is an optimal squeezing which maximizes S. The maximum Bell factor achievable
with our scheme considering perfect detectors is Smax ≈ 2.045 which represents a violation of the Bell inequality by
2.2%. To get close to the Smax one needs to achieve λT ≈ 0.57 which corresponds to approximately 6 dB of squeezing
for T = 0.95. Figures 2 (a),(b) illustrate that by increasing T we can enhance the Bell violation but only at the expense
of reducing the probability of state generation PG.

It follows from Fig. 2(c) that the Bell factor S is not very sernsitive to the efficiency of the single-photon detectors
ηPD, so the Bell inequality can be violated even if ηPD ≈ 1%. Low detection efficiencies only decrease the probability
of conditional generation PG of the non-Gaussian state. In contrast, the Bell factor S strongly depends on the efficiency
of the homodyne detectors ηBHD, which must be above ∼ 90% in order to observe Bell violation, see Fig. 2 (d).
However, this does not represent a significant problem since such (and even higher) efficiencies have already been
achieved experimentally (see e.g. [6]).

ALTERNATIVE SCHEMES

From the practical point of view, it would be most interesting to use a scheme that involves only one single-photon
subtraction, because each photon subtraction is a rather complicated operation that moreover reduces the probability of
state preparation. We have systematically studied schemes consisting of sources of squeezed light, photon subtraction,



passive linear optics and balanced homodyning. We have not been able to find a scheme with only a single subtraction
which would exhibit violation of Bell inequalities. Also we have not found any scheme with three subtractions that
would exhibit violation of Bell inequalities. Since a scheme with four photon subtractions results only in a marginal
improvement of the maximum Bell violation (increase from 2.2% to 3%), while the setup becomes much more
complex [12], we can conclude that the setup proposed in references [10, 17] is the most appropriate to test Bell-
CHSH inequalities using linear optics, photon subtraction, homodyne detection and sign binning.

CONCLUSIONS

The existence of an experimental window for a loophole-free Bell test seems plausible: with ηPD = 30%, T = 95%,
and 6 dB squeezing, a violation of Bell inequalities by about 1% should be observable if the homodyne efficiency ηBHD
is larger than ∼ 90% and the electronic noise of the homodyne detection is at least 15 dB below the shot noise level.
A pulse repetition rate in the range of 1 MHz as reported in Ref. [11] would provide enough time for individual pulse
analysis and random bit generation. With this repetition rate and the above parameters, the number of data samples
would be several hundreds per second, so the total time of the measurement necessary to collect enough data in order
to reduce the statistical error below the percent range would be of the order of a few hours.

One of the main challenges on the way toward experimental implementation is to increase ηPD, which was only
about 1% in the recent experiment [11]. Another obstacle is that the photodetectors PD can be sometimes triggered by
photons coming from other modes than the modes observed in homodyne detectors, because the OPA emits squeezed
light into several spatio-temporal modes. These false triggers would degrade the quality of the conditionally generated
state and would reduce the Bell factor S. The suppression of the false triggers and the increase of ηPD can be potentially
achieved by improved spatial and spectral filtering.
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