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Résumé

Le développement de la Théorie du Calcul Quantique provient de l’idée qu’un ordinateur
est avant tout un système physique, de sorte que ce sont les lois de la Nature elles-mêmes
qui constituent une limite ultime sur ce qui peut être calculé ou non. L’intérêt pour cette
discipline fut stimulé par la découverte par Peter Shor d’un algorithme quantique rapide pour
factoriser un nombre, alors qu’actuellement un tel algorithme n’est pas connu en Théorie
du Calcul Classique. Un autre résultat important fut la construction par Lov Grover d’un
algorithme capable de retrouver un élément dans une base de donnée non-structurée avec un
gain de complexité quadratique par rapport à tout algorithme classique.

Alors que ces algorithmes quantiques sont exprimés dans le modèle “standard” du Calcul
Quantique, où le registre évolue de manière discrète dans le temps sous l’application successive
de portes quantiques, un nouveau type d’algorithme a été récemment introduit, où le registre
évolue continûment dans le temps sous l’action d’un Hamiltonien. Ainsi, l’idée à la base du
Calcul Quantique Adiabatique, proposée par Edward Farhi et ses collaborateurs, est d’utiliser
un outil traditionnel de la Mécanique Quantique, à savoir le Théorème Adiabatique, pour
concevoir des algorithmes quantiques où le registre évolue sous l’influence d’un Hamiltonien
variant très lentement, assurant une évolution adiabatique du système.

Dans cette thèse, nous montrons tout d’abord comment reproduire le gain quadratique
de l’algorithme de Grover au moyen d’un algorithme quantique adiabatique. Ensuite, nous
montrons qu’il est possible de traduire ce nouvel algorithme adiabatique, ainsi qu’un autre
algorithme de recherche à évolution Hamiltonienne, dans le formalisme des circuits quantiques,
de sorte que l’on obtient ainsi trois algorithmes quantiques de recherche très proches dans
leur principe.

Par la suite, nous utilisons ces résultats pour construire un algorithme adiabatique pour
résoudre des problèmes avec structure, utilisant une technique, dite de “nesting”, développée
auparavant dans le cadre d’algorithmes quantiques de type circuit.

Enfin, nous analysons la résistance au bruit de ces algorithmes adiabatiques, en intro-
duisant un modèle de bruit utilisant la théorie des matrices aléatoires et en étudiant son effet
par la théorie des perturbations.
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Preface

This thesis is the result of four years of research at the Centre for Quantum Information and
Communication of the Université Libre de Bruxelles, under the supervision of Nicolas Cerf.
The original goal of my PhD was to study how quantum algorithms could efficiently solve
NP-complete problems.

After spending a few months getting familiar with the subject, my original goal rapidly
proved to be too ambitious. However, this preliminary phase to my research gave me the
opportunity to read interesting literature, among which one particular article that caught
my attention. In the latter, Farhi, Gutmann, Goldstone and Sipser proposed a new type of
quantum algorithm to deal with NP-complete problems using an adiabatic evolution. While
they could only give a numerical analysis of the running time of their algorithm when treating
NP-complete problems, they were able to give an analytical result for some other problems,
such as the search in an unstructured database for which Grover had discovered a remarkable
quantum algorithm with a complexity of order O(

√
N), that is a quadratic speed-up with

respect to any classical algorithm. However, the adiabatic algorithm proposed by Farhi et al
required a running time of order O(N) to solve Grover’s problem, thus showing no quadratic
speed-up.

My first important breakthrough was to show how to achieve the quadratic speed-up
of Grover’s algorithm using an adiabatic quantum algorithm. Following this first step, I
continued working on Adiabatic Quantum Computation until the end of my PhD as the
subject proved to be very rich. Nonetheless, I was still interested in other subjects of Quantum
Information Theory, such as the test of non-locality via Bell Inequalities or the optimal
estimation of quantum states. While these subjects of research are rather independent from
the main theme of this thesis, I did not want to simply overlook them and I decided to enclose
them as appendices. More precisely, the outline of this work will be structured as follows.

In Chapter 1, I give a brief review of Classical and Quantum Computation models. This
subject is extensively covered by an excellent literature and while I do not make an exhaustive
list of references all along the text, I refer the interested reader to Nielsen and Chuang’s book
[NC00] or John Preskill’s lecture notes [Pre98], as well as to different review articles by Andrew
Steane [Ste98], Peter Shor [Sho00], or Artur Ekert and Richard Jozsa [EJ96].

Chapter 2 describes the celebrated quantum algorithm for searching in a unstructured
database discovered by Lov K. Grover [Gro96], and its “analog analogue”, a Hamiltonian-
based algorithm proposed by Edward Farhi and Sam Gutmann [FG98a].

Chapter 3 deals with the Adiabatic Theorem that lays at the heart of the Quantum
Computation by Adiabatic Evolution. While this is a standard subject tackled in most books
on Quantum Mechanics [Sch55, Mes59], I will nonetheless formulate it in a way that is more
adapted to my purposes, that is, the design of quantum algorithms and the evaluation of their
complexity.
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In Chapter 4, we really enter the personal contribution of my thesis by exposing how one
can achieve the quadratic speed-up of Grover’s algorithm using an adiabatic algorithm. This
result led to a first publication [RC02]:

• Jérémie Roland and Nicolas J. Cerf. Quantum search by local adiabatic evolution.
Phys. Rev. A, 65:042308, 2002. e-print quant-ph/0107015.

In Chapter 5, I clarify the links between the three quantum search algorithms: Grover’s
algorithm, its analog analogue and the quantum search by adiabatic evolution. More precisely,
I show how these last two algorithms may be translated into the quantum-circuit model of
computation while keeping the quadratic speed-up of Grover’s algorithm. I point out that
these three quantum algorithms then take a very similar form, even though they remain three
clearly distinct algorithms. The content of this chapter corresponds to a second publication
[RC03b]:

• Jérémie Roland and Nicolas J. Cerf. Quantum-circuit model of Hamiltonian search
algorithms. Phys. Rev. A, 68:062311, 2003. e-print quant-ph/0302138.

In Chapter 6, I show the possibility of using the adiabatic quantum search algorithm in a
recursive manner to solve structured problems, such as the satisfiability of boolean formulas
which is NP-complete. This result was published in the following article [RC03a]:

• Jérémie Roland and Nicolas J. Cerf. Adiabatic quantum search algorithm for structured
problems. Phys. Rev. A, 68:062312, 2003. e-print quant-ph/0304039.

Chapter 7 concludes the main part of this thesis by studying the resistance to noise of
a quantum algorithm based on a continuous time Hamiltonian evolution, characterized by
either a time-independent Hamiltonian or an adiabatic change. This calculation combines
elements of random matrix theory with perturbation theory.

Finally, Appendix A provides a few mathematical tools useful for the body of the thesis,
while the two other appendices deal with independent research subjects. Appendix B studies
the optimal estimation of quantum states, a work done in collaboration with Sofyan Iblisdir
(still unpublished). On the other hand, Appendix C contains an article about non-locality
and more precisely Bell Inequalities that follows from a collaboration with Serge Massar,
Stefano Pironio, and Bernard Gisin [MPRG02]:

• Serge Massar, Stefano Pironio, Jérémie Roland, and Bernard Gisin. Bell inequalities
resistant to detector inefficiency. Phys. Rev. A, 66:052112, 2002. e-print quant-
ph/0205130.
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Chapter 1

The advent of Quantum
Computation

Introduction

Long before the first computers were built, at the dawn of mathematics, men realized that
many everyday life problems could be translated into mathematical problems, and that some
would be more complex to solve than others. For instance, a farmer could easily evaluate
the area of his triangular field, but it was much more difficult to find the optimal way to use
it, knowing that he could only cultivate particular vegetable patches in particular seasons of
the year, that different seeds had different costs but could also lead to different profits, and
many other parameters that should be taken into consideration. Intuitively, we understand
that the first problem would take less time to solve than the latter, and therefore they should
be classified in different classes of complexity.

However, one had to wait until the twentieth century to clarify this matter. Actually,
the first step was taken in the middle of the nineteenth century by Charles Babbage (1791-
1871), who conceived his Analytical Engine, an apparatus that would be able to perform any
mathematical calculation. Nonetheless, technology lacked at that time and even when his son
continued his work after he died, his theoretical model of the Analytical Engine could never
been practically built and the prototypes could only solve a few problems with very frequent
errors.

Another important step was performed by Kurt Gödel (1906-1978) when he gave a –
rather surprising– answer to a question asked by David Hilbert (1862-1943), who realized
that before trying to prove that a mathematical proposition was true or not, one should
ask if such a proof was actually always achievable. He thus questioned the intuition, widely
spread at the time among mathematicians, that mathematics were complete, in the sense
that within a mathematical theory, any proposition could be proved to be either true or
false. Surprisingly, Gödel showed that this was not the case by establishing the existence of
mathematical propositions that were undecidable, meaning that they could be neither proved
nor disproved. Equivalently, this refuted the idea that any properly defined mathematical
function was computable or that, for every properly defined mathematical problem, it was
either possible to find a solution, or to prove that none exists.

Relying on Gödel’s work, it is precisely the problem of establishing the decidability of
mathematical propositions, instead of their truth, that Alan Turing (1912-1954) addressed

1



2 CHAPTER 1. THE ADVENT OF QUANTUM COMPUTATION
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Figure 1.1: Schematic representation of a Turing Machine: The machine acts following a fixed program
P , and an internal state Q that may vary during the computation, taking values in a finite
set {q1, q2, . . . , qh}. Thanks to a read-write tape-head H, it may interact with a tape, used
like a computer memory, printed with symbols si. The computation consists in successive
identical steps. At each step, the machine reads the symbol si written on the tape at the
current position i of the head. Then, depending on si, the program P and the current
internal state q, it overwrites the symbol with a new value s′i, changes its internal state to
q′ then moves the head H left or right. At some point, if the machine enters the special
state qh, it halts. The computation is then finished and the output may be read on the
tape.

when he proposed his model that is now widely known as the Universal Turing Machine
[Tur36]. Building up on ideas developed by Babbage to devise his Analytical Engine, he de-
fined a theoretical model of machine that was sufficiently complicated to address any mathe-
matical problem but sufficiently simple to be analytically studied (a schematic representation
of a Turing Machine is given in Fig. 1.1). Even though at that time a “computer” looked
actually more like a mathematician writing equations on a piece of paper, his model proved
to be sufficiently general to be “computationally” equivalent1 to other models, such as the
circuit-model we will consider later, or even to nowadays computers. In particular, consider-
ing the decidability problem, it is now widely believed that all these models permit the same
functions to be computed, what Alan Turing and Alonzo Church summarized, independently
and both in 1936, in a thesis that took their name [Chu36]:

Every function “which would naturally be regarded as computable” can be com-
puted by the Universal Turing Machine.

Actually, the Church-Turing Thesis is not a theorem, but rather an assertion about the Real
World, as the set of functions being naturally regarded as computable is not defined rigorously.
Intuitively, it corresponds to the set of functions that may be computed with any realistic
physical means. Consequently, this thesis remains unproven, but the fact that no counter-
example could be found in spite of numerous attempts convinces most theoreticians of its
validity.

1The notion of computational complexity will be explained in the next section.
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Following this remarkable result, we may now classify problems into two groups, whether
they are solvable (if they reduce to a decidable mathematical proposition or a computable
function) or not, but we have not yet defined how, among solvable problems, discriminate
between easy or complex ones. An answer to this question was given by Alan Cobham and
Jack Edmonds, who defined the complexity of an algorithm as the number of elementary
operations it requires to be run on a Universal Turing Machine. A problem which requires
a number of operations that grows exponentially with the size of the input would then be
considered as complex, or intractable while a polynomial growth would correspond to tractable
problems. Of course, this supposes that we know the optimal algorithm to solve a problem
(for instance, there exist problems for which only exponential algorithms are known, but the
existence of a polynomial algorithm is not proved to be impossible). Remarkably, it seemed
that the translation of any algorithm initially formulated within another computational model
into the Universal Turing Machine model could only increase the number of basics steps
polynomially, so that this definition of complexity would be model-independent. However,
while Church-Turing thesis survived against many attempts to find a counter-example, it was
not the case for this conjecture.

The first alarm was given when it was shown that an Analog Computation model could
outperform the Universal Turing Machine for some tasks. Nonetheless, this model required
the use of continuous variables with arbitrary large precision, which would not be practically
feasible, and it was shown that whenever errors would occur during the computation, the
analog computer could not beat the Universal Turing Machine anymore. While the Analog
Computation model did therefore not contradict the universality of the definition of com-
plexity based on the Universal Turing Machine when considering realistic computations, a
new crisis occurred when Robert Solovay and Volker Strassen showed that it was possible
to test the primality of a given integer with a randomized algorithm. Their algorithm used
randomness at some steps of the computation and could tell in polynomial time either that
the integer was composite with certainty or prime with some large probability. Repeating the
algorithm a few times, it was therefore possible to find wether an integer was prime or not
with near certainty, while, at that time, no deterministic polynomial algorithm to solve this
problem was known2. This suggested that randomized algorithms could beat deterministic
ones, which inspired many other successful results. To keep an accurate definition of com-
putation complexity, the Universal Turing Machine was generalized by allowing the use of
randomness along the computation, which led to the Strong Church-Turing Thesis:

Any model of computation can be simulated on a probabilistic Turing Machine with
at most a polynomial increase in the number of elementary operations required.

The fact that the discovery of a new type of algorithms required a modification of the
Strong Church-Turing Thesis suggests that we must stay cautious. Would it be possible
that there exists an even more general type of Turing Machine? To answer this question,
one approach would be to look for the basic principles that determine what is a possible
computation... Realizing that any type of “computer”, would it be a mathematician scribbling
on a piece of paper, Babbage’s Analytical Engine or a state-of-the art personal computer, is
actually a physical system, we understand that possible computations are ultimately limited
by the Laws of Nature. However, while we know from the revolution that physics lived during
the last century that Nature is quantum mechanical, the concepts of Quantum Mechanics

2Let us note that recently, a deterministic polynomial algorithm for this problem was discovered.
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are rather counter-intuitive to the human mind, which is much more used to the classical (as
opposed to quantum) properties of large physical systems. Accordingly, it is within a classical
view of Nature that Turing developed his ideas. Therefore, it is possible that a Quantum
Turing Machine could be more powerful3 than its classical equivalent. Since the dynamics
of a Quantum Turing Machine would be governed, as any other quantum system, by the
Schrödinger equation, it is clear that it could be simulated on a classical Turing Machine just
by numerically integrating this equation, such that the introduction of this Quantum Machine
would not modify the set of computable functions (that is, the Weak Church-Turing Thesis).
Nonetheless, this simulation would involve the evaluation of a number of complex amplitudes
that increases exponentially with the size of the input, such that it would not be efficient. It
is therefore possible that there exist polynomial quantum algorithms for problems that are
thought to be classically intractable. The quest for such algorithms is the main goal of the
flourishing field of Quantum Computation.

In this chapter, we will first briefly summarize some notions of Classical Computation
useful for this thesis, such as the ideas of algorithm, universal gates and circuit complexity.
Then, after having reviewed the postulates of Quantum Mechanics, we will generalize these
notions to Quantum Computation.

1.1 Classical Computation

The goal of computation is to design efficient analytical methods, called algorithms, to solve
mathematical problems. Before considering algorithms, let us first focus on the problems.
A general problem is given as a mathematical description of what is sought (the solution or
output) depending on some unspecified variable, or input. The specification of this variable
fixes the particular instance of the problem. For example, the factorization problem may be
defined in the following way: “Given an integer x, find one of its factor y”. Different values
of the input x will correspond to different instances of this general problem. The value of x
could be written with different symbols and take the form of a number written in decimal
notation or a word made of letters from the Latin alphabet. To fix a standard, we will use
the binary notation, generated by the minimal set of symbols {0, 1}. Each binary variable
is then called a bit, for “binary digit”, and a sequence of ν bits allows to define 2ν different
instances. We will often refer to ν as the size of the problem (it is actually the size of the
input written in binary notation).

1.1.1 Circuit model

An algorithm is an analytical method that, given the input x of a problem, provides an
output y that satisfies the definition of the solution of the problem. Since the output y
may be, exactly as the input x, written in binary notation, an algorithm corresponds to the
evaluation of a function f : {0, 1}ν → {0, 1}µ : x 7→ y = f(x). If this function is computable
we know that the problem may be solved using a Universal Turing Machine. However, from
now on we will consider another model of computation that may be proved to be equivalent,
namely the circuit model.

Writing the µ bit output y = (y1, . . . , yµ), the function f defines µ functions with one
bit output fk : {0, 1}ν → {0, 1} : x 7→ yk = fk(x) (k = 1, . . . , µ). Each of these functions

3From a computational complexity point of view, as explained in the following sections.
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may then be rewritten as a boolean expression of the input bits x = (x1, . . . , xν) combined
with the boolean operators NOT (¬), AND (∧)and OR (∨). These boolean expressions may
be evaluated using a circuit made of wires carrying the value of bits between logical gates
corresponding to the boolean operators (see Fig. 1.2).

x1 ∨ x2
x2

x1
∨x1 ∧ x2

x2

x1
∧¬ x1x1 ¬

(x1 ∧ x2) ∨ ¬ x3

x2

x1

∨
∧

x3 ¬

Figure 1.2: The classical gates NOT (¬), AND (∧), and OR (∨) and a small circuit implementing the
boolean expression (x1 ∧ x2) ∨ ¬ x3.

While each of the boolean operators cited above corresponds to a particular logical gate,
we may define any logical gate as a function g : {0, 1}ν → {0, 1}µ : x 7→ g(x). In particular,
apart from the NOT, AND and OR gates, the practical implementation of the circuits have
implicitely assumed the existence of two other gates: FANOUT, which duplicates a bit and
is necessary if a bit appears more than once in the boolean expression, and CROSSOVER,
which swaps two wires and is required to be able to apply a logical gate on two spatially
separated bits (see Fig. 1.3).

t

x2

x2

x1

x1

�
�@
@x1

x1
x1

Figure 1.3: FANOUT and CROSSOVER gates, which respectively duplicates a bit and swaps two bits.

1.1.2 Universal set of gates

One important issue is to find a universal set of gates, meaning that, combined together, these
gates are able to simulate any other logical gate. This is the case of the set {NOT, AND, OR,
FANOUT, CROSSOVER} that we just described, but there exists other equivalent universal
sets. One useful trick to simulate a logical gate from others is to make use of an extra bit
with a known value, called an ancilla. For instance, as shown in Fig. 1.4, it is possible to
simulate the logical gate AND with one ancilla bit with value 0 and two uses of the NAND
gate (“NOT AND”, which outputs 0 if and only if both input bits are 1). Actually, it is
possible to show that one can simulate any logical gate using ancilla bits and the set {NAND,
FANOUT, CROSSOVER}, which is therefore universal.

1.1.3 Circuit complexity

Let us now turn to the notion of complexity, which, following the Strong Church-Turing
Thesis, is related to the number of elementary operations needed to solve the problem with a
Turing Machine. Let us translate this idea into the picture of the circuit model of computation.
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x1 ∧ x2
x2

x1 0
¬∧¬∧

Figure 1.4: Simulation of an AND gate (∧) from two NAND gates (¬∧) and an ancilla with value 0.

Within this model, an algorithm corresponds to a family of circuits Cν , made of gates
from a universal set, for all sizes of the input ν. To derive a proper notion of complexity, we
add a uniformity condition, which requires that the design of the circuit Cν may be computed
efficiently (in polynomial time versus the size ν) for instance on a Turing Machine. This
prevents to hide the hardness of a problem within a complex procedure to design the circuit
and even more the possibility to compute uncomputable functions. For such a uniform family
of circuits, the complexity will be defined as the size of the circuit Cν , that is, the number of
elementary gates in the circuit. Following this idea, we consider that the size of the circuit
corresponds to the time it takes to run the algorithm.

Actually, we are not interested in the exact size of the quantum circuit, which for instance
may vary for different universal sets of gates, but mostly on the way it scales versus the size
of the input ν. Following the Strong Church-Turing Thesis, an algorithm is called efficient if
its complexity grows polynomially with ν. To precise this notion of scaling, we will use the
asymptotic notation Big-O:

f(ν) = O(g(ν)) ⇔ ∃c ≥ 0, ν0 ≥ 0 s.t. 0 ≤ f(ν) ≤ cg(ν) ∀ν ≥ ν0. (1.1)

Intuitively, it means that f(ν) grows slower (or equally) with ν than g(ν). We will also use
the inverse notation Big-Ω:

f(ν) = Ω(g(ν)) ⇔ ∃c ≥ 0, ν0 ≥ 0 s.t. 0 ≤ cg(ν) ≤ f(ν) ∀ν ≥ ν0. (1.2)

that means that f(ν) grows faster (or equally) with ν than g(ν).
Practically, a tractable problem admits efficient algorithms, that show a complexity scaling

as O(νc) for some exponent c, while an intractable problem may only be solved by algorithms
with a complexity that scales as Ω(νc), no matter how large is c. More generally, the Big-O
notation is often used to qualify the worst-case behavior of an algorithm, while the Big-Ω
permits to specify lower bounds on the complexity of all algorithms able to solve a particular
problem. The ideal case occurs when the worst-case behavior of the best known algorithm
saturates the lower bound, in which case we know that this scaling is really optimal and we
may use the Big-Θ notation

f(ν) = Θ(g(ν)) ⇔ f(ν) = O(g(ν)) and f(ν) = Ω(g(ν)), (1.3)

meaning that both functions scale similarly with ν.
Let us note that the following properties immediately follow from the definitions

f(ν) = O(g(ν)) ⇔ g(ν) = Ω(f(ν)) (1.4)

f(ν) = Θ(g(ν)) ⇔ g(ν) = Θ(f(ν)). (1.5)

Moreover, while these definitions apply to the limit of large ν, that is, ν → ∞, we may
also study a scaling in the limit of, for instance, a small error probability ε, extending the
definition of the Big-O notation to the case ε→ 0:

f(ε) = O(g(ε)) ⇔ ∃c ≥ 0, ε0 ≥ 0 s.t. 0 ≤ f(ε) ≤ cg(ε) ∀ε ≤ ε0. (1.6)
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1.1.4 Complexity classes

Now that we have defined the notions of logical circuit and complexity, we may classify
mathematical problems according to the complexity of the optimal circuit that allows to
solve them. This is the goal of Complexity Theory, a broad field of Information Science of
which we only sketch here the basic ideas that will be helpful for the sake of this thesis.

On one hand of the complexity scale, are easy problems that may be solved in polynomial
time and define the complexity class P, for polynomial. Unfortunately, there are of course
numerous problems for which only exponential algorithms are known. Among these prob-
lems, an important sub-class is PSPACE which brings together those admitting a possibly
exponentially deep circuit that works on a polynomially large register of bits, that is, they
may require exponential time but only polynomial space.

While it is still unproven whether P6=PSPACE, it is one of the most important conjecture
of Complexity Theory. Whatsoever, complexity classes that would be intermediate between P
and PSPACE may be theoretically defined, such as the class of non-deterministic polynomial
problems, or NP, which includes problems that may possibly only be solved in exponential
time, but, roughly speaking, whose solution may be checked in polynomial time if some data,
called a witness is provided. A typical example would be the factoring problem, as it may
not be possible to factor a large number in polynomial time, but if a factor of the number is
given as a witness, this may easily be checked just by performing a division, which takes a
polynomial time.

Another example would be the problem of the satisfiability of boolean formulas, which
amounts to determine if a given boolean formula involving a set of ν binary variables may
be satisfied for some assignments of the variables. In this case, it is possible to check in
polynomial time whether the formula is satisfiable if a satisfying assignment is given as a
witness. The particularity of this problem is that it has been proved that any other problem
in NP may be reduced to it with only polynomial overhead, meaning that this problem is
among the most difficult problems in NP. Other problems share this property, they form the
class of NP-complete problems, NP-c.

From the definition of NP-completeness, it follows that if a polynomial algorithm was
found for any NP-complete problem, all other problems in NP could be solved in polynomial
time and the class NP would reduce to the class P. Despite years of attempts, no polynomial
algorithm for an NP-complete problem has been found so that it is now widely conjectured
that none exists, although as no proof ruling out the possibility of such an algorithm was
derived, the question P=NP remains open.

Another interesting open question is whether it may help to use a randomized algorithm.
Such an algorithm would translate into a logical circuit which divides in different paths at some
points. One would then have to flip a coin to decide which path to follow. Such a randomized
circuit thus relies on a different model of computation, equivalent to the probabilistic Universal
Turing Machine. This generalized model allows to define new classes of complexity, the most
important being the class of bounded error probabilistic polynomial problems, or BPP. This
class includes problems that may be solved by a probabilistic algorithm in polynomial time
with success probability of at least 3/4. Thanks to the Chernoff Bound, which shows that,
whenever the error probability is smaller than 1/2, it may be reduced exponentially fast just
by repeating the algorithm a polynomial number of times, this lower bound of 3/4 is actually
arbitrary. Therefore, the class BPP may really be considered as the class of problems that
may be solved efficiently, that is, in polynomial time.
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1.1.5 Reversible Computation

Even though Quantum Mechanics involves amplitudes instead of probabilities, quantum pro-
cesses are inherently probabilistic, such that the introduction of randomness in the computa-
tional model took us one step closer to the idea of Quantum Computation. However, another
peculiarity of a quantum evolution is its reversibility4.

Considering the circuit model of computation, we see that not all gates are reversible. For
instance, while the NOT gate is reversible as one may recover the input bit just by negating
the output bit, this is not the case for the XOR gate, which from an input of two bits outputs
the single bit corresponding to their sum modulo 2. During the application of this gate, one bit
of information is actually lost or, more precisely, erased, which is the cause of irreversibility.
On thermodynamical grounds, it may be shown that the erasure of information leads to a
consumption of energy, as stated by Landauer’s principle [Lan61]:

When a computer erases a single bit of information, the amount of energy dissi-
pated into the environment is at least kBT ln 2, where kB is Boltzmann’s constant
and T is the temperature of the environment.

Even though current computers dissipate much more energy than the lower bound pre-
dicted by Landauer’s principle, it turns out that this bound is the only ultimate physical
limit on the reduction of power consumption, such that, theoretically, it should be possible
to design a computer that consumes arbitrarily low power, as long as it behaves reversibly.
The question is: is it possible to make any computation reversible? The answer is yes, it
suffices to add to each irreversible gate some additional output bits containing the erased
information [Ben73]. For instance, the XOR gate may be made reversible by adding a second
output bit that takes the value of, say, the first input bit (see Fig. 1.5). Let us note that the
reversible version of XOR then takes a particular form, as it may be viewed as a gate that
performs a NOT on one bit if the other bit is set to 1, and leaves it alone otherwise. We call
such a gate that performs some operation R on a target bit if and only if a control bit is set
to 1 a Controlled-R. In this case the reversible XOR is equivalent to a Controlled-NOT, or
“CNOT”.

t

≡
x1 ⊕ x2

x1

x2

x1

¬
x1

x1 ⊕ x2

⊕′
x2

x1
⇒x1 ⊕ x2

x2

x1
⊕

Figure 1.5: It is possible to make the XOR gate (⊕) reversible by adding an extra output bit. We
then obtain a CNOT gate that performs a NOT (¬) on the target bit x2 if and only if the
control bit x1 is set to 1.

Adding adequate extra output bits to each irreversible gate, one can make a whole circuit
reversible, but this will introduce a lot of extra bits that are useless for the computation but
necessary for preventing dissipation. Indeed, it is the erasure of these “garbage” bits that
would cause irreversibility and thus energy consumption. At first view, it may seem that

4At least in the current, standard description of Quantum Mechanics, possibly taking apart the measurement
postulate which interpretation differs among physicists and is sometimes considered as leading to a non-
reversibility of the measurement operation. However, we will see that this particular interpretation of the
measurement postulate does not modify the Quantum Computation model, as any measurement may be
postponed to the end of the computation.
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this erasure would be necessary to free some memory space in order to perform subsequent
computations, otherwise garbage bits would accumulate after each computation and finally
saturate the computer memory. Actually this is not true as it may be shown that it is possible
to arrange the garbage bits in such a way that they all end up in a standard state, for instance
all bits with value 0, ready for a new computation5. This means that it is theoretically really
possible to perform computations with arbitrarily low energy consumption [Ben89].

Following these ideas, we may define a model of computation that involves reversible
circuits only. As the translation of an irreversible circuit into a reversible one is always possible
and may only increase the number of elementary gates and the work space polynomially, a
crucial consequence is that this model will be computationally equivalent to its irreversible
counterpart and thus the complexity classes will remain unchanged. The basic difference is
that reversible circuits will be built from a different set of universal gates, all being reversible.
More precisely, it may be shown that to perform Universal Reversible Computation, one needs
a set that contains at least one three-bit gate (while it was only a two-bit gate for irreversible
computation, for instance NAND). One example of universal set is made of only one such gate,
the Fredkin gate [FT82]. This gate swaps the first two bits if the third bit is set to 1 and leaves
them alone otherwise, so it may be considered as a Controlled-CROSSOVER (see Fig. 1.6).
It is indeed straightforward to check that this gate alone may reproduce the NOT, AND, OR,

tt 1
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x1

0

x2

x1

Figure 1.6: The Fredkin gate, which acts as a Controlled-CROSSOVER: it swaps the first two bits if
the third bit is set to 1 and leaves them alone otherwise.

CROSSOVER and FANOUT gates, with the help, when necessary, of extra bits prepared in
a standard state, called ancillae, and producing garbage bits. Another interesting universal
set is made of the Toffoli gate alone, also known as the “Controlled-Controlled-NOT” as it
flips the third bit (the target bit) if the first two bits (the control bits) are both set to 1 and
leaves it alone otherwise. This gate will play an important role in Quantum Computation,
another even more physically based model of computation that we consider next.

1.2 Quantum Computation

1.2.1 The postulates of Quantum Mechanics

The development of Quantum Computation relies on the simple idea that a computer is
actually a physical system –and computation is therefore a physical process– such that it is
the Laws of Nature themselves that ultimately limit what a computer can or cannot compute.
At first view, it may seem that a computer is such a complex physical system that the study
of the exact physical laws which govern its evolution would hardly lead to any useful result.
Nonetheless, no matter the physical realization of the computer and the detailed physical laws
that describe its evolution, all modern physical theories rely on a single mathematical model

5This will be even more crucial to Quantum Computation where extra bits in different states could destroy
the interferences that are at the basis of most quantum algorithms.
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which builds on a very few postulates only, namely Quantum Mechanics. In this section, we
briefly review these postulates6 as they will lay at the basis of the Quantum Computation
model.

The first postulate defines the mathematical entity representing a particular state of some
physical system:

Postulate 1 To any isolated physical system S is associated a complex vector space with
inner product, or Hilbert space, HS. The system state is completely determined by a unit
vector |ψ〉 of this Hilbert space.

We will use the bracket notation 〈ψ1|ψ2〉 for the inner product of two states |ψ1〉 and |ψ2〉 of
a Hilbert space HS , and often refer to 〈ψ1| as a bra and to |ψ2〉 as a ket.

Let us notice that this postulate does not specify what Hilbert space will be associated
to a given physical system, that is, it does not give the basis states or even the dimension
of the Hilbert space. In general, this dimension should be adequately chosen to be able to
reproduce the physical properties of the system, and could be as large as infinite. However, in
this thesis, we will restrict ourselves to finite-dimensional Hilbert spaces as these will suffice
for our purposes.

One interesting property of vectors in a Hilbert space, and therefore of quantum states,
is that if |ψ1〉 and |ψ2〉 are two states in HS , so will be any linear combination α|ψ1〉+ β|ψ2〉,
where α and β are complex numbers such that |α|2 + |β|2 = 1 to preserve normality. This
property is often referred to as the superposition principle.

Moreover, the fact that quantum amplitudes are complex numbers also introduces the
notion of phase, as the previous superposition may be rewritten with real numbers a and b as
eiφ1(a|ψ1〉+eiφ2b|ψ2〉), where φ1 will be called a global phase and φ2 a relative phase. Actually,
in Quantum Mechanics, it so happens that global phases have no physical meaning, such that
for instance the superpositions a|ψ1〉 + b|ψ2〉 and eiφ1(a|ψ1〉 + b|ψ2〉) represent exactly the
same physical state. Indeed, the postulates of Quantum Mechanics imply that a change of
global phase has no influence on the evolution (postulate 2) and the measurement (postulate
3) of a quantum state. Such global phases are thus irrelevant and will often be neglected
subsequently.

However, this is not the case for relative phases, and the states represented by a|ψ1〉+b|ψ2〉
and a|ψ1〉 + eiφ2b|ψ2〉 will be different for a non-zero relative phase φ1, and may even be or-
thogonal. Relative phases actually play an important role as they may lead to constructive
or destructive interferences, a quantum effect that will be a useful tool for Quantum Compu-
tation.

While the first postulate deals with states at a particular fixed time, it is of course essential
to precise how these states will evolve in time. This is the purpose of the second postulate:

Postulate 2 The time evolution of a state |ψ(t)〉 of an isolated quantum system is described
by the Schrödinger equation:

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉, (1.7)

where ~ is a physical constant known as Planck’s constant and H is a Hermitian operator
called the Hamiltonian of the system.

6We will only consider the standard, non-relativistic Quantum Mechanics, since it will be sufficient for our
purposes.
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Similarly to the first postulate, this does not specify the exact form of the Hamiltonian
H, which practically will vary with the system that is considered. While it is in general time-
dependent, an important particular case occurs when the Hamiltonian is time-independent.
In this case, the Schrödinger equation may be integrated analytically, allowing to evaluate
the state |ψ(t1)〉 at time t1 from the state |ψ(t0)〉 at time t0:

|ψ(t1)〉 = e−
iH
~

(t1−t0)|ψ(t0)〉 (1.8)

= U(t0, t1)|ψ(t0)〉, (1.9)

where we have introduced the evolution operator U(t0, t1) that maps the state at time t0 to
the state at time t1. This operator is unitary [U(t0, t1)]

† = [U(t0, t1)]
−1, and it may be shown

that in the general case of a time-dependent Hamiltonian, such a unitary evolution operator
may always be defined. From the unitarity of the evolution operator, it immediately follows
the reversibility of quantum processes as unitary operators are always invertible, allowing the
definition of a reversed evolution operator U ′(t1, t0) = [U(t0, t1)]

−1, unitary as well.

Until now, we have only considered isolated systems. However, it is clear that it is nec-
essary to interact with the system that we study at some point in order to retrieve some
information from it. The description of measurement is the purpose of the following postu-
late:

Postulate 3 A quantum measurement on a system S is described by a collection {Mm} of
measurement operators, defined as operators acting in the Hilbert space HS associated with
S and satisfying the completeness relation

∑

m

M †
mMm = IS , (1.10)

where IS is the identity operator on HS. The index m refers to the measurement outcomes
that may occur in an experiment. The probability p(m) to obtain the outcome m if the system
was in the state |ψ〉 immediately before the measurement is given by

p(m) = 〈ψ|M †
mMm|ψ〉, (1.11)

and the state just after the measurement becomes

Mm|ψ〉
√

p(m)
. (1.12)

Practically, it often happens that one is only interested in the different probabilities to
get each outcome and not in the state of the system after the measurement (this occurs when
the only measurement coincides with the end of the experiment and will for instance be the
case for Quantum Computation). In this case, we see from the measurement postulate that

the only relevant mathematical entities are the operators Om = M †
mMm. We will therefore

define a positive operator-valued measure, or POVM, as a set of positive operators {Om},
called POVM elements, satisfying a completeness relation:

∑

m

Om = IS . (1.13)
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The positivity of the POVM operators {Om}, often written as Om ≥ 0, follows from the

fact that they originally derive from an operator Mm as Om = M †
mMm, and is equivalent to

imposing that their spectrum only involves positive eigenvalues.
Physicists may not be used to this form of the measurement postulate, as they are gener-

ally more familiar with a particular type of measurement, namely projective measurements7,
which correspond to the special case where the measurement operators Mm are orthogonal
projectors Pm, with PmPm′ = δmm′Pm. In Quantum Physics, each physical property that
may be measured corresponds to a hermitian operator M , called observable, that has a spec-
tral decomposition M =

∑

mmPm, where m’s are the eigenvalues of M and Pm’s are the
projectors on the corresponding eigenspaces. Within this formalism, we recover the measure-
ment postulate as stated in most books on Quantum Mechanics, which says that the possible
outcomes are the eigenvalues m of the observable M that is measured and that the state after
the measurement lays within the eigenspace of M corresponding to the actual outcome m.

Now this generalized statement of the measurement postulate raises two questions. First,
why do we state this postulate in this form? The answer lays in the developments of the
Quantum Information Theory, that showed in different contexts that it is often possible
to retrieve more information from a quantum system when we do not restrict ourselves to
projective measurements8. Perhaps more fundamental is the second question, why are we
allowed to state the measurement postulate in this form? Actually, it may be shown that
these two formulations are strictly equivalent, as long as we add this last postulate:

Postulate 4 The Hilbert space associated with a composite physical system AB made of
two sub-systems A and B is the tensor product HA ⊗ HB of the Hilbert spaces HA and HB

associated with the sub-systems. If the sub-system A is prepared in the state |ψA〉 and the
sub-system B is prepared in the state |ψB〉, then the joint state of the composite system AB
will be the tensor product state |ψA〉 ⊗ |ψB〉.
Now this postulate allows us to realize a generalized measurement {Mm} on a system S by
extending it with an additional system A prepared in some known state and performing a
projective measurement on the composite system SA (see also Neumark’s theorem [Per95]).
Indeed, choosing an extra system A whose dimension coincides with the number of measure-
ment operators Mm, and associating each Mm with a basis state |m〉 of A, it is always possible
to define a unitary operator U such that U |ψ〉|0〉 =

∑

mMm|ψ〉|m〉, where |ψ〉 is the unknown
state of S we want to measure and |0〉 is some arbitrary fixed state in which we prepare the
system A. It is then straightforward to check that the generalized measurement {Mm} on S
may be realized by a projective measurement on SA with projectors Pm = U †(IS ⊗|m〉〈m|)U ,
where IS is the identity on HS and |m〉〈m| is the projector on state |m〉 of HA. The use of
such kind of extra system prepared in a standard state, usually referred to as an ancilla, will
actually be a common tool in Quantum Computation9.

This last postulate leads to another interesting feature of Quantum Mechanics. Suppose
that |ψA〉 and |ψ′

A〉 are two possible states of A, and similarly for B. Due to the superposition
principle, the states of the composite system AB may take not only a product form such as
|ψA〉 ⊗ |ψB〉 but also a non-separable form as α|ψA〉 ⊗ |ψB〉+ β|ψ′

A〉 ⊗ |ψ′
B〉. These last states

may not be considered as separate states on A and B as they are only defined in the joint

7Projective measurements are sometimes also called Von Neumann measurements.
8See for instance the Appendix B which deals with the optimal estimation of quantum states.
9We have already met the idea of using an ancilla, but within a classical context, to define reversible gates

in Section 1.1.5.
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Hilbert space HA ⊗ HB and therefore involve some kind of quantum correlation, which we
will call entanglement, between systems A and B. We will therefore qualify these states as
entangled. Entanglement is an essential resource used in Quantum Information Theory and
in Quantum Computation in particular10.

1.2.2 The qubit

We are now ready to enter the core of this thesis: Quantum Computation. As for Classical
Computation, the goal of Quantum Computation is to design efficient methods to solve math-
ematical problems. These problems will be exactly the same as for Classical Computation and
it may therefore be possible to state the instance of a problem –the input– and its solution
–the output– in the same manner, that is, using a string of bits. The difference will be the
method –the algorithm– used to derive the output from the input, that we will now call a
quantum algorithm as it will deal with quantum states instead of classical information.

How can we encode a string of bits in a quantum state in order to use it as an input
for a quantum algorithm? Let us first consider the smallest possible case, a single bit, that
may take value 0 or 1. It then seems natural to associate each of these values to a different
quantum state |0〉 and |1〉. It would of course be preferable to be able to distinguish perfectly
between these states, for instance to be able to read the output of the algorithm without
error. It follows from the measurement postulate 3 that this is only possible if these states
are orthogonal: 〈0|1〉 = 0. These states will span a two-dimensional Hilbert space H2,
representing the state of a system that we will call a qubit, for “quantum bit”. It follows
that a qubit may be in one of the basis states |0〉 or |1〉, corresponding to the classical bit
values 0 and 1, but also, due to the superposition principle (see postulate 1), in any linear
combination α|0〉 + β|1〉 that has no classical equivalent.

Let us now consider a string x of ν classical bits (x1, x2, . . . , xν), each bit xk taking value
0 or 1. We may associate to each bit xk a qubit described by a two-dimensional Hilbert space
H2,k, and then to the string x a composite quantum state

|x〉 = |x1〉 ⊗ |x2〉 ⊗ . . .⊗ |xν〉 (1.14)

which lays in the Hilbert space HN = H2,1 ⊗H2,2 ⊗ . . .⊗H2,ν . The N = 2ν possible classical
bit strings x therefore defines an orthonormal basis of this N-dimensional Hilbert space, which
will be called the computational basis. While each state |x〉 of the computational basis directly
corresponds to a classical bit string x, the superposition principle implies that an arbitrary
state of HN takes the form

|ψ〉 =
N−1∑

x=0

αx|x〉, (1.15)

where x is written in binary notation, involving N = 2ν complex amplitudes αx satisfying the
normality condition

∑

x |αx|2 = 1. Except for the particular case of the computational basis
states, these states are entangled and therefore do not have any classical equivalent. According
to the measurement postulate 3, a projective measurement of state |ψ〉 in the computational
basis will yield result x with probability |αx|2. This is exactly the measurement that will
practically be used in quantum algorithms.

10Let us mention that a particular witness of the entanglement of a quantum system follows from the use of
so-called Bell Inequalities, which is the subject of Appendix C.
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1.2.3 Quantum circuits

Following the lines of the definition of the circuit model of Classical Computation, we may
now introduce the circuit model of Quantum Computation11. While a classical circuit is
made of wires carrying the value of bits between logical gates, a quantum circuit consists
of wires carrying qubit states between quantum gates. We have already defined the notion
of qubit, but what is a quantum gate? Intuitively, it should be an application that maps
input qubits to output qubits. As it follows from the evolution postulate 2 that any physical
transformation is reversible, the number of output qubits must match the number of input
qubits, and therefore a gate will just act as a reversible transformation on a fixed number
of qubits. For instance, it is clear that any reversible classical gate may be generalized to a
quantum gate, for instance the NOT gate:

U¬ : H2 → H2 : |x1〉 7→ |¬x1〉, (1.16)

or the (reversible) XOR gate:

U⊕ : H2 ⊗H2 → H2 ⊗H2 : |x1〉 ⊗ |x2〉 7→ |x1〉 ⊗ |x1 ⊕ x2〉. (1.17)

This shows that Reversible Classical Computation is a special case of Quantum Computa-
tion. However, Quantum Computation is more general as there are quantum gates that have
no classical equivalent. Indeed, this will be the case for any quantum gate that produces
superposition of computational basis states or introduces relative phases. More specifically,
the evolution postulate only imposes that every physical evolution is unitary, such that a
general quantum gate on ν qubits will be described by a unitary operator on a Hilbert space
of dimension N = 2ν . All these unitary operators form a compact Lie group generally noted
U(N). To perform universal Quantum Computation, we should therefore be able to simulate
any element of U(N) from a finite set of basic gates.

To better understand the implications of this requirement, let us first consider one-qubit
gates, corresponding to the group U(2). In the computational basis (|0〉, |1〉), each gate U
may be written as a unitary operator

U : H2 → H2 :

{
|0〉 7→ u00|0〉 + u10|1〉
|1〉 7→ u01|0〉 + u11|1〉, (1.18)

or equivalently as a unitary matrix

U =

(
u00 u01

u10 u11

)

, (1.19)

where ukl = 〈k|U |l〉 are complex numbers satisfying the unitarity conditions
∑

k=0,1 u
∗
klukm =

δlm, that is, U †U = I. It follows that up to an irrelevant global phase12, each one-qubit gate
may be represented by a matrix of the following form

U(θ,φ) =

(
cos θ

2 −eiφ sin θ
2

e−iφ sin θ
2 cos θ

2

)

, (1.20)

11Let us recall that we have already mentionned in the introduction another model of Quantum Computation,
the Quantum Turing Machine. As it is the case for their classical counterparts, these two quantum models are
equivalent, but we prefer to focus on the circuit model that is more appropriate to design algorithms.

12We have seen in Section 1.2.1 that the postulates of Quantum Mechanics imply that global phases are
irrelevant.
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While classically there exist only two reversible one-bit gates, NOT (¬) and Identity, which
can be generalized to the quantum gates U¬ and I as

U¬ =

(
0 1
1 0

)

= iU(π,π/2) I =

(
1 0
0 1

)

= U(0,0), (1.21)

we see that there exists a whole continuum of one-qubit quantum gates, for all values of the
angles θ and φ. At first view, it may seem that it will not be possible to simulate an infinite
number of gates from a finite set of basic gates. However, we may show that this is not the
case and that the notion of universal set of gates may be generalized to the quantum case.

1.2.4 Universal set of quantum gates

Remember that a universal set for Reversible Classical Computation consists in the Toffoli
gate alone. A remarkable result is that it is possible to simulate any unitary operator on
ν qubits using Toffoli gates and the set of all one-qubit gates. This means that using the
continuum of unitary operators in U(2) together with Toffoli gates, we may achieve the whole
continuum of unitary operators in U(N) (where N = 2ν).

However, it seems obvious that with a finite set it will not be possible to simulate the whole
continuum of one-qubit gates exactly, though maybe it is possible to do it approximately.
Suppose we take an arbitrary one-qubit gate R = U(θ,φ), with angles θ and φ being irrational
multiples of π. Suppose now we apply this gate successively k times, simulating the gate
Rk. As θ and φ are irrational in π, all these gates will differ for different values of k, and
will ultimately fill the whole space of U(2) if we let k tend to infinity. More precisely, the
set of all powers of R is dense in U(2), such that any element of U(2) may be approached
arbitrarily well by an adequate power Rk. This means that the set {Toffoli, R} is universal for
Quantum Computation. Furthermore, it is possible to reduce this set to a single gate just by
combining the Toffoli and the R gate to make a Deutsch gate [Deu89], that is, a Controlled-
Controlled-R (remember that the Toffoli gate was a Controlled-Controlled-NOT, as shown in
Fig. 1.7). From a conceptual point of view, it is interesting to note that these universal sets of

x′3

x2

x1

x3

x2

x1

r

rr

r

R

x1

x2

x′3x3

x2

x1

¬

Figure 1.7: The Toffoli and Deutsch gates, which taken alone are universal respectively for Reversible
Classical Computation and Quantum Computation.

gates for Quantum Computation may simply be obtained by introducing “quantumness” in
the universal set for Reversible Classical Computation, either by adding a generic one-qubit
quantum gate or by modifying the universal classical gate to make it quantum.

While all these universal sets involve three-bit (or three-qubit) gates, and it is indeed
possible to show that Universal Reversible Classical Computation requires such gates, it is
actually not necessary for Quantum Computation. For instance, the set {CNOT, R}, where
the two-qubit gate CNOT has replaced the Toffoli gate, is also universal [DiV98]. Remarkably,
it may be shown that almost any two-qubit gate may replace the Toffoli, which is an excellent
news for Quantum Computation as it means that as soon as we are able to apply a generic
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operator on a single qubit and a generic interaction between two qubits, we are ready for
Universal Quantum Computation [DBE95, Llo95].

Before introducing quantum algorithms, let us point out another peculiar consequence of
the postulates of Quantum Mechanics. Suppose we would like to define a quantum equivalent
to the FANOUT classical gate. To ensure unitarity, it should be a two qubit gate, that copies
an unknown qubit onto a blank qubit, that is a second qubit prepared in a standard state,
for instance |0〉. The quantum FANOUT UFO would therefore map the computational basis
states as

UFO|0〉 ⊗ |0〉 = |0〉 ⊗ |0〉 (1.22)

UFO|1〉 ⊗ |0〉 = |1〉 ⊗ |1〉, (1.23)

effectively copying the first qubit onto the second (blank) one. However, due to the linearity
of Quantum Mechanics, this gate would map the superposition state α|0〉 + β|1〉 as

UFO(α|0〉 + β|1〉) ⊗ |0〉 = α|0〉 ⊗ |0〉 + β|1〉 ⊗ |1〉 (1.24)

instead of

(α|0〉 + β|1〉) ⊗ (α|0〉 + β|1〉), (1.25)

and would therefore not copy such a superposition state reliably. More precisely, the no-
cloning theorem of Quantum Mechanics implies that it is impossible to copy an unknown
quantum state with arbitrarily high fidelity. Nonetheless, even though the FANOUT gate is
an essential tool for Classical Computation, we will see that it is possible to design efficient
quantum algorithms without the need to effectively copy qubits.

1.2.5 Quantum algorithms and quantum complexity

We may now explicitly define the notions of quantum algorithm and complexity. A quantum
algorithm consists in

1. the preparation of the register in a quantum state of ν qubits taken from the computa-
tional basis,

2. a quantum circuit Cν made of quantum gates taken from a universal set for Quantum
Computation,

3. a projective measurement of the output register in the computational basis.

Practically, the circuit Cν will depend on the size of the particular instance of the problem
it is supposed to solve through the number of needed qubits ν in the quantum register. A
quantum algorithm then actually corresponds to a family of circuits Cν for all values ν. As in
the classical case, we must add a uniformity condition to derive a proper notion of complexity,
meaning that the design of circuit Cν may be built in time at most polynomial in ν. The
complexity of an algorithm is then defined as the size of the circuit Cν (as for classical circuits,
the size of Cν is the number of gates in Cν).

These definitions deserve a few further comments. First of all, one could think that this
definition of quantum algorithms is rather restrictive and that it could be interesting to make
use of quantum processes that do not fit in this definition.
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For instance, it could be possible to prepare the quantum register in a state that does
not belong to the computational basis, or similarly measure this register in another basis.
However, such generalized algorithms could easily be translated into our more restrictive
definition just by adding some gates at the beginning and the end of the quantum circuit
which rotate the generalized basis into the computational one or vice-versa. Similarly, the
use of a projective measurement does not induce a loss of generality as we have seen that
any measurement, including the most general POVM-type, may be reduced to a projective
measurement with the help of ancillae.

Furthermore, one could design quantum algorithms with intermediate measurements in-
stead of only one final measurement. Nonetheless, it is possible to show that this kind of
algorithm could also be translated into our model, just by postponing any measurement to
the end of the algorithm. This is true even when the subsequent computation depends on the
outcome of the intermediate measurements, although in such a case ancillae are needed. The
trick is simply to perform the subsequent computation conditionally to these ancillae that
will only be measured at the end of the algorithm.

Finally, a peculiarity of Quantum Computation is that a universal set of quantum gates
may only simulate an arbitrary quantum gate up to some error. Since these errors could
accumulate as the size of the circuit Cν increases with ν, one could wonder if all universal sets
will yield an equivalent notion of complexity when errors are taken into account. Fortunately,
it is indeed the case because we are only interested in the overall scaling of the complexity.
More precisely, we will consider an algorithm efficient if it can solve a problem with a prob-
ability higher that 2/3 and a complexity that grows at most polynomially in ν. Similarly to
the classical class BPP, we then define the quantum class BQP, for bounded error quantum
polynomial, that includes any problem that may be solved by such an efficient algorithm. It
may be shown that the error introduced when simulating any quantum gate by a universal set
may be reduced to ε using a circuit of elementary gates whose size grows poly-logarithmically
in O(1/ε) only13. It implies that compensating the accumulation of errors along a circuit
only introduces a poly-logarithmic overhead and therefore does not affect the definition of the
class BQP.

A central question for Quantum Computation is whether BPP=BQP, that is, whether
there exist problems that may be solved efficiently by a quantum computer but not by a
classical one. Even though this question remains open, there exist problems which are known
to belong to the class BQP but for which no efficient classical algorithm is known. The first
remarkable achievement was the discovery by Peter Shor of an efficient quantum algorithm
for the factorization of large numbers [Sho94]. Indeed, it is sill unknown whether this problem
belongs to the class BPP, but as for now it has not been possible to prove that no efficient
classical algorithm exists for this problem. As it is unnecessary for our purposes, we will not
expose Shor’s algorithm in this thesis, but in the next chapter we give some other examples,
beginning with Deutsch’s algorithm, a rather simple algorithm that nevertheless shows the
basic principles of Quantum Computation lying at the core of Shor’s algorithm.

13The notion of error on unitary operators will be defined more precisely later.
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Chapter 2

Grover’s algorithm

Introduction

As soon as the idea of Quantum Computation was proposed, the quest for quantum algorithms
that could beat classical ones was launched. Following this, different algorithms paved the way
to Shor’s factoring algorithm, one of the earliest being Deutsch’s algorithm in 1985 [Deu85],
which we describe in this chapter. This algorithm is able to tell whether a 1-bit to 1-bit
function is constant or balanced with only one call to the function, while classically two calls
are necessary. Later, Deutsch and Jozsa [DJ92] generalized this algorithm to the case of a
ν-bits to 1-bit function, showing that a quantum algorithm could find if such a function was
constant or balanced with only one function call, while any classical algorithm needed ν/2+1
calls to solve this problem with certainty. However, this comparison was not very fair as
actually the problem is not classically hard if we do not require absolute certainty but only
exponentially low error probability.

Building on the ideas developed for these algorithms, Bernstein and Vazirani [BV93], and
later Simon [Sim94], did define related problems that could be solved with a quantum algo-
rithm with exponentially less function calls than any –even probabilistic– classical algorithm.
Nonetheless, this only proved that BPP6=BPQ relatively to an oracle. Indeed, the problems
addressed by all these algorithms are expressed in the so-called oracle model of computation,
where the complexity of an algorithm is defined as the number of calls to a particular function,
usually called the oracle.

Later on, inspired by these algorithms, Shor discovered his famous polynomial algorithm
for factoring [Sho94], proving that this problem is in BQP, while no efficient classical algorithm
for factoring has been found so that it is not known whether this problem is in BPP or not.
Shor’s algorithm generated a large family of quantum algorithms, but we will not describe
it here as actually, all the algorithms developed in this thesis belong to another family of
quantum algorithms, which have as common parent an oracle-based algorithm, devised by
Grover [Gro96]. Therefore, after a description of Deutsch’s algorithm and the introduction of
the oracle model of computation, this chapter will directly focus on Grover’s algorithm.

19
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2.1 Deutsch’s algorithm

Let us consider a very simple problem. Suppose we have a 1-bit to 1-bit function f :

f : {0, 1} → {0, 1} : x 7→ f(x). (2.1)

Such a function may be either constant if f(0) = f(1) or balanced if f(0) 6= f(1). The problem
is to find if f is constant or balanced by calling the function a minimum number of times.

Classically, it is clear that two calls are required, one to evaluate f(0) and another to
evaluate f(1), in order to finally compare these values and conclude on the type of function.
Amazingly, David Deutsch proposed a quantum algorithm that performs the same task with
only one call to the function.

Let us describe Deutsch’s algorithm. As the function f , that we will call the oracle, is
generally irreversible, it has to be slightly modified for the sake of Quantum Computation,
in order to make it reversible. We thus have to add a second output register that keeps the
value of the input, redefining the oracle as1

f̃ : {0, 1} → {0, 1}2 : x 7→ (x, f(x)). (2.2)

As quantum gates are unitary operators, that preserve the number of qubits, the correspond-
ing quantum oracle also requires an extra qubit register at the input, and thus takes the
form

Of : H2 ⊗H2 → H2 ⊗H2 : |x1〉 ⊗ |x2〉 7→ |x1〉 ⊗ |f(x1) ⊕ x2〉, (2.3)

where ⊕ stands for the addition modulo 2. We see that if we prepare this extra register in
the blank state |0〉, this quantum oracle effectively maps an input state |x〉 ⊗ |0〉 (where x
takes value 0 or 1) to

Of |x〉 ⊗ |0〉 = |x〉 ⊗ |f(x)〉, (2.4)

similarly to the reversible classical oracle f̃ .
Now suppose instead that we prepare the extra register in the superposition state (|0〉 −

|1〉)/
√

2, which may be obtained from the state |0〉 by successive applications of the NOT
gate U¬, that we already know, and the Hadamard gate W , that takes in the computational
basis the matrix form2

W =
1√
2

(
1 1
1 −1

)

, (2.5)

that is, it maps |0〉 to (|0〉 + |1〉)/
√

2 and |1〉 to (|0〉 − |1〉)/
√

2, so that

WU¬|0〉 = W |1〉 =
1√
2
(|0〉 − |1〉). (2.6)

The oracle Of then acts as

Of |x〉 ⊗
1√
2
[|0〉 − |1〉] = |x〉 ⊗ 1√

2
[|f(x)〉 − |f(x) ⊕ 1〉] (2.7)

= (−1)f(x)|x〉 ⊗ 1√
2
[|0〉 − |1〉], (2.8)

1It is straightforward to check that making the function reversible does not give any advantage in the
classical case.

2This gate is sometimes called the Walsh-Hadamard gate, and even though the notation H is more widely
used, we will use the notation W to avoid confusion with a Hamiltonian.
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effectively inverting the sign of states |x〉 for which f(x) = 1. In this case, the second register
keeps its original state during the application of Of and therefore may be put away, so that
we may practically implement a new operator

Uf : H2 → H2 : |x〉 7→ (−1)f(x)|x〉, (2.9)

using the quantum circuit illustrated in Fig. 2.1.

︸ ︷︷ ︸

Uf

¬ W

Of

W ¬|0〉

|x〉

|0〉

Uf |x〉

Figure 2.1: Circuit used to implement the operator Uf from the oracle Of using one ancilla prepared
in state |0〉, Hadamard (W ) and NOT (¬) gates.

Now suppose that instead of preparing the input register in one of the computational basis
states |0〉 or |1〉, we prepare it in a superposition of both (|0〉+ |1〉)/

√
2, a state that may once

again be easily obtained with the help of the Hadamard gate W . The circuit Uf then acts as

Uf
1√
2
(|0〉 + |1〉) =

1√
2

(

(−1)f(0)|0〉 + (−1)f(1)|1〉
)

(2.10)

=
(−1)f(0)

√
2

(

|0〉 + (−1)f(0)⊕f(1)|1〉
)

(2.11)

= (−1)f(0)

{
W |0〉 if f(0) = f(1),
W |1〉 if f(0) 6= f(1).

(2.12)

We see that the output states corresponding to constant or balanced functions are different,
and –even better– orthogonal, such that a quantum measurement may discriminate between
these two cases with success probability one. As we assumed in our computational model
that the final measurement is made in the computational basis, we still have to rotate these
states to this basis by applying once more the Hadamard gate W . As3 W 2 = I2 (where I2 is
the identity on H2), a measurement of the state in the computational basis will at this point
yield |0〉 if the function f is constant and |1〉 if it is balanced. What happens is that in the
case of a constant function, the quantum interferences are constructive for |0〉 and destructive
for |1〉, while it is exactly the contrary for a balanced function.

Putting back things together, the whole circuit of Deutsch’s algorithm is illustrated on
Fig. 2.2. We see that it allows to tell whether a given function is either constant or balanced

3It immediately follows from the definition of the Hadamard operator W that it is both unitary and
Hermitian, so that W = W † = W−1.
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¬ W

Of

W ¬

W W

|0〉

|0〉

|0〉

|ψ〉

Figure 2.2: Quantum circuit for Deutsch’s algorithm. Up to an irrelevant global phase, the output
register |ψ〉 ends up in state |0〉 if the function f is constant or |1〉 if it is balanced.

with only one call to the function. The trick is that instead of evaluating f(x) successively
for x = 0 and for x = 1 as in the classical case, we have accessed the function only once with
x being in a quantum superposition of both. Doing this, we have not completely identified
the function as we still do not know the values of f(0) and f(1), but we have been able to
compare these values, by measuring f(0) ⊕ f(1), using quantum interferences. It is precisely
building on such ideas that more complex quantum algorithms were developed, such as Shor’s
algorithm for factoring or Grover’s algorithm for database search.

2.2 The oracle model

In Deutsch’s algorithm, we were not interested in the complexity as defined in Chapter 1,
that is the depth of the quantum circuit, but only in the number of times a particular gate,
namely Of , was applied. This issue actually defines another model of complexity, where all
the gates may be used for free except a particular gate called the oracle. The oracle acts as
a black-box, meaning that we are allowed to use it in a logical circuit but we do not know
what it exactly computes. In the oracle model of computation, a problem is then expressed
as finding some property about the function computed by the oracle, and its complexity is
defined as the minimal number of times the oracle has to be consulted in order to do so.

Besides the –rather academic– problem of distinguishing constant from balanced functions,
another typical problem expressed in the oracle model, that will be intensively studied in this
thesis, is the search in an unstructured database. In this case, one oracle query corresponds
to one look at some element in the database, and the problem is to find a particular marked
element. This is the problem addressed by Grover’s algorithm, which will be described in the
next section and on which most of the work in this thesis will build.

2.3 Grover’s algorithm

2.3.1 Search in an unstructured database

Suppose we have a database of N items among which some are marked, through a function
f(n) such that

f : N → {0, 1} : n 7→
{

0 n /∈ M
1 n ∈ M,

(2.13)

where N denote the set of N items and M ⊂ N is the set of marked ones, that we will
consider as the solutions of the problem (see Table 2.3.1). This function is supposed unknown
(M is not known) but may be queried as a black-box.
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n 0 1 2 3 4 5 6 . . . N − 1

f(n) 0 0 1 0 1 0 0 . . . 0

Table 2.1: The problem oracle: a function f(n) that maps N elements to a value 0 or 1. The elements
mapped to 1 define the set of solutions M. Each oracle call consists in the evaluation of
one value f(n).

The problem we study is to find a solution accessing the database a minimum number of
times, that is, with a minimum number of queries to the oracle. This problem is therefore
expressed in the oracle model, and its complexity will be defined as the number of queries to
the oracle required by an algorithm to solve it. Classically, the very näıve algorithm consisting
in successive calls to the oracle with random entries until finding a solution will require an
average number of queries of order O(N/M), where M = ]M is the number of marked items.
If the database has no known structure (the case of a structured database will be studied in
Chapter 6), this näıve algorithm is optimal and therefore the classical complexity is Θ(N/M).
We will now show that its quantum complexity is Θ(

√

N/M ).

2.3.2 The quantum oracle

As for Deutsch’s problem, the oracle has to be made reversible in the quantum case and
therefore takes the form

Of : HN ⊗H2 → HN ⊗H2 : |n〉 ⊗ |q〉 7→ |n〉 ⊗ |f(n) ⊕ q〉, (2.14)

where the basis states |n〉 of the N -dimensional Hilbert space HN correspond to the N
candidate solutions n ∈ N . This quantum oracle acts on two registers, one N -dimensional
Hilbert space HN which contains the input of the oracle call and one 2-dimensional Hilbert
space H2 (that is a qubit) which will contain its output. By preparing this second register in
the superposition 1√

2
[|0〉 − |1〉], we have

Of |n〉 ⊗
1√
2
[|0〉 − |1〉] = |n〉 ⊗ 1√

2
[|f(n)〉 − |f(n) ⊕ 1〉] (2.15)

= (−1)f(n)|n〉 ⊗ 1√
2
[|0〉 − |1〉], (2.16)

exactly as for Deutsch’s algorithm, so that we may implement an operator

Uf : HN → HN : |n〉 7→ (−1)f(n)|n〉 (2.17)

that inverts the sign of the solution states, using a circuit similar to that of Fig. 2.1. As this
is the operator that we will actually need in Grover’s algorithm, we will now directly consider
Uf as the oracle. Let us note that it may be rewritten in the simple form

Uf = IN − 2
∑

m∈M
|m〉〈m|, (2.18)

where IN is the identity on HN .
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2.3.3 The algorithm

Initially, we have no idea of what the solutions are, so we prepare the system in a uniform
superposition of all possible solutions

|N 〉 =
1√
N

∑

n∈N
|n〉. (2.19)

This state may easily be obtained by applying a Hadamard gate W on each of the ν = log2N
qubits4 realizing the quantum register HN , initially prepared in state |0〉:

(W |0〉)⊗ν =

( |0〉 + |1〉√
2

)⊗ν

(2.20)

=
1√
2ν

∑

n1,...,nν=0,1

|n1〉 ⊗ . . .⊗ |nν〉 (2.21)

=
1√
N

∑

n∈N
|n〉 (2.22)

= |N 〉, (2.23)

where n is written as a binary string of length ν, n = (n1, . . . , nν). The algorithm also requires
the operation

U0 = W⊗ν(IN − 2|0〉〈0|)W⊗ν = IN − 2|N 〉〈N |, (2.24)

which is simply the oracle operation when there is a single solution m = 0, rotated in the
Hadamard basis.

Defining the state |M〉 as the uniform superposition of solution states

|M〉 =
1√
M

∑

m∈M
|m〉, (2.25)

we see that both U0 and Uf leave the sub-space spanned by |N 〉 and |M〉 invariant:

U0|N 〉 = −|N〉 Uf |N 〉 = |N 〉 − 2x|M〉
U0|M〉 = |M〉 − 2x|N 〉 Uf |M〉 = −|M〉, (2.26)

where5

x = 〈M|N〉 =

√

M

N
. (2.27)

Let us now define the operator G = −U0Uf as the Grover iteration. Grover’s algorithm
simply consists in successive applications of G (see Fig. 2.3). Just like U0 and Uf , G leaves the

4We assume that N is an integer power of 2, such that we may implement the register HN using ν qubits,
associating each element n ∈ N with a binary string of length ν. If this is not the case, we may pad N with
additional elements and define an extension of the oracle function f(n) that takes value 0 for these additional
elements. This will not affect the algorithm complexity for N/M → ∞.

5We will use the notation x =
p

M/N , here and in following chapters related to search problems, on one
hand because it will lighten mathematical expressions, but also because we will derive complexities in the limit
N �M , that is x� 1.
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G
︷ ︸︸ ︷

|N 〉 ∼ |M〉. . . GUf U0 −I G

︸ ︷︷ ︸

K×

Figure 2.3: Grover’s algorithm, consisting in K = O(
√

N/M) successive applications of the Grover
iteration G.

sub-space spanned by |N 〉 and |M〉 invariant and thus the system will stay in this sub-space.
In the orthonormal basis (|M〉, |MC 〉) of this sub-space, where

|MC〉 =
1√

N −M

∑

n∈N\M
|n〉 (2.28)

=

√

N

N −M
|N 〉 −

√

M

N −M
|M〉 (2.29)

is the uniform superposition over the set of unmarked states MC = N \M, G takes in matrix
notation the form

G =

(
1 − 2x2 2x

√
1 − x2

−2x
√

1 − x2 1 − 2x2

)

(2.30)

=

(
cosα sinα
− sinα cosα

)

, (2.31)

where

α = arcsin 2x
√

1 − x2. (2.32)

We see that G is a rotation of angle α in this sub-space and therefore Gk is a rotation of angle
kα

Gk =

(
cos kα sinkα
− sin kα cos kα

)

(2.33)

As the system is initially in the state

|ψ0〉 = |N 〉 (2.34)

= x|M〉 +
√

1 − x2|MC〉, (2.35)

we get after k iterations

|ψk〉 = Gk|N 〉 (2.36)

=
(√

1 − x2 sin kα+ x cos kα
)

|M〉

+
(√

1 − x2 cos kα− x sin kα
)

|MC〉, (2.37)
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i.e. the amplitude of marked states is progressively amplified as sin kα approaches 1 (more
precisely, we would have |ψk〉 = |M〉 for sin kα =

√
1 − x2). At this point, a measure of the

register will yield a marked state with high probability.

To identify the number of iterations k for which |ψk〉 is as close as possible to |M〉,
let us consider the limit of a large database x � 1. In this limit, the initial state |N 〉 is
approximately orthogonal to the solution state |M〉 (〈M|N〉 = x ≈ 0), such that we have to
rotate it by a total angle of order π/2. As the angle of rotation of one iteration becomes

α = 2x
(
1 +O(x2)

)
, (2.38)

this will approximatively be achieved after

K =
⌊ π

4x

⌋

(2.39)

=
π

4x
(1 +O(x)) (2.40)

iterations, where bnc is the closest integer lower than n (K has to be integer so that we have
to round π/(4x)). Indeed, Eq. (2.37) gives in the limit of large problems (x→ 0)

|ψk〉 =
(
sinkα|M〉 + cos kα|MC〉

)
(1 +O(x)) (2.41)

and more precisely for k = K

〈M|ψK〉 = 1 −O(x2). (2.42)

Thus, by measuring the register after

K =
π

4

√

N

M

(

1 +O

(√

M

N

))

(2.43)

iterations, we obtain a marked item m ∈ M with a probability close to 1 (it must be checked
with one more query that we actually found a marked item, if this is not the case, we just
start the algorithm again from the beginning). As each Grover iteration requires one call
to the oracle, this is a quadratic speed-up with respect to an optimal classical search, which
requires a number of calls of order Θ(N/M). It may be shown that this algorithm is optimal,
in the sense that there is no other quantum algorithm solving this problem with less than
Θ(
√

N/M ) queries [BBBV97, Zal99].

2.3.4 Case of an unknown number of solutions

In the last section, we have implicitly supposed that the number of solutions M was known,
as it was required to evaluate the number of iterations K of the algorithm. However, it is
possible to slightly modify the algorithm to deal with the case of an unknown number of
marked items M . In that case, M could be any number between N and 1, and therefore the
actual number of Grover iterations needed K varies between 0 and Kmax = (π/4)

√
N . The

modified algorithm simply consists in choosing a random value K̃ such that 0 ≤ K̃ ≤ Kmax

and then run Grover’s algorithm as if K̃ was the actual number of iterations needed K. It
may be shown that this algorithm will output a solution with a probability close to 1/2. This
success probability may then be amplified to 1 − 1/2t by repeating the algorithm t times.
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2.4 Analog quantum search

2.4.1 Hamiltonian-based algorithms

While Grover’s algorithm stays within the standard paradigm of Quantum Computation, that
is a sequence of quantum gates (i. e., unitary operators) successively applied on a quantum
register, recent developments have introduced a new type of quantum algorithms based on
a continuous-time Hamiltonian evolution, including, for instance, continuous-time quantum
walks [CCD+03] or quantum algorithms by adiabatic evolution[FGGS00, vDMV01]. In Chap-
ter 5, we will justify that these are genuine quantum algorithms as they may be simulated on
a traditional quantum circuit by discretization.

In this section, we expose a time-independent Hamiltonian evolution, proposed by Farhi et
al [FG98a], that is able to perform a quantum search in a time of order Θ(

√

N/M), similarly
to Grover’s algorithm. In contrast to the discrete time evolution of Grover’s algorithm, and
following the authors, we will use the term “analog” to qualify this continuous-time algorithm.

2.4.2 The problem and the Hamiltonian oracle

The problem we will study is exactly the same as for Grover’s algorithm, that is, the search
of unknown marked items in an unstructured database. However, the oracle is formulated
differently: while it was given as a unitary operator Uf inverting the sign of the states
corresponding to marked itemsm ∈ M (see Eq. (2.17)), it now takes the form of a Hamiltonian
Hf acting as

Hf : HN → HN : |n〉 7→ Ē(1 − f(n))|n〉, (2.44)

where f(n) is, as in the last chapter, a function taking the value 1 for marked itemsm ∈ M and
0 elsewhere, while Ē is some energy fixing the strength of the Hamiltonian. The application
of Hf during a time t induces the unitary evolution operator

e−
iHf t

~ : HN → HN : |n〉 7→ e−i(1−f(n)) Ēt
~ |n〉. (2.45)

We immediately see that for Ēt/~ = π, we recover the unitary oracle −Uf , which is a first
argument for considering Hf as the Hamiltonian oracle equivalent to Uf . In Chapter 5, we will
also show that the unitary evolution operator induced by Hf during an arbitrary time may
be simulated by a quantum circuit using two calls to the unitary oracle Of , which completes
this justification.

While the complexity of the discrete algorithm was defined, according to the oracle model,
as the number of calls to the unitary oracle, the complexity of its analog analogue will be
defined as the total time of the evolution under the influence of the Hamiltonian oracle (for
a fixed energy Ē). Finally, let us also note that the Hamiltonian Hf may be rewritten as

Hf = Ē(IN −
∑

m∈M
|m〉〈m|). (2.46)
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2.4.3 The algorithm

In addition to the oracle Hamiltonian Hf , we will need a second Hamiltonian

H0 = W⊗νĒ(IN − |0〉〈0|)W⊗ν = Ē(IN − |N〉〈N |), (2.47)

which is related to U0 as defined in Eq. (2.24) in the same way as Hf is related to Uf . The
algorithm consists in preparing the system in the uniform superposition |ψ(t = 0)〉 = |N 〉,
exactly as for Grover’s circuit-based algorithm, and then having it evolve under the time-
independent Hamiltonian H = H0 + Hf . Solving the Schrödinger equation (1.7), a simple
calculation shows that6

|ψ(t)〉 = e−
iHt

~ |N 〉

= e−
iĒt
~

(

i sin
Ēxt

~
+ x cos

Ēxt

~

)

|M〉

+e−
iĒt
~

√

1 − x2 cos
Ēxt

~
|MC〉. (2.48)

Thus, the quantum search simply works via a rotation from |N 〉 to |M〉, just as Grover’s
traditional algorithm. The solution state |M〉 is thus obtained with probability 1 if we apply
H during a time

T =
π

2

√

N

M

~

Ē
, (2.49)

which is comparable to the total number of iterations in Grover’s algorithm. We also see that
the computation may be sped up by increasing the energy Ē. However, the energy available
for the computation is practically limited so that we should consider it fixed to a constant
value. Let us also note that this issue becomes particularly important if we are to fairly
compare the running time of different Hamiltonian-based algorithms, as will be pointed out
in the proof of optimality given in Chapter 4.

6As in the previous section, we use the notation x =
p

M/N .



Chapter 3

The Adiabatic Theorem

Introduction

The adiabatic approximation is a standard method of Quantum Mechanics used to derive
approximate solutions of the Schrödinger equation in the case of a slowly varying Hamiltonian.
Its basic principle is quite simple: if a quantum system is prepared in its ground state and
its Hamiltonian varies slowly enough, it will stay in a state close to the instantaneous ground
state of this Hamiltonian as time goes on.

Actually, this approximation was initially introduced as a means to study approximatively
complex quantum systems such as molecules, and the derivation found in the literature is often
somewhat intuitive at some points, and therefore leads to a rather qualitative statement of
the Adiabatic Theorem that is at the basis of this approximation. While a rigorous proof of
the theorem is well known (see for instance [Mes59]), it is generally formulated in a way that
is not directly applicable to our purposes, that is, to design new quantum algorithms and to
evaluate their complexity rigorously.

For this reason, after summarizing a quite classical version of the adiabatic approximation
as derived in most standard books of Quantum Mechanics [Sch55], we give in this chapter
a new formulation of the proof of the Adiabatic Theorem, and state it in a way that is
specifically adapted to our purposes. Finally, we use this theorem to define the so-called
quantum algorithms by adiabatic evolution (as proposed by Farhi et al in [FGGS00]) and
then we derive a method to evaluate their complexity.

3.1 The standard adiabatic approximation

3.1.1 The Schrödinger equation

Let us solve the Schrödinger equation in the case of a time-dependent Hamiltonian (see [Sch55]
for details):

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, (3.1)

with the initial condition that |ψ(0)〉 is the ground state of H(0). First of all, we need to
define the instantaneous eigenstates |ϕk(t)〉 of the Hamiltonian H(t)

H(t)|ϕk(t)〉 = Ek(t)|ϕk(t)〉, (3.2)

29
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where E0(t) < E1(t) < . . . < EN−1(t) are the corresponding eigenenergies1. Together with
the normalization condition

〈ϕk(t)|ϕk(t)〉 = 1, (3.3)

this defines the eigenstates |ϕk(t)〉 only up to an arbitrary phase. To suppress this ambiguity,
we will use an additional condition.

3.1.2 Phase choice

Let us impose the phase condition2

〈ϕk(t)| d
dt

|ϕk(t)〉 = 0 ∀k. (3.4)

This is always possible, as from an arbitrary set of normalized eigenstates |ϕ̃k(t)〉, we may
consider the eigenstates with modified phases

|ϕk(t)〉 = eiφk(t)|ϕ̃k(t)〉, (3.5)

where φk(t) is a phase defined by some real function. The condition (3.4) then gives

d

dt
φk(t) = i〈ϕ̃k(t)| d

dt
|ϕ̃k(t)〉. (3.6)

and integrating this expression yields the adequate real phase-function φk(t), as the differen-
tiation of the normalization condition (3.3) ensures that this function is real.

(
d

dt
〈ϕ̃k(t)|

)

|ϕ̃k(t)〉 + 〈ϕ̃k(t)|
(
d

dt
|ϕ̃k(t)〉

)

= 0 (3.7)

⇒
(

〈ϕ̃k(t)|
d

dt
|ϕ̃k(t)〉

)†
+ 〈ϕ̃k(t)|

d

dt
|ϕ̃k(t)〉 = 0 (3.8)

3.1.3 Implicit solution

To solve the Schrödinger equation, we develop its solution |ψ(t)〉 in the basis formed by the
eigenstates |ϕk(t)〉:

|ψ(t)〉 =
∑

k

bk(t)e
−i

R t
0

Ek(t1)

~
dt1 |ϕk(t)〉. (3.9)

Inserting this development into the Schrödinger equation (3.1) and projecting onto 〈ϕ l(t)|,
we get the following system for the amplitudes bk(t):

ḃk(t) = −
∑

l

bl(t)e
i

R t
0 ωkl(t1)dt1〈ϕk(t)|

d

dt
|ϕl(t)〉, (3.10)

where we have introduced the frequencies

ωkl =
Ek −El

~
. (3.11)

1We suppose that Ek(t) 6= El(t) (∀k 6= l), that is, we exclude the cases of degeneracy (Ek(t) = El(t) ∀t) or
level-crossing (Ek(t1) = El(t1) for some t = t1). However, this development could be adapted to these cases
with suitable modifications.

2Let us note that this choice corresponds to the cancellation of Berry’s phase, which is irrelevant in this
case.
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To evaluate the matrix elements 〈ϕk(t)| d
dt |ϕl(t)〉 for k 6= l (they cancel out for k = l with our

phase choice), we differentiate Eq. (3.2) with respect to time t and project onto 〈ϕl(t)|:

〈ϕk(t)| d
dt
|ϕl(t)〉 = −〈ϕk(t)|dH

dt |ϕl(t)〉
Ek(t) −El(t)

∀k 6= l (3.12)

and therefore our system may be rewritten

ḃk(t) =
∑

l 6=k

bl(t)e
i

R t
0 ωkl(t1)dt1

〈ϕk(t)|dH
dt |ϕl(t)〉

Ek(t) −El(t)
. (3.13)

If the system is initially in its ground state |ψ(0)〉 = |ϕ0(0)〉, the initial conditions are bk(0) =
δ0k and we get after integration

bk(t) = δ0k +
∑

l 6=k

∫ t

0
dt1bl(t1)e

i
R t1
0 ωkl(t

′
1)dt′1ωkl(t1)Akl(t1), (3.14)

where the elements Akl(t) are dimensionless and defined as

Akl(t) = ~
〈ϕk(t)|dH

dt |ϕl(t)〉
(Ek(t) −El(t))2

. (3.15)

This expression gives the exact solution to the Schrödinger equation, but only implicitly as
the amplitudes bl(t) also appear in the right member.

3.1.4 Intuitive approximation

The adiabatic approximation, as stated for instance in [Sch55], follows from the intuition that
if H(t) varies very slowly, so will all other time-dependent quantities of the problem, such as
ωkl(t), Akl(t) and bk(t). Therefore, we may in first approximation replace bk(t) in the right
member of the implicit solution by its initial value, bk(0) = δk0, which yields the approached
solution:

bk(t) ≈
∫ t

0
dt1e

i
R t1
0 ωk0(t

′
1)dt′1ωk0(t1)Ak0(t1) ∀k 6= 0. (3.16)

Moreover, we may get an order of magnitude for the amplitude of the excited states bk(t)
(k 6= 0) by considering Ak0(t) constant and factoring it out of the integral:

bk(t) ≈ −i
[

Ak0(t)e
i

R t
0

ωk0(t′)dt′ −Ak0(0)
]

∀k 6= 0. (3.17)

For this so-called “adiabatic approximation” to be valid, the probability to be away from the
ground state p(t) =

∑

k 6=0 |bk(t)|2 has to remain small since we have used b0(t) = 1, ∀ t. This
yields the “adiabatic condition”

∑

k 6=0

|Ak0(t)|2 � 1 ∀t (3.18)

However, this derivation is clearly not a rigorous proof for this condition, and this will be the
goal of the next section.
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3.2 The adiabatic approximation revisited

3.2.1 Solution in terms of an expansion in successive orders of a slowness
parameter

Let us rewrite the time-dependent Hamiltonian H(t) as H̃(s(t)), where H̃(s) is a parameter-
ization of the path followed by H(t) in the space of Hermitian operators, and write the speed
ds/dt at which H(t) travels through this path as

ds

dt
(t) = δ v(s(t)). (3.19)

δ may be considered as a slowness parameter fixing the overall speed, while v(s) contains the
local speed variations along the path. Integrating this expression, we also define the function
s = s(t) and its inverse t = t(s). We see that the evolution will be as close to adiabaticity as
δ is close to 0, such that it seems natural to solve the problem for non-zero –but yet small–
δ by expanding in successive orders of δ. We now have

Akl(t) = δ akl(s(t)) (3.20)

where

akl(s) = ~
〈ϕ̃k(s)|dH̃

ds |ϕ̃l(s)〉
(Ẽk(s) − Ẽl(s))2

v(s), (3.21)

|ϕ̃k(s)〉 and Ẽk(s) are the eigenstates and eigenenergies of H̃(s)

|ϕk(t)〉 = |ϕ̃k(s(t))〉 (3.22)

Ek(t) = Ẽk(s(t)). (3.23)

We may evaluate successive approximations b
(i)
k (t) by recursive uses of the implicit ex-

pression for bk(t):

b
(0)
k (t) = δ0k

b
(1)
k (t) = δ0k + δ

∑

l 6=k

δ0l

∫ t

0
dt1e

i
R t1
0 ωkl(t

′
1)dt′1ωkl(t1)akl(s(t1)) (3.24)

...

b
(i+1)
k (t) = δ0k + δ

∑

l 6=k

∫ t

0
dt1b

(i)
l (t1)e

i
R t1
0 ωkl(t

′
1)dt′1ωkl(t1)akl(s(t1)).

At first order, we simply have:

b
(1)
0 (t) = 1 (3.25)

b
(1)
k (t) = δ

∫ t

0
dt1e

i
R t1
0 ωk0(t

′
1)dt′1ωk0(t1)ak0(s(t1)) ∀ k 6= 0, (3.26)

which coincides with Eq. (3.16). It is straightforward to check that this approximation satisfies
the exact system (3.13) up to order δ.
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3.2.2 The Adiabatic Theorem

From this first-order approximation, we now derive the Adiabatic Theorem. If Ak0 and

(1/ωk0)dAk0/dt are differentiable, then the amplitudes b
(1)
k (t) may be evaluated by two suc-

cessive integrations by parts

b
(1)
k (t) = δ

∫ t

0
dt1e

i
R t1
0 ωk0(t

′
1)dt′1ωk0(t1)ak0(s(t1)) (3.27)

= −iδ
[

ak0(s(t1))e
i

R t1
0 ωk0(t

′
1)dt′1

]t

0
+ iδ

∫ t

0
dt1e

i
R t1
0 ωk0(t

′
1)dt′1

dak0

dt1
(s(t1))

= −iδ
[

ak0(s(t1))e
i

R t1
0 ωk0(t

′
1)dt′1

]t

0
+ δ

[
1

ωk0(t1)

dak0

dt1
(s(t1))e

i
R t1
0 ωk0(t′1)dt′1

]t

0

+δ

∫ t

0
dt1e

i
R t1
0 ωk0(t′1)dt′1

d

dt1

(
1

ωk0(t1)

dak0

dt1
(s(t1))

)

(3.28)

Using the functions s(t) and t(s), we may rewrite this expression as follows

b
(1)
k (t) = −iδ

[

ak0(s1)e
i

R t(s1)
0 ωk0(t′1)dt′1

]s(t)

0
+ δ2

[
v(s1)

ω̃k0(s1)

dak0

ds1
(s1)e

i
R t(s1)
0 ωk0(t′1)dt′1

]s(t)

0

+δ2
∫ s(t)

0
ds1e

i
R t(s1)
0 ωk0(t′1)dt′1

d

ds1

(
v(s1)

ω̃k0(s1)

dak0

ds1
(s1)

)

. (3.29)

Actually, the expressions behind δ and δ2 do depend on δ, so that if we want to prove that the
terms in δ2 are negligible compared to the term in δ when δ → 0, we have to derive an upper
bound for these expressions that is δ-independent. However, we see that they only depend
on δ through the argument of the imaginary exponentials, which has modulus 1, so that we
immediately have

∣
∣
∣
∣
∣

[
v(s1)

ω̃k0(s1)

dak0

ds1
(s1)e

i
R t(s1)
0 ωk0(t′1)dt′1

]s(t)

0

∣
∣
∣
∣
∣

(3.30)

≤ 2 max
s1∈[0,1]

∣
∣
∣
∣

v(s1)

ω̃k0(s1)

dak0

ds1
(s1)

∣
∣
∣
∣

(3.31)

and
∣
∣
∣
∣
∣

∫ s(t)

0
ds1e

i
R t(s1)
0 ωk0(t

′
1)dt′1

d

ds1

(
v(s1)

ω̃k0(s1)

dak0

ds1
(s1)

)
∣
∣
∣
∣
∣

(3.32)

≤
∫ 1

0
ds1

∣
∣
∣
∣

d

ds1

(
v(s1)

ω̃k0(s1)

dak0

ds1
(s1)

)∣
∣
∣
∣

(3.33)

and that the amplitude bk(t) reduces at first order in δ to

bk(t) = −iδ
[

ak0(s1)e
i

R t(s1)
0 ωk0(t′1)dt′1

]s(t)

0
+O(δ2). (3.34)

We have recovered the adiabatic approximation (3.17) but within a more rigorous approach,
and may now give a precise statement for the Adiabatic Theorem:
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Theorem 1 (Adiabatic Theorem) If

1. H̃(s) is a continuous path in the space of Hermitian operators on a N -dimensional
Hilbert space HN ,

2. the quantum state |ψ(t)〉 belongs to HN , and is prepared at time t = 0 in the ground
state of H̃(s = 0),

3. it evolves under the influence of H(t) = H̃(s(t)) where s(0) = 0 and ds/dt(t) = δ v(s(t))

4. v(s) is a differentiable strictly positive real function,

5. the normalized instantaneous eigenstates |ϕ̃k(s)〉 (k = 0, . . . , N − 1) of H̃(s) are defined
with a phase such that 〈ϕ̃k(s)| d

ds |ϕ̃k(s)〉 = 0 ∀k,

6. the corresponding instantaneous eigenvalues Ẽ0(s) < Ẽ1(s) < . . . < ẼN−1(s) of H̃(s),
are non-degenerated,

7. the elements ak0(s), defined as

ak0(s) = ~
〈ϕ̃k(s)|dH̃

ds |ϕ̃0(s)〉
(Ẽk(s) − Ẽ0(s))2

v(s) ∀ k 6= 0, (3.35)

their first derivative dak0/ds, and the frequencies

ωk0(t) =
Ẽk(s(t)) − Ẽ0(s(t))

~
(3.36)

are differentiable functions,

8. the amplitudes bk(t) of |ψ(t)〉 in |ϕ̃k(s(t))〉 are defined with a phase such that

|ψ(t)〉 =
∑

k

bk(t)e
−i

R t
0

Ek(t1)

~
dt1 |ϕ̃k(s(t))〉, (3.37)

then the amplitudes of the excited states bk(t) are given for δ → 0 by

bk(t) = −iδ
[

ak0(s1)e
i

R t(s1)
0 ωk0(t′1)dt′1

]s(t)

0
+O(δ2) ∀ k 6= 0, (3.38)

and the probability p(t) to be away from the ground state is bounded in the same limit by

p(t) ≤ 4
∑

k 6=0

max
s′∈[0,s(t)]

|ak0(s
′)|2δ2 +O(δ3). (3.39)

The proof follows from above. We may now use this result to define a new type of computation,
exploiting this adiabatic evolution.
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3.3 Quantum computation by adiabatic evolution

3.3.1 Adiabatic evolution as an algorithm

Suppose we have to solve a problem that may be reformulated as preparing a quantum
system in the ground state of a Hamiltonian Hf . The Adiabatic Theorem then provides a
straightforward method to solve this problem:

• Prepare the quantum system in the (known and easy-to-prepare) ground state of another
Hamiltonian H0.

• Apply H0 on the system and slowly modify it to Hf .

The Adiabatic Theorem ensures that if this has been done slowly enough, the system will
end up in a state close to the ground state of Hf . It is then enough to measure the system in
order to get the solution.

From now on, we will call this process an algorithm, even if this may seem abusive at first
view. However, we will justify the use of this term in Chapter 5 by showing that, under some
conditions on the initial and final Hamiltonians, this adiabatic evolution may be discretized
in order to be implemented on a quantum circuit. We will also show that the complexity of
the quantum algorithm designed with this method is directly deduced from the running time
of the adiabatic evolution.

3.3.2 Running time of an adiabatic algorithm

Let us now focus on the running time Tδ, defined as the time necessary to switch adiabatically
from H0 to Hf while keeping the probability to excite the system away from the ground state
p(t) (that may be viewed as an error probability) less than δ2. To make use of the Adiabatic
Theorem, we will of course study this running time in the limit δ → 0. The path followed by
the instantaneous Hamiltonian is defined as an interpolation between H0 and Hf :

H̃(s) = (1 − s)H0 + sHf , (3.40)

where s = s(t) is a monotonously increasing function with s(0) = 0 and s(Tδ) = 1, chosen as
to satisfy p(t) ≤ δ2. The Adiabatic Theorem (3.39) states that it will be the case if

4
∑

k 6=0

|ak0(s(t))|2 ≤ 1 ∀t, (3.41)

or equivalently if
a(s)v(s) ≤ 1 ∀s, (3.42)

where a(s) is defined as

a(s) = 2~

√
√
√
√

∑

k 6=0

|〈ϕ̃k(s)|Hf −H0|ϕ̃0(s)〉|2
(Ẽk(s) − Ẽ0(s))4

. (3.43)

We see that a(s) only depends on the Hamiltonians H0 and Hf , while v(s) fixes the time-
evolution of the algorithm, and may be optimized arbitrarily such as to satisfy the adiabatic
condition (3.42) while reducing the running time

Tδ =
1

δ

∫ 1

0

ds

v(s)
. (3.44)
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To complete the description of our algorithm, we still need to choose an optimal v(s) satisfying
the condition (3.42), and therefore we have to evaluate a(s).

3.3.3 Bounds for the adiabatic condition

In general, a(s) is not known exactly, but it is possible to estimate a crude bound, as

∑

k 6=0

|〈ϕ̃k(s)|Hf −H0|ϕ̃0(s)〉|2
(Ẽk(s) − Ẽ0(s))4

≤
∑

k 6=0 |〈ϕ̃k(s)|Hf −H0|ϕ̃0(s)〉|2

(Ẽ1(s) − Ẽ0(s))4
(3.45)

≤
∑

k |〈ϕ̃k(s)|Hf −H0|ϕ̃0(s)〉|2
(Ẽ1(s) − Ẽ0(s))4

(3.46)

=
‖(Hf −H0)|ϕ̃0(s)〉‖2

(Ẽ1(s) − Ẽ0(s))4
(3.47)

≤ |||Hf −H0|||2
(Ẽ1(s) − Ẽ0(s))4

, (3.48)

where |||A||| = max|x〉:‖|x〉‖=1 ‖A|x〉‖ is the operator norm of A. Finally, we simply have

a(s) ≤ 2~
|||Hf −H0|||

g(s)2
(3.49)

≤ 2~
|||Hf −H0|||

g2
min

, (3.50)

where we have introduced the gap

g(s) = Ẽ1(s) − Ẽ0(s) (3.51)

between the ground state and the first excited state and its minimum value

gmin = min
0≤s≤1

g(s). (3.52)

Usually, the eigenvalues of the initial and final Hamiltonians H0 and Hf are well known and
it is therefore straightforward to derive an upper bound for |||Hf −H0|||, such that the problem
is to evaluate the minimum gap gmin. The next section will shed more light on the importance
of evaluating this minimum as we will see its scaling will directly fix the scaling of the running
time.

3.4 Global versus local adiabatic evolution

The upper bound derived in the last section ensures that the adiabatic condition (3.42) is
satisfied if we choose an evolution rate

v(s) =
1

2~

g2
min

|||Hf −H0|||
(3.53)

that leads to a running time

Tδ =
2~

δ

|||Hf −H0|||
g2
min

. (3.54)
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As already stated, we see here that the scaling of the running time depends directly on the
scaling of the minimum gap, and this explains why the minimum gap is the key quantity
studied in papers considering adiabatic algorithms as a way to solve complex problems such
as satisfiability problems [FGGS00, FGG+01].

In that case, the evolution rate is limited globally on the whole evolution by the minimum
value of the gap that only occurs at one moment in the evolution. Therefore, it seems clear
that we could improve the running time by optimizing the evolution v(s) constantly during
the process. Actually, this is possible only when a(s) may be evaluated exactly, even if the
solution of the problem is unknown (otherwise we would have to solve the problem first to
derive a(s), which would require another algorithm). This may happen when the problem has
a permutation symmetry such that a(s) is independent of the particular instance considered
(this will be the case of Grover’s problem, see Chapter 4). In such a case, the adiabatic
condition (3.42) may be saturated by choosing

v(s) =
1

a(s)
(3.55)

and the running time will scale as

Tδ =
1

δ

∫ 1

0
a(s)ds. (3.56)

As the evolution rate v(s) is now optimized locally at each time, we will use in this case
the term local adiabatic evolution. Interestingly, we will show that this procedure makes it
possible, in some cases such as Grover’s problem, to improve the scaling of Tδ as a function
of the problem size ν.
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Chapter 4

Quantum search by adiabatic
evolution

Introduction

The idea to use the Adiabatic Theorem as a way to design quantum algorithms was first
proposed by Farhi et al. In their paper [FGGS00], they considered, among other problems,
the search in an unstructured database of N items, that is Grover’s problem. Unfortunately,
their method was based on a “global” version of the Adiabatic Theorem, and therefore resulted
in a running-time of order N , which is no better than a classical algorithm that simply tries
random solutions.

In this chapter, we show that one can achieve the quadratic speed-up of Grover’s original
algorithm by continuously adjusting the rate with which the initial Hamiltonian is switched
to the final Hamiltonian, so as to fulfill the adiabatic condition locally, i. e. at each time.
Interestingly, this local adiabatic evolution approach makes it possible to improve the scaling
law of the complexity of the quantum search algorithm simply by varying the speed of this
adiabatic sweep. Let us note that this result has been independently discovered by van Dam
et al [vDMV01].

4.1 The Hamiltonian and its spectrum

The problem considered in this chapter is the traditional Grover problem as exposed in Section
2.3: in an unstructured database of N items, find one out of the M items that are marked.
More specifically, the problem is stated exactly as for the analog quantum search (Section 2.4):
the marked items correspond to the eigenstates of lowest eigenvalue of an oracle Hamiltonian

Hf = Ē(IN −
∑

m∈M
|m〉〈m|), (4.1)

that we are able to apply as a black-box on the system, and the complexity of the algorithm
is defined as the total running time of the evolution.

As the marked items m correspond precisely to the (degenerate) ground state of Hf , the
Adiabatic Theorem gives a straightforward method to solve this problem. Similarly to both
other search algorithms considered so far (Grover and analog), one starts by initializing the

39
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system in the uniform superposition |ψ(t = 0)〉 = |N 〉. As this is the ground state of the
Hamiltonian

H0 = Ē(IN − |N〉〈N |), (4.2)

it suffices to apply H0 on the system and then to progressively change the instantaneous
Hamiltonian into Hf to prepare a ground state of Hf . Let us write the instantaneous Hamil-
tonian H(t) = H̃(s(t)), where

H̃(s) = (1 − s)H0 + sHf , (4.3)

and study the spectrum of H̃(s). Solving the eigenproblem

H̃(s)|ϕ̃k(s)〉 = Ẽk(s)|ϕ̃k(s)〉, (4.4)

we see that H̃(s) admits four different eigenvalues

Ẽ0(s) =
Ē

2

[

1 −
√

1 − 4(1 − x2)s(1 − s)
]

(4.5)

Ẽ1(s) = Ē(1 − s) (4.6)

Ẽ2(s) =
Ē

2

[

1 +
√

1 − 4(1 − x2)s(1 − s)
]

(4.7)

Ẽ3(s) = Ē, (4.8)

where, as usually, x =
√

M/N . This spectrum is illustrated on Fig. 4.1. While Ẽ0 and Ẽ2

are the only eigenvalues that are non-degenerate (at least for s 6= 0, 1), Ẽ1 is M − 1 times
degenerate and Ẽ3 is N − M − 1 times degenerate. At first view, it may seem that this
degeneracy prevents us from using the Adiabatic Theorem as stated in the last chapter as it
required the eigenvalues to be non-degenerate. Actually, this is not the case because of the
symmetry of the problem.

4.2 Permutation symmetry

Since the initial state

|N 〉 = x|M〉 +
√

1 − x2|MC〉, (4.9)

as well as both Hamiltonians H0 and Hf , are all invariant under the permutation of any two
solution states |m〉 (m ∈ M), or any two non-solution states |n〉 (n ∈ MC), so will be the
whole problem and therefore the instantaneous state |ψ(t)〉. In other words, |ψ(t)〉 will stay
in a subspace that is symmetric under these permutations, that is within the two-dimensional
Hilbert space spanned by the uniform superposition of solution states |M〉 and the uniform
superposition of non-solution states |MC〉. As it corresponds exactly to the space spanned
by the two non-degenerate eigenstates

|ϕ̃0(s)〉 =
Ẽ2(s)x|M〉 +

√
1 − x2(Ẽ2(s) − Ēs)|MC〉

√

Ẽ2(s)2x2 + (1 − x2)(Ẽ2(s) − Ēs)2
(4.10)

|ϕ̃2(s)〉 =
Ẽ0(s)x|M〉 +

√
1 − x2(Ẽ0(s) − Ēs)|MC〉

√

Ẽ0(s)2x2 + (1 − x2)(Ẽ0(s) − Ēs)2
, (4.11)
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Figure 4.1: Eigenvalues of the Hamiltonian H̃(s) as a function of s for N/M = 100. The eigenvalues
Ẽ0(s) and Ẽ2(s) are non-degenerate while Ẽ1(s) and Ẽ3(s) are respectively M − 1 and
N −M − 1 times degenerate.

we conclude that the other (degenerate) eigenstates, which do not satisfy the permutation
symmetries, will be totally decoupled and that we may study our problem in a two-dimensional
Hilbert space as it was the case for both other search algorithms. In this two-dimensional
subspace, H̃(s) only admits two non-degenerate eigenstates, such that the assumptions of the
Adiabatic Theorem as stated in the last chapter are satisfied.

4.3 The Adiabatic Theorem

Let us now apply the Adiabatic Theorem to our problem. It states that if the adiabatic
condition (3.42) is satisfied

a(s)v(s) ≤ 1 ∀s, (4.12)

where the element

a(s) = 2~
|〈ϕ̃2(s)|Hf −H0|ϕ̃0(s)〉|

(Ẽ2(s) − Ẽ0(s))2
(4.13)

depends on the Hamiltonian H̃(s) and v(s) defines the rate ds/dt = δv(s(t)) at which it is
evolving, then, in the limit δ → 0, the system will stay in its instantaneous ground state with
an error less than δ2

|〈ψ(t)|ϕ̃0(s(t))〉|2 ≥ 1 − δ2. (4.14)

We now have to define an evolution rate v(s) such that the adiabatic condition (4.12) is
satisfied, that is,

v(s) ≤ 1

2~

g(s)2

|〈ϕ̃2(s)|Hf −H0|ϕ̃0(s)〉|
, (4.15)
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where

g(s) = Ẽ2(s) − Ẽ0(s) = Ē
√

1 − 4(1 − x2)s(1 − s) (4.16)

is the gap between the ground state and the only excited state to which it is coupled, as
plotted in Fig. 4.2. As

|〈ϕ̃2(s)|Hf −H0|ϕ̃0(s)〉| ≤ |||Hf −H0||| = (1 − x2)Ē, (4.17)

this condition will necessarily be satisfied as long as

v(s) ≤ g(s)2

2~Ē
. (4.18)
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Figure 4.2: The non-degenerate eigenvalues Ẽ0(s) and Ẽ2(s) of the Hamiltonian H̃(s) and the gap
g(s) between them for N/M = 100.

4.3.1 Global adiabatic evolution

The simplest choice for v(s) is to fix it globally to a constant value v0, using a linear interpo-
lation path between H0 and Hf

ds

dt
= δv0 ⇒ s(t) = δv0t. (4.19)

As the adiabatic condition becomes critical when the gap g(s) is minimal, that is half-way in
the evolution where

gmin = g(s = 1/2) =

√

M

N
Ē, (4.20)
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the maximal allowed value for a constant v(s) = v0 is

v0 =
g2
min

2~Ē
(4.21)

=
Ē

2~

M

N
. (4.22)

The running time is then readily integrated

Tδ =
1

δ

∫ 1

0

ds

v0
(4.23)

=
2~

δĒ

N

M
. (4.24)

Therefore, the quantum search by global adiabatic evolution has the same complexity Θ(N/M)
as a classical search, failing to provide the quadratic speed-up of Grover’s algorithm.

4.3.2 Local adiabatic evolution

Now, let us show how to improve on this adiabatic evolution method. In the global adiabatic
method, we imposed a limit on the evolution rate during the whole computation while this
limit was only severe around s = 1/2, where the gap g(s) is minimum. Therefore, it seems
plausible that we could reduce the running time by adapting the evolution rate v(s) constantly
during the computation, following the variations of the gap g(s). This idea leads to an
evolution rate

v(s) =
g(s)2

2~Ē
(4.25)

=
Ē

2~

[
1 − 4(1 − x2)s(1 − s)

]
. (4.26)

As ds/dt = δv(s(t)), we get the time t as a function of the evolution parameter s by integration

t(s) =
1

δ

∫ s

0

ds′

v(s′)
(4.27)

=
2~

δĒ

∫ s

0

ds′

1 − 4(1 − x2)s′(1 − s′)
(4.28)

=
~

δĒ

1

x
√

1 − x2

[

arctan

√
1 − x2

x
(2s− 1)

+arctan

√
1 − x2

x

]

. (4.29)

Inverting this expression, we get the evolution function

s(t) =
1

2

tanx
√

1 − x2 δĒt
~

x
√

1 − x2 + (1 − x2) tan x
√

1 − x2 δĒt
~

, (4.30)

plotted in Fig. 4.3, which shows the gradual change in the switching between H0 and Hf .
As expected, we see that H(t) is changing faster when the gap g(s) is large while it evolves
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Figure 4.3: Solid line: Evolution function s(t) for the local adiabatic evolution (N/M = 100). The
global adiabatic evolution would correspond to the straight dotted line with a slope equal
to the minimal slope of the local adiabatic evolution curve, taking therefore a much longer
time to reach s = 1.

slower when s is close to 1/2, that is, where the gap is minimum. We may now evaluate the
running time of our new algorithm by taking s = 1 in the function t(s), which gives

Tδ =
2~

δĒ

1

x
√

1 − x2
arctan

√
1 − x2

x
(4.31)

=
π~

δĒ

1

x
(1 +O(x)) . (4.32)

We thus have recovered the quadratic speed-up of Grover’s algorithm with respect to a clas-
sical search

Tδ =
π~

δĒ

√

N

M

(

1 +O

(√

M

N

))

. (4.33)

4.4 Saturation of the adiabatic condition

Actually, it would be possible to reduce the running time even more since we have not satu-
rated the adiabatic condition (4.12) yet: instead of bounding the matrix element of Hf −H0

by |||Hf − H0||| (see Eq. (4.17)), we could use its actual value, which is straightforward to
derive from the eigenstates (4.10–4.11) of H̃(s)

〈ϕ̃2(s)|Hf −H0|ϕ̃0(s)〉 = − x
√

1 − x2Ē
√

1 − 4(1 − x2)s(1 − s)
. (4.34)
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As this yields the actual value of

a(s) = 2~
|〈ϕ̃2(s)|Hf −H0|ϕ̃0(s)〉|

(Ẽ2(s) − Ẽ0(s))2
(4.35)

=
2~

Ē

x
√

1 − x2

[1 − 4(1 − x2)s(1 − s)]3/2
, (4.36)

we may now saturate the adiabatic condition by choosing v(s) such that a(s)v(s) = 1:

v(s) =
Ē

2~

[1 − 4(1 − x2)s(1 − s)]3/2

x
√

1 − x2
. (4.37)

Note that the evolution rate v(s) now grows as x−1 =
√

N/M for s close to 0 and 1, so
that this ideal algorithm may reveal hard to implement practically. Nevertheless, it allows to
reduce the running time to

Tδ =
2~

δĒ
x
√

1 − x2

∫ 1

0

ds

[1 − 4(1 − x2)s(1 − s)]3/2
(4.38)

=
2~

δĒ

√
1 − x2

x
(4.39)

=
2~

δĒ

√

N

M

(

1 +O

(
M

N

))

. (4.40)

This represents only a gain by a constant factor π/2 with respect to the evolution rate v(s)
proposed in the previous section, so that we will not consider this algorithm any further (in
the next chapter, we will show that the previous section also provides an algorithm that is
more closely related to the other quantum search algorithms). Moreover, we conclude from
this that the scaling of the running time depends mostly on the scaling of the gap g(s) and
not on the exact value of the matrix element of dH̃/ds.

4.5 Case of an unknown number of solutions

Let us now point out an interesting advantage of the quantum search by adiabatic evolution
over its cousins, Grover’s algorithm and the analog quantum search. Remember that these
algorithms can be used when the number of solutions is unknown by taking a random trial
number of iterations (or running time for the analog version), which yields a solution with
a probability close to 1/2. Should the algorithm fail at first try, it has to be run again with
a new trial value, on and again until finding a solution. While this method was sufficient to
solve an unstructured search problem keeping the quadratic speed-up provided by Quantum
Mechanics, it could lead to a problem when trying to use Grover’s algorithm as a subroutine
in a larger quantum algorithm (see Chapter 6), where it would therefore not be possible to
check that the subroutine was successful without performing a measurement that would make
the quantum superposition collapse.

However, the quantum search by local adiabatic evolution does not suffer from this limita-
tion. Indeed, if, following a similar idea, we run the algorithm using a trial value M ′ supposed
to be close to the actual number of solutions M , we see that the assumptions of the Adiabatic
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Theorem will still be satisfied just by replacing the target success probability 1− δ2 by 1− δ′2
with

δ′ =
M ′

M
δ. (4.41)

Therefore, as long as the ratio M ′/M stays of order 1, the algorithm will still produce a
uniform superposition of all solutions with a probability close to 1. Furthermore, by taking the
most pessimistic trial value M ′ = 1, the success probability may only increase for M 6= M ′.
In contrast, the success probability of Grover’s algorithm may only decrease for a wrong
number of iterations, and could even go down to essentially 0 just by multiplying the number
of iterations by a factor of 2.

This result will be helpful to use the quantum search by adiabatic evolution as a subroutine
in quantum algorithms for structured problems, as will be shown in Chapter 6.

4.6 Proof of optimality

Finally, we show that our algorithm is optimal, in the sense that the running time of any
Hamiltonian evolution that solves the search problem using an oracle Hamiltonian similar to
Hf scales as Ω(

√
N)1. More precisely we prove the following theorem

Theorem 2 If |m〉 is an unknown quantum state taken from the orthonormal basis {|n〉, n =
0, . . . , N − 1} of an N -dimensional Hilbert-space HN and Hm is the Hamiltonian Ē(IN −
|m〉〈m|) acting on HN , then any algorithm of the type

1. Prepare an m-independent state |ψ(0)〉 of the NL-dimensional Hilbert-space HN ⊗HL,
where HL is an extra-register of arbitrary dimension L ≥ 0.

2. Let the state |ψ(t)〉 evolve under the Hamiltonian H(t) = HD(t) +C(t)Hm ⊗ IL, where
HD(t) is an arbitrary m-independent Hamiltonian on HN ⊗HL, IL is the identity on
HL and C(t) ≤ 1.

3. Perform a measurement on the state |ψ(T )〉 after time T .

that finds the value of m with success probability greater than p requires a running time T
such that

ĒT

~
≥

√
N −√

p−
√

(N − 1)(1 − p). (4.42)

Let us note that these assumptions are very general as they include not only the quantum
search by adiabatic evolution but also the analog quantum search. Furthermore, they also
include quantum algorithms with intermediate measurements during the computation since
all these measurements may be postponed to the end of the computation2. Finally, let us
mention that this theorem also includes the case of a classical algorithm consisting in making
a random guess for m (which does not require any Hamiltonian evolution, that is, T = 0), as
p = 1/N yields T ≥ 0.

1We consider the single-solution case M = 1 as the proof will appear clearer, but it could be generalized to
the case M ≥ 1.

2As explained in Chapter 1 in the context of circuit-based algorithms, this is true even if the computation
depends on the outcome of the intermediate measurements since we may apply different Hamiltonians condi-
tionally on an additional quantum register that is only measured at the end of the computation, and since the
theorem assumes no restriction on the dimension L of the extra-register (see [Zal99]).



4.6. PROOF OF OPTIMALITY 47

One could wonder why we assume that C(t) ≤ 1. Actually, if we suppress this assumption,
the algorithm may become as fast as desired just by increasing the factor of the Hamiltonian:
it is clear that if we multiply a Hamiltonian by a factor of, say, 2, the evolution it induces will
remain the same, except that it will be twice faster. Physically, this corresponds to working at
a higher energy, and therefore this assumption comes from the fact that the energy available
for the quantum computer must be practically limited. Nonetheless, let us point out that we
have not imposed any restriction on the part HD of the Hamiltonian that does not depend on
m, meaning that increasing the energy of this term may not be useful for the computation.

To prove this theorem, we will use results from the optimality proof for Grover’s traditional
algorithm derived by Zalka [Zal99] and roughly follow the lines of the optimality proof [FG98a]
for the analog quantum search algorithm exposed in Section 2.4, but with more general
assumptions.

Let |ψm(t)〉 be the state of our quantum register during the computation when the solution
ism. This state will evolve under the action of the HamiltonianH tot

m (t) = HD(t)+C(t)Hm⊗IL
according to the Schrödinger equation

i~
d

dt
|ψm(t)〉 = Htot

m (t)|ψm(t)〉 (4.43)

with |ψm(0)〉 = |ψ(0)〉 as initial condition. Moreover, let us define the “empty-oracle” state
|ψφ(t)〉 that derives from the evolution of |ψ(0)〉 when Hm has been replaced by the “empty-
oracle” Hamiltonian ĒIN . It will evolve according to the same Schrödinger equation except
that Htot

m (t) will be replaced by H tot
φ (t) = [HD(t) + C(t)ĒIN ⊗ IL]. Intuitively, it is clear

that in order to derive the value of m from a measurement of the state |ψm(T )〉 obtained at
the end of the computation, the different states |ψm(T )〉 for different values of m must be
sufficiently different from the m-independent state |ψφ(T )〉.

More precisely, Zalka has proved [Zal99] that for a measurement to be able to discriminate
between different states |ψm〉 with success probability p, a necessary condition is that these
states sufficiently differ from any m-independent state |ψ〉 such that

N−1∑

m=0

‖|ψm〉 − |ψ〉‖2 ≥ 2N − 2
√

Np− 2
√

N(N − 1)(1 − p). (4.44)

Let us now evaluate how well the Hamiltonian evolution defined by our algorithm may
push |ψm(t)〉 away from |ψφ(t)〉. As these states obey the above Schrödinger equation, we
have3

d

dt
‖|ψm〉 − |ψφ〉‖2 =

2

~
Im
[
〈ψm|Htot

m −Htot
φ |ψφ〉

]
(4.45)

=
2CĒ

~
Im [〈ψm|(|m〉〈m| ⊗ IL)|ψφ〉] . (4.46)

This derivative will be bounded by

d

dt
‖|ψm〉 − |ψφ〉‖2 ≤ 2CĒ

~
|〈ψm|(|m〉〈m| ⊗ IL)|ψφ〉| (4.47)

≤ 2CĒ

~
‖〈m|ψm〉‖‖〈m|ψφ〉‖ (4.48)

≤ 2CĒ

~
‖〈m|ψφ〉‖, (4.49)

3We omit the arguments “(t)” to lighten the expressions.
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where we have used the Cauchy-Schwartz inequality along with the fact that ‖〈m|ψm〉‖ ≤ 1
as both states are normalized4. Summing over m and using the property

N−1∑

m=0

‖〈m|ψφ〉‖2 = 1 ⇒
N−1∑

m=0

‖〈m|ψφ〉‖ ≤
√
N, (4.50)

we get
N−1∑

m=0

d

dt
‖|ψm〉 − |ψφ〉‖2 ≤ 2CĒ

~

√
N (4.51)

We may now integrate this inequality using the initial conditions |ψφ(0)〉 = |ψm(0)〉:

N−1∑

m=0

‖|ψm(t)〉 − |ψφ(t)〉‖2 ≤ 2Ē

~

√
N

∫ T

0
C(t)dt (4.52)

≤ 2Ē

~

√
NT, (4.53)

as C(t) ≤ 1. Finally, together with Zalka’s condition (4.44), this bound concludes the proof

ĒT

~
≥

√
N −√

p−
√

(N − 1)(1 − p). (4.54)

Summary

In this chapter, we have applied the adiabatic evolution technique, first introduced by Farhi
et al [FGGS00] and exposed in Chapter 3, to design a quantum algorithm for solving Grover’s
problem, i. e., the search for a marked item in an unstructured database. We have shown that
applying the Adiabatic Theorem globally (as in [FGGS00]) imposes a running time of order
N/M , where N is the number of items in the database and M is the number of marked items,
whereas adjusting the evolution rate of the Hamiltonian continuously in time so as to fulfill
the adiabaticity condition locally results in a time of order

√

N/M . We therefore recover
the quadratic speed-up of Grover’s usual algorithm compared to a classical search [Gro96].
Actually, this may be considered as a sign that adiabatic algorithms are purely quantum in
nature (in contrast with other physically motivated, but nonetheless classical, algorithmic
techniques such as simulated annealing). We have also proved that this algorithm is optimal
in the sense that no other Hamiltonian evolution could solve the same problem with a running
time that scales better.

We should notice that this quadratic speed-up was achieved by switching the Hamiltonian
at a rate that is constantly optimized during the evolution, which is only possible because the
gap g(s) can be derived analytically, and does not depend on the solution of the problem. As
long as these conditions are satisfied, such a local adiabatic evolution method could be applied

4As a value of ‖〈m|ψm〉‖ close to 1 allows to find m with high probability just by measuring the first
register HN in the computational basis, it is clear that this bound is not tight, at least before the end of
the computation. Actually, a closer analysis would lead to an upper bound for ‖〈m|ψm(t)〉‖ that is close to
sin2 Ēt/~

√
N (for Ēt/~ ≤ π

√
N/2). While this will only change the final bound on T for p = 1 by a prefactor

close to π/2, which will not modify the overall complexity Ω(
√
N), it is possible to show that after this change,

all the bounds are saturated by the analog quantum search, which proves that this algorithm is strictly optimal,
not only through the scaling of the running time but also because of its exact value.
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to more complicated problems, as we will see in Chapter 6 where an adiabatic quantum search
algorithm exploiting the problem structure is proposed, following a nested version of Grover’s
algorithm introduced by Cerf et al [CGW00].
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Chapter 5

Quantum circuit model

Introduction

In the last chapters, we have introduced Hamiltonian-based quantum algorithms, where the
state of the quantum register evolves continuously in time under the action of some Hamil-
tonian, in contrast to the standard paradigm of quantum computation based on quantum
gates (i. e., unitary operators) applied sequentially on a quantum register. The purpose of
this chapter is to clarify the link between these two types of algorithms and, more specif-
ically, to exhibit a general discretization method for implementing the Hamiltonian-based
algorithms on a traditional quantum circuit. This method will be applied to both the analog
and adiabatic quantum search algorithms.

This issue is particularly important for the adiabatic algorithm because it was never shown
how to implement it on a quantum circuit while keeping the quadratic speed-up of Grover’s
algorithm. This possibility may be considered as an indication of the fact that the algorithms
by adiabatic evolution are truly quantum. It will also be very useful in the next chapter,
when we will consider nested adiabatic search algorithms.

When implemented on a quantum circuit, the analog and adiabatic quantum search al-
gorithms define two new circuit-based algorithms that may be compared to their cousin,
Grover’s algorithm. It appears that all these algorithms, while remaining three clearly dis-
tinct algorithms, take nonetheless a very similar form in the high dimensional limit, a fact
which is particularly unexpected for the case of the adiabatic search algorithm. Specifically,
we see that the evolution parameter (which measures the covered distance along the path
between the initial and final Hamiltonians in the adiabatic search algorithm) has to evolve in
such a way that the instantaneous ground state rotates at a constant rate from the initial to
the final ground state. This makes the link fully explicit with Grover’s original algorithm.

5.1 Conversion from Hamiltonian-based to circuit-based algo-

rithms

5.1.1 First stage: discretization

Suppose we have to implement a Hamiltonian-based algorithm, defined by the Hamiltonian
H(t), on a quantum-circuit, i. e. a sequence of unitary operators or quantum gates. The
basic idea is quite simple, it consists in cutting the running time of the algorithm T in K

51
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Figure 5.1: Schematic representation of the discretization of a Hamiltonian-based algorithm using a
time-dependent Hamiltonian H(t) (schematically represented as a one-dimensional func-
tion of t) discretized in K = 8 steps.

small time-intervals [tk−1, tk] of size ∆T = T/K, where tk = k∆T . If the Hamiltonian is
time-independent, its application during a time ∆T exactly induces the unitary operator
e−iH∆T/~. Now if H(t) is time-dependent but does not vary much in the interval [tk−1, tk],
it may be approximated within this interval by H ′(t) = H(tk), and therefore the unitary
operator Uk it induces during this time-interval may be approximated by U ′

k = e−iH(tk)∆T/~.
This discretization stage is schematically represented in Fig. 5.1. Approximating the unitary
operator U(T ) induced by the evolution under H(T ) by successive unitary operators U ′

k will
of course introduce an error, which may be quantified using Lemma 1 proved in Appendix A:

|||U(T ) −
K∏

k=1

U ′
k||| ≤

√

2

~

∫ T

0
e(t)dt. (5.1)

where |||H(t) −H ′(t)||| ≤ e(t) is the error on the Hamiltonian1.

5.1.2 Second stage: approaching a sum of Hamiltonians by sequential
Hamiltonians

In the first stage, we have reduced our Hamiltonian-based algorithm to a sequence of unitary
operators U ′

k = e−iH(tk)∆T/~. If the unitary operator U ′
k induced by the Hamiltonian H(tk)

during time ∆T is directly simulatable by a quantum circuit, our task is over. However this
will typically not be the case. For instance, in the cases of the analog or adiabatic quantum

1This is a generalization of the lemma introduced by van Dam et al in the context of quantum algorithms by
global adiabatic evolution [vDMV01]. The difference is that here the error e(t) on the Hamiltonian is allowed
to be time-dependent, which will be crucial in order to implement our quantum search by local adiabatic
evolution while keeping the quadratic speed-up of Grover’s algorithm.
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search algorithms which we will consider next, the Hamiltonian H(tk) takes the form of a
sum of two Hamiltonians H0 and Hf , H(tk) = α0,kH0 +αf,kHf , each of which is simulatable
if applied alone. We may then approach the application of the two Hamiltonians H0 and Hf

in parallel

U ′
k = e−

i
~
(α0,kH0+αf,kHf )∆T (5.2)

by a successive application of H0 and Hf

U ′′
k = e−

iH0δt0,k
~ e−

iHf δtf,k
~ (5.3)

during times δt0,k = α0,k∆T and δtf,k = αf,k∆T respectively. The Campbell-Baker-Hausdorff
approximation, consisting in replacing eA+B by eAeB , shows that this approximation will
introduce an error

|||U ′
k − U ′′

k ||| =
2α0,kαf,k

~2
|||[H0,Hf ]|||∆T 2

(

1 +
|||H0||| + |||Hf |||

2~
O(∆T )

)

. (5.4)

The errors introduced in the second stage will accumulate after each step k. To evaluate the
overall error, we use Lemma 2 from Appendix A, showing that:

|||
K∏

k=1

Uk −
K∏

k=1

U ′
k||| ≤

K∑

k=1

|||Uk − U ′
k|||. (5.5)

While we have expressed errors as differences of unitary operators, it is clear that only inner
products of quantum states are physically relevant. However, these quantities are related, as
shown by the Lemma 3 in Appendix A, which states that if |ψ〉 = U |ψ0〉 and |ψ′〉 = U ′|ψ0〉,
then

1 − |〈ψ′|ψ〉|2 ≤ |||U − U ′|||2. (5.6)

5.2 Grover’s algorithm within a Hamiltonian-based approach

Before applying this conversion method to the Hamiltonian-based search algorithms, let us
briefly recall the principle of Grover’s algorithm as described in Section 2.32:

• Input: Prepare the initial state |ψdis
0 〉 = |N 〉 = (1/

√
N)
∑

n∈N |n〉.

• Steps k = 1 to Kdis =
⌊

π
4x

⌋
: Apply the Grover iteration G = −U0Uf , where Uf =

IN − 2
∑

m∈M |m〉〈m| and U0 = IN − 2|N 〉〈N |,

|ψdis
k 〉 = −U0Uf |ψdis

k−1〉. (5.7)

• Output: Measure the final state |ψdis
Kdis〉 in the computational basis.

In the limit x→ 0 (where x =
√

M/N), this algorithm will yield a solution state |m〉 (m ∈ M)
with error probability pdis

err of order O(x2). More precisely, the successive steps will rotate the
quantum register following

|ψdis
k 〉 =

(

sinαdis
k |M〉 + cosαdis

k |MC〉
)

(1 +O(x)), (5.8)

2The superscript “·dis” stands for “discrete” Grover’s algorithm and will be useful to compare the different
search algorithms.
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where

αdis
k = 2kx

(
1 +O(x2)

)
, (5.9)

is the angle of rotation after k steps.

Introducing the Hamiltonian oracle Hf = Ē(IN −∑m∈M |m〉〈m|), defined in Section 2.4,
we have seen that the unitary oracle Uf is equivalent (up to a phase) to the application of
Hf during a time δt = π~/Ē:

Uf = −e−
iHf δt

~ . (5.10)

Moreover, the unitary operator U0 and the Hamiltonian H0 are similarly related

U0 = −e−
iH0δt

~ . (5.11)

Defining the times δtdis
f,k = δt and δtdis

0,k = δt, and the phases φdis
k = kπ and θdis = 0, we see

that Grover’s algorithm may be restated in the following generic form:

• Input: Prepare the initial state |ψdis
0 〉 = |N 〉.

• Steps k = 1 to Kdis: Apply successively Hf during time δtdis
f,k and H0 during time δtdis

0,k,

to get3

|ψdis
k 〉 = e−iφdis

k

(

eiθ
dis

sinαdis
k |M〉 + cosαdis

k |MC〉
)

(1 +O(x) +O(δ)), (5.12)

where αdis
k = kαdis

1 .

• Output: Measure the final state |ψdis
Kdis〉 in the computational basis to get a solution

state |m〉 (m ∈ M) with error probability pdis
err = O(x2) +O(δ2).

We will see in the next section that both Hamiltonian-based search algorithms take the same
generic form after discretization, such that the quantum circuit implementing these three
algorithms only differ by a finite set of parameters, namely the number of steps K, the times
δtf,k and δt0,k, the angles αk, and the phases φk and θ.

5.3 Hamiltonian version of the oracle

We have seen that the application of Hf during time π~/Ē may simulate one application of
the unitary operator Uf , that is one call to the quantum oracle Of (see Fig. 2.1 in Chapter
2). To provide one more argument to the equivalence between the oracle Hamiltonian Hf

and the unitary oracle Of , we now show that the application of Hf during any time δt may
be simulated by a quantum circuit using a one-qubit ancilla prepared in state |0〉, two calls
to the oracle Of , and an additional phase gate

Ut = e−
iĒt

~ |0〉〈0| + |1〉〈1|. (5.13)

3In the case of Grover’s algorithm, the phase φdis
k = kπ comes from the fact that e−

iH0δt

~ e−
iHf δt

~ = U0Uf =
−G, such that the sign of the state is inverted at each step.
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Considering the circuit represented in Fig. 5.2, we have

Of [|n〉 ⊗ |0〉] = |n〉 ⊗ |f(n)〉
I ⊗ Ut [|n〉 ⊗ |f(n)〉] = e−i(1−f(n)) Ēt

~ |n〉 ⊗ |f(n)〉
Of

[

e−i(1−f(n)) Ēt
~ |n〉 ⊗ |f(n)〉

]

= e−i(1−f(n)) Ēt
~ |n〉 ⊗ |0〉

= e−
iHf t

~ |n〉 ⊗ |0〉. (5.14)

which indeed coincides with the result of evolving |n〉 with Hf during time t (see Eq. (2.45)).
This circuit will be helpful to implement the Hamiltonian-based search algorithms on a quan-
tum circuit.

Ut

OfOf

|0〉

e−
iHf t

~ |n〉

|0〉

|n〉

Figure 5.2: Circuit used to simulate the evolution of a Hamiltonian Hf during a time t by using twice
the corresponding oracle Of , a one-qubit phase gate Ut and an ancilla prepared in state
|0〉.

5.4 Analog quantum search

Let us now use our discretization method to implement the analog algorithm exposed in
Section 2.4 on a quantum circuit. Remember that it simply consists in the application of the
time-independent Hamiltonian Han = H0 +Hf on the initial state |N 〉 during time

T an =
π

2x

~

Ē
, (5.15)

resulting in an evolution (2.48)

|ψan(t)〉 = e−
iĒt

~

(
i sinαan(t)|M〉 + cosαan(t)|MC〉

)
(1 +O(x)), (5.16)

where

αan(t) =
Ēxt

~
. (5.17)

Thus, this Hamiltonian evolution rotates the state at constant rate, similarly to Grover’s
algorithm. More precisely, let us notice that

αdis
k = k αan

(
2~

Ē

)
(
1 +O(x2)

)
(5.18)
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which shows that the application of Han during a time 2~/Ē corresponds roughly to one
Grover iteration. However, the rotation follows a different path because of the presence of i
in the first term of Eq. (5.16).

Suppose now we want to implement this analog algorithm on a quantum circuit. We
showed in the previous section how to simulate Hf with a quantum circuit based on two
oracle calls, but this does not allow us to directly simulate H an = H0 + Hf . However,
the Campbell-Baker-Hausdorff approximation tells us that for ∆T sufficiently small, we may
approach the parallel application of Hf and H0 during time ∆T by successive applications
of Hf and H0. Following our discretization technique, this approximation will be valid if we
cut the evolution time T an into Kan sufficiently small intervals

∆T =
T an

Kan
(5.19)

=
π~

2xKanĒ
. (5.20)

Let us now study the error introduced by this discretization method in order to derive how
the number of steps Kan should scale for this error to stay bounded. Using the quantum
circuit of Section 5.3 to simulate Hf , we see that each of these steps will require two calls to
the oracle Of , such that the number of calls to the oracle will exactly scale as the number of
steps.

The first stage of the conversion process, consisting in replacing the continuously varying
Hamiltonian H(t) by a step-wise varying Hamiltonian H ′(t) will not introduce any error in
this case as the Hamiltonian Han is time-independent. The analog algorithm is thus strictly
equivalent to Kan successive applications of

U ′
k = e−

i
~
(H0+Hf )∆T . (5.21)

However, following Eq. (5.4), the second stage, consisting in replacing U ′
k by

U ′′
k = e−

iH0∆T
~ e−

iHf ∆T

~ , (5.22)

introduces at each step an error

|||U ′
k − U ′′

k ||| =
1

2~2
|||[H0,Hf ]|||∆T 2

(

1 +
|||H0||| + |||Hf |||

2~
O(∆T )

)

(5.23)

≤ Ē2

2~2
x∆T 2

(

1 +O

(
Ē∆T

~

))

, (5.24)

as |||[H0,Hf ]||| = Ē2x
√

1 − x2. These errors add up progressively when k grows, such that the
total error is bounded by

|||
K∏

k=1

Uk −
K∏

k=1

U ′
k||| ≤

π2

8xKan

(

1 +O

(
Ē∆T

~

))

, (5.25)

where we have used Eq. (5.5) along with the fact that T an = Kan∆T = (π/2x)(~/Ē). For
this error to stay bounded when x → 0, we have to perform a number of steps K an of order
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O(x−1) (just as Grover’s discrete algorithm), for instance4

Kan =
⌊ π

4δx

⌋

, (5.26)

where δ is sufficiently small such that the total error is bounded by

|||
K∏

k=1

Uk −
K∏

k=1

U ′
k||| ≤

πδ

2
(1 +O(δ)). (5.27)

Using Eq. (5.6), which details the translation from unitary operator errors to error probabil-
ities, this tells us that a measure of the state obtained after K an steps will give a solution
with error probability

pan
err = O(δ2). (5.28)

Finally, let us note that it follows from Eqs (5.20) and (5.26) that each step requires the
application of Hf and H0 during a time

∆T = δtanf,k = δtan0,k =
2~δ

Ē
(5.29)

and will rotate the state by an angle

αan
1 = αan(∆t) = 2δx. (5.30)

The link between the analog quantum search, translated into a circuit-based algorithm, and
Grover’s discrete algorithm appears now clearer as they both take the same generic form
exposed at the end of Section 5.2. Among other things, this means that when translated
into a circuit-based algorithm, the analog quantum search becomes a discrete algorithm that
shows the same quadratic speed-up as Grover’s algorithm versus a classical algorithm that
would need of order O(1/x2) calls to the oracle. Nonetheless, we see that the number of steps
of the analog algorithm has increased by a factor of δ−1 with respect to Grover’s algorithm,
and this may be related to the continuous-time origin of this algorithm.

5.5 Quantum search by local adiabatic evolution

For this third algorithm, exposed in Chapter 4, we once again prepare our system in the
initial state |N 〉 and use the Hamiltonians H0 and Hf . This time, however, we apply a
time-dependent Hamiltonian Had(t) = H̃(s(t)),

H̃(s) = (1 − s)H0 + sHf (5.31)

where the evolution parameter s = s(t) is a monotonic function with s(0) = 0 and s(T ad) = 1.
As |N 〉 is the ground state of H̃(0) = H0, the Adiabatic Theorem (see Section 3.2.2) tells us
that the system will stay in a state |ψad(t)〉 near the instantaneous ground state |ϕ̃0(s(t))〉 of
H̃(s) as long as the evolution of H̃(s) imposed by s(t) is “slow enough”. More precisely, if
the adiabatic condition (4.12) is satisfied, then

1 − |〈ψad(t)|ϕ̃0(s(t))〉|2 ≤ δ2. (5.32)

4The prefactor is actually arbitrary, it has been chosen equal to π/4 to make the comparison with Grover’s
algorithm easier.
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As the ground state of H̃(1) = Hf is the superposition of solution states |M〉, a measure of
the system at the end of the evolution t = T ad will yield a solution with error probability pad

err

of order O(δ2). More precisely, the instantaneous ground state of H̃(s) (4.10–4.11) may be
rewritten

|ϕ̃0(s)〉 = sin α̃ad(s)|M〉 + cos α̃ad(s))|MC〉 (5.33)

where the angle α̃ad(s) is defined as5

α̃ad(s) =
1

2
arctan′ 2x

√
1 − x2s

1 − 2(1 − x2)s
(5.34)

and is plotted in Fig. 5.3. We see that the evolution is once again a rotation in the (|M〉, |MC 〉)
plane. Furthermore, at discrete values such that s(t) = αdis

k , the continuous path |ψad(s)〉
coincides (up to an error of order O(δ2)) with the states |ψdis

k 〉 of Grover’s traditional algo-
rithm (in contrast to the analog algorithm where the amplitude of |M〉 became imaginary).
However, Fig. 5.3 shows that the rotation would not be performed at a constant angular

0

π/4

π/2

0 0.5 1

α̃ad(s)

s

Figure 5.3: Rotation angle α̃ad(s) for the adiabatic quantum search algorithm with N = 100.

velocity if s(t) was chosen to be linear in t, which corresponds to the quantum search by
global adiabatic evolution. The angular velocity would indeed be greater for s close to 1/2
and smaller at the beginning and the end of the evolution. Thus, in the global adiabatic
search algorithm, the system exactly follows the path of Grover’s algorithm, but at a varying
rate. This suggests that this algorithm is not the correct adiabatic equivalent to Grover’s
algorithm, and we already know that indeed it does not reproduce the quadratic speed-up of
Grover’s algorithm (see Chapter 4).

In order to circumvent this problem, we must perform a local adiabatic evolution, opti-
mizing s(t) constantly during the evolution according to the variations of the gap g(s). This

5We define the modified inverse tangent function arctan′ as y = arctan′ x ⇔ {x = tan y ∧ 0 ≤ y < π}
(instead of −π/2 < y < π/2 for the usual arctan).
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leads to a non-linear function s(t) whose inverse may be written (4.29) as

t(s) =
~

δĒ

1

x
√

1 − x2
arctan′ 2x

√
1 − x2s

1 − 2(1 − x2)s
. (5.35)

Remarkably, we see that the variations in the evolution rate ds/dt will exactly compensate
the variations in the angular velocity, such that this angular velocity is now constant during
the whole evolution:

αad(t) = α̃ad(s(t)) (5.36)

= δx
√

1 − x2
Ēt

2~
(5.37)

= δx
Ēt

2~
(1 +O(x2)). (5.38)

Note that at t = T ad = π~/(δĒx) (1 +O(x)), we have αad(T ad) ≈ π/2 as expected. The
fact that the state is rotated at a constant rate for this particular evolution s(t) is one more
argument that this is the right adiabatic equivalent to Grover’ algorithm (together with the
fact that it reproduces its quadratic speed-up).

Let us now use the conversion method exposed in Section 5.1 to implement this algorithm
on a quantum circuit. As for the analog quantum search, the first stage consists in the
discretization of the evolution by cutting the time T ad into Kad intervals ∆T = T ad/Kad.
During each interval [tk−1, tk] (tk = k∆T ), we approximate the time-dependent Hamiltonian
H̃(s(t)) by the time-independent one Hk = (1 − sk)H0 + skHf (sk = s(tk)). Actually, this
is equivalent to replacing the actual Hamiltonian H(t) = H̃(s(t)) by H ′(t) = H̃(s′(t)) where
s′(t) is a step-wise function approaching s(t) but varying at times tk only (see Fig. 5.4).

0

0.5

1

0 π/2x π/x

s

δĒt
~

s(t)
s′(t)

Figure 5.4: s(t) and its step-wise approximation s′(t) (using Kad = 20 steps) for the local adiabatic
algorithm with N/M = 100.

A bound on the error introduced by this approximation may be derived from the error on
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the Hamiltonian, that is

|||H(t) −H ′(t)||| = |||H̃(s(t)) − H̃(s′(t))|||
= |s′(t) − s(t)| |||H0 −Hf |||
≤ |s(t+ ∆T ) − s(t)| |||H0 −Hf |||
≤ |s(t+ ∆T ) − s(t)|Ē, (5.39)

where we have assumed that s(t) = 1 for t > T ad and used the fact that

|||H0 −Hf ||| = ||||M〉〈M| − |N〉〈N |||| = Ē
√

1 − x2 ≤ Ē. (5.40)

We may now use Lemma 1 of Appendix A with e(t) = (s(t+ ∆T ) − s(t))Ē, which gives

∫ T ad

0
e(t)dt = Ē

∫ T ad

0
(s(t+ ∆T ) − s(t)) dt

= Ē∆T − Ē

∫ ∆T

0
s(t)dt

≤ Ē∆T. (5.41)

Finally, we get

|||U(T ad) − U ′(T ad)||| ≤
√

2Ē∆T

~
=

√

2ĒT ad

~Kad
(5.42)

so that in order to keep an error of constant order δ for x→ 0, we must choose a number of
steps proportional to T ad/δ2 (T ad being itself proportional to δ−1), for instance6

Kad = b π

4δ3x
c. (5.43)

For each step, we have to apply Hk during a time ∆T = T ad/Kad, that is the unitary
operation:

U ′
k = e−iHk∆T = e−i

H0(1−sk)∆T+Hf sk∆T

~ . (5.44)

Following the second stage of the conversion method, we replace U ′
k by

U ′′
k = e−

iH0(1−sk)∆T

~ e−i
Hf sk∆T

~ . (5.45)

The error introduced at each step by this approximation will be

|||U ′
k − U ′′

k ||| = O

(

sk(1 − sk)
|||[H0,Hf ]|||∆T 2

~2

)

(5.46)

= O
(
sk(1 − sk)δ

4x
)
. (5.47)

For the Kad steps, we have U ′(T ) =
∏

k U
′
k, so that using Lemma 2 gives the total error

|||U ′(T ) −
Kad
∏

k=1

U ′′
k ||| = O(δ). (5.48)

6As it was the case for the analog quantum search, the prefactor is arbitrarily chosen in order to simplify
the comparison with the other algorithms.
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Consequently, the number of steps Kad required in the first stage (i.e., replacing H(t) by
H ′(t)) also results in an error of order δ for the second stage. We may thus conclude that to
get a solution with an error probability of order O(δ2), it suffices to discretize the evolution
in a number of steps of order O(δ−3x−1). We see that the number of steps has been further
increased by a factor of order δ−2 with respect to the analog quantum search. The comparison
between the three search algorithms is summarized in Table 5.1.

Summary

We have shown that, in spite of their different original formulations, the three quantum
search algorithms are very closely related. They all perform a rotation from the uniform
superposition of all states to the uniform superposition of solution states at a constant angular
velocity, even though a slightly different path is followed by the analog quantum search
algorithm.

Actually, the fact that imposing a local adiabatic condition, optimizing the evolution rate
according to the variations of the gap between the lowest two eigenvalues, exactly comes
down to rotating the state at a constant angular velocity is quite remarkable. It could be
worth investigating whether such a link between the gap and the rate at which the ground
state is modified could be made for other problems solved by adiabatic evolution, such as the
satisfiability problem as studied by Farhi et al in [FGGS00, FGG+01].

The similarities between these algorithms become even more obvious when they are im-
plemented on a quantum circuit as they all take the same generic form: a number of steps of
order

√

N/M , each step having the same form e−iH0δt0/~e−iHf δtf /~. Note that the time ratio
δtf/(δt0 + δtf ) during which Hf and H0 are applied varies along the evolution according to
a specific law in the case of the local adiabatic search algorithm, while it is 50% for Grover’s
algorithm as well as its Hamiltonian analogue.

In the next Chapter, we show that the quantum-circuit implementation of the adiabatic
search algorithm will be helpful to use it as a building block to solve more advanced search
problems.

All 3 quantum search algorithms

|ψ0〉 |N〉
|ψk〉 e−iH0δt0,k/~e−iHf δtf,k/~|ψk−1〉

= e−iφk
(
eiθ sinαk|M〉 + cosαk|MC〉

)

perr 1 − |〈M|ψK〉|2
Grover Analog Adiabatic

K bπ/4xc bπ/4δxc bπ/4δ3xc
Ēδtf,k/~ π 2δ 4skδ

2

Ēδt0,k/~ π 2δ 4(1 − sk)δ
2

φk kπ Ētk/~
∫ tk
0 E0(t

′)dt′/~
θ 0 π 0
αk 2kx 2kδx 2kδ3x
perr O(x2) O(δ2) O(δ2)

Table 5.1: Summary of the properties of the three quantum search algorithms (all given at first non-
zero order in x and δ).
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Chapter 6

Structured search

Introduction

The quantum algorithms we have described in the previous chapters aim at solving un-
structured search problems. More specifically, Grover’s algorithm and its Hamiltonian-based
cousins improve on a classical search as they are able to find a marked item in an unstruc-
tured database with a number of queries of order

√
N instead of N (where N is the number

of items in the database). Naturally, these quantum algorithms can also be used to solve a
structured search problem with a quadratic speed-up over a näıve classical search that would
exhaustively check every possible solution. However, exploiting the structure of the problem
is well known to lead to better classical search algorithms. It is therefore tempting to imagine
that better quantum search algorithms may be devised similarly by exploiting the problem
structure. Following this, Cerf, Grover and Williams showed that this could be done by par-
titioning the unknown variables into two (or more) sets and then nesting a quantum search
over one set into another search over two (or more) sets, yielding an average complexity of
order

√
Nα, with α < 1 [CGW00].

While this algorithm, as well as Grover’s original algorithm, stay within the standard
paradigm of quantum computation based on quantum circuits, we have shown in the previous
chapters that it was possible to devise quantum search algorithms of a different kind, based
on continuous-time Hamiltonian evolution. In particular, we have introduced in Chapter 4 a
quantum adiabatic search algorithm, which works as its discrete analogue Grover’s algorithm
for unstructured search problems. Actually, quantum adiabatic algorithms had initially been
introduced by Farhi et al for solving structured problems such as satisfiability problems (k-
SAT), but in such a way that until now only a numerical study has been possible [FGG+01].

In this chapter, we bring the ideas of nested quantum search and quantum adiabatic
computation together in order to devise a new quantum adiabatic algorithm adapted to
structured problems. More specifically, we will show that an adiabatic search over a subset
of the variables can be used to build a better initial Hamiltonian for the global adiabatic
search. With this adiabatic algorithm, we recover the same complexity as the nested discrete
algorithm of Ref. [CGW00], but we will see that it is more general in that it does not require
the exact number of solutions (and partial solutions) to be known a priori. In order to nest
an adiabatic quantum search, used as a sub-routine, into another, we will have to discretize
it, making use of the results of the last chapter.

63
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6.1 Structured problems

In this chapter, we consider a class of problems in which one has to find an assignment for a
set of variables. For each additional variable considered, new constraints appear and reduce
the set of satisfying assignments. This corresponds to most problems encountered in practice
(k-SAT, graph coloring, planning, combinatorial optimization, . . . ).

For instance, let us consider the class 3-SAT which is NP-complete. In general, an instance
of SAT is expressed as a boolean formula in conjunctive normal form, that is a conjunction
(∧) of disjunctions (∨) of literals (a literal being an elementary boolean expression made of
one binary variable that may be negated or not). For 3-SAT, each disjunction involves exactly
three literals, such that a possible instance for 3-SAT would be

(n1 ∨ n2 ∨ ¬n4) ∧ (n1 ∨ ¬n3 ∨ n5) ∧ (¬n2 ∨ n5 ∨ ¬n6). (6.1)

The problem is to find assignments for the binary variables (n1, . . . , n6) satisfying the boolean
formula. Since the disjunctions are related by the conjunction ∧ (“AND”), they must all be
satisfied simultaneously, such that 3-SAT finally boils down to the problem of finding assign-
ments for a set of binary variables satisfying a set of constraints, each constraint involving
three variables.

Let us now generalize these concepts to a broader class of structured problems. In these
problems, for a set of νA (not necessarily binary) variables denoted as A, there is a corre-
sponding set of constraints CA. We may define a function fA that tells if an assignment of
the variables in A satisfies the constraints in CA.

fA : NA → {0, 1}

: nA →
{

0 if nA does not satisfy CA

1 if nA satisfies CA,
(6.2)

where NA = (Zd)
νA is the set of all possible assignments for the νA variables, d being the

number of possible assignments for each variable (d = 2 for bits). As quantum gates have to
be reversible, the quantum equivalent of this function will be an oracle:

OA : HNA
⊗H2 → HNA

⊗H2 : |nA〉 ⊗ |q〉 → |nA〉 ⊗ |fA(nA) ⊕ q〉, (6.3)

where NA = dνA is the number of possible assignments for the νA variables. It has been
shown in previous chapters that this oracle is closely related to a Hamiltonian whose ground
states, of energy 0, are the basis states encoding a satisfying assignment and whose excited
states, of energy Ē, are all other basis states:

HA|nA〉 =

{
Ē|nA〉 if nA does not satisfy CA

0 if nA satisfies CA
(6.4)

or
HA = Ē(IA −

∑

mA∈MA

|mA〉〈mA|) (6.5)

where MA is the set of satisfying assignments for the variables in A. It is possible to efficiently
simulate the time evolution according to this Hamiltonian, that is, the unitary operator e−iHAt

can be realized using a sequence of one- and two-qubit gates and two oracle calls (see Chapter
5 for details).
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Now suppose we consider a larger set of variables νAB = νA + νB that have to satisfy a
set of constraints CAB ⊃ CA. To discriminate between assignments satisfying CAB or not,
we will use an oracle OAB or a corresponding Hamiltonian HAB defined as in Eqs. (6.3) and
(6.4). The basic idea of our structured search will be to find the solutions of CAB by first
building the assignments of the νA primary variables satisfying CA, then by completing them
with all possible assignments of the νB secondary variables, and finally by searching among
these could-be solutions those satisfying the constraints CAB.

6.2 Structured search with two levels of nesting

This problem is of the same type as the one considered in [CGW00], where the technique of
nesting was introduced in the context of Grover’s traditional algorithm. Here, we apply this
technique to the adiabatic quantum search algorithm.

Suppose we divide the variables of our problem into two subsets A (νA elements) and B
(νB elements). First, we will perform a search on the variables in A using the Hamiltonian
HA that encodes the constraints in CA:

HA = Ē(IA −
∑

mA∈MA

|mA〉〈mA|). (6.6)

Then we will use the Hamiltonian HAB acting on all variables in A ∪ B and encoding the
whole set of constraints CAB

HAB = Ē(IAB −
∑

(mA,mB)∈MAB

|mA〉〈mA| ⊗ |mB〉〈mB |) (6.7)

to construct a superposition of the solutions of the full problem MAB . A final measurement
of the quantum register will then give one of the global solutions at random.

6.2.1 Adiabatic search on the primary variables

The preliminary search on the variables in A is a simple unstructured search as explained in
Chapter 4. As there are νA variables in A, the corresponding Hilbert space is of dimension
NA = dνA . Let MA be the number of solutions in MA. Performing an adiabatic quantum
search, we may thus transform the initial state

|NA〉 =
1√
NA

∑

nA∈NA

|nA〉 (6.8)

into a state close to the uniform superposition of all solutions in MA

|MA〉 =
1√
MA

∑

mA∈MA

|mA〉 (6.9)

in a time of order1

TA = Θ

(√

NA

MA

)

. (6.10)

1In this chapter, we will concentrate on the scaling of the running time versus the number of possible
assignments N and the number of solutions M , and not on its prefactor, which is why we use the “big-Θ” and
“big-O” notations.
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Let us point out that here and throughout the rest of this chapter, it seems that the
number of solutions MA (and later MB/mA

and MS
A) must be known to derive the minimal

time TA (and later TB and TC) needed to perform the computation with a bounded error
probability. Actually, as already explained in the case of the unstructured search in Chapter
4, an approximate value M ′ of the order of the actual M is sufficient as it will only affect the
error probability by a factor of (M ′/M)2. In real problems, this issue may thus be addressed
by using approximate methods to evaluate the number of solutions (such as Eq. (6.45) of
Section 6.4 for k-SAT).

6.2.2 Adiabatic search on the secondary variables

We will now perform a preliminary search in the Hilbert space of dimension NB = dνB of the
secondary variables in B by extending the partial solutions |mA〉. We prepare the variables
in B in a state that is the uniform superposition

|NB〉 =
1√
NB

∑

nB∈NB

|nB〉. (6.11)

Globally, the system is thus in the superposition:

|MA〉 ⊗ |NB〉 =
1√

MANB

∑

mA∈MA
nB∈NB

|mA〉 ⊗ |nB〉, (6.12)

where some terms correspond to a global solution of the problem [(mA,mB) ∈ MAB satisfying
all constraints in CAB] while the others correspond to a partial solution only [mA ∈ MA

satisfies CA but (mA,mB) /∈ MAB does not satisfy CAB]. We now divide the set MA of
solutions of CA into two subsets: MS

A will be the set of mA’s for which there exists at least
one solution (mA,mB) of CAB and MNS

A the set of mA’s for which there is no such solution.

MS
A = {mA ∈ MA | ∃mB , (mA,mB) ∈ MAB} (6.13)

MNS
A = {mA ∈ MA | ∀nB , (mA, nB) /∈ MAB} (6.14)

Of course, we thus have MA = MS
A ∪MNS

A . We may now rewrite our initial state (6.12) as

|MA〉 ⊗ |NB〉 =
1√

MANB

∑

mA∈MNS
A

nB∈NB

|mA〉 ⊗ |nB〉

+
1√

MANB

∑

mA∈MS
A

nB∈NB

|mA〉 ⊗ |nB〉. (6.15)

In the first part of this expression, no term correspond to a solution of the full problem,
whereas in the second part, some terms do and others do not. The goal of this stage of the
computation will be to increase the amplitude of the solution terms in this last part. To
achieve this, we perform an adiabatic evolution using the initial Hamiltonian

Hi = ĒIA ⊗ (IB − |NB〉〈NB |), (6.16)

which has |MA〉 ⊗ |NB〉 as a ground state. The final Hamiltonian will be

Hf = HAB −HA ⊗ IB. (6.17)

We see that these Hamiltonians share the following properties:
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1. They do not induce evolution of states |nA〉⊗ |NB〉 corresponding to assignments nA of
NA that do not satisfy CA:

Hi,f |nA〉 ⊗ |NB〉 = 0 ∀ nA /∈ MA. (6.18)

2. They do not couple states corresponding to different mA’s:

〈mA|Hi,f |m′
A〉 = 0 ∀ mA 6= m′

A ∈ MA. (6.19)

It follows that the instantaneous Hamiltonian of the adiabatic evolution H(t) satisfies the
same properties. Using property 2, it may easily be shown that the effect of the adiabatic
evolution will be to perform independent (and parallel) adiabatic searches for each mA ∈ MA.
More precisely, each term in |MA〉 ⊗ |NB〉 corresponding to a partial solution mA ∈ MS

A

|mA〉 ⊗ |NB〉 =
1√
NB

∑

nB∈NB

|mA〉 ⊗ |nB〉 (6.20)

will evolve into

|mA〉 ⊗ |MB/mA
〉 =

1
√
MB/mA

∑

mB∈MB/mA

|mA〉 ⊗ |mB〉, (6.21)

as long as

TB = Ω

(√

NB

MB/mA

)

, (6.22)

where MB/mA
is the set of mB’s such that (mA,mB) ∈ MAB and MB/mA

is the number of
these elements. For this condition to be satisfied for all mA’s simultaneously, we may take

TB = Θ

(

max
mA

√

NB

MB/mA

)

= Θ

(√

NB

minmA
MB/mA

)

. (6.23)

Here is the major advantage of this adiabatic algorithm over its discrete counter-part
[CGW00] where all MB/mA

’s had to be supposed equal to 1, as here it is sufficient that they
are of the same order of magnitude to ensure an error probability of the same order for each
term.

At the end of this second stage, we thus have constructed a state close to

|ψAB〉 =
1√

MANB

∑

mA∈MNS
A

nB∈NB

|mA〉 ⊗ |nB〉

+
1√
MA

∑

mA∈MS
A

eiφmA |mA〉 ⊗
1

√
MB/mA

∑

mB∈MB/mA

|mB〉

=

√

MNS
A

MA
|MNS

A 〉 ⊗ |NB〉 +

√

MS
A

MA
|MAB〉, (6.24)
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where φmA
’s are phases appearing during the evolution, the non-solution state |MNS

A 〉 is
defined as

|MNS
A 〉 =

1
√

MNS
A

∑

mA∈MNS
A

|mA〉, (6.25)

the superposition of solution states |MAB〉 as2

|MAB〉 =
1

√

MS
A

∑

mA∈MS
A

eiφmA |mA〉

⊗ 1
√
MB/mA

∑

mB∈MB/mA

|mB〉 (6.26)

and MNS
A (respectively MS

A) is the number of elements in set MNS
A (respectively MS

A). We
thus have a superposition of all the non-solution in MNS

A ⊗NB and all the solutions MAB .

6.2.3 Global adiabatic search

Stages A and B define a unitary evolution U that applies the initial state |NA〉 ⊗ |NB〉 onto
|ψAB〉:

U |NA〉 ⊗ |NB〉 ≈ |ψAB〉 (6.27)

=

√

MNS
A

MA
|MNS

A 〉 ⊗ |NB〉 +

√

MS
A

MA
|MAB〉. (6.28)

In this state, we now need to decrease the amplitude of the first term, corresponding to
partial solutions only, and increase the amplitude of the second term, corresponding to global
solutions. This could be realized efficiently by performing an adiabatic search (stage C) using
as initial Hamiltonian:

Hi = Ē(IAB − |ψAB〉〈ψAB |) (6.29)

≈ ĒU(IAB − |NA〉〈NA| ⊗ |NB〉〈NB |)U † (6.30)

≈ U H0 U
†, (6.31)

where H0 = Ē(IAB − |NA〉〈NA| ⊗ |NB〉〈NB |), and as final Hamiltonian

Hf = HAB (6.32)

= Ē(IAB −
∑

(mA,mB)∈MAB

|mA〉〈mA| ⊗ |mB〉〈mB |)

during a time

TC = Θ

(√

MA

MS
A

)

. (6.33)

Unfortunately, we do not have access to Hi, so that the interpolating Hamiltonian H̃(s) =
(1− s)Hi + sHf cannot be applied directly. However, we know from the last chapter that the

2Let us note that this is generally not a uniform superposition of all solution states since, in addition to
the phases φmA , the amplitude of a solution state |mA〉 ⊗ |mB〉 will depend on the number MB/mA

of other
solutions sharing the same partial solution mA.
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basic steps of the quantum-circuit implementation of this adiabatic algorithm only require
the application of Hi during a particular time t, that is,

e−
iHit

~ ≈ e−
iUH0U†t

~ = Ue−
iH0t

~ U †. (6.34)

Hence, each application of Hi during a time t will be equivalent to sequentially applying
U †, e−iH0t/~, and U , which means performing the adiabatic evolution U (stages A and B)
backwards, then applying H0 for a time t, and finally rerun the adiabatic evolution U forwards
(stages A and B).

We know that to discretize the adiabatic evolution with a bounded error, we must take
a number of steps KC of order TC . We may now evaluate the complexity of this algorithm.
As it consists of KC steps, each involving two applications of U or U †, each taking a time of
order TA + TB , the algorithm finally takes a time of order:

T = (TA + TB)KC (6.35)

= Θ

((√

NA

MA
+

√

NB

minmA
MB/mA

)√

MA

MS
A

)

= Θ

(√

NA

MS
A

+

√

MANB

MS
A minmA

MB/mA

)

. (6.36)

Let us note that since MB/mA
≥ 1 (∀ mA), this complexity scales as

T = O





√
NA +

√
MANB

√

MS
A



 . (6.37)

For the particular case where there is at most one solution (mA,mB) per partial solution mA

MB/mA
= 1 ∀ mA ∈ MS

A, (6.38)

we have MS
A = MAB and we recover the complexity of the equivalent discrete algorithm

exposed in Ref. [CGW00]. However, it should be stressed that we do not need this last
assumption here, which is the main difference between these two algorithms. A more detailed
analysis of this complexity will be performed in Section 6.4.

6.3 Discretizing the adiabatic evolution

Let us now apply the discretization method developed in the last chapter to this adiabatic
structured quantum search algorithm. We could of course discretize all three stages (A, B, C)
of our algorithm in order to implement it on a quantum circuit, but we will concentrate on
stage C which is the only one that absolutely requires discretization. Nonetheless, following
the lines of the application of the discretization method to the unstructured search (see Section
5.5), it is easy to show that stage A (respectively B) would require a number of steps KA

(respectively KB) of the same order as the computation time TA (respectively TB).

For the final stage, the global adiabatic search, the initial and final Hamiltonians Hi and
Hf are defined in Eq. (6.29)-(6.32). Except from the fact that these Hamiltonians differ from
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those we treated in the case of the unstructured adiabatic quantum search, the evaluation of
the errors introduced by the two stages of the discretization is totally similar and, as

|||Hi −Hf ||| < Ē, (6.39)

|||[Hi,Hf ]||| <

√

MS
A

MA
Ē2 (6.40)

and TC = Θ
(√

MA

MS
A

)

, it leads to

|||U(T ) − U ′(T )||| = O







√
√
√
√

2

√
MA

MS
A

KC







(6.41)

|||U ′(T ) −
∏

k=1

KCU
′′
k ||| = O





√
MA

MS
A

KC



 . (6.42)

Therefore, as announced in Section 6.2, we have to cut our evolution in a number of steps

KC = Θ
(√

MA

MS
A

)

of the same order as TC . Each step k will take the form:

U ′′
k = e−

i(1−sk)Hi∆T

~ e−
iskHf∆T

~ (6.43)

≈ Ue−
i(1−sk)H0∆T

~ U †e−
iskHf ∆T

~ , (6.44)

where the applications of Hamiltonians H0 during a time (1 − sk)∆T and Hf during a time
sk∆T may be realized by the procedure exposed in Chapter 5.

6.4 Complexity analysis

To estimate the efficiency of this algorithm, we will follow the same development as in
[CGW00]: as we have seen in Section 6.2, under the assumption (6.38) that we will consider
here, the complexity of this adiabatic algorithm has exactly the same form as its circuit-based
counterpart.

First of all let us define a few concepts (for details here and throughout this section, we
refer the reader to Ref. [CGW00]). The structured search problem is to find an assignment of
νAB = νA + νB variables among d possibilities for each variable and satisfying e constraints,
each involving at most k of these variables. We define as a ground instance an assignment
of all the variables involved in a particular constraint. A ground instance will be said to be
no-good if it violates the constraint. Let ξ be the number of those no-good ground instances.

Empirical studies show that the difficulty of solving a structured problem essentially de-
pends on four parameters: the number of variables νAB, the number of possible assignment
per variable d, the number of variables per constraint k, and the number of no-good ground
instances ξ. Intuitively, we understand that if ξ is small, there are many assignments satisfy-
ing the constraints so the problem is easy to solve. On the contrary, if ξ is large, the problem
is over-constrained and it is easy to show that there is no solution. More precisely, it may
be shown that for fixed νAB and d, the average difficulty may be evaluated by the parameter
β = ξ/νAB . The hard problems will be concentrated around a critical value βc.
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Let us now estimate the complexity (6.37). Let p(ν) be the probability that a randomly
generated assignment of the ν first variables satisfies all the constraints involving these vari-
ables. We then have MA = p(νA)dνA and MAB = p(νAB)dνAB while it is shown in [CGW00]
that:

p(ν) ≈ d−νAB(β/βc)(ν/νAB)k
. (6.45)

Eq. (6.37) becomes

T = O

(√
dνA +

√
dνAB [1−(β/βc)(νA/νAB)k ]

√

dνAB (1 − β/βc)

)

(6.46)

or equivalently, with a =
√
dνAB and y = νA/νAB :

T = O

(

ay + a
1− β

βc
yk

a1− β
βc

)

. (6.47)

We now optimize y, the fraction of variables for which we perform a partial search, to minimize
the computation time. We have to solve the equation

β

βc
kyk−1 = a

β
βc

yk+y−1 (6.48)

which, for large a (that is large νAB) approximately reduces to

β

βc
yk + y − 1 = 0. (6.49)

The solution of this equation α (0 ≤ α ≤ 1) corresponds to the optimal partial search we may
perform such that the complexity grows with the smallest power in d for νAB → ∞. This
optimal computation time may then be written as

T = O

(

2aα

a
1− β

βc

)

= O





√
dανAB

√

dνAB(1− β
βc

)



 . (6.50)

Let us now consider the hardest problems for which β ≈ βc. For these problems, the com-
plexity reads

T = O
(√

dανAB

)

, (6.51)

which we may immediately compare to the complexity of an unstructured quantum search,

i. e. O
(√

dνAB

)

. The gain in the exponent α depends on k through Eq. (6.49) For instance,

we find α = 0.62 for k = 2, α = 0.68 for k = 3 and α→ 1 when k → ∞.
As already pointed out, we recover exactly the same complexity as with the discrete

structured search algorithm exposed in [CGW00], but with fewer hypotheses as, due to the
particular form of the required running time for an adiabatic algorithm (4.33), the number
of solutions derived from Eq. (6.45) must only give an order of magnitude while it must be a
good approximation for its discrete analogue. Moreover, as seen in Section 6.2, the numbers
of solutions MB/mA

do not have to be equal for all mA’s, but only of the same order.
To compare these results with a classical algorithm, let us consider a specific problem,

namely the satisfiability of boolean formulas in conjunctive normal form, or k-SAT. For 3-
SAT, which is known to be NP-complete, some of the best classical algorithms have a worst-
case running time that scales as O

(
20.4νAB

)
[Sch99, HSSW02], while, as α = 0.68 for k =
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3, our quantum adiabatic algorithm has a computation time of order O
(
20.34νAB

)
, which

is a slight improvement. Nonetheless, let us recall that there is a distinction between the
worst-case complexity often used for characterizing classical algorithms and the average-case
complexity for hardest problems (β = βc) used here for characterizing our quantum algorithm.
However, let us also notice that this scaling could be further improved by using several levels
of nesting, i.e. by replacing the preliminary search over the primary variables by a another
nested structured search (see the analysis of the discrete counterpart of this technique in the
Appendix of [CGW00]).

Summary

In this chapter, we have introduced a new quantum search algorithm combining the approach
based on local adiabatic evolution exposed in Chapter 4 and the nesting technique introduced
in [CGW00]. It allows one to adiabatically solve structured search problems with an improved
complexity over a näıve adiabatic search that would not exploit the structure of the problem.

The basic idea is to perform a preliminary adiabatic search over a reduced number of
variables of the problem in order to keep only a superposition of the assignments that respect
the constraints of this partial problem, and then to complete these partial solutions by finding
satisfying assignments for the remaining variables. We have seen that to implement this
algorithm, the global adiabatic evolution (stage C) has to be discretized, which makes it
possible to nest the preliminary search (stages A and B) into the global one. Each step of
the algorithm requires to alternate partial adiabatic searches backwards and forwards with
global search operations.

A complexity analysis shows that the average computation time of this adiabatic algo-
rithm, although still exponential, grows with a reduced exponent in the problem size compared
to quantum unstructured search algorithms. We illustrated this speed-up for a NP-complete
problem such as 3-SAT.



Chapter 7

Robustness to noise

Introduction

Recently, there has been a growing interest in the study of Hamiltonian-based quantum
algorithms, as opposed to the standard circuit-based paradigm of quantum computing. In
addition to the analog and adiabatic quantum search exposed in previous chapters, this
includes many other algorithms such as the algorithms by quantum adiabatic evolution for
satisfiability problems [FGGS00, FGG+01] or the search algorithms by continuous quantum
walks [FG98b, CCD+03]. While, as shown in Chapter 5, these algorithms may be translated
into circuit-based algorithms so that they can be implemented on a “standard” quantum
computer, another approach is to consider a “continuous” quantum computer specifically
designed to run this type of algorithm. As such a computer could be subject to noise, it seems
important to study how well it behaves in the presence of noise. Until now, this has only been
done for some specific algorithms subject to some very particular noise. For instance, Childs
et al have considered the case of the quantum adiabatic algorithm for satisfiability problems
[FGG+01] in the presence of an error on the ideal Hamiltonian defined by an extra term
with random parameters but which deterministically evolves in time [CFP02]. While this was
a numerical analysis, Shenvi et al analytically studied the effect of a Markovian stochastic
variable perturbing the amplitude of the oracle Hamiltonian [SBW03] in the specific case of
the analog analogue of Grover’s algorithm [FG98a]. The purpose of this chapter is to derive
analytical results for any Hamiltonian-based algorithm perturbed by a general Hamiltonian
error described by a stationary gaussian random process.

7.1 Noise model

First of all, let us properly define the problem we will study. Suppose we have an ideal
Hamiltonian-based algorithm:

i~
d

dt
|ψ̄(t)〉 = H̄(t)|ψ̄(t)〉. (7.1)

At the end of the computation, t = T , we should obtain the state |ψ̄(T )〉 that after some
measurement defines the output of the algorithm. Now suppose a perturbation εh(t) adds to

73
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the ideal Hamiltonian1:

H(t) = H̄(t) + εh(t). (7.2)

Instead of |ψ̄(T )〉 we will get at the end of the computation a different state |ψ(T )〉. The
problem is to evaluate the error probability

perr = 1 − |〈ψ̄(T )|ψ(T )〉|2 (7.3)

introduced by the perturbation.

In order to derive analytical results, we will have to make a few assumptions about the
noise εh(t). First of all, we limit ourselves to a small amplitude noise with ε � 1 such that
we may use perturbation theory.

We also assume that in any basis |ϕk〉(k = 0, . . . , N − 1) of the N -dimensional Hilbert
space where the computation takes place, the matrix elements of h(t) are normal random
variables:

hkl(t) = 〈ϕk|h(t)|ϕl〉 ∈ N (0, σkl). (7.4)

This implies that the matrix h(t) is drawn from a Gaussian Orthogonal Ensemble (GOE),
and that the standard deviation σkl of its different elements depend on an overall standard
deviation σ such that σ2

kl = (1+δkl)σ
2 (see [Stö99] for details about random matrix ensembles).

Moreover, two different elements of a GOE matrix are independent:

〈hkl(t)hk′l′(t)〉 = 0

⇐⇒ (7.5)

(k, l) 6= (k′, l′) and (k, l) 6= (l′, k′).

Even if this hypothesis does not seem to be based on any physical source of error, it could
be justified by considering that the noise is caused by many different sources of error which,
combined together and due to the central-limit theorem, would finally result in a random
Hamiltonian drawn from a GOE.

Furthermore, we assume that the random matrix elements hkl(t) are distributed in time
as a stationary random process with an autocorrelation function

R(τ) = 〈hkl(t+ τ)hkl(t)〉 . (7.6)

For instance, a very typical noise model is a white noise with a high-frequency cut-off ω0 (see
for instance [Agr92]) which yields

R(τ) = σ2
kl

sinω0τ

ω0τ
. (7.7)

However, to be slightly more general, we will only assume that the autocorrelation function
is of the type

R(τ) = σ2
klf(ω0τ), (7.8)

where f(x) verifies f(−x) = f(x), f(x) ≤ f(0) = 1, and some other regularity conditions (see
next sections).

1Throughout this chapter, ideal quantities will be overlined, while noisy quantities not.
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Finally, we would like to keep a constant signal-to-noise ratio as N increases, that is, the
eigenvalues of h(t) should scale as the ones of H̄(t). Since Wigner’s semi-circular law implies
that the density of eigenvalues of GOE matrices for N � 1 is given by

ρ(E) −→
N→∞

{
1

4σ2π

√
4σ2N −E2 if |E| ≤

√
4σ2N

0 otherwise,
(7.9)

as plotted in Fig. 7.1, this will be the case if we suppose that σ2 = Ē2/4N where Ē is of the
order of the eigenvalues of H̄(t).

−
√

4σ2N 0
√

4σ2N

ρ(E)

E

6

-

Figure 7.1: Wigner’s semi-circular law: density of eigenvalues of the matrices in the Gaussian Orthog-
onal Ensemble (in the limit N → ∞).

7.2 Noisy time-independent Hamiltonian evolution

7.2.1 Perturbation theory

Let us study the simplest case of a time-independent Hamiltonian evolution. The solution of
the ideal Schrödinger equation will be

|ψ̄(t)〉 =
∑

k

b̄ke
−i

Ekt

~ |ϕk〉, (7.10)

where |ϕk〉 and Ek are the eigenstates and eigenvalues of the ideal Hamiltonian and the b̄k’s
follow from the initial conditions.

By use of perturbation theory, we now study the effect of a small time-dependent pertur-
bation εh(t) on the ideal Hamiltonian H̄. Developing the solution of the perturbed equation
in the basis formed by the solutions of the ideal equation,

|ψ(t)〉 =
∑

k

bk(t)e
−i

Ekt

~ |ϕk〉, (7.11)
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and introducing into the Schrödinger equation, we get

ḃk = −i ε
~

∑

l

ble
iωklthkl(t), (7.12)

where ωkl = (Ek − El)/~. Using the same initial state as for the ideal evolution, bk(0) = b̄k,
we have

bk(t) = b̄k − i
ε

~

∑

l

∫ t

0
bl(t1)e

iωklt1hkl(t1)dt1. (7.13)

As bl(t1) appears in the right member, this is only an implicit solution. However, similarly
to the adiabatic approximation considered in Chapter 3.2.2, we may solve the system by
using this implicit solution recursively, building step by step an expansion of bk(t) in terms
of increasing order in ε. This is standard perturbation theory, which we now apply to our
problem in order to evaluate the error probability perr introduced by the perturbation. As the
matrix elements of h(t) are random variables, so will be perr, such that we may only derive
statistics about its value. Let us consider its mean 〈perr〉. Using our assumption that h(t) is
a random matrix drawn from a GOE ensemble, we see that

〈perr〉 = 1 −
〈
|〈ψ̄(T )|ψ(T )〉|2

〉
= 1 −

〈∣
∣
∣
∣
∣

∑

k

b̄∗kbk(t)

∣
∣
∣
∣
∣

2〉

=
ε2

~2







∑

k,l,m

b̄∗k b̄m

∫∫ T

0
dt1dt2e

i(ωklt1+ωlmt2) 〈hkl(t1)hlm(t2)〉

−
∑

k,l,k′,l′

b̄∗k b̄lb̄
∗
k′ b̄l′

∫∫ T

0
dt1dt2e

i(ωklt1+ωk′l′ t2) 〈hkl(t1)hk′l′(t2)〉






+O(ε3)

= ε2







∑

k,l

|b̄k|2(1 − |b̄l|2)I−kl −
∑

k 6=l

(b̄∗k b̄l)
2I+

kl






+O(ε3), (7.14)

where we have introduced the integrals

I±kl =
σ2

kl

~2

∫∫ T

0
dt1dt2e

iωkl(t1±t2)f (ω0(t1 − t2)) (7.15)

that characterize the coupling between states |ϕk〉 and |ϕl〉 induced by the perturbation. The
problem now is to evaluate these integrals. We see that apart from the noise model defined
by the autocorrelation function f(x) and the high-frequency cut-off ω0, they will depend on
the computation time T and the spectrum of the ideal Hamiltonian through the frequencies
ωkl. These will vary for different problems but we may derive some general bounds.

First of all, as these are integrals over a domain of size T 2 and as the amplitude of their
integrand is bounded by 1, we immediately see that whatever the values of ωkl and ω0 will
be, the coupling strength will be bounded as

|I±kl| ≤
σ2

klT
2

~2
. (7.16)

Furthermore, let us note that the I+
kl couplings only appear between the eigenstates that

are initially populated, and may therefore be considered as the interferences caused by the
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noise between these states. As there are in general a small fixed number of eigenstates |ϕk〉
that are populated in the algorithm (b̄k 6= 0), Eq. (7.14) shows that there will be a fixed
number of I+

kl terms in 〈perr〉 while the number of I−kl, representing the coupling of initially
populated states to all others, will in general grow as the dimension N of the Hilbert space.
So, the average error probability 〈perr〉 will mostly depend on the I−kl integrals and that is why
we now focus on these. Changing the integration variables to u = t1 − t2 and v = t1 + t2, we
get

I−kl = 2
σ2

kl

~2

∫ T

0
dv

∫ v

0
du cos(ωklu)f(ω0u), (7.17)

that is the integral of a modulated oscillation. For a white noise (7.7), we get by direct
integration

I−kl =
σ2

kl

~2ω0

[
1 − cos(ωkl − ω0)T

ωkl − ω0
+ T Si(ωkl − ω0)T

−1 − cos(ωkl + ω0)T

ωkl + ω0
+ T Si(ωkl + ω0)T

]

, (7.18)

where Si(x) is the sine integral function

Si(x) =

∫ x

0

sinx′dx′

x′
. (7.19)

Depending on the value of ω0, we may consider two limiting regimes: for a high cut-off
frequency ω0, we get

I−kl =
σ2

kl

~2ω2
0

O

((

1 +
ωkl

ω0

)

ω0T

)

, (7.20)

while for a low cut-off frequency ω0, we have

I−kl =
σ2

kl

~2ω2
kl

O

(

1 +
ω0

ωkl

)

. (7.21)

More generally, we obtain similar results for a general function f(x). In the first regime, as
usually the autocorrelation function R(τ) tends to zero as τ increases (hkl(t + τ) becomes
less and less correlated with hkl(t)), Eq. (7.20) follows from the approximation cosωklu =
1 + O(ωkl/ω0) whenever f(ω0u) is not negligible. In the second regime, we must integrate
a rapidly oscillating function, as exposed in Appendix A.4. Under very general regularity
conditions2 for f(x), we may use Lemma 5 twice, and finally recover Eq. (7.21). It is in-
teresting to note that in the low frequency case, the coupling integral does not depend on
the computation time T . We will see that, at least for the algorithms considered here, this
causes a very different behavior for these two regimes, that is, it will determine whether the
algorithm is scalable or not.

2Let us note that in order to satisfy the hypotheses of Lemma 5, f(x) has to be infinitely differentiable.
While this is generally the case for typical noise models such as white noise, f(x) may not be continuous in
x = 0 for some specific models, such as f(x) = exp(−|x|) that could follow from a Poissonian process. This
discontinuity in the first derivative of f(x) is actually linked to the fact that the spectral density of the noise
does not rapidly converge to zero for very high frequencies and therefore that the noise has some probability to
vary arbitrarily fast. We will not consider this case in details but only mention that this will yield a drastically
different behavior in the regime of low ω0, i.e. a noise that varies slowly, at least on average.
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7.2.2 Analog quantum search

Let us apply this noise theory to Farhi and Gutmann’s analog quantum search (exposed in
Section 2.4), consisting in the application of the time-independent ideal Hamiltonian H̄an =
H0 +Hf , where3

H0 = Ē(IN − |ψ0〉〈ψ0|) (7.22)

Hf = Ē(IN − |m〉〈m|), (7.23)

during a time

T an =
π~

2Ē

√
N (7.24)

on the initial state

|N 〉 =
1√
N

N−1∑

k=0

|k〉. (7.25)

In order to study the robustness of this quantum algorithm versus a noise of the type
defined in Sec. 7.1, let us first consider the spectrum of the ideal Hamiltonian H̄an = H0 +Hf

(see Fig. 7.2). Its first two eigenvalues E0 = (1 − x)Ē and E1 = (1 + x)Ē, where x = 1/
√
N ,

are non-degenerate and correspond to the ground and first-excited states,

|ϕ0〉 =

√

1 + x

2
|m〉 +

x
√

2(1 + x)

∑

k 6=m

|k〉 (7.26)

|ϕ1〉 =

√

1 − x

2
|m〉 − x

√

2(1 − x)

∑

k 6=m

|k〉, (7.27)

whereas its third eigenvalue Ek = 2Ē is N − 2 times degenerate.
Developing |ψ(t = 0)〉 = |N 〉 in the eigenstates |ϕk〉 of the ideal Hamiltonian H̄, we get

|ψ(0)〉 =

√

1 + x

2
|ϕ0〉 −

√

1 − x

2
|ϕ1〉 (7.28)

and thus the instantaneous state of the ideal algorithm |ψ̄(t)〉 is given by Eq. (7.10) with

b̄0 =

√

1 + x

2
(7.29)

b̄1 = −
√

1 − x

2
(7.30)

b̄k = 0 k 6= 0, 1. (7.31)

Only two states are populated during the ideal algorithm and as I−kl = I−2l(∀ k 6= 0, 1), the
average error probability (7.14) becomes

〈perr〉 = ε2
{
(N − 2)

[
|b̄0|2I−20 + |b̄1|2I−21

]

+|b̄0|2|b̄1|2(I−00 + I−11) + (|b̄0|4 + |b̄1|4)I−01
−2Re

[
(b̄∗0b̄1)

2I+
01

]}
. (7.32)

3We consider the single solution case (M = 1).
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?

Figure 7.2: Spectrum of the ideal Hamiltonian H̄an = H0 +Hf for N = 100.

In this case, the bound (7.16) gives |I±kl(t)| ≤ π2/8. Therefore, only the first term of Eq. (7.32)
representing the coupling of the ground and first excited states (the only ones initially popu-
lated) to the N − 2 others, could grow with N . Let us focus on this term in the two limiting
regimes considered above.

For a high cut-off frequency ω0, Eq. (7.20) yields

I−2l =
Ē

~ω0
O

(
1√
N

(

1 +
Ē

~ω0

))

(l = 0, 1) (7.33)

which should be of order 1/N for 〈perr〉 not to grow with N . This imposes the condition
~ω0 = Ē Ω(

√
N). Therefore, in this regime, the cut-off frequency of the noise must increase

as the square root of the size of the database in order to keep an error of constant order, that
is ~ω0 � Ē

√
N

In the case of a noise with a low cut-off frequency ω0, Eq. (7.21) yields

I−2l =
1

N
O

(

1 +
~ω0

Ē

)

(l = 0, 1), (7.34)

and we conclude that 〈perr〉 will not grow with N as long as ~ω0 � Ē.
We see that the influence of noise is negligible if it varies either very slowly or very rapidly

with respect to Ē/~, where Ē is the energy scale of the problem. For the typical case of
a white noise, the exact integration (7.18) shows that for intermediate values of the cut-off
frequency, ω0 ≈ Ē/~, the noise may grow as

√
N , as displayed in Fig. 7.3. This means that

there is a forbidden band for the cut-off frequency if we want to keep our algorithm robust to
noise. Moreover, let us mention the possibility to recover the results of Shenvi et al [SBW03],
even if their noise model was different as they only considered an error in the magnitude of the
oracle Hamiltonian modelized as a Markovian stochastic variable with Gaussian distribution.
Effectively, we have shown that for a cut-off frequency ω0 of order Ē/~, the error probability
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Figure 7.3: Average error probability (to second order) introduced by the noise modelized as in Sec. 7.1
with autocorrelation function f(x) = sinx/x for the analog search among N = 100 ele-
ments. We see that the error probability stays low as long as ~ω0/Ē . 1 where it shows
a sudden increase. Afterwards, when ~ω0/Ē &

√
N , it tends progressively back to a low

value.

would scale as ε2
√
N for a given signal-to-noise ratio ε. Therefore, in order to keep this error

probability constant, ε should scale as N−1/4, which coincides with the results of [SBW03].

7.3 Noisy adiabatic evolution

7.3.1 Adiabatic approximation

Let us now study the effect of an additional noisy term εh(t) on the slowly time-dependent
Hamiltonian H̄(t) of an adiabatic evolution. In Chapter 3, we had shown that by devel-
oping the quantum state in the basis formed by the instantaneous eigenstates of the ideal
Hamiltonian H̄(t)

|ψ̄(t)〉 =
∑

k

b̄k(t)e
−i

R t
0

Ek(t1)

~
dt1 |ϕk(t)〉, (7.35)

the ideal Schrödinger evolution led to an implicit solution (3.14):

b̄k(t) = δ0k +
∑

l 6=k

∫ t

0
dt1b̄l(t1)e

i
R t1
0 ωkl(t

′
1)dt′1δωkl(t1)akl(s(t1)), (7.36)

where the elements akl(s) are defined in Eq. (3.21) and δ is a “slowness” parameter (see
Chapter 3 for details). In the case of a noisy adiabatic evolution, we may still develop the
solution of the perturbed Schrödinger equation in the basis formed by the instantaneous
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eigenstates of H̄(t),

|ψ(t)〉 =
∑

k

bk(t)e
−i

R t
0

Ek(t1)

~
dt1 |ϕk(t)〉 (7.37)

and, following the lines of the development that led to Eq. (7.36), we find the implicit solution4

bk(t) = δ0k (7.38)

+
1

~

∑

l

∫ t

0
dt1bl(t1)e

i
R t1
0 ωkl(t

′
1)dt′1 [δ~ωkl(t1)akl(s(t1)) − iεhkl(t1)] ,

which is the analogue of Eq. (7.13) for an adiabatic evolution. As for the perturbed time-
independent Hamiltonian evolution, we may build a solution as an expansion in successive
orders of δ and ε by recursive uses of this implicit solution. At first order, it becomes for
k 6= 0:

bk(t) =
1

~

∫ t

0
dt1e

i
R t1
0 ωk0(t

′
1)dt′1 [δ ~ωk0(t1)ak0(s(t1)) − iεhk0(t1)]

+O
(
(δ + ε)2

)
. (7.39)

As before, this first order approximation will be valid if the probability p(t) =
∑

k 6=0 |bk(t)|2 of
hopping to an excited state remains small. Let us evaluate the mean of this error probability
at the end of the evolution t = T using the same model as above for the perturbation h(t).
We have

〈perr〉 = p̄err +
ε2

~2

∑

k 6=0

∫∫ T

0
dt1dt2e

i
R t1

t2
ωk0(t

′)dt′ 〈hk0(t1)hk0(t2)〉

+O
(
(δ + ε)3

)
, (7.40)

where p̄err = O(δ2) is the error probability of the ideal adiabatic evolution. Let us note that
|ϕk(t1)〉 6= |ϕk(t2)〉 in general, such that we do not immediately recover the autocorrelation
function. However, as the different matrix elements of h(t) are independent in a particular
basis, we have:

〈hk0(t1)hk0(t2)〉 = 〈〈ϕk(t1)|h(t1)|ϕ0(t1)〉〈ϕk(t2)|h(t2)|ϕ0(t2)〉〉
= (〈ϕk(t2)|ϕk(t1)〉〈ϕ0(t1)|ϕ0(t2)〉

+〈ϕk(t2)|ϕ0(t1)〉〈ϕk(t1)|ϕ0(t2)〉)
σ2

k0f(ω0(t1 − t2)). (7.41)

If |ϕk(t)〉 varies sufficiently smoothly for 0 ≤ t ≤ T , then the first factor is of order 1 −
O((t1 − t2)2/T 2) such that we may approximate it by 1 as long as ω0T � 1, that is, the noise
varies quickly compared to the adiabatic evolution. In that case, we get for the average error
probability

〈perr〉 = p̄err + ε2
∑

k 6=0

Ik0 +O
(
(δ + ε)3

)
, (7.42)

where the integrals

Ik0 =
σ2

k0

~2

∫∫ T

0
dt1dt2e

i
R t1

t2
ωk0(t

′)dt′f(ω0(t1 − t2)), (7.43)

4In that expression, we assume that akl(s) = 0 for k = l, as the original definition only applied to k 6= l.
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represent the coupling of the ground state to the excited states induced by the perturbation.
Similarly to the noisy time-independent Hamiltonian evolution, the effect of the perturbation
depends on the coupling integrals Ik0 bounded as

|Ik0| ≤
σ2

k0T
2

~2
(7.44)

and that behave as

Ik0 =
σ2

k0

~2ω2
0

O

((

1 +
ωmax

k0

ω0

)

ω0T

)

(7.45)

and

Ik0 =
σ2

k0

~2ωmin
k0

2O

(

1 +
ω0

ωmin
k0

)

(7.46)

in the limiting regimes of very high or very low cut-off frequency ω0, respectively, where
ωmin

k0 ≤ ωk0(t) ≤ ωmax
k0 .

7.3.2 Adiabatic quantum search

The quantum search by local adiabatic evolution was exposed in Chapter 4. Its basic principle
is to apply the Hamiltonian H0 = Ē(IN − |ψ0〉〈ψ0|) to a system prepared in its ground state
|N 〉 and then to progressively switch to the Hamiltonian5 Hf = Ē(IN − |m〉〈m|) where m is
the solution of the search problem in a time of order

T ad =
π~

4δĒ

√
N. (7.47)

The spectrum of the instantaneous Hamiltonian H ad(t) = H̃(s(t)), where H̃(s) = (1−s)H0 +
sHf and s = s(t) is an evolution function that has been optimized such as to reduce the
computation time, has been described in the general case of multiple solutions in Chapter 4.
For a single solution, this boils down to

Ẽ0(s) =
Ē

2

[

1 −
√

1 − 4
N − 1

N
s(1 − s)

]

(7.48)

Ẽ1(s) =
Ē

2

[

1 +

√

1 − 4
N − 1

N
s(1 − s)

]

(7.49)

Ẽk(s) = Ē k 6= 0, 1 (7.50)

as plotted in Fig. 7.4.
Let us now consider that some noise, modelized as described in Section 7.1, perturbs the

evolution. Eq. (7.42) then reads

〈perr〉 ≤ p̄err + ε2 [I10 + (N − 2)I20] +O
(
(δ + ε)3

)
, (7.51)

where Ik0 ≤ π2/64δ2 as a result of Eq. (7.44). Let us stress that while it was the excitation
probability to the first excited state only that was critical for the ideal algorithm according to
the adiabatic condition, in this case it is the coupling of the ground state to all excited states

5We also consider the single solution case (M = 1).
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Ẽ1

Ẽk
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Figure 7.4: Instantaneous eigenvalues of H̃(s) for N = 100.

that could make the algorithm fail, since their number grows as the size of the database N .
Moreover, this general bound already suggests that the coupling integrals Ik0 and therefore
the error probability could increase when the evolution slows down (δ decreases), which means
there must be a compromise between a slower evolution closer to adiabaticity and a faster
evolution more robust to noise.

As before, let us consider the two limiting regimes of a very high or a very low cut-off
frequency. In the first case, Eq. (7.45) yields

Ik0 =
Ē

~ω0
O

(
1

δ
√
N

(

1 +
Ē

~ω0

))

(∀ k 6= 0), (7.52)

exactly as for the analog quantum search, except for the presence of a factor 1/δ, which shows
that in order to keep the algorithm robust to noise as the size of the database N grows, the
cut-off frequency has to increase not only as

√
N grows, but also as the evolution slows down.

Indeed, we see that the average error probability (7.42) will stay of order O(δ2) as long as
NI20ε

2 = O(δ2), so that

~ω0 = Ē Ω

(
ε2

δ3

√
N

)

. (7.53)

When the cut-off frequency becomes very low (~ω0 � Ē), Eq. (7.46) implies that the
coupling integrals behave as

Ik0 =
1

N
O

(

1 +
~ω0

Ē

)

(7.54)

for all excited states except the first one (i. e. k ≥ 2). For the first excited state (k = 1), we
have ~ωmin

10 ∼ Ē/
√
N so Eq. (7.46) does not yield a useful result. Instead, we simply use the

general bound I−k0 ≤ π2/(64δ2). Therefore, the error probability will remain low as long as
~ω0 � Ē but also at the condition that ε = o(δ).
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Basically, we recover the same effects as for the analog quantum search, i.e. the influence
of noise becomes negligible only in the case of a very high or a very low cut-off frequency,
apart from the influence of the slowness parameter δ. Indeed, while decreasing δ gets the
ideal evolution closer to adiabaticity and therefore reduces the intrinsic error probability, in
the presence of noise it imposes either that the noise amplitude ε is lower (in both regimes of
a high or low cut-off frequency) or that the cut-off frequency ω0 is even larger in that specific
regime.

Summary

We have studied the robustness of Hamiltonian-based algorithms to a noise modelized as a
Hamiltonian whose elements are stationary Gaussian random processes. We have shown that,
apart from the influence of the slowness parameter δ in the case of the adiabatic computa-
tion, this robustness is essentially similar for adiabatic and time-independent Hamiltonian
algorithms. These algorithms are resistant to noise as long as the cut-off frequency of the
noise is either very high or very low, which is in agreement with the numerical study per-
formed by Childs et al in [CFP02]. Moreover, even if the noise model is rather different, it
also agrees with the results of Shenvi et al [SBW03]. The fact that the forbidden band for the
cut-off frequency increases towards higher frequencies when N raises causes these algorithms
not to be scalable in the regime of a high cut-off frequency. Therefore, in that case, some
kind of error correction would be needed when the size of the problem becomes too large.

However, in the case of a low cut-off frequency, the situation is quite different as the error
probability stays small as soon as the cut-off frequency is low enough with respect to the
energy scale of the problem, even when the size of the problem increases, at least for the case
of the Grover search. This fault tolerance may be explained by the fact that the spectral
density of noise will not include frequencies close to resonances and thus will not efficiently
couple different eigenstates of the ideal Hamiltonian. We have shown that it is not the possible
excitation from the ground state to one particular state that can make the algorithm fail but
the fact that the dimension of the Hilbert space increases with the size of the problem and
therefore the number of states that could be accidentally populated as well. This means, in
the case of Adiabatic Computation, that even if the gap between the ground and first excited
states decreases, the algorithm will remain robust to a noise with a low cut-off frequency even
if this frequency remains constant, as long as the gap between the ground states and the other
excited states remain lower bounded. Therefore, the algorithm would be scalable in the case
of a low cut-off frequency as long as the amplitude of the ideal Hamiltonian is large enough
compared to the frequencies involved in the noise. Of course, here we make the assumption
that the signal-to-noise ratio remains essentially constant when the size of the Hilbert space
where the computation takes place becomes large, which practically may not be the case.
Therefore, even in this regime, it would be interesting to devise error correction techniques
for this particular type of algorithm. This is a possible direction for further investigation of
Hamiltonian-based quantum algorithms.



Chapter 8

Conclusion

Ten years after the discovery by Peter Shor of an efficient quantum algorithm for factorization,
Quantum Computation is still in its infancy. However, it is evolving fast and, regularly, new
ideas are found, which may ultimately lead to the realm of quantum computers.

One of these ideas, introduced by Farhi et al in 2000 [FGGS00], is to use adiabatic evo-
lution to solve search problems . The basic concept is to prepare the system in the known
ground state of a Hamiltonian, and then slowly modify this Hamiltonian to another one whose
unknown ground state encodes the solution of the problem that has to be solved. If this switch
is performed slowly enough, the Adiabatic Theorem then ensures that the system will end up
in a state close to this solution state. More precisely, the evolution rate is essentially limited
by the minimal gap between the ground and first excited state, in that the evolution has to
slow down when the gap becomes smaller.

While this approach was originally developed aiming at solving NP-complete problems
such as the satisfiability of boolean formulas, it may also be adapted to other problems, such
as the search in an unstructured database, for which Grover devised a quantum algorithm
exhibiting a quadratic speed-up with respect to any classical algorithm. Unfortunately, the
adiabatic quantum algorithm as proposed by Farhi et al was unable to reproduce this quadratic
speed-up. In this thesis, we have demonstrated the possibility to achieve this quadratic speed-
up by optimizing the evolution rate of the Hamiltonian constantly over time, following the
local variations of the gap and therefore defining a non-linear evolution between the initial
and final Hamiltonian.

While Grover’s algorithm is expressed in the –more standard– quantum circuit model
of computation, this quantum search by adiabatic evolution belongs to a different type of
quantum algorithms, where the state of the quantum register evolves continuously over time
under the influence of a Hamiltonian. As a matter of fact, Farhi et al have introduced another
Hamiltonian-based algorithm for Grover’s problem, which they called the “analog analogue”
of Grover’s algorithm. In this thesis, we have shown how to translate these Hamiltonian-
based algorithms into circuit-based algorithms, keeping the quadratic speed-up of Grover’s
algorithm. This is an important result as it proves that viewing these methods as quantum
algorithms and their running time as a measure of their complexity was legitimate. This
also suggests that the adiabatic approach could be useful even to design new circuit-based
quantum algorithms. Moreover, we have shown that in the quantum circuit model, these
three algorithms become very similar, but nonetheless remain three distinct algorithms. More
precisely, the optimization of the evolution rate following the gap turns out to make the state
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rotate from the uniform superposition to the solution state at a constant angular velocity. It
would be worth investigating if such a link between the gap and the rotation of the state in
the Hilbert space could be generalized to other problems, such as satisfiability problems for
which only a numerical study of the complexity was until now possible as very few analytical
results are known.

The optimization of the evolution rate leading to the quadratic speed-up that we obtained
here was possible because the evolution of the gap was independent of the solution of the
problem. As long as this symmetry property is satisfied, the same idea could be applied
to other problems. In particular, we showed that using the adiabatic quantum search as a
“subroutine”, we could solve structured problems defined in the very generic form of finding
an assignment for a set of variables that satisfies a set of constraints. The idea, originally
developed by Cerf, Grover and Williams in the context of the standard circuit-based version
of Grover’s algorithm, consists in nesting partial searches over a limited set of variables into
a global search over the whole set of variables. In order to do so, the adiabatic evolution
realizing the global search has to be discretized, and the algorithm finally results in a series
of steps that alternate partial adiabatic searches backwards and forwards with global search
operations. The complexity of this algorithm, although still exponential, then grows with
a reduced exponent compared to quantum unstructured search algorithms. An advantage
of the adiabatic approach over its circuit-based counterpart is that it does not require some
hypotheses on the distribution of the number of solutions and is therefore more general. It
could be interesting to study if this property of adiabatic search could be useful for algorithms
with multiple levels of nesting.

While we have seen that the quantum algorithms by adiabatic evolution may be translated
by discretization to the quantum circuit model and therefore be implemented on a “standard”
quantum computer, another approach would be to build another type of quantum computer,
that would be specifically designed for such a type of quantum algorithms and therefore
would evolve continuously in time, under the influence of a Hamiltonian that depends on the
computation. Practically, such a computer would be subject to errors, for instance in the
form of perturbations of the ideal Hamiltonian. It seems therefore necessary to study the
influence of such a noise on the computation. To our knowledge, this study had only been
done to date for some specific algorithms and for some very particular types of noise, and it
mostly involved numerical analysis. In this thesis, we have defined a perturbation model based
on white noise with high frequency cut-off, following models widely used in various domains
of science. This made it possible to derive analytical results, using first order perturbation
theory. Our conclusions is that the algorithm will be robust if the cut-off frequency is either
very high or very low.

This latter case may easily be understood intuitively as it means that the spectral density
of the noise does not include resonating frequencies with the computer Hamiltonian, and
therefore will not couple the ground state to excited states. In that regime, the algorithm will
therefore be scalable, at least within our hypotheses, the most restrictive being the assumption
that the signal-to-noise ratio stays constant when the size of the system increases. Practically,
this would probably not be the case and therefore it would be necessary to derive an error
correction method.

In the other regime, corresponding to a very large cut-off frequency, the algorithm is not
robust anymore as the cut-off frequency has to be larger as the size of the system increases.
The main reason is that the algorithm does not fail because of the excitation to the first
excited state only, as was the case for an ideal adiabatic evolution, but because of the possible
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excitation to the exponentially large number of excited states. Even more in this regime, we
see that error correction techniques are required to practically use quantum computers based
on an adiabatic evolution, as otherwise they would not be scalable. Moreover, it would be
interesting to study if our results agree with another typical model of error for quantum
computers, namely decoherence.

To conclude, let us emphasize that the Adiabatic Quantum Computation is a young and
promising alternative to circuit-based Quantum Computation, and that in parallel with our
works, other important results have been developed over the last years, probably the most
significant one being the proof that the Adiabatic Quantum Computation is computationally
equivalent to the circuit-based Quantum Computation [AvDK+04]. This is of course an-
other, very strong, motivation to try to derive efficient quantum algorithms from an adiabatic
approach.



88 CHAPTER 8. CONCLUSION



Appendix A

A few useful lemmas

A.1 Error on the unitary operator induced by an erroneous

Hamiltonian

In this thesis, we sometimes need to approximate a Hamiltonian H(t) by another close Hamil-
tonian H ′(t). The unitary operator U ′(T ) induced by the evolution under H ′(T ) will thus of
course exhibit an error with respect to the original unitary operator U(T ) induced by H(T ).
The purpose of the following lemma is to derive an upper bound on this error.

Lemma 1 Let H(t) and H ′(t) be two time-dependent Hamiltonians for 0 ≤ t ≤ 1 and let
U(T ) and U ′(T ) be the respective unitary operators that they induce. If the difference between
the Hamiltonians is limited by |||H(t) −H ′(t)||| ≤ e(t), then the distance between the induced
operators is bounded by

|||U(T ) − U ′(T )||| ≤
√

2

~

∫ T

0
e(t)dt. (A.1)

To prove this lemma, let us consider the trajectories |ψ(t)〉 and |ψ ′(t)〉 induced by H(t) and
H ′(t) starting from a common initial state |ψ(0)〉 = |ψ ′(0)〉 = |ψ0〉. We have

d

dt
‖|ψ(t)〉 − |ψ′(t)〉‖2 =

2

~
Im
[
〈ψ(t)|H(t) −H ′(t)|ψ′(t)〉

]
(A.2)

≤ 2

~
e(t) (A.3)

which gives after integration from t = 0 to t = T , with the initial condition |ψ(0)〉 = |ψ ′(0)〉,

‖|ψ(T )〉 − |ψ′(T )〉‖2 ≤ 2

~

∫ T

0
e(t)dt (A.4)

or equivalently

‖U(T )|ψ0〉 − U ′(T )|ψ0〉‖ ≤
√

2

~

∫ T

0
e(t)dt. (A.5)

The fact that |ψ0〉 is arbitrary concludes the proof.
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A.2 Error introduced by successive erroneous unitary opera-
tors

The error introduced by the application of a sequence of unitary operators U ′
k as an approx-

imation of another sequence Uk may be evaluated by the following lemma:

Lemma 2 If Uk and U ′
k (k = 1, . . . ,K) are unitary operators on some Hilbert space H, then

|||
K∏

k=1

Uk −
K∏

k=1

U ′
k||| ≤

K∑

k=1

|||Uk − U ′
k||| (A.6)

where
∏K

k=1 Uk = UKUK−1 . . . U2U1.

We prove this lemma by recurrence using at each step the inequality

|||UaUb − U ′
aU

′
b||| ≤ |||Ua − U ′

a||| + |||Ub − U ′
b||| (A.7)

that is readily derived from

UaUb − U ′
aU

′
b = (Ua − U ′

a)
Ub + U ′

b

2
+
Ua + U ′

a

2
(Ub − U ′

b). (A.8)

This inequality immediately shows that the lemma is true for K = 2, and that if it is true for
K − 1, so will it be for K:

|||
K∏

k=1

Uk −
K∏

k=1

U ′
k||| ≤ |||UK − U ′

K ||| + |||
K−1∏

k=1

Uk −
K−1∏

k=1

U ′
k||| (A.9)

≤
K∑

k=1

|||Uk − U ′
k|||. (A.10)

A.3 Unitary operator differences and error probabilities

In this thesis, we often consider errors in the computation as differences of states or unitary
operators, as these are generally easier to evaluate. However, it is clear that physically only
the state inner products are relevant. The following lemma allows us to derive a bound on
the inner products from the unitary operator differences.

Lemma 3 Let U and U ′ be two unitary operators acting on a Hilbert space H and |ψ0〉 be a
state in H. If |ψ〉 = U |ψ0〉 and |ψ′〉 = U ′|ψ0〉, then

1 − |〈ψ′|ψ〉|2 ≤ |||U − U ′|||2 (A.11)

The proof of this lemma is rather straightforward. As

||||ψ〉 − |ψ′〉|||2 = 2(1 − Re(〈ψ′|ψ〉)) (A.12)

≥ 2(1 − |〈ψ′|ψ〉|), (A.13)
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we have

1 − |〈ψ′|ψ〉|2 ≤ 1 −
(

1 − 1

2
||||ψ〉 − |ψ′〉|||

)2

(A.14)

≤ ||||ψ〉 − |ψ′〉|||2 (A.15)

= |||(U − U ′)|ψ0〉|||2 (A.16)

≤ |||U − U ′|||2. (A.17)

A.4 Integration of an oscillating function

In this appendix, we give a useful tool to evaluate integrals of an oscillating function such as

∫ b

a
dxF (x)eiωx. (A.18)

The basic idea relies on Riemann-Lebesgue’s lemma:

Lemma 4 (Riemann-Lebesgue) If F (x) is an integrable function on [a, b], then

lim
ω→∞

∫ b

a
dxF (x)eiωx = 0.

This lemma suggests that the integral (A.18) will be relatively small if ω is sufficiently
large. The purpose of this appendix is to quantify this idea.

First of all, as long as F (x) is differentiable on [a, b], we may integrate (A.18) by parts:

∫ b

a
dxF (x)eiωx = − i

ω

[
F (x)eiωx

]b

a
+
i

ω

∫ b

a
dx
dF

dx
(x)eiωx,

where [f(x)]ba = f(b) − f(a), and, using this last equation iteratively, we show that for an
N -time differentiable function F (x) on [a, b],

∫ b

a
dxF (x)eiωx = −

N−1∑

n=0

(
i

ω

)n+1 [dnF

dxn
(x)eiωx

]b

a

+

(
i

ω

)N ∫ b

a
dx
dNF

dxN
(x)eiωx. (A.19)

The order of the error introduced by neglecting the last term may be evaluated as follows:

∣
∣
∣
∣
∣

(
i

ω

)N ∫ b

a
dx
dNF

dxN
(x)eiωx

∣
∣
∣
∣
∣
≤ 1

ωN

∫ b

a
dx

∣
∣
∣
∣

dNF

dxN
(x)

∣
∣
∣
∣
. (A.20)

We see that the accuracy of this approximation increases with the oscillation frequency ω.
Moreover, if (1/ωN )dNF/dxN → 0 for N → ∞, this error approaches zero as N increases
and we prove the following lemma:



92 APPENDIX A. A FEW USEFUL LEMMAS

Lemma 5 Let the function F (x) be infinitely differentiable on [a, b]. If

1

ωN

dNF

dxN
(x) −→

N→∞
0 ∀ x

for some real ω, then

∫ b

a
dxF (x)eiωx = −

∞∑

n=0

(
i

ω

)n+1 [dnF

dxn
(x)eiωx

]b

a

.

While this result is helpful to study a time-independent Hamiltonian evolution, in the case
of an adiabatic evolution the typical frequencies become time-dependent. However, using the
same method, we easily generalize this lemma to the case of a varying frequency ω(x).

Lemma 6 Let the function F (x) be infinitely differentiable on [a, b]. If

1

ω(x)N

dNF

dxN
(x) −→

N→∞
0 ∀ x

for some real differentiable function ω(x) on [a, b], then

∫ b

a
dxF (x)ei

R x
0

ω(x′)dx′

=

∞∑

n=0






−
[(

i

ω(x)

)n+1 dnF

dxn
(x)ei

R x
0

ω(x′)dx′

]b

a

+

∫ b

a
dx

d

dx

(
i

ω(x)

)n+1 dnF

dxn
(x)ei

R x
0 ω(x′)dx′

}

.



Appendix B

Optimal estimation of quantum
states from finite ensembles

Introduction

The emerging field of Quantum Information Theory essentially aims at providing a quantita-
tive meaning to the fact that information is physical. In particular, two central questions of
this discipline are: ”How much information can be encoded in a finite quantum ensemble?”
and ”What measurements should one use in order to retrieve this information?”.

In the context of measurement, a fundamental question, raised by Peres and Wooters
[PW91], is whether more can be learned about an ensemble of identically prepared particles
by performing a measurement on all the particles together, rather than by performing separate
measurements on each particle.

One of the simplest ways to address this question was proposed by Massar and Popescu
[MP95], in the form of a game between two players, Alice and Bob. Alice secretly prepares
N copies of a quantum state (here a qubit, that is a spin 1/2 particle state) and sends them
to Bob. With the only clue that all copies are in the same state, Bob may then perform some
measurement to guess this state. The simplest strategy would be to separately measure each
copy in some basis. It is then clear that in the limit N → ∞, Bob may estimate the state
with arbitrary large precision. However, Massar and Popescu showed that in the case of a
finite ensemble, the optimal strategy was a collective measurement on all the copies, in the
form of a continuous positive-operator-valued measure (POVM). While this measurement is
theoretically optimal, it is unfortunately not physically realizable (it yields an infinite number
of possible results). Nevertheless, it was also shown that finite POVM’s achieving the same
fidelity should exist. Following this, Derka et al devised a universal algorithm to build such
a finite POVM for all values of N [DBE98]. However, the POVM’s they derived were not
minimal in the sense that they did not yield a minimal number of outcomes. On the other
hand, Latorre et al proposed mathematical tools to derive minimal POVM’s, but could only
achieve it up to N = 7 [LPT98].

In this chapter, we show that the problem of finding finite optimal POVM’s is actually
equivalent to a simply-stated mathematical problem, namely the definition of a Gauss quadra-
ture on the sphere. It allows us to easily derive optimal finite, though not minimal, POVM’s
for all N . Furthermore, with the help of mathematics literature dealing with the problem of
the Gauss quadrature on the sphere, we can give a (close to) minimal solution up to N = 131.
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B.1 Problem

Let us state the problem more precisely. Alice prepares N copies of a spin 1/2 particle state
(or qubit)

|Ω〉 = cos
θ

2
| ↑〉 + eiφ sin

θ

2
| ↓〉, (B.1)

pointing in a direction Ω = (θ, φ) she chooses at random with a uniform distribution on the
Bloch sphere. She then sends the collective state |ψ〉 = |Ω〉⊗N to Bob who has to estimate Ω.
If the state he guesses is |Ωg〉, he achieves a score |〈Ωg|Ω〉|2. Bob aims at achieving the best
average score

S =
1

4π

∫

dΩ
∑

g

p(Ωg|Ω)|〈Ωg|Ω〉|2 (B.2)

where p(Ωg|Ω) denotes the conditional probability of Bob to get a measurement outcome Ωg

when Alice sends the state |Ω〉⊗N .

B.2 Continuous POVM

The smallest Hilbert space describing the states |Ω〉⊗N is the symmetric subspace of the
Hilbert space of N qubits, H

⊗N
+ (that is the subspace of maximal total spin S = N/2). As

any measurement on H
⊗N
+ , the measurement used by Bob is a POVM describable by a set of

operators {Og} satisfying

Og ≥ 0, (B.3)
∑

g

Og = I⊗N
+ , (B.4)

where I⊗N
+ denotes the identity on H

⊗N
+ .

Now, Massar and Popescu demonstrated that the optimal score that Bob could achieve
for a given number of copies N was [MP95]

Sopt
N =

N + 1

N + 2
. (B.5)

Furthermore, they showed that this score was attained by the continuous POVM

Og = c2N,g [|Ωg〉〈Ωg|]⊗N (B.6)

where Ωg takes all possible values on the Bloch sphere and the weights c2N,g are defined as

c2N,g =
N + 1

4π
dΩg. (B.7)

Indeed, as dim H
⊗N
+ = N + 1, Shur’s lemma ensures that the POVM condition (B.4) is

satisfied
N + 1

4π

∫

dΩg [|Ωg〉〈Ωg|]⊗N = I⊗N
+ , (B.8)

and that, in particular,
N + 1

4π

∫

dΩg|〈Ωg|Ω〉|2N = 1 (B.9)
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for all Ω. Therefore, using Eq. (B.2), we see that the average score reads

S =
1

4π

∫

dΩ
N + 1

4π

∫

dΩg|〈Ωg|Ω〉|2N+2 (B.10)

=
1

4π

∫

dΩ
N + 1

N + 2
(B.11)

=
N + 1

N + 2
, (B.12)

where we have used Eq. (B.9) with N ′ = N + 1 along with the fact that the conditional
probability density is given by

p(Ωg|Ω) =
N + 1

4π
|〈Ωg|Ω〉|2N . (B.13)

As already stated, such a POVM requires an infinite number of outcomes and is therefore
not realizable. It is thus desirable to provide POVM’s achieving the score S opt

N and whose
number of outcomes is finite.

B.3 Finite POVM

Now observe that any set of n operators Og = c2N,g [|Ωg〉〈Ωg|]⊗N satisfying the POVM condi-
tion (B.4) is optimal. Indeed this condition is equivalent to the equation

n∑

g=1

c2N,g|〈Ωg|Ω〉|2N = 1 ∀Ω, (B.14)

or, expanding 〈Ωg|Ω〉 in terms of spherical harmonics Y m
l (Ω) up to l = N (higher-order terms

vanish), to the following system

n∑

g=1

c2N,g = N + 1 (B.15a)

n∑

g=1

c2N,gY
m
l (Ωg) = 0, (l = 1, . . . , N ;m = −l, . . . , l). (B.15b)

Thus, that the optimal average score Sopt
N is achieved by this finite POVM

S =
1

4π

∫

dΩ

n∑

g=1

c2N,g|〈Ωg|Ω〉|2N+2 (B.16)

=
1

N + 2

n∑

g=1

c2N,g (B.17)

=
N + 1

N + 2
. (B.18)

The problem now is to construct such a POVM, that is to find n directions Ωg with weights
cN,g satisfying the set of equations (B.15). Ideally, we would like a minimal POVM, that
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is a solution with a minimal number of elements n. However, trying to solve system (B.15)
directly leads to complex non-linear equations, such that Latorre et al could only deal with
low numbers of copies, up to N = 7 [LPT98]. While their solutions were (at least conjectured)
minimal, Derka et al could devise a –rather complex– algorithm that yields an optimal POVM
for arbitrary high N values, but with a non-minimal number of elements n = (N + 1)2. In
the next section, we show that this problem may actually be restated in a very simple form,
that allows to derive quite easily a non-minimal POVM with n = (N + 1)d(N + 1)/2e for
arbitrary N , as well as minimal solutions for some large N values.

B.4 Gauss quadrature

A Gauss quadrature is a rule designed to approach an integral by a sum and defined by a
mesh of points xr with weights λr,

∫

dxf(x) ≈
∑

r

λrf(xr). (B.19)

If these parameters are chosen so that the quadrature is exact for a set of functions fk(x)
∫

dxfk(x) =
∑

r

λrfk(xr) (B.20)

then the linearity of the integral implies that it will also be exact for every linear combination
f(x) =

∑

k αkfk(x).
Using the properties of spherical harmonics:

Y 0
0 (Ω) = 1/

√
4π (B.21)

∫

dΩY m
l (Ω)†Y m′

l′ (Ω) = δll′δmm′ , (B.22)

the set of equations (B.15) may be rewritten

∫

dΩY m
l (Ω) =

n∑

g=1

λgY
m
l (Ωg), (l = 0, . . . , N ;m = −l, . . . , l) (B.23)

with λg = 4πc2N,g/(N + 1), and thus our problem reduces to finding an exact Gauss quadra-
ture on the sphere for the spherical harmonics up to order l = N , which is a well-known
mathematical problem.

B.4.1 Separation of variables: Gauss-Legendre quadrature

Let us now show that we may easily build such a Gauss quadrature on the sphere. We know
that the spherical harmonics may be written:

Y m
l (Ω) = (−1)

1
2
(m+|m|)

√

2l + 1

4π

√

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimφ (B.24)

where

Pm
l (u) = (1 − u2)

m
2
dm

dum
Pl(u) (B.25)
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are the associated Legendre functions and

Pl(u) =
1

2ll!

dl

dul
(u2 − 1)l (B.26)

are the Legendre polynomials. We see that the spherical harmonics are either a product of
eimφ and a polynomial of degree l in cos θ (when m is even), or a product of eimφ, sin θ and
a polynomial of degree l − 1 in cos θ (when m is odd).

Integrating in spherical coordinates, we must find a Gauss quadrature that is exact for:

∫

d(cos θ)dφ cosn θeimφ (B.27)

∀ m even (0 ≤ m ≤ N) and n (0 ≤ n ≤ N), and for

∫

d(cos θ)dφ sin θ cosn θeimφ (B.28)

∀ m odd (0 ≤ m ≤ N) and n (0 ≤ n ≤ N − 1).

The simplest (non-minimal) solution is obtained by separating integrations over θ and φ
and defining an independent Gauss quadrature for each. Let us first consider the integral in
φ. As m is integer, we have:

∫ 2π

0
dφ eimφ = 0 ∀m 6= 0 (B.29)

and
∫ 2π

0
dφ eimφ = 2π for m = 0. (B.30)

As m can take integer values up to N , it is easy to see that the minimal Gauss quadrature
that will be exact for these N + 1 integrals will require n1 = N + 1 equidistant points, for
instance the (N + 1)th roots of unity φk = k 2π

N+1 (0 ≤ k ≤ N), each with same weight 2π
N+1 .

Let us now consider the integral in θ. Equation (B.29) shows that integrals for m 6= 0 will
cancel out if the quadrature for φ is exact such that we must find a quadrature for θ that is
only exact for m = 0, that is,

∫ 1

−1
d(cos θ) cosn θ =

∫ 1

−1
dxxn ∀ 0 ≤ n ≤ N. (B.31)

Now building a Gauss quadrature that is exact for polynomials up to degree N is a well-known
and quite simple problem. Indeed, we prove the following theorem [Sze95]:

Theorem 3 Let [a, b] ⊂ R, and let {pn} denote a complete set of orthogonal polynomials on
L2([a, b]). If x1 < . . . < xn denote the zeros of {pn(x)}, there exist real numbers λ1, . . . , λn

such that
∫ b

a
dα(x)ρ(x) =

n∑

i=1

λiρ(xi), (B.32)

whenever ρ(x) is an arbitrary polynomial of degree at most 2n−1. Moreover, the distribution
dα(x) and the integer n uniquely determine these numbers λi.
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Following this theorem, it is indeed straightforward to build a Gauss quadrature for cos θ on
[−1, 1] using n2 = d(N+1)/2e points, that is exact for any polynomial up to degree N . Thus,
we finally obtain with this method a POVM with

n = n1n2 = (N + 1)

⌈
N + 1

2

⌉

(B.33)

elements. As the θ-part of the quadrature is based on Legendre polynomials, this separated
variable Gauss quadrature is generally known as Gauss-Legendre quadrature. The corre-
sponding number of POVM elements is shown in Table B.1 as a function of the number of
qubits N .

B.4.2 Lebedev quadrature and spherical designs

The method we have described is generic but we have no guarantee that it provides us with
a minimal optimal POVM. Actually, this is not the case, since we already know that Latorre
et al have been able to construct optimal finite POVM’s with less elements than ours, at least
for N ≤ 7.

One could have expected that the Gauss quadrature we have presented above is not
minimal. Heuristically, finding a minimal Gauss quadrature is equivalent to finding n points
on a sphere so as to optimally cover it. Intuitively, it is clear that minimality cannot be
achieved by considering the two variables θ and φ separately, as we did. Actually, defining
better quadrature rules proves to be a quite complex mathematical problem as it involves the
solving of large non-linear systems. However, this problem has been studied for years such
that results that go further than N = 7 may be found in the mathematical literature.

More precisely, Lebedev has published a series of articles dealing with this problem [LS92,
Leb94, LL99], and could give a quadrature rule on the sphere for all odd values up to N = 31,
as well as for higher values in the form N = 6a + 5 up to N = 131 (or a = 21). This last
sequence requires a number of points

n =
(N + 1)2

3
+ 2, (B.34)

improving on the Gauss-Legendre (separated variables) quadrature. Moreover, this number
of points is believed to be minimal for sufficiently high N . These quadrature rules are used
in various fields such as quantum chemistry to evaluate energy levels of molecules [Lai97].
As may be seen on Fig. B.1, Lebedev quadrature rules do not define uniform distributions
of points on the sphere, as all the points are not equivalent by symmetry (in particular, the
weights are not all equal). Such a uniform distribution on the sphere is actually achievable
for some number of points n, and is called a spherical N -design if the Gauss quadrature it
defines is exact for all spherical harmonics up to order N :

∫

dΩY m
l (Ω) =

4π

n

n∑

g=1

Y m
l (Ωg), (l = 0, . . . , N ;m = −l, . . . , l). (B.35)

Spherical N -designs are known up to N = 13 (see Fig. B.2), but unfortunately they require
a larger number of points than Lebedev quadrature [HS96]. All these results are summarized
in Table B.1.
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Figure B.1: Distribution of 1800 points for Lebedev quadrature of order N = 59 (taken from [Leb94]).

Figure B.2: Spherical design with n = 60 points defining a Gauss quadrature on the sphere of order
N = 10 (the corresponding polyhedron is generally called “Buckminster” or “Bucky”
ball, after the architect Buckminster Fuller who used this structure to design domes, and
represents the shape of a C60 fullerene molecule).
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1 2 2 2
2 4 6 4
3 6 8 6 6
4 10 15 12
5 12 18 14 12
6 18 28 24
7 22 32 26 24

8 45 36
9 50 38 48
10 66 60
11 72 50 70
12 91 84
13 98 74 94

14 120
15 128 86
...

...
...

29 450 302
...

...
35 648 434
...

...
...

131 8712 5810
...

...

Table B.1: Comparison of the number of elements n of optimal POVM’s built using different methods
as a function of the number of copiesN of the estimated state. The first column corresponds
to the minimal solution proposed by Latorre et al in [LPT98] up to N = 7. In the second
column, we see that the separated variable Gauss-Legendre quadrature provides an optimal
POVM for arbitrary large N , although the number of elements N ≈ (N + 1)2/2 is not
minimal. The third column corresponds to Lebedev quadrature that reduces the number
of elements to N ≈ (N +1)2/3 but only exists for some odd values up to N = 131. Finally,
the spherical designs, that define POVM’s with equally weighted elements and are known
up to N = 13, are given in the last column
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B.5 Conclusion

In this Appendix, we have introduced a standard problem of Quantum Information Theory,
namely the optimal estimation of an unknown quantum state by a finite measurement of a
set of N copies of the state. Although the problem is quite simple to state, it proves to be
very complex to solve, even in the simplest case of qubits, and a minimal solution was until
now only known for a very small number of copies N ≤ 7 [LPT98]. However, we showed
that this problem may be restated in terms of a well-known mathematical problem, namely
the definition of a Gauss quadrature on the sphere. Following this idea, we easily derive a
solution for arbitrary large N , that while not minimal, already improves on the best known
solution [DBE98]. Moreover, with the help of mathematical literature on Lebedev quadrature
[LS92, Leb94, LL99] or spherical designs [HS96], we are able to give better solutions for some
large values up to N = 131.

Finally, let us mention that as the method we used to recast our problem into a Gauss
quadrature is quite generic, we could be able to generalize it to other closely related problems,
the most obvious being the estimation of a state in Hilbert spaces of higher dimensions. For
instance, the optimal POVM for the estimation of a qutrit (in a 3-dimensional Hilbert space),
would reduce to the definition of a Gauss quadrature on a 4-dimensional hypersphere and
could therefore probably be solved using the same method. Furthermore, while we have until
now only considered the estimation of pure states, the problem could also be generalized to
the case of mixed states. In this context, it would be interesting to study if the particular
symmetry of spherical designs with respect to other quadrature rules could be of some help.
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Appendix C

Bell inequalities resistant to
detector inefficiency

Serge Massar, Stefano Pironio, Jérémie Roland and Bernard Gisin

Physical Review A 66, 05112 (2002)

Introduction

A striking feature of quantum entanglement is non-locality. Indeed, as first shown by Bell
in 1964 [Bel64] classical local theories cannot reproduce all the correlations exhibited by
entangled quantum systems. This non-local character of entangled states is demonstrated in
EPR experiments through the violation of Bell inequalities. However due to experimental
imperfections and technological limitations, Bell tests suffer from loopholes which allow, in
principle, the experimental data to be reproduced by a local realistic description. The most
famous of these loopholes are the locality loophole and the detection loophole. Experiments
carried on photons have closed the locality loophole [WJS+98] and recently Rowe et al closed
the detection loophole using trapped ions [RKM+01]. But so far, 30 years since the first
experiments, both loopholes have not been closed in a single experiment.

The purpose of this paper is to study how one can devise new tests of non-locality able
to lower the detector efficiency necessary to reject any local realistic hypothesis. This could
be a way towards a loophole-free test of Bell inequalities and is important for several reasons.
First, as quantum entanglement is the basic ingredient of quantum information processing, it
is highly desirable to possess undisputable tests of its properties such as non-locality. Even
if one is convinced (as we almost all are) that nature is quantum mechanical, we can imag-
ine practical situations where it would be necessary to perform loophole-free tests of Bell
inequalities. For example, suppose you buy a quantum cryptographic device based on Ekert
protocol. The security of your cryptographic apparatus relies on the fact that you can violate
Bell inequalities with it. But if the detectors efficiencies aren’t sufficiently high, the salesman
can exploit it and sell to you a classical device that will mimic a quantum device but which
will enable him to read all your correspondence [Lar02]. Other reasons to study the resistance
of quantum tests to detector inefficiencies are connected to the classification of entanglement.
Indeed an important classification of entanglement is related to quantum non-locality. One
proposed criterion to gauge how much non-locality is exhibited by the quantum correlations

103
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is the resistance to noise. This is what motivated the series of works [KGZ+00, DKZ01] that
led to the generalization of the CHSH inequality to higher dimensional systems [CGL+02].
The resistance to inefficient detectors is a second and different criterion that we analyse in
this paper. It is closely related to the amount of classical communication required to simulate
the quantum correlations [Mas02].

The idea behind the detection loophole is that in the presence of unperfect detectors,
local hidden variables can ”mask” results in contradiction with quantum mechanics by telling
the detectors not to fire. This is at the origin of several local hidden variable models able to
reproduce particular quantum correlations if the detector efficiencies are below some threshold
value η∗ (see [GG99, San92, MP03] for example). In this paper, we introduce two parameters
that determine whether a detector will fire or not: η, the efficiency of the detector and λ,
the probability that the pair of particles is produced by the source of entangled systems.
This last parameter may be important for instance for sources involving parametric down
conversion where λ is typically less than 10%. So far, discussions on the detection loophole
where concentrating on η, overlooking λ. However we will show below that both quantities
play a role in the detection loophole and clarify the relation between these two parameters.
In particular we will introduce two different detector thresholds: ηλ

∗ , the value above which
quantum correlations exhibit non-locality for given λ, and η∀λ

∗ , the value above which quantum
correlations exhibit non-locality for any λ.

We have written a numerical algorithm to determine these two thresholds for given quan-
tum state and quantum measurements. We then searched for optimal measurements such
that ηλ=1

∗ and η∀λ
∗ acquire the lowest possible value. In the case of bipartite two dimensional

systems the most important test of non-locality is the CHSH inequality [CHSH69]. Quantum
mechanics violates it if the detector efficiency η is above = 2/(

√
2 + 1) ≈ 0.8284 for the

maximally entangled state of two qubits. In the limit of large dimensional systems and large
number of settings, it is shown in [Mas02] that the efficiency threshold can be arbitrarily
lowered. This suggests that the way to devise optimal tests with respect to the resistance to
detector inefficiencies is to increase the dimension of the quantum systems and the number
of different measurements performed by each party on these systems. (This argument will be
presented in more details in [MP03]). We have thus performed numerical searches for increas-
ing dimensions and number of settings starting from the two qubit, two settings situation of
the CHSH inequality. Our results concern ”multiport beam splitters measurements” [ZZH97]
performed on maximally entangled states. They are summarized in Table C.1. Part of these
results are accounted for by existing Bell inequalities, the other part led us to introduce new
Bell inequalities.

The main conclusions that can be drawn from this work are:

1. Even in dimension 2, one can improve the resistance to inefficient detectors by increasing
the number of settings.

2. One can further increase the resistance to detection inefficiencies by increasing the
dimension.

3. There are different optimal measurements settings and Bell inequalities for a source that
produces entangled particles with high probability (λ ≈ 1) and one that produces them
extremely rarely (λ→ 0). Bell inequalities associated with this last situation provide a
detection threshold that doesn’t depend on the value of the pair production probability.
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d Na ×Nb ηλ=1
∗ η∀λ

∗ p Bell inequality

2 2 × 2 0.8284 0.8284 0.2929 CHSH

2 3 × 3 0.8165 0.2000
Present paper

(see also ref [Bel64, Wig70])

2 3 × 3 0.8217 0.2859 Present paper
2 3 × 4 0.8216 0.2862 Present paper
2 4 × 4 0.8214 0.2863 Present paper
3 2 × 2 0.8209 0.8209 0.3038 Based on Ref.[CGL+02]

3 2 × 3 0.8182 0.8182 0.2500
Present paper

(related to Ref [BPG02])

3 3 × 3 0.8079 0.2101 Present paper
3 3 × 3 0.8146 0.2971 Present paper
4 2 × 2 0.8170 0.8170 0.3095 Based on Ref.[CGL+02]
4 2 × 3 0.8093 0.2756 Present paper
4 3 × 3 0.7939 0.2625 Present paper
5 2 × 2 0.8146 0.8146 0.3128 Based on Ref.[CGL+02]
6 2 × 2 0.8130 0.8130 0.3151 Based on ref.[CGL+02]
7 2 × 2 0.8119 0.8119 0.3167 Based on ref.[CGL+02]
∞ 2 × 2 0.8049 0.8049 0.3266 Based on Ref.[CGL+02]

Table C.1: Optimal threshold detector efficiency for varying dimension d and number of settings
(Na × Nb) for the detectors. ηλ=1

∗ is the threshold efficiency for a source such that the
pair production probability λ = 1 while η∀λ

∗
is the threshold efficiency independent of

λ. The column p gives the amount of white noise p that can be added to the entangled
state so that it still violates locality (we use for p the same definition as that given in
Refs. [KGZ+00, DKZ01]). The last column refers to the Bell inequality that reproduce
the detection threshold. Except for the case d = ∞, these thresholds are the result of a
numerical optimization carried over the et of multiport beam-splitter measurements.
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4. For the measurement scenarios numerically accessible, only small improvements in
threshold detector efficiency are achieved. For instance the maximum change in thresh-
old detector efficiency we found is approximatively 4%

The paper is organized as follows: First, we review briefly the principle of an EPR exper-
iment in section C.1.1 and under which condition such an experiment admits a local-realistic
description in section C.1.2. In section C.1.3 we clarify the role played by η and λ in the
detection loophole. We then present the technique we used to perform the numerical searches
in C.1.4 and to construct the new Bell inequalities presented in this paper in C.1.5. Section
C.2 contains our results. In particular in C.2.1 we generalize the family of inequalities in-
troduced in [CGL+02] to take into account detection inefficiencies and in C.2.3 we present
the two different Bell inequalities associated to the two-dimensional three by three settings
measurement scenario. In the Appendix, we collect all the measurement settings and Bell
inequalities we have obtained.

C.1 General Formalism

C.1.1 Quantum correlations

Let us review the principle of an a EPR experiment: two parties, Alice and Bob, share an
entangled state ρAB. We take each particle to belong to a d dimensional Hilbert space. The
parties carry out measurements on their particles. Alice can choose between Na different von
Neumann measurements Ai (i = 1, . . . , Na) and Bob can choose between Nb von Neumann
measurements Bj (j = 1, . . . , Nb). Let k and l be Alice’s and Bob’s outcomes. We suppose
that the number of possible outcomes is the same for each party and that the values of k and
l belong to {0, . . . , d − 1}. To each measurement Ai is thus associated a complete set of d
orthogonal projectors Ak

i = |Ak
i 〉〈Ak

i | and similarly for Bj . Quantum mechanics predicts the
following probabilities for the outcomes

PQM
kl (Ai, Bj) = Tr((Ak

i ⊗Bl
j)ρab) ,

PQM
l (Bj) = Tr((11A ⊗Bl

j)ρab) ,

PQM
k (Ai) = Tr((Ak

i ⊗ 11B)ρab) .

(C.1)

In a real experiment, it can happen that the measurement gives no outcome, due to
detector inefficiencies, losses or because the pair of entangled states has not been produced.
To take into account these cases in the most general way, we enlarge the space of possible
outcomes and add a new outcome, the “no-result outcome”, which we label ∅. Quantum
mechanics now predicts a modified set of correlations:

PQM
λη (Ai = k,Bj = l) = λη2PQM

kl (Ai, Bj) k, l 6= ∅ ,
PQM

λη (Ai = ∅, Bj = l) = λη(1 − η)PQM
l (Bj) l 6= ∅ ,

PQM
λη (Ai = k,Bj = ∅) = λη(1 − η)PQM

k (Ai) k 6= ∅ ,
PQM

λη (Ai = ∅, Bj = ∅) = 1 − λ+ λ(1 − η)2 .

(C.2)



C.1. GENERAL FORMALISM 107

where η is the detector efficiency, and λ is the probability that a pair of particles is produced
by the source of entangled systems. By detection efficiency η we mean the probability that the
detector gives a result if a particle was produced, i.e. η includes not only the ”true” efficiency
of the detector but also all possible losses of the particle on the path from the source to the
detectors.

C.1.2 Local Hidden Variable Theories & Bell Inequalities

Let us now define when the results (C.2) of an EPR experiment can be explained by a
local hidden variable (lhv) theory. In a lhv theory, the outcome of Alice’s measurement is
determined by the setting Ai of Alice’s measurement apparatus and by a random variable
shared by both particles. This result should not depend on the setting of Bob’s measurement
apparatus if the measurements are carried out at spatially separated locations. The situation
is similar for Bob’s outcome. We can describe without loss of generality such a local variable
theory by a set of (d+1)Na+Nb probabilities pK1...KNaL1...LNb

where Alice’s local variables Ki ∈
{0, . . . , d−1, ∅} specifies the result of measurement Ai and Bob’s variables Lj ∈ {0, . . . , d−1, ∅}
specify the result of measurement Bj . The correlations P (Ai = K,Bk = L) are obtained from
these joint probabilities as marginals. The quantum predictions can then be reproduced by a
lhv theory if and only if the following NaNb(d+ 1)2 equations are obeyed:

∑

KL

pKLδKi,KδLj ,L = PQM
λη (Ai = K,Bj = L) (C.3)

with the conditions:

∑

KL

pKL = 1 , (C.4)

pKL ≥ 0 , (C.5)

where we have introduced the notation K = K1 . . . KNa and L = L1 . . . LNb
. Note that

the equations (C.3) are not all independent since quantum and classical probabilities share
additional constraints such as the normalization conditions:

∑

K,L

P (Ai = K,Bj = L) = 1 (C.6)

or the no-signaling conditions:

P (Ai = K) =
∑

L

P (Ai = K,Bj = L) ∀ j (C.7)

and similarly for Bj.

An essential result is that the necessary and sufficient conditions for a given probability
distribution PQM to be reproducible by a lhv theory can be expressed, alternatively to the
equations (C.3), as a set of linear inequalities for P QM , the Bell inequalities. They can be
written as

I = Irr + I∅r + Ir∅ + I∅∅ ≤ c (C.8)
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where

Irr =
∑

i,j

∑

k,l 6=∅
ckl
ijP (Ai = k,Bj = l)

I∅r =
∑

i,j

∑

l 6=∅
c∅lijP (Ai = ∅, Bj = l)

Ir∅ =
∑

i,j

∑

k 6=∅
ck∅ij P (Ai = k,Bj = ∅)

I∅∅ =
∑

i,j

c∅∅ij P (Ai = ∅, Bj = ∅).

(C.9)

For certain values of η and λ, quantum mechanics can violate one of the Bell inequalities
(C.8) of the set. Such a violation is the signal for experimental demonstration of quantum
non-locality.

C.1.3 Detector efficiency & pair production probability

For a given quantum mechanical probability distribution P QM and given pair production
probability λ, the maximum value of the detector efficiency η for which there exists a lhv
variable model will be denoted ηλ

∗ (PQM ). It has been argued [GG99, Gis] that η∗ should
not depend on λ. The idea behind this argument is that the outcomes (∅, ∅) obtained when
the pair of particles is not created are trivial and hence it seems safe to discard them. A
more practical reason, is that the pair production rate is rarely measurable in experiments.
Whatever, the logical possibility exists that the lhv theory can exploit the pair production
rate. Indeed, we will show below that this is the case when the number of settings of the
measurement apparatus is larger than 2. This motivates our definition of threshold detection
efficiency valid for all values of λ

η∀λ
∗ = max

λ6=0
(ηλ

∗ ) = lim
λ→0

ηλ
∗ (C.10)

The second equality follows from the fact that if a lhv model exists for a given value of λ it
also exists for a lower value of λ.

Let us study now the structure of the Bell expression I(QM) given by quantum mechanics.
This will allow us to derive an expression for η∀λ

∗ . Inserting the quantum probabilities (C.2)
into the Bell expression of Eq. (C.8) we obtain

I(QM) = λη2Irr(QM) + λη(1 − η)I∅r(QM)

+ λη(1 − η)Ir∅(QM) + (1 + λ(η2 − 2η))
∑

i,j

c∅∅ij (C.11)

where IQM
rr is obtained by replacing P (Ai = k,Bj = l) with PQM

kl (Ai, Bj) in Irr and IQM
∅r by

replacing P (Ai = ∅, Bj = l) with PQM
l (Bj) in I∅r and similarly for IQM

r∅ .
For η = 0, we know there exists a trivial lhv model and so the Bell inequalities cannot be

violated. Replacing η by 0 in (C.11) we therefore deduce that
∑

i,j

c∅∅ij ≤ c. (C.12)
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This divides the set of Bell inequalities into two groups: those such that
∑

i,j c
∅∅
ij < c and

those for which
∑

i,j c
∅∅
ij = c. Let us consider the first group. For small λ, these inequalities

will cease to be violated. Indeed, take η = 1 (which is the maximum possible value of the
detector efficiency), then (C.11) reads

I(QM) = λIQM
rr + (1 − λ)

∑

i,j

c∅∅ij . (C.13)

The condition for violation of the Bell inequality is I(QM) > c. But since
∑

i,j c
∅∅
ij < c,

for sufficiently small λ we will have I(QM) < c and the inequality will not be violated.
These inequalities can therefore not be used to derive threshold η∀λ

∗ that do not depend on
λ, but they are still interesting and will provide a threshold ηλ

∗ depending on λ. Let us now
consider the inequalities such that

∑

i,j c
∅∅
ij = c. Then λ cancels in (C.11) and the condition

for violation of the Bell inequality is that η must be greater than

η∀λ
∗ (PQM ) =

2c− IQM
∅r − IQM

r∅
c+ IQM

rr − IQM
∅r − IQM

r∅
. (C.14)

It is interesting to note that if quantum mechanics violates a Bell inequality for perfect
sources λ = 1 and perfect detectors η = 1, then there exists a Bell inequality that will be
violated for η < 1 and λ → 0. That is there necessarily exists a Bell inequality that is
insensitive to the pair production probability. Indeed the violation of a Bell inequality in the
case λ = 1, η = 1 implies that there exists a Bell expression Irr such that Irr(QM) > c with c
the maximum value of Irr allowed by lhv theories. Then let us build the following inequality

I = Irr + Ir∅ + I∅r +
∑

i,j

c∅∅ij P (Ai = ∅, Bj = ∅) ≤ c (C.15)

where
∑

i,j c
∅∅
ij = c and we take in Ir∅ and I∅r sufficiently negative terms to insure that I ≤ c.

For this inequality, η∀λ
∗ = (2c − IQM

∅r − IQM
r∅ )/(c + IQM

rr − IQM
∅r − IQM

r∅ ) < 1, which shows
that Bell inequalities valid ∀λ always exist. One can, in principle, optimize this inequality by
taking Ir∅ and I∅r as large as possible while ensuring that (C.15) is obeyed.

From the experimentalist’s point of view, Bell tests involving inequalities that depend on
λ need all events to be taken into account, including (∅, ∅) outcomes, while in tests involving
inequalities insensitive to the pair production probability, it is sufficient to take into account
events where at least one of the parties produces a result, i.e. double non-detection events
(∅, ∅) can be discarded. Indeed, first note that one can always use the normalization conditions
(C.6) to rewrite a Bell inequality such as (C.8) in a form where the term I∅∅ does not appear.
Second, if the events (∅, ∅) are not recorded in an experiment, the measured probabilities are
relative frequencies computed on the set of all events involving at least one result on one
side. The probabilities measured in such experiments can be obtained from the probabilities
(C.2) by replacing λ with λ′ = λ/(1 − (1 − η)2). While this rescaling of λ is legitimate for
inequalities that do not depend on the value of λ, it is however incorrect to perform it for
inequalities depending of λ, in particular this will affect the detection threshold.

C.1.4 Numerical search

We have carried numerical searches to find measurements such that the thresholds ηλ=1
∗ and

η∀λ
∗ acquire the lowest possible value. This search is carried out in two steps. First of all,
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for given quantum mechanical probabilities, we have determined the maximum value of η for
which there exists a local hidden variable theory. Second we have searched over the possible
measurements to find the minimum values of η∗.

In order to carry out the first step, we have used the fact that the question of whether
there are classical joint probabilities that satisfy (C.3) with the conditions (C.4,C.5) is a
typical linear optimization problem for which there exist efficient algorithms [ZKBL99]. We
have written a program which, given λ, η and a set of quantum measurements, determines
whether (C.3) admits a solution or not. ηλ

∗ is then determined by performing a dichotomic
search on the maximal value of η so that the set of constraints is satisfied.

However when searching for η∀λ
∗ it is possible to dispense with the dichotomic search by

using the following trick. First of all because all the equations in Eq. (C.3) are not indepen-
dent, we can remove the constraints which involve on the right hand side the probabilities
P (Ai = ∅, Bj = ∅). Second we define rescaled variables λ(1 − (1 − η)2)p̃KL = pKL. Inserting
the quantum probabilities Eq. (C.2) we obtain the set of equations

∑

KL

p̃KLδKi,kδLj ,l = αPQM
kl (Ai, Bj) k, l 6= ∅

∑

KL

p̃KLδKi,∅δLj ,l = (1 − α

2
)PQM

l (Bj) l 6= ∅
∑

KL

p̃KLδKi,kδLj ,∅ = (1 − α

2
)PQM

k (Ai) k 6= ∅

(C.16)

with the normalization

∑

KL

p̃KL =
1

λ

1

1 − (1 − η)2
(C.17)

where α = η2/(1 − (1− η)2). Note that λ only appears in the last equation. We want to find
the maximum α such that these equations are obeyed for all λ. Since 0 < λ ≤ 1 1, we can
replace the last equation by the condition

∑

KL

p̃KL ≥ 1. (C.18)

We thus are led to search for the maximum α such that Eqs. (C.16) are satisfied and that
the p̃KL are positive and obey condition (C.18). In this form the search for η∀λ

∗ has become
a linear optimization problem and can be efficiently solved numerically.

Given the two algorithms that compute ηλ=1
∗ and η∀λ

∗ for given settings, the last part
of the program is to find the optimal measurements. In our search over the space of quan-
tum strategies we first considered the maximally entangled state Ψ =

∑d−1
m=0 |m〉a|m〉b in

dimension d. The possible measurements Ai and Bj we considered are the “multiport beam
splitters” measurements described in [ZZH97] and which have in previous numerical searches
yielded highly non local quantum correlations [KGZ+00, DKZ01]. These measurements are
parameterized by d phases (φ1

Ai
, . . . φd

Ai
) and (φ1

Bj
, . . . φd

Bj
) and involve the following steps:

1Actually (C.18) corresponds to 0 < λ ≤ 1
1−(1−η)2

so that λ can be greater than 1. But as stated earlier,

if a lhv model exists for a given value of λ it is trivial to extend it to a lhv model for a lower value of λ. The
maximum of ηλ

∗ over the set λ ∈ ]0, 1/(1− (1− η)2)] will thus be equal to the maximum over the set λ ∈ ]0, 1].
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first each party acts with the phase φAi(m) or φBj (m) on the state |m〉, they then both carry
out a discrete Fourier transform. This brings the state Ψ to:

Ψ =
1

d3/2

d−1∑

k,l,m=0

exp

[

i

(

φAi(m) − φBj (m) +
2π

d
m(k − l)

)]

|k〉a|l〉b (C.19)

Alice then measures |k〉a and Bob |l〉b. The quantum probabilities (C.1) thus take the form

PQM
kl (Ai, Bj) =

1

d3
|

d−1∑

m=0

exp
[

i
(

φAi(m) − φBj (m) +
2πm

d
(k − l)

)]

|2

PQM
k (Ai) = 1/d

PQM
l (Bj) = 1/d (C.20)

The search for minimal ηλ=1
∗ and η∀λ

∗ then reduces to a non-linear optimization problem
over Alice’s and Bob’s phases. For this, we used the “amoeba” search procedure with its
starting point fixed by the result of a randomized search algorithm. The amoeba procedure
[NM65] finds the extremum of a non-linear function F ofN variables by constructing a simplex
of N + 1 vertices. At each iteration, the method evaluates F at one or more trial point. The
purpose of each iteration is to create a new simplex in which the previous worst vertex has
been replaced. The simplex is altered by reflection, expansion or contraction, depending on
whether F is improving. This is repeated until the diameter of the simplex is less than the
specified tolerance.

Note that these searches are time-consuming. Indeed, the first part of the computation,
the solution to the linear problem, involves the optimization of (d+ 1)Na+Nb parameters, the
classical probabilities pKL (the situation is even worse for ηλ

∗ , since the linear problem has to
be solved several times while performing a dichotomic search for ηλ

∗ ). Then when searching
for the optimal measurements, the first part of the algorithm has to be performed for each
phase settings. This results in a rapid exponential growth of the time needed to solve the
entire problem with the dimension and the number of settings involved. A second factor that
complicates the search for optimal measurements is that, due to the relatively large number
of parameters that the algorithm has to optimize, it can fail to find the global minimum and
converge to a local minimum. This is one of the reasons why we restricted our searches to
multiport beam-splitter measurements, since the number of parameters needed to describe
them is much lesser than that for general Von Neumann measurements.

Our results for setups our computers could handle in reasonable time are summarized in
Table C.1. In dimension 2, we also performed more general searches using von Neumann
measurements but the results we obtained where the same as for the multiport beam-splitters
described above

C.1.5 Optimal Bell inequalities

Upon finding the optimal quantum measurements and the corresponding values of η∗, we
have tried to find the Bell inequalities which yield these threshold detector efficiencies. This
is essential to confirm analytically these numerical results but also in order for them to have
practical significance, ie. to be possible to implement them in an experiment.

To find these inequalities, we have used the approach developed in [CGL+02]. The first
idea of this approach is to make use of the symmetries of the quantum probabilities and
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to search for Bell inequalities which have the same symmetry. Thus for instance if P (Ai =
k,Bj = l) = P (Ai = k +m mod d,Bj = l +m mod d) for all m ∈ {0, . . . , d− 1}, then it is
useful to introduce the probabilities

P (Ai = Bj + n) =
d−1∑

m=0

P (Ai = m,Bj = n+m mod d)

P (Ai 6= Bj + n) =
d−1∑

m=0
l6=n

P (Ai = m,Bj = l +m mod d)

(C.21)

and to search for Bell inequalities written as linear combinations of the P (Ai = Bj +n). This
reduces considerably the number of Bell inequalities among which one must search in order to
find the optimal one. The second idea is to search for the logical contradictions which force
the Bell inequality to take a small value in the case of lhv theories. Thus the Bell inequality
will contain terms with different weights, positive and negative, but the lhv theory cannot
satisfy all the relations with the large positive weights. Once we had identified a candidate
Bell inequality, we ran a computer program that enumerated all the deterministic classical
strategies and computed the maximum value of the Bell inequality. The deterministic classical
strategies are those for which the probabilities pK1...KNaL1...LNb

are equal either to 0 or to 1.
In order to find the maximum classical value of a Bell expression, it suffices to consider them
since the other strategies are obtained as convex combinations of the deterministic ones.

However when the number of settings, Na and Nb, and the dimensionality d increase,
it becomes more and more difficult to find the optimal Bell inequalities using the above
analytical approach. We therefore developed an alternative method based on the numerical
algorithm which is used to find the threshold detection efficiency.

The idea of this numerical approach is based on the fact that the probabilities for which
there exists a solution pKL to Eqs. (C.3,C.4,C.5) form a convex polytope whose vertices
are the deterministic strategies. The facets of this polytope are hyperplanes of dimension
D − 1 where D is the dimension of the space in which lies the polytope (D is lower than
the dimension (d+ 1)Na+Nb of the total space of probabilities due to constraints such as the
normalizations conditions (C.4) and the no-signaling conditions (C.7)). These hyperplanes of
dimension D − 1 correspond to Bell inequalities.

At the threshold η∗, the quantum probability PQM
λη∗

belongs to the boundary, i.e to one
of the faces, of the polytope determined by Eqs (C.3,C.4,C.5). The solution p∗

KL
to these

equations at the threshold is computed by our algorithm and it corresponds to the convex
combinations of deterministic strategies that reproduce the quantum correlations. From this
solution it is then possible to construct a Bell inequality. Indeed, the face F to which P QM

λη∗
belongs is the plane passing through the deterministic strategies involved in the convex com-
bination p∗

KL
. Either, this face F is a facet, i.e. an hyperplane of dimension D − 1, or F is

of dimension lower than D − 1. In the first case, the hyperplane F correspond to the Bell
inequality we are looking. In the second case, there is an infinity of hyperplanes of dimension
D − 1 passing by F , indeed every vector ~v belonging to the space orthogonal to the face F
determines such an hyperplane. To select one of these hyperplanes lying outside the polytope,
and thus corresponding effectively to a Bell inequality, we took as vector ~v the component
normal to F of the vector which connects the center of the polytope and the quantum prob-
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abilities when η = 1: PQM
λη=1. Though this choice of ~v is arbitrary, it yields Bell inequalities

which preserve the symmetry of the probabilities P QM .

As in the analytical method given above, we have verified by enumeration of the deter-
ministic strategies that this hyperplane is indeed a Bell inequality (ie. that it lies on one side
of the polytope) and that it yields the threshold detection efficiency η∗.

C.2 Results

Our results are summarized in Table C.1. We now describe them in more detail.

C.2.1 Arbitrary dimension, two settings on each side (Na = Nb = 2).

For dimensions up to 7, we found numerically that ηλ=1
∗ = η∀λ

∗ . The optimal measurements we
found are identical to those maximizing the generalization of the CHSH inequality to higher
dimensional systems [CGL+02], thus confirming their optimality not only for the resistance to
noise but also for the resistance to inefficient detectors. Our values of η∗ are identical to those
given in [DKZ01] where ηλ=1

∗ has been calculated for these particular settings for 2 ≤ d ≤ 16.

We now derive a Bell inequality that reproduces analytically these numerical results (which
has also been derived by N. Gisin [Gis]). Our Bell inequality is based on the generalization of
the CHSH inequality obtained in [CGL+02]. We recall the form of the Bell expression used
in this inequality:

Id,2×2
rr =

[d/2]−1
∑

k=0

(

1 − 2k

d− 1

)(

[P (A1 = B1 + k)

+P (B1 = A2 + k + 1) + P (A2 = B2 + k)

+P (B2 = A1 + k)] − [P (A1 = B1 − k − 1)

+P (B1 = A2 − k) + P (A2 = B2 − k − 1)

+P (B2 = A1 − k − 1)]
)

. (C.22)

For local theories, Id,2×2
rr ≤ 2 as shown in [CGL+02] where the value of Id,2×2

rr (QM) given
by the optimal quantum measurements is also described. In order to take into account “no-
result” outcomes we introduce the following inequalities:

Id,2×2 = Id,2×2
rr +

1

2

∑

i,j

P (Ai = ∅, Bj = ∅) ≤ 2 (C.23)

Let us prove that the maximal allowed value of Id,2×2 for local theories is 2. To this end it
suffices to enumerate all the deterministic strategies. First, if all the local variables correspond
to a ”result” outcome then Id,2×2

rr ≤ 2 and Id,2×2
∅∅ = 1

2

∑

i,j P (Ai = ∅, Bj = ∅) = 0 so that

Id,2×2 ≤ 2; if one of the local variables is equal to ∅ then again I d,2×2
rr ≤ 2 (since the maximal

weight of a probability in Id,2×2
rr is one and they are only two such probabilities different from

zero) and Id,2×2
∅∅ = 0; if there are two ∅ outcomes, then Id,2×2

rr ≤ 1 and Id,2×2
∅∅ ≤ 1; while if

there are three or four ∅ then Id,2×2
rr = 0 and Id,2×2

∅∅ ≤ 2.
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Note that the inequality (C.23) obeys the condition
∑

i,j c
∅∅
ij = c, hence it will provide a

bound on η∀λ
∗ . Using Eq. (C.14), we obtain the value of η∀λ

∗ :

η∀λ
∗ =

4

Id,2×2
rr (QM) + 2

(C.24)

Inserting the optimal values of Id,2×2
rr (QM) given in [CGL+02] this reproduces our numerical

results and those of [DKZ01]. As an example, for dimension 3, I 3,2×2
rr (QM) = 2.873 so that

η∀λ
∗ = 0.8209. When d→ ∞, (C.24) gives the limit η∀λ

∗ = 0.8049.

C.2.2 Three dimensions, 2 × 3 settings

For three-dimensional systems, we found that adding one setting to one of the party decreases
both ηλ=1

∗ and η∀λ
∗ from 0.8209 to 0.8182 (In the case of d = 2, it is necessary to take three

settings on each side to get an improvement). The optimal settings involved are φA1 = (0, 0, 0),
φA2 = (0, 2π/3, 0), φB1 = (0, π/3, 0), φB2 = (0, 2π/3,−π/3), φB3 = (0,−π/3,−π/3).

We have derived a Bell expression associated to these measurements:

I3,2×3
rr = +[P (A1 = B1) + P (A1 = B2) + P (A1 = B3)

+P (A2 = B1 + 1) + P (A2 = B2 + 2) + P (A2 = B3)]

−[P (A1 6= B1) + P (A1 6= B2) + P (A1 6= B3)

+P (A2 6= B1 + 1) + P (A2 6= B2 + 2) + P (A2 6= B3)] (C.25)

The maximal value of I3,2×3
rr for classical theories is 2 since for any choice of local variables

4 relations with a + can be satisfied but then two with a - are also satisfied. For example
we can satisfy the first four relations but this implies A2 = B2 + 1 and A2 = B3 + 1 which
gives 2 minus terms. The maximal value of I3,2×3

rr for quantum mechanics is given for the
settings described above and is equal to I3,2×3

rr (QM) = 10/3. To take into account detection
inefficiencies consider the following inequality:

I3,2×3 = I3,2×3
rr + I3,2×3

∅r + I3,2×3
∅∅ ≤ 2 (C.26)

where

I3,2×3
∅r = −1

3

∑

i,j

P (Ai = ∅, Bj 6= ∅) (C.27)

and

I3,2×3
∅∅ =

1

3

∑

i,j

P (Ai = ∅, Bj = ∅). (C.28)

(Ir∅ is taken equal to zero). The principle used to show that I 3,2×3 ≤ 2, is the same as the
one used to prove that Id,2×2 ≤ 2. For example if A1 = ∅ then I3,2×3

rr ≤ 3, I3,2×3
∅r = −1 and

I3,2×3
∅∅ = 0 so that I3,2×3 ≤ 3 − 1 = 2. From (C.26) and the joint probabilities (C.20) for the

optimal quantum measurements we deduce:

η∀λ
∗ =

6
10
3 + 4

=
9

11
' 0.8182 (C.29)

in agreement with our numerical result.
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Note that in [BPG02], an inequality formally identical to (C.25) has been introduced.
However, the measurement scenario involve two measurements on Alice’s side and nine binary
measurements on Bob’s side. By grouping appropriately the outcomes, this measurements
scenario can be associated to an inequality formally identical to (C.25) for which the viola-
tion reaches 2

√
3. According to (C.29), this result in a detection efficiency threshold η∀λ

∗ of
6/(2

√
3 + 4) ≈ 0.8038.

C.2.3 Three settings for both parties

For 3 settings per party, things become more surprising. We have found measurements that
lower ηλ=1

∗ and η∀λ
∗ with respect to 2 × 2 or 2 × 3 settings. But contrary to the previous

situations, ηλ=1
∗ is not equal to η∀λ

∗ , and the two optimal values are obtained for two different
sets of measurements. We present in this section the two Bell inequalities associated to each
of these situations for the qubit case. Let us first begin with the inequality for ηλ=1

∗ :

I2,3×3,λ
rr = E(A1, B2) +E(A1, B3) +E(A2, B1) +E(A3, B1)

−E(A2, B3) −E(A3, B2) −
4

3
P (A1 6= B1)

−4

3
P (A2 6= B2) −

4

3
P (A3 6= B3) ≤ 2, (C.30)

where E(Ai, Bj) = P (Ai = Bj) − P (Ai 6= Bj). As usually, the fact that I2,3×3
rr ≤ 2 follows

from considering all deterministic classical strategies. The maximal quantum mechanical
violation for this inequality is 3 and is obtained by performing the same measurements on
both sides A1 = B1, A2 = B2, A3 = B3 defined by the following phases: φA1 = (0, 0),
φA2 = (0, π/3), φA3 = (0,−π/3). It is interesting to note that this inequality and these
settings are related to those considered by Bell [Bel64] and Wigner [Wig70] in the first works
on quantum non-locality. But whereas in these works it was necessary to suppose that Ai

and Bj are perfectly (anti-)correlated when i = j in order to derive a contradiction with lhv
theories, here imperfect correlations P (Ai 6= Bi) > 0 can also lead to a contradiction since
they are included in the Bell inequality.

If we now consider ”no-result” outcomes, we can use I 2,3×3,λ
rr without adding extra terms

and the quantum correlations obtained from the optimal measurements violate the inequality
if

λη2 >
2

I2,3×3,λ
rr (QM)

=
2

3
(C.31)

Taking λ = 1, we obtain ηλ=1
∗ =

√

2/3 ' 0.8165. For smaller value of λ, ηλ
∗ increase until

ηλ
∗ = 16/19 is reached for λ ' 0.9401. At that point the contradiction with local theories

ceases to depend on the production rate λ. It is then advantageous to use the following
inequality

I2,3×3,∀λ
rr =

2

3
E(A1, B2) +

4

3
E(A1, B3) +

4

3
E(A2, B1)

+
2

3
E(A3, B1) −

4

3
E(A2, B3) −

2

3
E(A3, B2)

−4

3
P (A1 6= B1) −

4

3
P (A2 6= B2) −

4

3
P (A3 6= B3)

≤ 2 (C.32)
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This inequality is similar to the former one (C.30) but the symmetry between the E(Ai, Bj)
terms has been broken: half of the terms have an additional weight of 1/3 and the others of
−1/3. The total inequality involving ”no-result” outcomes is

I2,3×3,∀λ = I2,3×3,∀λ
rr + I2,3×3,∀λ

∅r + I2,3×3,∀λ
r∅ + I2,3×3,∀λ

∅∅ ≤ 2 (C.33)

The particular form of the terms I2,3×3,∀λ
∅r , I2,3×3,∀λ

r∅ and I2,3×3,∀λ
∅∅ is given in the Appendix.

The important point is that
∑

i,j,k(c
k∅
ij + c∅ki,j) = −8/3 and

∑

i,j c
∅∅
ij = 2. From (C.14), (C.9)

and (C.20), we thus deduce

η∀λ
∗ =

4 + 4
3

I2,3×3,∀λ
rr (QM) + 2 + 4

3

(C.34)

The measurements that optimize the former inequality (C.30) give the threshold η∀λ
∗ = 16/19.

However these measurements are not the optimal ones for (C.32). The optimal phase settings

are given in the Appendix. Using these settings it follows that I 2,3×3,∀λ
rr (QM) = 3.157 and

η∀λ
∗ ' 0.8217.

One may argue that the situation we have presented here is artificial and results from the
fact that we failed to find the optimal inequality valid for all lambda which would otherwise
have given a threshold η∀λ

∗ = 0.8165 identical to the threshold ηλ=1
∗ . However, this cannot be

the case since for λ > 1 and η > ηλ=1
∗ there exists a lhv model that reproduces the quantum

correlations. This lhv model is simply given by the result of the first part of our algorithm
described in C.1.4.

C.2.4 More settings and more dimensions

Our numerical algorithm has also yielded further improvements when the number of settings
increases or the dimension increases. These results are summarized in Table C.1. For more
details, see the Appendix.

C.3 Conclusion

In summary we have obtained using both numerical and analytical techniques a large number
of Bell inequalities and optimal quantum measurements that exhibit an enhanced resistance to
detector inefficiency. This should be contrasted with the work (reported in [KGZ+00, DKZ01])
devoted to searching for Bell inequalities and measurements with increased resistance to
noise. In this case only a single family has been found involving two settings on each side
despite extensive numerical searches (mainly unpublished, but see Ref. [ZKBL99]). Thus the
structure of Bell inequalities resistant to inefficient detectors seems much richer. It would be
interesting to understand the reason for such additional structure and clarify the origin of
these inequalities.

It should be noted that for the Bell inequalities we have found, the amount by which the
threshold detector efficiency η∗ decreases is very small, of the order of 4%. This is tantalizing
because we know that for sufficiently large dimension and sufficiently large number of settings,
the detector efficiency threshold decreases exponentially. To increase further the resistance
to inefficient detector, it would perhaps be necessary to consider more general measurements
than the one we considered in this work or use non-maximally entangled states (for instance,
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Eberhard has shown that for two-dimensional systems, the efficiency threshold η∗ can be
lowered to 2/3 using non-maximally entangled states [Ebe93]). There may thus be a Bell
inequality of real practical importance for closing the detection loophole just behind the
corner.

Appendix

For completeness, we present here in details all the Bell inequalities and optimal phase settings
we have found. This includes also the results of Table C.1 which have not been discussed in
the text.

• NA = 2, NB = 2, ∀λNA = 2, NB = 2, ∀λNA = 2, NB = 2, ∀λ
Bell inequality:

Id,2×2 =

[d/2]−1
∑

k=0

(

1 − 2k

d− 1

)

(

+[P (A1 = B1 + k) + P (B1 = A2 + k + 1)

+ P (A2 = B2 + k) + P (B2 = A1 + k)]

− [P (A1 = B1 − k − 1) + P (B1 = A2 − k)

+ P (A2 = B2 − k − 1) + P (B2 = A1 − k − 1)]
)

+
1

2

2∑

i,j=1

P (Ai = ∅, Bj = ∅) ≤ 2

Optimal phase settings:
φA1(j) = 0 φA2(j) = π

d j
φB1(j) = π

2dj φB2(j) = − π
2dj

Maximal violation:

Id,2×2(QM) = 4d

[d/2]−1
∑

k=0

(

1 − 2k

d− 1

)

(qk − q−k−1)

where qk = 1/
(
2d3 sin2[π(k + 1/4)/d]

)
.

Detection threshold: η∀λ
∗ = 4

Id,2×2(QM)+2

• d = 2, NA = 3, NB = 3, λd = 2, NA = 3, NB = 3, λd = 2, NA = 3, NB = 3, λ

Bell inequality:

I2,3×3,λ = E(A1, B2) +E(A1, B3)

+E(A2, B1) +E(A3, B1) −E(A2, B3)

−E(A3, B2) −
4

3
P (A1 6= B1)

− 4

3
P (A2 6= B2) −

4

3
P (A3 6= B3) ≤ 2
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where E(Ai, Bj) = P (Ai = Bj) − P (Ai 6= Bj).

Optimal phase settings:

φA1 = (0, 0) φA2 = (0, π/3) φA3 = (0,−π/3)
φB1 = (0, 0) φB2 = (0, π/3) φB3 = (0,−π/3)

Maximal violation: I2,3×3,λ(QM) = 3

Detection threshold: ηλ
∗ =

√
2
3λ

• d = 2, NA = 3, NB = 3, ∀λd = 2, NA = 3, NB = 3, ∀λd = 2, NA = 3, NB = 3, ∀λ

Bell inequality:

I2,3×3,∀λ =
2

3
E(A1, B2) +

4

3
E(A1, B3)

+
4

3
E(A2, B1) +

2

3
E(A3, B1) −

4

3
E(A2, B3)

− 2

3
E(A3, B2) −

4

3
P (A1 6= B1)

− 4

3
P (A2 6= B2) −

4

3
P (A3 6= B3)

− 2

3
F∅(A1, B2) −

4

3
F∅(A2, B3) −

2

3
F∅(A3, B1)

+
2

3
F∅(A3, B2) +

4

3
P (A2 = ∅, B1 6= ∅)

+
4

3
P (A1 6= ∅, B3 = ∅) +

4

3
P (A1 = ∅, B1 = ∅)

+
4

3
P (A2 = ∅, B1 = ∅) +

4

3
P (A1 = ∅, B3 = ∅) ≤ 2

where E(Ai, Bj) = P (Ai = Bj)−P (Ai 6= Bj) and F∅(Ai, Bj) = P (Ai = ∅, Bj 6= ∅)+P (Ai 6=
∅, Bj = ∅) + P (Ai = ∅, Bj = ∅).

Optimal phase settings:

φA1 = (0, 0) φA2 = (0, 1.3934)
φA3 = (0,−0.7558)
φB1 = (0, 0.5525) φB2 = (0, 1.3083)
φB3 = (0,−0.8410)

Maximal violation: I2,3×3,∀λ(QM) = 3.157

Detection threshold: η∀λ
∗ = 0.8217



C.3. CONCLUSION 119

• d = 2, NA = 3, NB = 4, ∀λd = 2, NA = 3, NB = 4, ∀λd = 2, NA = 3, NB = 4, ∀λ
Bell inequality:

I2,3×4,∀λ = −P (A1 6= B2) − P (A1 6= B3) − P (A1 6= B4)

+ P (A2 = B1) + P (A2 = B2) − P (A2 6= B3)

+ P (A2 6= B4) − P (A3 = B1) + P (A3 = B2)

− P (A3 6= B2) + P (A3 6= B3) − P (A3 = B4)

+ P (A1 6= ∅, B1 = ∅) + P (A2 = ∅, B1 6= ∅)
− P (A3 6= ∅, B1 = ∅) − P (A1 = ∅, B2 6= ∅)
+ P (A1 = ∅, B1 = ∅) + P (A2 = ∅, B2 = ∅) ≤ 2

Optimal phase settings:

φA1 = (0, 0) φA2 = (0, 0.7388)
φA3 = (0, 2.1334)
φB1 = (0,−0.1347) φB2 = (0, 1.2938)
φB3 = (0,−0.0757) φB4 = (0,−1.0891)

Maximal violation: I2,3×4(QM) = 2.8683

Detection threshold: η∗∀λ = 0.8216

• d = 2, NA = 4, NB = 4, ∀λd = 2, NA = 4, NB = 4, ∀λd = 2, NA = 4, NB = 4, ∀λ
Bell inequality:

I2,4×4,∀λ = −P (A1 = B1) + P (A1 6= B3) − P (A2 = B1)

− P (A2 = B2) + P (A2 6= B4) + P (A3 6= B1)

− P (A3 6= B2) − P (A3 6= B3) − P (A4 6= B1)

− P (A4 = B2) − P (A4 = B3) + P (A4 6= B4)

+ P (A1 6= ∅, B4 = ∅) − P (A4 6= ∅, B1 = ∅)
+ P (A1 = ∅, B1 = ∅) + P (A1 = ∅, B4 = ∅) ≤ 2

Optimal phase settings:

φA1 = (0, 0) φA2 = (0, 0.0958)
φA3 = (0, 2.1856) φA4 = (0, 4.5944)
φB1 = (0, 4.0339) φB2 = (0, 3.3011)
φB3 = (0, 2.2493) φB4 = (0, 2.3454)

Maximal violation: I2,4×4(QM) = 2.8697

Detection threshold: η∀λ
∗ = 0.8214
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• d = 3, NA = 2, NB = 3, ∀λd = 3, NA = 2, NB = 3, ∀λd = 3, NA = 2, NB = 3, ∀λ

Bell inequality:

I3,2×3,λ = +[P (A1 = B1) + P (A1 = B2) + P (A1 = B3)

+ P (A2 = B1 + 1) + P (A2 = B2 + 2) + P (A2 = B3)]

− [P (A1 6= B1) + P (A1 6= B2) + P (A1 6= B3)

+ P (A2 6= B1 + 1) + P (A2 6= B2 + 2) + P (A2 6= B3)]

− 1

3

∑

i,j

P (Ai = ∅, Bj 6= ∅)

+
1

3

∑

i,j

P (Ai = ∅, Bj = ∅) ≤ 2

Optimal phase settings:

φA1 = (0, 0, 0) φA2 = (0, 2π/3, 0)
φB1 = (0, π/3, 0) φB2 = (0, 2π/3,−π/3)
φB3 = (0,−π/3,−π/3)

Maximal violation: I3,2×3(QM) = 10
3

Detection threshold: η∀λ
∗ = 9

11 ' 0.8182

• d = 3, NA = 3, NB = 3, λd = 3, NA = 3, NB = 3, λd = 3, NA = 3, NB = 3, λ

Bell inequality:

I3,3×3,λ = E1(A1, B2) +E2(A1, B3)

+E2(A2, B1) −E2(A2, B3) +E1(A3, B1)

−E1(A3, B2) − P (A1 6= B1)

− P (A2 6= B2) − P (A3 6= B3) ≤ 2

Optimal phase settings:

φA1 = (0, 0, 0) φA2 = (0, 2π/9, 4π/9)
φA3 = (0,−2π/9,−4π/9)
φB1 = (0, 0, 0) φB2 = (0, 2π/9, 4π/9)
φB3 = (0,−2π/9,−4π/9)

Maximal violation: I3,3×3(QM) = 3.0642

Detection threshold: ηλ
∗ = 2

3.0642λ
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• d = 3, NA = 3, NB = 3, ∀λd = 3, NA = 3, NB = 3, ∀λd = 3, NA = 3, NB = 3, ∀λ

Bell inequality:

I3,3×3,∀λ = −5

3
P (A1 = B1) −

4

3
P (A1 = B1 + 2)

+ P (A1 = B2) +
5

3
P (A1 = B2 + 1) − 5

3
P (A1 = B3)

− P (A1 = B3 + 2) +
5

3
P (A2 = B1) − 2P (A2 = B1 + 1)

− 5

3
P (A2 = B2) + 2P (A2 = B2 + 1) − P (A2 = B3 + 1)

− 5

3
P (A2 = B3 + 2) − 11

3
P (A3 = B1) − 2P (A3 = B1 + 2)

+
2

3
P (A3 = B2) + 2P (A3 = B2 + 1) +

5

3
P (A3 = B3)

+ P (A3 = B3 + 2) +
5

3
P (A1 6= ∅, B1 = ∅)

− 5

3
P (A2 6= ∅, B1 = ∅) − 2P (A3 6= ∅, B1 = ∅)

+ 2P (A1 6= ∅, B2 = ∅) +
5

3
P (A1 = ∅, B1 = ∅)

+ 2P (A1 = ∅, B2 = ∅) ≤ 11/3

Optimal phase settings:

φA1 = (0, 0, 0) φA2 = (0, 1.4376, 2.8753)
φA3 = (0, 0.5063, 1.0125)
φB1 = (0, 2.0452, 4.0904) φB2 = (0, 2.9758,−0.3315)
φB3 = (0, 1.3839, 2.7678)

Maximal violation: I3,3×3(QM) = 5.3358

Detection threshold: η∀λ
∗ = 0.8146



122 APPENDIX C. BELL INEQUALITIES

• d = 4, NA = 2, NB = 3, ∀λd = 4, NA = 2, NB = 3, ∀λd = 4, NA = 2, NB = 3, ∀λ

Bell inequality:

I4,2×3,∀λ = P (A1 = B1 + 1) + 2P (A1 = B1 + 2)

+ 2P (A1 = B2) + P (A1 = B2 + 1) + 2P (A1 = B3)

+ 2P (A2 = B1 + 1) + P (A2 = B1 + 2) + P (A2 = B2)

+ 2P (A2 = B2 + 1) + 2P (A2 = B3 + 2)

+
4

3

∑

i

P (Ai = ∅, B1 6= ∅) +
1

3

∑

i

P (Ai = ∅, B2 6= ∅)

+
1

3

∑

i

P (Ai = ∅, B3 6= ∅) +
5

3

∑

i

P (A1 6= ∅, B1 = ∅)

+
1

3

∑

i

P (A2 6= ∅, B1 = ∅) +
8

3
P (A1 = ∅, B1 = ∅)

+
5

3
P (A1 = ∅, B2 = ∅) +

5

3
P (A1 = ∅, B3 = ∅)

+
4

3
P (A2 = ∅, B1 = ∅) +

1

3
P (A2 = ∅, B2 = ∅)

+
1

3
P (A2 = ∅, B3 = ∅) ≤ 8

Optimal phase settings:

φA1 = (0, 0, 0, 0)
φA2 = (0,−1.1397, 2.0019, 3.1416)
φB1 = (0, 1.7863,−0.5698, 2.3562)
φB2 = (0, 0.2155, 5.7133, 0.7854)
φB3 = (0, 1.0009, 1.0009, 0)

Maximal violation: I4,2×3(QM) = 9.4142

Detection threshold: η∀λ
∗ = 0.8093
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• d = 4, NA = 3, NB = 3, ∀λd = 4, NA = 3, NB = 3, ∀λd = 4, NA = 3, NB = 3, ∀λ
Bell inequality:

I4,3×3,∀λ = −P (A1 = B1 + 2) + P (A1 = B1 + 3)

+ 2P (A1 = B2 + 1) − P (A1 = B2 + 2) − P (A1 = B3)

− 3P (A1 = B3 + 1) − 2P (A1 = B3 + 2) − P (A2 = B1)

+ P (A2 = B1 + 1) − P (A2 = B2 + 1) + P (A2 = B2 + 2)

+ 2P (A2 = B3 + 3) + 2P (A3 = B1 + 1) + P (A3 = B2)

− 2P (A3 = B2 + 2) − P (A3 = B2 + 3) + 2P (A3 = B3)

+ P (A3 = B3 + 2) +
∑

i

P (Ai = ∅, B1 6= ∅)

+ P (A1 6= ∅, B1 = ∅) + P (A1 6= ∅, B2 = ∅)
− P (A1 = ∅, B3 6= ∅) + P (A3 = ∅, B3 6= ∅)
+ P (A3 6= ∅, B3 = ∅) + 2P (A1 = ∅, B1 = ∅)
+ P (A1 = ∅, B2 = ∅) + P (A2 = ∅, B1 = ∅)
+ P (A3 = ∅, B1 = ∅) + P (A3 = ∅, B3 = ∅) ≤ 6

Optimal phase settings:

φA1 = (0, 0, 0, 0)
φA2 = (0,−1.2238,−1.1546, 3.9048)
φA3 = (0, 3.1572, 3.8330, 0.7070)
φB1 = (0,−0.9042, 1.7066, 0.8025)
φB2 = (0, 2.5844, 3.6937,−0.0051)
φB3 = (0, 4.1396, 3.0022, 7.1419)

Maximal violation: I4,3×3(QM) = 7.5576

Detection threshold: η∀λ
∗ = 0.7939
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