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Loophole-free test of quantum nonlocality using high-efficiency homodyne detectors
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We provide a detailed analysis of the recently proposed setup for a loophole-free test of Bell inequality
violation using conditionally generated non-Gaussian states of light and balanced homodyning. In the proposed
scheme, a two-mode squeezed vacuum state is de-Gaussified by subtracting a single photon from each mode
with the use of an unbalanced beam splitter and a standard low-efficiency single-photon detector. We thor-
oughly discuss the tolerance of the achievable Bell violation in the various experimentally relevant parameters
such as the detector efficiencies, the electronic noise, the mixedness of the initial Gaussian state, and the
probability of false triggers. We also consider several alternative schemes involving squeezed states, linear
optical elements, conditional photon subtraction, and homodyne detection.
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I. INTRODUCTION could be used to close the locality loophole in the Bell test

In their seminal 1935 paper, Einstein, Podolsky, andWith trapped ionq16]. Very recently, the first step toward

Rosen advocated that if “local realism” is taken for granted NiS goal, namely, the entanglement between a trapped ion
&nd a photon emitted by the ion, has been observed experi-
physical world[1]. The EPR argument gained renewed atten-mentally [20]. However, the entanglement swapping would
tion in 1964, when Bell derived his famous inequalities, '€auire interference of two photons emitted by two different
which must be satisfied within the framework of any local NS, Which |s_expe|r|ment_ally ver?]/ challen%mg.d H
realistic theory[2]. The violation of Bell inequalities, pre- A;llgte(est|ng atertmactjtnge to”t et_atolm— hase approlag: es
dicted by quantum mechanics, has since then been observgd; =™’ 3 is represented by all-optical schemes involving

- - . : alanced homodyne detection, which can exhibit very high
In many expenmentEB—lo], thereby disproving the concept detection efficiency[23,24). Unfortunately, the entangled
of local realism. So far, however, all these tests suffered fro

) o i 0-mode squeezed state that can easily be generated experi-
either a detector-efficiency loophole or a locality loophole g yhey b

- ) ) entally [25-27 cannot be directly employed to test Bell
[11,12}, that is, the measured correlations may be eXp""“nea:equalities with homodyning. This state is described by a

in t.e.rms of local rgalis}ic t.heories exploiting the low detec_torpositive definite Gaussian Wigner function, which thus pro-
efficiency or the timelike interval between the two detectionyides a local hidden variable model that can explain all cor-
events[13-15. relations established via quadrature measurements carried by
A test of Bell inequality violation typically involves two balanced homodyne detectors. Similarly to the case of puri-
distant parties Alice and Bob, who simultaneously carry ouffication of continuous variable entanglemd&8-37, one
measurements on parts of a shared quantum system thatHas to go beyond the class of Gaussian states and Gaussian
prepared in an entangled state. Both parties randomly anoperations. For instance, it is possible to obtain a violation of
independently decide between one of two possible quanturthe Bell inequality with a Gaussian two-mode squeezed
measurementsa, ,a, andb;,b,. To avoid the locality loop- vacuum state by performing photon-counting measurements
hole, the measurement everftacluding the choice of the [33] or the rather abstract measurements described in Refs.
measuremeintat Alice’s and Bob’s sites must be spacelike [34-36. However, in contrast to balanced homodyning,
separated. This suggests that optical systems are particulatlyese measurements are either experimentally infeasible or
suitable candidates for the test of Bell inequality violations.suffer from a very low detection efficiency.
The technology of generation of entangled states of photons In order to close the detection loophole by using homo-
is very well mastered todal7] and the prepared entangled dyne detectors, it is necessary to employ highly nonclassical
states can be distributed over long distances via low-losaon-Gaussian entangled states whose Wigner function is not
optical fibers[8]. However, the currently available single- positive definite. Several recent theoretical works indeed
photon detectors suffer from a too low efficiengy which ~ demonstrated that violation of Bell inequalities can be ob-
opens the so-called detector-efficiency loophole. This loopserved using balanced homodynif®—40Q, if specific en-
hole has been closed in a recent experiment with two trappetdngled light states such as pair-coherent states, squeezed
ions[9]. However, the ions were held in a single trap, only Schrédinger-cat-like states or specifically tailored finite su-
several micrometers apart, so that the measurement evergsrpositions of Fock states are available. However, no fea-
were not spacelike separated. It was suggested that two disible experimental scheme is known that could generate the
tant trapped ions can be entangled via entanglement swaptates required in Ref$37—40. In a recent experiment, an
ping by first preparing an entangled state of an ion and &ntangled state obtained by splitting a single photon on a
photon on each side and then projecting the two photons obalanced beam splitter was used to make a Bell test where a
a maximally entangled singlet stdté6—19. This technique homodyne detection was carried out on each oufplf It
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FIG. 1. (Color online Conceptual scheme of the proposed experimental setup for observing a violation of Bell inequalities with balanced
homodyning. The source emits a two-mode squeezed vacuum state in AaaesB. A small part of the beams is subtracted on two
unbalanced beam splitters B&nd BS% and sent onto single-photon detectors,RIbd PLy. The two remaining beam& andB, which are
conditionally prepared in a non-Gaussian entangled state, are sent to Alice and Bob, respectively, who perform each a balanced homodyne
detection using their local oscillators L\Gnd LGs.

was claimed that the observed data violate the Bell inequalsqueezed vacuum state in modesnd B. This can be ac-
ity; however, the violation was obtained by postselectingcomplished, e.g., by means of nondegenerate parametric am-
only the data when the absolute value of the detected quadralification in a x® nonlinear medium or by generating two
ture was above some threshold. This rejection of data introsingle-mode squeezed vacuum states and combining them on
duces a loophole very similar to the detection-efficiencya balanced beam splitter. Subsequently, the state is de-
loophole, and this experiment therefore does not refute locabaussified by conditionally subtracting a single photon from
realism. each beam. A tiny part of each beam is reflected from a beam
Recently, it was shown by us together with Wenger,splitter BS, (BSg) with a high transmittancg&. The reflected
Tualle-Brouri, and Grangidi2], and independently also by portions of the beams impinge on single-photon detectors
Nha and CarmichadK3], that a very simple non-Gaussian such as avalanche photodiodes. A successful photon subtrac-
state obtained from two-mode squeezed vacuum by subtradion is heralded by a click of each photodetector,Pdnd
ing a single photon from each mof#4—44 can exhibit Bell PDg [46]. In practice, the photodetectors exhibit a single-
violation with homodyning. An essential feature of this pro- photon sensitivity but not a single-photon resolution, that is,
posal is that the photon subtraction can be successfully pethey can distinguish the absence and presence of photons but
formed with low-efficiency single-photon detectors, which cannot measure the number of photons in the mode. Never-
renders the setup experimentally feasible. In fact, the basitheless, this is not a problem here because in the limit of high
building block of the scheme, namely, the de-Gaussificatior, the most probable event leading to the click of a photode-
of a single-mode squeezed vacuum via single-photon suhector is precisely that a single photon has been reflected
traction, has been recently successfully implemented experirom the squeezed beam on the beam splitter. The probability
mentally [47]. ) _of an event where two or more photons are subtracted from a
In the present paper, we provide a thorough analysis ofjngle mode is smaller by a factor ef1-T and becomes
the scheme pr_oposed in Refé2,43. We prese_nt_the details totally negligible in the limit of T— 1. Another important
ofkthe calculation of the Se." factor for alreahstlc Z%tug thateoaiure of the scheme is that the detector efficienman be
o eSS, 9 2ute o bcatse & smaon reduces e successrate o
eral alternative schemes that involve the subtraction of onehfef‘ con|d|tc|jonal S|nglﬁ-ppgt?n Slibtk:.""cnon bu_t I r:irohes nqt SI9-
two, three, or four photons. The present paper is organized a@ icantly decrease the fidelity of this operation. These issues

follows. In Sec. I, we describe the proposed experimentalVill P€ discussed in detail in Sec. Ill.
setup and we introduce the Bell-CHSKClauser-Home- After generation of the non-Gaussian state, the two beams

Shimony-Holi inequalities. We then provide a simple pure- A and B together with the appropriate local oscillators L.O

state analysis of the scheme assuming ideal detectors, whi@d LCs are sent to Alice and Bob, who then randomly and
gives an upper bound on the achievable Bell violation. Inindependently measure one of two quadram‘f%%%ﬁk char-
Sec. lll, we present the mathematical description of a realisacterized by the relative phaseés 6, and ¢, , ¢, between the

tic setup with imperfect detectors, losses, and noise. Besidareasured beam and the corresponding local oscillator. The
the scheme where a single photon is subtracted on each sidetated quadratures x,=(cos#)x*+(sin §)p* and Xg

we will also analyze a scheme where two photons are sub=(cos¢)xB+(sin ¢)p® are defined in terms of the four
tracteq on each side. This latter scheme yields slightly hig,he(ﬁuadrature components of modasand B that satisfy the
Bell violation but only at the expense of a very low probabil- c?nonical commutation relatiofis! , p]=i Sy i,k e {A,BY.

ity of state preparation. ngeral other schemes composed 9" 16 avoid the locality loophole, the whole experiment has

ﬁ&be carried out in the pulsed regime and a proper timing is

are discussed in Sec. IV. Finally, the conclusions are draw . 2
necessary. In particular, the measurement events on Alice’s

in Sec. V. and Bob’s sidegincluding the choice of phasghave to be
Il. FEASIBLE BELL TEST WITH HOMODYNE spacelike separated. A specific feature of the proposed setup
DETECTION is that the non-Gaussian entangled state needed in the Bell
] test is generated conditionally when both “event-ready” de-
A. Proposed optical setup tectors[48] PD, and P click. However, we would like to

The conceptual scheme of the proposed experimentatress that this does not represent any loophole if proper tim-
setup is depicted in Fig. 1. A source generates a two-modg is satisfied; namely, in each experimental run, the detec-
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tion of the clicks(or no click9 of photodetectors PDand  correlations would be determined from the subset of the ex-
PDg at the source should be spacelike separated from Alice’perimental data corresponding to the successful conditional
and Bob’s measurements. This guarantees that the choice dé-Gaussification, i.e., Alice and Bob would discard all re-
the measurement basis on Alice’s and Bob’s sides cannot isults obtained in measurement runs where eithey &0PDs
any way influence the conditioning “event-ready” measure-did not click. We emphasize again that this does not open
ment[16,42,4§. any loophole in the Bell test.

A scheme for observing a Bell inequality violation with
balanced homodyning very similar to the setup depicted in
Fig. 1 was proposed by Nha and Carmichad]. They also B. Ideal photodetectors

consider de-Gaussification by means of photon subtraction \yg shall first present a simplified description of the setup,
with inefficient detectors exhibiting single-photon sensitivity assuming ideal photodetectofspp=1) with single-photon
but no smgle.-phc_)ton resolution. The difference betwee_n theasolution and conditioning on detecting exactly a single
setup shown in Fig. 1 and the scheme of Nha and Carmichaghoion at each detectd4,45. This idealized treatment is

is that in the latter case the single-photon detectors are 1Q;5,able since it provides an upper bound on the practically

cated on Alic_e’s and Bob's sides while in our case the detec; hievable Bell factoS. Moreover, as noted above, in the
tors are spatially separated from the two observers.

- o limit of high transmittance of B§Sand BS, T— 1, the real-
The position of the photodetectors is irrelevant as far ageic (inefficient detector with single-photon sensitivity is in
the state preparation is concerned and both schemes condiy; case practically equivalent to these idealized detectors.

tionally produce the same photon-subtracted two-mode e yo-mode squeezed vacuum state can be expressed in
squeezed vacuum. However, the position of these detectoffs Fock state basis as follows:

plays a crucial role in the Bell test. If the single-photon de-

tectors are placed together with the balanced homodyne de- — “
tectors on Alice’s and Bob’s sides, then the choice of the |[#n(M))ag = V1 = A2 NN, Mg, 3
measurement basis may influen@ethin the local-hidden- n=0

click or not. This must be avoided, which is achieved byt igeal photodetectors, the single-photon subtraction results
spatially separating the state preparation and homodyne dg; the state

tection and by proper timing as in our setup.
To demonstrate that the experimental data recorded by |Youd aB = 8adg| Yin(TA)) AR, (4)

Al nd B re incompatible with th n f local N .
ce and Bob are incompatible with the concept of loca wherea, g are annihilation operators and the paramatés

realism, we shall consider the Bell-CHSH inequality origi- . ) .
nally devised for a two-qubit systefd9]. In this scenario, replaced byTh in order to t"?"‘e Into acc.ount.the transmit-
Alice (Bob) randomly and independently decides between2"c® of BG and BS. A detailed calculation yields

one of two possible quantum measuremeatsa, (b;,b,) (1-TA2)3 *
which should have only two possible outcomes +1 or —1. We [oudas= \ /ﬁz N+ 1) (TN)" NN s, (5)
define the Bell parameter 1+T\" oo

S=(a;by) + (a;b,) + (ab;) — (asby), (1) and the probability of the conditional preparation of sid&e

can be expressed as
where(ajb,) denotes the average over the subset of experi- P

mental data where Alice measureg and, simultaneously, 1+T2A?2

— 2\ 2 2
Bob measured,. If the observed correlations can be ex- P=@A-TA (-2 )(1_1-2)\2)3' (6)
plained within the framework of the local-hidden-variable o
theories, therS must satisfy the Bell-CHSH inequality ~ For pure states exhibiting perfect photon-number correla-
<2 tions, the correlation coefficiei2) depends only on the sum

In the proposed experiment, Alice and Bob measuref the angles£(6;, ) =£(6;+ ¢). With the help of the gen-
quadratures that have a continuous spectrum. We discretial formula derived by Munr39] we obtain for the state
the quadratures by postulating that the outcome is +1 whefP)

x=0 and -1 otherwise. The two different measurements on (1-T2\2)3 8m(2TA)™™

each side correspond to the choices of two relative phases &(¢)= > E 5(n+1)(m+1)
61,6, and ¢,,$,. Quantum mechanically, the correlation 14T Zpnim!(n-m)

E(6;, &) =(ajb, can be expressed as X [F(n,m) - F(m,n)2cod(n - m)e], @)

E(6;, ) :J sgrixxE )P xE )G dxs ,  (2) whereF(n,m)=T"Y((1-n)/2)['"}(-m/2) andI'(x) stands for
e e e Tk the Euler gamma function.
A By /uA B A B\ . We have numerically optimized the anglés, and ¢, ,to
Whgre Ff(xgj’X‘f’.k)_<Xajr;x¢k|pc'AB|X0j’X¢l§> is the joint prob- maximize the Bell factolS. It turns out that for any, it is
aémllty distribution of the two com'mutmg qga}draturﬁ%and optimal to choose91:0_, 02:'17/2, ¢1:_—7T/4, and¢2_: 4.
X4 andpg ag denotes theénormalized conditionally gener-  The Bell factorS for this optimal choice of angles is plotted
ated non-Gaussian state of modesndB. In practice, the as a function of the effective paramefex in Fig. 2(@), and
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0.02
2.05 1
8 b) W= ———exd-(r-d)'y(r-d), ®
0.015 s \gdet'y
2
S P 001 whered is the vector of first moments;=(r;), andy is the
1.95 6,508 covariance matrix
19 0 'yi’j=<rirj+rjri)—2didj. (9)
04 0.6 08 0.4 06 0.8 ) . . .
™ ™ In this paper we shall deal only with states with zero dis-

placementd;=0. Some relevant examples of Gaussian states
that we shall need in what follows include® the n-mode
vacuum state wittd;=0 and covariance matrix equal to the
identity matrix, y,ac=lon; (i) the single-mode squeezed
vacuum state witll;=0 and covariance matrix
[e= o
the corresponding probability of success of the conditional Ysms= 0 e/
preparation of the statg,,, is plotted in Fig. 2b). We can

see thaSis higher than 2 so the Bell inequality is violated Where s is the squeezing parametefiji) the two-mode
when T\ >0.45. The maximal violation is achieved fdn  Sdqueezed vacuum state with=0 and covariance matrix

FIG. 2. (a) Bell factor S plotted as a function of the effective
squeezing parameter\ for 6,=0, 6,=7/2, ¢p,=—7/4, and ¢,
=m/4. (b) ProbabilityP of successful conditional generation of the
state|y) as a function of the effective squeezing paramater
assumingl=0.95.

(10

~0.57, giving S=2.048. This figure is quite close to the cosh2s 0 sinh(2s 0
maximum Bell factorS=2.076 that could be reached with H2s) h(2s) )
homodyne detection, sign binning, and arbitrary states exhib- ,_ _ 0 cosh2s) 0 — SinR(2s)
iting perfect photon-number correlationss)==,c,/n,n) ™STI sinh(2s) 0 cosh(2s) 0
[39]. 0 - sinh(2s) 0 cosh2s)
(11)
lll. REALISTIC MODEL Optical operations that can be implemented with beam

splitters, phase shifters, squeezers, and homodyne detection

In this section we will consider a realistic scheme with correspond to Gaussian operations. Their important property
inefficient (ypp<1) photodetectors exhibiting single-photon is that they map a Gaussian input state onto a Gaussian out-
sensitivity but no single-photon resolution, and realistic ho-put state. Gaussian unitary transformations realize the map-
modyning with efficiencyngup<1. The mathematical de- pingr—r’=Srwhich preserves the CCR’s. This is the case
scription of this realistic model of the proposed experimentf Se Sp(2n,RR), the so-called real symplectic group. On the
becomes strikingly simple if we work in the phase-spacecovariance matrix level the transformation reads
representation and use the Wigner function formalism. Even L sydT (12)
though the state used to test Bell inequalities is non- Y Ll
Gaussian, it can be expressed as a linear combination of fous particular subset of symplectic transformations is formed
Gaussian states, so all the powerful Gaussian tools can stitly the symplectic matrice$ that are also orthogonat
be used. e Sp(2n,R) N O(2n). Those transformations are called pas-

This section is further divided into three subsections. Thesive because they do not change the total number of photons.
first one gives a brief overview of the Gaussian states, linearhe most common passive transformations incl(iglenix-
canonical transformations of quadrature operators, anghg two modes of light with a beam splitter gintensity)
Gaussian completely positive maps. In the second subsegransmittancel and reflectance 1F
tion, an analytical formula for the Bell fact@® is derived,

[— I ———
and the influence of detector inefficiencies, losses, and noise VT 0 vi-T 0
on the proposed Bell expgrimer!t is investigated in det_ail. 0 VT 0 V1I-T
Finally, an extended setup involving two-photon subtraction Ss= — 0 F Nt (13
from each mode is studied in the third subsection. LT Y
I — —
0 - \*’1 -T 0 \J'
A. Gaussian states and Gaussian operations and a phase shift of a single mode
' . cosf sinf
In quantum optics Gaussian states are often encountered Sed0) = _sing cosd |’ (14

as states oh modes of light. These states are completely
specified by the first and second moments of the quadraturgll passive linear canonical transformationsrofnodes can
operatorsry with r=(xX;,py, ... X,,pn)". Herer, satisfy the  pe implemented by optical interferometers consisting of

canonical commutation relatiof€CR’S) [x;, p]=idj . In- beam splitters and phase shifters.
stead of referring to the density matrix one may refer to the The second group of linear canonical transformations are
Wigner function defined on phase space, the active transformations that describe phase-sensitive am-
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PD; )
FIG. 3. (Color online@ Scheme of the pro-
1 posed experimental setup for observing a viola-
i tion of Bell inequalities considering realistic pho-
o T todetectors (7pp<1l) with  single-photon
z8 sensitivity, imperfect homodynind 7gpp<1),
D and unbalanced beam splitters of transmittance
LOg T<1.
plification of light. The archetypal examples are the single- 1 _—
mode squeezer WinaBcp= — ——=€Xf~ 1 %], (18)
mdety,
S
Seys= {e 0 ] (15) wherer =[x*,p?, ... xP,pP]. The initial state is fully charac-
0 e° terized by the covariance matrix
and the two-mode squeezer Yin= Yrms.aB @ lcps (19
coshs) 0 sinh(s) 0 wherevyrys is the covariance matrix of a two-mode squeezed
0 coshs 0 —sinh(s vacuum_(ll) and® (_jenotes the direct sum of matrices.
Smms=| . & s . The imperfect single-photon detectofisalanced homo-
sinf(s) 0 cosfts) 0 dyne detectopswith detector efficiencyspp (7gpp) are mod-
0 - sinh(s) 0 cosh(s) eled as a sequence of a lossy channel with transmittapge

(16) (7up) followed by an ideal photodetect@momodyne detec-
tor). In our setup, the mode&C (BD) interfere on the un-
These matrices describe the operation of an ideal degeneratalanced beam splitters BEBSg) and pass through the four
(Ssme) Or nondegeneratéSyy,s) optical parametric amplifier  “virtual” lossy channels before impinging on ideal detectors.
(OPA). In particular, a nondegenerate OPA provides a sourcdhe covariance matrix of the mixed Gaussian sigtgascp
of entanglement since it transforms the input vacuum into gust in front of the(ideal detectors is related tg;, via a

two-mode squeezed vacuum state. Gaussian CP map,
Noisy channels and phase-insensitive amplifiers are irre- -
versible quantum operations which cannot be described by Yout= SyShix YinSmixS, + G, (20

Gaussian unitary transformations. Instead, they can be mod-
eled within the more general framework of trace-preservingvhere
Gaussian completely positii€P) maps[28,29. The cova-

— —
riance matrix transformation reads S, =V 7aupl as ® V7ppl cps (21)
y—AYAT+G. (17 G=(1-78rp)las ® (1 = 7pp)lco, (22)

Of particular importance is the propagation through a lossyand the symplectic matrix
quantum channel with transmittaneg which is character-

ized by A=\l and G=(1-»)I. In what follows, we shall Shix = Sssac © Seseo (23
use lossy channels followed by perfect detectors to model . o ) ]
inefficient detectors. describes the mixing of modéswith C andB with D on the

unbalanced beam splitters B&nd BS, respectively.
The statep, pp is prepared by conditioning on observing
clicks at both photodetectors Rland PL}. These detectors
We shall now present a detailed calculation of the Bellrespond with two different outcomes, either a click, or no
factor for our proposed setup, taking into account realisticclick. Mathematically, an ideal detector with a single-photon
photodetectorg7pp< 1) with single-photon sensitivitybut ~ sensitivity is described by a two-component positive operator

not resolutiop, imperfect homodyning, and added electron-Vvalued measur¢POVM) consisting of the projectors onto
ics noise. the vacuum state and on the rest of the Hilbert spakge,

=|0)(0|, I1,=1-|0)0|. The resulting conditionally prepared
1. Preparation of a non-Gaussian state statepg g can be calculated from the density matpix,asco
as follows:

B. Two photon subtractions

As shown in Fig. 3, the mode& andB are initially pre-
pared in a two-mode squeezed vacuum state, and the auxil- Peas= Treol poutascollag ® i c ® TT; p)]. (24)
iary modesC and D are in the vacuum state. The Wigner ’ ' ’
function of the four-mode sta#®BCDis a Gaussian centered It is instructive to rewrite the partial trace in EQR4) in
at the origin, terms of Wigner functions, taking into account that

022105-5



GARCIA-PATRON, FIURASEK, AND CERF

Ti{XY] = (2m" f Wi (1) Wy (r)d®r, (25)
whereWy(r) andWy(r) denote the Wigner representations of

the operatorX andY, respectively, and\ is the number of
modes we trace over. The POVM eleméhtis a difference

of two operators whose Wigner representatlons are botr><

Gaussian functions, W,=1/(2m), Wy=m -1e%-0 After

somewhat lengthy but otherwise straightforward calculat|ons§

we find that the Wigner functioV, 5g of the (normalized
conditionally prepared stat@4) can be expressed as a linear
combination of four Gaussian functions,
4
1 g
772PG\3’det’yout =1 \s"detl“ijD

T
r's agr
e J,AB"

We,ag(r) = (26)

whereq;=1, g,=03=-2, andg,=4. The corresponding prob-
ability of success is given by

4
1 q

T ] .
vdetyouij=1 VdetI'j agl’j cp)

Pg=

(27)

To define the various matrices appearing in E@§) and
(27), we first introduce a matrik = y,_, and we dividel" into
four smaller submatrices with respect to the biparit vs

CD splitting,

— -1 T
Fj,AB_ FAB_ (TFJ"CDO' y

FAB g

(TT

2
oo 2

It holds that
(29)
and the four matrice¥ o read
I'ico=Tco,
Focp=Tcp+lc® Op,

F3cp=Tcp+0c @ lp,

Fycp=Tcp+lcp. (30)

2. Correlation coefficient E6}, ¢y)

The Jomt probablllty distributiorP(x}) ,x¢) of the quadra-
turesxl9 and x(/) appearing in the formul(aZ) for the corre-
lation coeff|C|entE( ,¢) can be obtained from the Wigner
function (26) as a marginal distribution. We have

P(Xﬁj,xgk):ﬁ f_ Wc,AB(Sgﬁej,¢k)dﬁ2jdquska (31)

where e [xg o ,x¢, ,pd)] and the symplectic matrix
Sp= SDSA(G)EBSDSB(]d)k) descrlbes local phase shifts applied
to modesA andB that map the measured quadraturésand
X¢> onto the quadratureg* andxB, respectively.

In order to express the result of the integration in &4)

PHYSICAL REVIEW A71, 022105(2005
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FIG. 4. A one-dimensional cut of the Wigner function of the
two-mode statep. pg along the linexB=xA, pA=pB=0 for \=0.6
and beam splitters BSand BS transmittance3=0.95. Notice the
regions whera/ is negative.
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which defines a matri§,,,, After these algebraic manipula-
tions, the four matrice$’; g appearing in the exponents in
Eq. (26) transform to

A G
AB SnornSShFJ ABSshSqom CT B ’ (33)

j
where we have divided the matiX , into four submatrices
with respect to thex vs p spllttmg A straightforward inte-
gration overpe and pd) in Eg. (31) then yields the joint
probability distribution

.
1 qe”y 'V
(Xﬁa ¢k) = [ i . [ ’ (34)
PGVdetyout j=1 \“'detFJVCD\“'detBj
Wherey:(x’gj ,xgk)T and
I'j=A-CB'C/. (35

Taking into account the choice of binning, the normalization
of the joint probability distribution, and its symmetry

P(xX, ,xgk):P(—x’;_,—xgk), we can express the correlation co-
efficlent as follows:

e, 00=4] | PG I0G0E -1 (39
0 Jo ek

in a compact matrix notation, we reorder the elements of thd his last integral can be easily evaluated analytically. For a

Vectorry, 4, as follows:

givenT’; matrix

022105-6



LOOPHOLE-FREE TEST OF QUANTUM NONLOCALITY.. PHYSICAL REVIEW A 71, 022105(2005

b)

XX
t"M’O

/l' “\\\‘\‘ /I,N’O’\\\\ e
e XX ' Tl
"M'o \ : : x 1
NG ; - @ . e
i A \ : 2 FIG. 5. Joint probability distri-
o A - .

L -3 bution P(x’;\,xik). Panels(a) and
-4 (b) show the distribution for the
5 4 3-2-10 1 2 3 4 5 conditionally  prepared  non-
A Gaussian state wit=0.99. Pan-
0 els(c) and(d) display the distribu-

Gaussian: A =0.6

x107 5 tion for the initial Gaussian two-
a0 d) mode squeezed vacuum state. The
y 3 curves are plotted for perfect de-
m’g L. ';l;"’;‘\* e f tectors . pp= MBHD — 100%,
X /)"l'“'““\\\\ S o squeezingA=0.6, Opice=0, and
e il N O bpop=T14.
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T 2
-3
_4
s 4821 01 23 45
)
a C ity, as well as the attained negative values\df are rather
I= c bl (37)  small, which indicates that we should not expect a high Bell
i M

violation with homodyning.
the integral of the exponential term As we have shown in Sec. Il, the maximum Bell fac®r
achievable with our setup and sign binning is ab&it
® [ 5 5 =2.048. We conjecture that this binning is optimal or close to
Gj= f f e AT Oa 2 ady, dy, (38)  optimal. This is supported by the simple structure of the joint
00 probability distribution(34). As can be seen in Figs(& and

can be calculated by transforming to polar coordinates antrf(b)’ P exhibits two peaks, both located in the quadrants

integrating first over the radial coordinate and then over thé("here Al|ce§ ?ndl Bo?hs trPhea?ured qllj(adtratutres have lthe
angle. After some algebra, we finally arrive at same sign. Note aiso that the two-peak structure I a clear

signature of the non-Gaussian character of the §taté&igs.
1 - C 5(c) and Hd)]. We have carried out numerical calculations of
Gj= =2{— - arctan,—l——z] . (389 S for several other possible binnings which divide the
B quadrature axis into three or four intervals, and have not
found any binning that would provide high8&rthan the sign

The final fully analytical formula for the correlation coeffi- =" A
y y binning. We have also performed optimization over the

clent reads anglesd; and ¢, and all the results and figures presented in
4 4 qG; this section were obtained for the optimal choice of angles
E(6;, ) = ; ; =L - 6,=0, 6,=712, p;=—7l4, =l 4.
mPeVdetyou| j=1 Vdetl'j cpVdetB, Figure @a) illustrates that the Bell-CHSH inequalif)

(40) <2 can be violated with the proposed setup, and shows that
there is an optimal squeezing,, that maximizesS. This
and the Bell factor can be expressed as optimal squeezing is well predicted by the simple model as-
suming perfect detectors with single-photon resoluti®ac.
S=E(61,¢1) + E(61, ) + E(65, 1) —~E(02,¢2).  (41) 11 B), Aoy T=0.57. The curve plotted foF=0.99 practically
coincides with the results obtained from the simple model
presented in Sec. Il Bf. Fig. 2a)]. This confirms that in the
limit T—1 the detectors with single-photon sensitivity be-
A necessary condition for the observation of a violation ofcome for our purposes equivalent to photodetectors with
Bell inequalities with homodyne detectors is that the Wignersingle-photon resolution. The maximum Bell factor achiev-
function of the two-mode state used in the Bell test is notable with our scheme is abo8t,,,~2.045 which represents
positive definite. Figure 4 illustrates that the Wigner functiona violation of the Bell inequality by 2.2%. To get close to the
(26) of the conditionally generated staigag is indeed nega- S, one needs sufficiently higtbut not too strongsqueez-
tive in some regions of the phase space. The area of negatiirg. In particular, the valua =0.57 corresponds to approxi-

3. Violation of Bell-CHSH inequalities
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2.05
2.04r FIG. 6. Violation of Bell-
2.03f CHSH inequality with the condi-
202} tionally prepared non-Gaussian
201l 5 state.(a) Bell factor S as a func-

’ el tion of the squeezing(b) Prob-
S a2 T % ability of success of the genera-
199} 1 ! a tion of the non-Gaussian state as a
108l ! ,' function of the squeezing. The

il II curves are plotted for perfect de-
o7y Y — tectors (7pp= 78up=100%) with

1.96 1 ” 1 ’ T=0.9 (solid line), 0.95 (dashed
joslt 1 . . . 10°° . . . line), and 0.99(dot-dashed ling

0.4 0.5 0};6 0.7 0.8 04 05 %"6 0.7 0.8

mately 5.6 dB of squeezing. Figurébd illustrates that there  ~90% in order to observe Bell violatiofsee Fig. 8 How-

is a clear trade-off betwee® and the probability of success ever, this is not an obstacle because s(astd even higher

P¢. To maximizeS one should use highly transmitting beam efficiency has been already achieved experimentabe,
splitters but this would redudes. The optimalT that should  e.g.,[50]). Interestingly, we have found that it is possible to
be chosen would clearly depend on the details of the experpartially compensate for imperfect homodyning with effi-
mental implementation. ciency 7gup<1 by increasing the squeezing of the initial
state. This effect is illustrated in Fig(l® which shows the
dependence of the Bell fact&on »gyp for optimal squeez-

. o ing N\ope Figure 8c) then shows how the optimal squeezing
Itis shown in Fig. Ta) that the Bell factoSdepends only  increases with decreasingp.

very weakly on the efficiencypp of the single-photon de-  |n addition to imperfect detection efficiencygp, the
tectors, so the Bell inequality can be violated evemif,  electronic noise of the homodyne detector is another factor
~1%. This is very important from the experimental point of that may reduce the observed Bell violation. We model the
view because, although the quantum detection efficiencies gfdded electronic noise by assuming that the effective quadra-

the avalanche photodiodes may be of the order of 50%, thgre that is detecter, is related to the signal quadratuce
necessary spectral and spatial filtering which selects thgy a formula

mode that is detected by the photodetector may reduce the ‘ o

ovgr.all detection efficiency to a few percent. Lov_v.detection Xget= V 7erpXs + V1 — 7eupXvact VNeXnoise

efficiency only decreases the probability of conditional gen- ) )
eration Pg of the non-Gaussian stafsee Fig. Tb)]. The Wheré X, and Xyse are two independent Gaussian-
dependence oPg on 7ep and T can be very well approxi- distributed quadratures with zero mean and variance 1/2,
mated by a quadratic functiorPGxn,%D(l—T)z which  @nd Ng is the electronic noise variance expressed in shot

quickly drops whenyep decreases. In practice, the minimum noise units. On the level of covariance matriclg, can be

necessaryypp Will be determined mainly by the constraints

included by modifying the formula for the noise matfi
on the total time of the experiment and by the dark counts of G=(1- 7gp + Ne)lag @ (1 = 7pp)l cp- (42)
the detectors. ¢ ¢

In contrast, the Bell facto® strongly depends on the ef- The homodyne detector with electronic noise is actually
ficiency of the homodyne detectors, anglip must be above equivalent to a detector without noise but with a lower ho-

4. Sensitivity to the experimental imperfections

2.05 . : . : 10° .
2,045} _ _(_a,) _________________________ (b)
1072 FIG. 7. Effect of the ineffi-
2.04 ciency of the photodetectors RD
2,035 PP - §104 and I_DI%. (a) Bell pgrgmetes asa
T 2 function of the efficiencyznpp of
S 203 - g the photodetectorgb) Probability
Q10 of success as a function of the ef-
2,025 -
; ficiency 7pp. The curves are plot-
2.02 oli ted for TN=0.57, 7gup=100%,
1077 and the same transmittances as in
2,015 Fig. 6.
) 10 N N N
201, 02 04, 06 08 1 10 0 02 04_ 06 08 1
nPD T]PD
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. 2.
2.02 7 02 0.7
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201 A 2.01 . NS
o 0.65 N N
K ] / 2 \‘x. T~ -
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FIG. 8. Effect of inefficient homodyninga) Bell parametelS as a function of the efficiencygyp of the homodyning. The curve is
plotted for T\=0.57, 7p=30%, and the same transmittances as in FighpBell parameter achieved for the optimal squeezigg is
plotted as a function ofjgp. (€) Optimal squeezing,, is plotted as a function ofigyp. The curves are plotted fojpp=30% and the same
transmittances as in Fig. 6.

modyne detector efficiencyjsyp=7snp/(1+Ng). This can  Gaussian state is quite similar to the influence of the elec-
be shown by noting that the renormalized quadraturdronic noise of the homodyne detectmee Figs. &) and
Xgei V1+Ng is exactly a quadrature that would be detected9d(d)]. We find again that the added noise in the initial Gauss-
by a balanced homodyne detector wg=0 and efficiency ian state should be 15-20 dB below the shot noise.
Taup- OUr calculations reveal that the electronic noise should In the experimental demonstration of single-photon sub-
be 15-20 dB below shot noigsee Figs. @) and 9b)], traction[47], a main source of noise and imperfections was
which is currently attainable with low-noise charge amplifi- that the single-photon detector was sometimes triggered by a
ers. Again, higher squeezing can partially compensate for thphoton coming from other modes than the mode detected in
increasing noise. the balanced homodyne detector. The single-mode descrip-
So far we have assumed that the source in Fig. 1 emits @on of a parametric amplifier is only an approximation and
pure two-mode squeezed vacuum state. However, experihe amplifier produces squeezed vacuum in several modes. A
mentally, it is very difficult to generate a pure squeezedbalanced homodyne detector very efficiently selects a single
vacuum saturating the Heisenberg inequality. It is more realmode defined by the spatiotemporal profile of the local os-
istic to consider a mixed Gaussian state such as a squeezeitlator pulse. However, this reference is missing in the case
thermal state which can be equivalently represented by adadf a single-photon detector, where the effective single mode
ing quadrature-independent Gaussian noise with variandeas to be selected by spatial and spectral filtering, which
Voise 10 €ach mode of the two-mode squeezed vacuum. Theeduces the overall detection efficieney In practice, the
effect of the added noise stemming from the input mixedfiltering is never perfect; hence the photodetectop PPDg)

2.03 1
2025/~ - ~. - (a)
~. 0.9
2,02 ~, FIG. 9. Effect of the electronic
"32 015k - ~ — - N %08 noise and thermal input states)
’ RN N L Maximum achievable Bell param-
2,01 N . \.\ eter S with the optimal squeezing
2005 SO 0.7 Aopt @s a function of the electronic
N noise Ng. (b) Optimal squeezing
_230 TP a— o'-%o Nopt iving the highest Bell pa-
N_ [dB] rameterS for a given electronic
ol noise. (c) Maximum Bell param-
2.03 1 eterSas a function of the thermal
noise of the input stat¥,yise (d)
2025=~ o (c) 09 Optimal squeezing oy giving the
202 TS N ) highest Bell parameteS for a
» N given thermal noise at the input.
2015 = =~~ N g8 The curves are plotted forpp
201 RN <N < =30%, 7gpp=95%, and T=0.9
N \\ 0.7 (solid line), 0.95 (dashed ling
2.005 NN and 0.99(dot-dashed ling
2 =2 0.6
-3 -25 -20 -15 -10 -30
Vnoise[dB:|
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can sometimes click although no photon was removed from e
modeA (B). 2.02f el .
We can model this false triggering by redefining the L e
POVM elementl, ¢ (11, p) appearing in Eq(24). The new S~ Tl
[T, becomes a convex mixture of the original POVM element 201y e e i
I -|0)(0|, which corresponds to triggering by a photon com- S~ S
ing from the modeA (B), and the identity operatdg which ?al Tl Tl
corresponds to the false triggering. We can wilitg(é) =1 R T
- £0)X0| and the coefficient & é<1 can be related to the Sl
fraction of false triggerd?;. Assuming for simplicity a pure  1.99 S
two-mode squeezed vacuum in modesnd B, the single-
mode state irC or D just before detection is a thermal state
with mean number of chaotic photoms= 7pp(1-T)\?/(1  1:98; 0.05 P o1 015
-\?). (Note that this includes the effect of imperfect detec- f
tors with efficiencyzpp.) The probability of projection of the FIG. 10. Influence of false triggers. The Bell fac®is plotted
thermal state on vacuum reaBg,.=1/(n+1). The probabil-  as a function of the probability of false triggerirs for T=0.9,
ity of false triggerP; can be expressed in terms of the prob-A=0.72 (solid line), T=0.95, \=0.66 (dashed ling and T=0.99,
ability of a trigger P(§)=1-£P,,. and the probability of a A=0.62(dot-dashed ling 7pp=30%, andzngyp=95%.

correct triggering evenP(§=1)=1-P,,,

T
/
!

better filtering and/or using sources that produce squeezed

P& -P(é=1) light in well-defined spatial modes, such as nonlinear peri-
Pi= O (43)  odically poled waveguides.
] ] C. Four photon subtractions
From this formula we obtain Until now we have focused on a single-photon subtraction
on each sidgone photon removed from mod& and one
gzﬂ. (44) from modeB). If we now consider a scheme where two
1-P photons are subtracted from each mode, the de-

Gaussification of the state will be stronger and we may ex-

The analytical formuld41) for the Bell factorS can still be  pect a higher Bell violation than before. To subtract two pho-
used even in the presence of false triggering. We only haveons from each mode, we only need to add one more
to redefine the four coefficienty as follows:q,=1, g,=0;  unbalanced beam splitter and photodetector on each side in-
=—2¢, Qu=48° side the source in Fig. 1. A successful state generation would

The effect of the false triggers is illustrated in Fig. 10. As be indicated by simultaneous clicks of all four detectors. As-
expected, the achievable Bell factor decreases with increasuming perfect photon-number resolving detectors, the state

ing P;. The results are shown for a realistic set of parametergenerated from two-mode squeezed vacy@iby subtract-

as identified in[42] and for three different values af. For

high transmittancéT=0.99 up to 13% of false triggers can

be tolerated while folf =0.95 the acceptable fraction of false | Youd g &
triggers decreases #©;=9%. In a recent experimef#7], o

the estimated fraction of false triggers ws~=30% which
would have to be significantly reduced in the Bell test ex-
periment. Possible ways of suppressing false triggers includand the probability of success reads

e

ing two photons from each mode can be expressed as

[n(T2N))ag = 2 (N+2)(n+ 1)(T2A)"N, Mg,

n=0
(45)

2,07 . 2.07
206 (a) - 2.06 (b) ;
208 « 205 e FIG. 11. Violation of Bell-
2.04 N, : e CHSH inequality with four photon
2.03 ;7 \\\\'\4 2.04 PR subtractions(a) Bell parameterS
202 i) N 203 s el as a function of the squeezing
2.01 ! /_\ n e R for perfect detectorsyep=7smHp
w2 I.’ 2.02 g 7 =100%.(b) Bell parameteS as a
1.99 i 201 P e function of the efficiencynpgyp of
198 [ 7 R the homodyning. The curve is
107 ! 2 - ploted for T2\=0.40, 7pp .
1.96 ; 1_99// =100%, a_nd Fhe same transmit-
195 P 108 tances as in Fig. 6.
0.2 0.3 0.4 05 0.6 0.9 0925 085 0975 1
A MeHD
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a)

Schemes: one subtraction S

X = b)

Mo .
a) BS 2
¢) BS 0> —]

o lo>
BS
FIG. 12. Symbol convention(@ Single-mode squeezer along b 10> —[F] 2

the x quadrature(b) Beam splitter(c) Conditional subtraction of a
photon as described in the preceding section.

FIG. 13. Schemes with only one photon subtraction. The first
1+ 10T\2+T8\4 column labels the different setups proposed, the second shows the
(L=T2p (46)  scheme, and finally the last column gives the maximal Bell faStor

obtained when optimizing the squeeziitg. Photon subtraction af-
Since the staté45) exhibits perfect photon-number correla- ter the creation of the two-mode squeezed vacuimnPhoton sub-
tions, the Munro formula for the Bell factor can again be traction before mixing two single-mode squeezed states on a beam
directly applied[39]. Numerical calculations show that the SPlitter.
maximum Bell violation with the stat&t5) and sign binning
of quadratures is achieved fof?A=0.40 which yields squeezing\ of the initial Gaussian states. The sign binning
Shax,api=2:064, which is indeed higher than the maximumof the measured quadratures has been used in all cases. All
achievable with two-photon subtractioB,,y o,=2.048, and  the schemes presented in this section use the symbol conven-
very close to the maximum valug=2.076[39]. tion depicted in Fig. 12.

A more realistic description of the four-photon subtraction In the preceding section, we have seen that the probability
scheme that takes into account realistic imperfect detectorsf successful generation of a non-Gaussian state decreases
can be developed using the approach described in detail significantly with the number of photon subtractions. At the
Sec. Il B. We find that the Wigner function of the condition- same time the complexity of the implementation of the ex-
ally generated state is a linear combination of 16 Gaussiangerimental setup increases with the number of photon sub-
The results of numerical calculations are shown in Figstractions. It is then obvious that the most interesting schemes
11(a) and 11b), which illustrate that the two-photon subtrac- for a Bell-CHSH violation are those involving only one pho-
tion from each mode vyields higher violation of the Bell- ton subtraction. Unfortunately, for the schemes that we have
CHSH inequality than one-photon subtraction only for veryconsideredsee Fig. 13 no violation was observedin this
high transmittance3 >0.95. For lower transmittances, the case, the maximal value of the Bell-CHSH factorSs 2,
fact that the photodetectors do not distinguish the number ofvhich is achieved at the limit of an infinite squeezing. In
photons reduces the Bell factor. Moreover, adding a seconfict, all the schemes considered here that do not result in a
stage of photon subtractions dramatically decreases the proBell violation correspond t&=2, a point which is associated
ability of generating the non-Gaussian state. The probabilityith the limit A — 1. Indeed, in this limit, the photodetector
can be estimated aBg;= n‘F‘,D(l—T)“, so for T>0.95 and of single-photon sensitivity placed after the beam splitter of
7pp=50% we getP;~10° and the duration of data acqui- fixed transmittanc& almost always gives a click, so that the
sition would make the experiment infeasible. We concludeconditional degaussification fails. We are thus left with a
that from the practical point of view there seems to be nostate that is very close to the origin@aussiah two-mode
advantage in using the scheme with four photon subtractionsqueezed vacuum state, for which our choice of angles
instead of the much simpler scheme with two photon submakes it possible to saturate the Bell-CHSH inequality
tractions. (S=2). This so because, in the infinite-squeezing limit, xhe
(p) quadratures of the two modes are fully correlatedti-
correlated.

After one-photon subtraction, the simplest schemes are

In this section we will study the violation of Bell-CHSH those with two photon subtractions. In the preceding sections
inequalities for a large group of alternative schemes, whictit was shown that it is possible to violate the Bell-CHSH
involve from one to four photon subtractions. The main ob-inequality with two photon subtractioischeme Fig. 14)].
jective of this section is to compare the maximum Bell- It follows from Fig. 14 that several other schenjese Figs.
CHSH factorS obtained for the different proposed setups. As14(d) and 14e)] also violate Bell-CHSH inequality, but the
the main purpose of this section is the comparison of the
dlfferent schemes, we will consider only 'd_eallzed schemes !Note that we represent the two-mode squeezer using its theoret-
W'th almost perfect single-photon subtraction on the bean?cal equivalent scheme composed of two orthogonal single-mode
splitters(T=0.99, and perfect photodetectors and homodyn-gqeezers followed by a beam splitter. Even though these two
ing (7pp= 7a1p=100%). The maximum achievable Bell fac- schemes correspond to physically distinct optical implementations,
tor for each scheme presented below was determined by Ofhis choice of representation is better adapted to the comparison
timizing over the angle®; , and ¢, , as well as over the between the different possible positions of the photon subtraction.

Paph= 2TH(1 - T)NH (L -\?)

IV. ALTERNATIVE SCHEMES

022105-11



GARCIA-PATRON, FIURASEK, AND CERF PHYSICAL REVIEW A71, 022105(2005

Schemes: two subtractions S Schemes: Superposition s

loY
) BS 2.046
oy —{7] a)
[0y
b BS 2
|0y —{7]
|0y b
o) BS 2 )
lo> —{2]
lo> —{x]
d) >< BS 2.02
o> —{=1
[0y —{x} o
e) >< BS 2.01
[0y —{7]

FIG. 14. Schemes with two photon subtractions. The right col-  F|G. 16. Schemes consisting of superpositions of other schemes
umn gives the maximal value of the Bell factSifor the proposed proposed above(a) Superposition of one photon subtraction on

Alice

2.046

Bob

setups. modeA or B. (b), (c) Superposition of two photon subtractions on
modeA or B.

maximal achievable Bell fact@® appears to be much smaller

in comparison to the scheme shown in Fig(a4 exist where four photons are subtracted. Figure 15 illustrates

By adding one more photon subtraction to the schemesome particular examples, which are based on the prepara-
shown in Fig. 14, we can construct an ensemble of schemé®n of two-mode squeezed vacuum via mixing of two
with three photon subtractions. After numerical optimizationsingle-mode squeezed states on a balanced beam splitter. The
we have found that none of these schemes succeeds in viphoton subtractions are symmetrically placed to both modes.
lating the Bell-CHSH inequality. This striking result together Strikingly, if all four photons are subtracted either before or
with the fact that we have not found any violation for after mixing on a beam splitter, then we @&t 2. However,
schemes based on a single subtraction suggests that it mayibe single photon is subtracted from each mode both before
necessary to have a scheme with an even number of phot@md after combining the modes on a beam splitter, then we
subtractions in order to obseng>2. do not obtain any Bell violation.

In the preceding section, we have also proposed one Finally we have also studied an alternative group of
scheme with four photon subtractions that violates Bell-schemes where instead of subtracting photons separately
CHSH inequality{Fig. 15a)]. Many other possible schemes from modesA andB, we mix the auxiliary mode€ andD
on a balanced beam splitter before the detection on the pho-
todetectors. Consider the scheme depicted in Figa)1l6
where only a single photon is subtracted. The mixing of

lo> —} modesC and D on a beam splitter erases the information
a) BS >< 2.06 about the origin of the detected photon which implies that

o> —[7} the conditionally prepared state is a coherent superposition
of states where a single photon has been removed either from

Schemes: four subtractions S

10> — modeA or from modeB. However, even this modification
5 ><BS 2.05 does not lead to Bell violation with just a single subtraction.
0> —7} We can extend the scheme by placing a photodetector at

both output ports of the beam splitfeaf. Fig. 16b)]. In the
0> limit of a high transmittanc& — 1, the conditioning on the
0> —EHX ;éas;g click of each detector selects the events where there were
o 2 altogether two photons at the beam-splitter inputs. The
lo> —{r} . . . .
bosonic properties of the photons imply that a simultaneous
click of both photodetectors occurs only if the two subtracted
FIG. 15. Schemes with four photon subtractions. Last columnphotons are coming from the same mddeor B) [51], but

gives the maximal value of the Bell fact@® for the proposed again we do not know from which mode the two photons are
setups. subtracted. This scheme is thus equivalent to the superposi-
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tion of two schemes of the type shown in Fig.(d4 Unlike  unbalanced beam splitters and possibly a different binning
the scheme in Fig. 14), the scheme in Fig. 1B6) is sym-  procedure]52]. Moreover, we may discretize the measured
metric with respect to the modésandB. However, no vio- quadratures into a higher-dimensional alphafiestead of
lation can be observed. On the other hand, the scheme in Figsing a binary alphabeand then possibly use the extended
16(c) leads t0S>2 by realizing a superposition of states Bell inequalities in higher dimensions in order to exhibit
where two photons are subtracted from a single-mod@&on-locality. These issues certainly deserve further investiga-
squeezed vacuum state and this state is then mixed with atien.
other single-mode squeezed vacuum on a balanced beam Among all the schemes where two photons are subtracted,
splitter[see Fig. 14d)]. In comparison to the scheme in Fig. the maximum violatiorS=2.046 is achieved by the scheme
14(d), we obtain much higher violatio8=2.046. discussed in Secs. Il and Ill. Taking into account that we
have not found any scheme with three photon subtractions
which would violate Bell-CHSH inequality, the only way of
exceeding the 2.046 violation appears to be by subtracting

We have proposed an experimentally feasible setup allowfour photons. This scheme has been analyzed in some detail
ing for a |Oopho|e_free Bell test with efficient homodyne in Sec. lll C where it was shown that this allows us to reach
detection using a non-Gaussian entangled state generattte Bell factorS=2.06. Unfortunately, the price to pay for
from a two-mode squeezed vacuum state by subtracting &is slight increase o8 is that the probability of successful
single photon from each mode. We have presented a fu_Fpondn!onaI generation is so low that it makes the experiment
analytical description of a realistic setup with imperfect de-infeasible. o .
tectors, noise, and mixed input states. We have studied in The results presented in this paper provide a clear ex-
detail the influence of the detector inefficiencies, the elecample of the utility of conditional photon subtraction which
tronic noise of the homodyne detector, and the input mixe@an be considered as an important tool in quantum optics and
states on the achievable Bell violation. The main feature ofluantum-information processing with continuous variables.
the present scheme is that it is largely insensitive to the deBesides violation of Bell inequalities, this method can be
tection efficiency of the avalanche photodiodes that are usedsed to generate highly nonclassical states of ligit and
for conditional preparation of the non-Gaussian state, so thdP improve the fidelity of teleportation of continuous variable
detector efficiencies of the order of a few percent are suffistates44—46 and it forms a key ingredient of the recently
cient. On the other hand, the detection efficiency of the balProposed entanglement purification protocols for continuous
anced homodyne detector should be of the order of 90% an¢griables[31,32. The very recent experimental demonstra-
the electronic noise of the homodyne detector should be dton of a single photon subtraction from a single-mode
least 15 dB below the shot noise level. The optimal squeezSdueezed vacuum state provides a strong incentive for further
ing that yields maximum Bell violation depends on the ex-theoretical and experimental developments along these lines,
perimental circumstances but is, generally speaking, withidnd we can thus expect that some of the schemes discussed
the range of experimentally attainable values. As a rule, thé the present paper will be experimentally implemented in
optimal squeezing increases with decreasipgp and in-  the not too distant future.
creasing noise.
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