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We provide a detailed analysis of the recently proposed setup for a loophole-free test of Bell inequality
violation using conditionally generated non-Gaussian states of light and balanced homodyning. In the proposed
scheme, a two-mode squeezed vacuum state is de-Gaussified by subtracting a single photon from each mode
with the use of an unbalanced beam splitter and a standard low-efficiency single-photon detector. We thor-
oughly discuss the tolerance of the achievable Bell violation in the various experimentally relevant parameters
such as the detector efficiencies, the electronic noise, the mixedness of the initial Gaussian state, and the
probability of false triggers. We also consider several alternative schemes involving squeezed states, linear
optical elements, conditional photon subtraction, and homodyne detection.
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I. INTRODUCTION

In their seminal 1935 paper, Einstein, Podolsky, and
Rosen advocated that if “local realism” is taken for granted,
then quantum theory is an incomplete description of the
physical worldf1g. The EPR argument gained renewed atten-
tion in 1964, when Bell derived his famous inequalities,
which must be satisfied within the framework of any local
realistic theoryf2g. The violation of Bell inequalities, pre-
dicted by quantum mechanics, has since then been observed
in many experimentsf3–10g, thereby disproving the concept
of local realism. So far, however, all these tests suffered from
either a detector-efficiency loophole or a locality loophole
f11,12g, that is, the measured correlations may be explained
in terms of local realistic theories exploiting the low detector
efficiency or the timelike interval between the two detection
eventsf13–15g.

A test of Bell inequality violation typically involves two
distant parties Alice and Bob, who simultaneously carry out
measurements on parts of a shared quantum system that is
prepared in an entangled state. Both parties randomly and
independently decide between one of two possible quantum
measurementsa1,a2 and b1,b2. To avoid the locality loop-
hole, the measurement eventssincluding the choice of the
measurementd at Alice’s and Bob’s sites must be spacelike
separated. This suggests that optical systems are particularly
suitable candidates for the test of Bell inequality violations.
The technology of generation of entangled states of photons
is very well mastered todayf7g and the prepared entangled
states can be distributed over long distances via low-loss
optical fibersf8g. However, the currently available single-
photon detectors suffer from a too low efficiencyh, which
opens the so-called detector-efficiency loophole. This loop-
hole has been closed in a recent experiment with two trapped
ions f9g. However, the ions were held in a single trap, only
several micrometers apart, so that the measurement events
were not spacelike separated. It was suggested that two dis-
tant trapped ions can be entangled via entanglement swap-
ping by first preparing an entangled state of an ion and a
photon on each side and then projecting the two photons on
a maximally entangled singlet statef16–19g. This technique

could be used to close the locality loophole in the Bell test
with trapped ionsf16g. Very recently, the first step toward
this goal, namely, the entanglement between a trapped ion
and a photon emitted by the ion, has been observed experi-
mentally f20g. However, the entanglement swapping would
require interference of two photons emitted by two different
ions, which is experimentally very challenging.

An interesting alternative to the atom-based approaches
f16,21,22g is represented by all-optical schemes involving
balanced homodyne detection, which can exhibit very high
detection efficiencyf23,24g. Unfortunately, the entangled
two-mode squeezed state that can easily be generated experi-
mentally f25–27g cannot be directly employed to test Bell
inequalities with homodyning. This state is described by a
positive definite Gaussian Wigner function, which thus pro-
vides a local hidden variable model that can explain all cor-
relations established via quadrature measurements carried by
balanced homodyne detectors. Similarly to the case of puri-
fication of continuous variable entanglementf28–32g, one
has to go beyond the class of Gaussian states and Gaussian
operations. For instance, it is possible to obtain a violation of
the Bell inequality with a Gaussian two-mode squeezed
vacuum state by performing photon-counting measurements
f33g or the rather abstract measurements described in Refs.
f34–36g. However, in contrast to balanced homodyning,
these measurements are either experimentally infeasible or
suffer from a very low detection efficiency.

In order to close the detection loophole by using homo-
dyne detectors, it is necessary to employ highly nonclassical
non-Gaussian entangled states whose Wigner function is not
positive definite. Several recent theoretical works indeed
demonstrated that violation of Bell inequalities can be ob-
served using balanced homodyningf37–40g, if specific en-
tangled light states such as pair-coherent states, squeezed
Schrödinger-cat-like states or specifically tailored finite su-
perpositions of Fock states are available. However, no fea-
sible experimental scheme is known that could generate the
states required in Refs.f37–40g. In a recent experiment, an
entangled state obtained by splitting a single photon on a
balanced beam splitter was used to make a Bell test where a
homodyne detection was carried out on each outputf41g. It
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was claimed that the observed data violate the Bell inequal-
ity; however, the violation was obtained by postselecting
only the data when the absolute value of the detected quadra-
ture was above some threshold. This rejection of data intro-
duces a loophole very similar to the detection-efficiency
loophole, and this experiment therefore does not refute local
realism.

Recently, it was shown by us together with Wenger,
Tualle-Brouri, and Grangierf42g, and independently also by
Nha and Carmichaelf43g, that a very simple non-Gaussian
state obtained from two-mode squeezed vacuum by subtract-
ing a single photon from each modef44–46g can exhibit Bell
violation with homodyning. An essential feature of this pro-
posal is that the photon subtraction can be successfully per-
formed with low-efficiency single-photon detectors, which
renders the setup experimentally feasible. In fact, the basic
building block of the scheme, namely, the de-Gaussification
of a single-mode squeezed vacuum via single-photon sub-
traction, has been recently successfully implemented experi-
mentally f47g.

In the present paper, we provide a thorough analysis of
the scheme proposed in Refs.f42,43g. We present the details
of the calculation of the Bell factor for a realistic setup that
takes into account mixed input states, losses, added noise,
and imperfect detectors. Moreover, we shall also discuss sev-
eral alternative schemes that involve the subtraction of one,
two, three, or four photons. The present paper is organized as
follows. In Sec. II, we describe the proposed experimental
setup and we introduce the Bell-CHSHsClauser-Horne-
Shimony-Holtd inequalities. We then provide a simple pure-
state analysis of the scheme assuming ideal detectors, which
gives an upper bound on the achievable Bell violation. In
Sec. III, we present the mathematical description of a realis-
tic setup with imperfect detectors, losses, and noise. Besides
the scheme where a single photon is subtracted on each side,
we will also analyze a scheme where two photons are sub-
tracted on each side. This latter scheme yields slightly higher
Bell violation but only at the expense of a very low probabil-
ity of state preparation. Several other schemes composed of
squeezed state sources, linear optics, and photon subtraction
are discussed in Sec. IV. Finally, the conclusions are drawn
in Sec. V.

II. FEASIBLE BELL TEST WITH HOMODYNE
DETECTION

A. Proposed optical setup

The conceptual scheme of the proposed experimental
setup is depicted in Fig. 1. A source generates a two-mode

squeezed vacuum state in modesA and B. This can be ac-
complished, e.g., by means of nondegenerate parametric am-
plification in a xs2d nonlinear medium or by generating two
single-mode squeezed vacuum states and combining them on
a balanced beam splitter. Subsequently, the state is de-
Gaussified by conditionally subtracting a single photon from
each beam. A tiny part of each beam is reflected from a beam
splitter BSA sBSBd with a high transmittanceT. The reflected
portions of the beams impinge on single-photon detectors
such as avalanche photodiodes. A successful photon subtrac-
tion is heralded by a click of each photodetector PDA and
PDB f46g. In practice, the photodetectors exhibit a single-
photon sensitivity but not a single-photon resolution, that is,
they can distinguish the absence and presence of photons but
cannot measure the number of photons in the mode. Never-
theless, this is not a problem here because in the limit of high
T, the most probable event leading to the click of a photode-
tector is precisely that a single photon has been reflected
from the squeezed beam on the beam splitter. The probability
of an event where two or more photons are subtracted from a
single mode is smaller by a factor of<1−T and becomes
totally negligible in the limit ofT→1. Another important
feature of the scheme is that the detector efficiencyh can be
quite low because a smallh only reduces the success rate of
the conditional single-photon subtraction but it does not sig-
nificantly decrease the fidelity of this operation. These issues
will be discussed in detail in Sec. III.

After generation of the non-Gaussian state, the two beams
A andB together with the appropriate local oscillators LOA
and LOB are sent to Alice and Bob, who then randomly and
independently measure one of two quadraturesxu j

A , xfk

B char-
acterized by the relative phasesu1,u2 andf1,f2 between the
measured beam and the corresponding local oscillator. The
rotated quadratures xu

A=scosudxA+ssinudpA and xf
B

=scosfdxB+ssinfdpB are defined in terms of the four
quadrature components of modesA and B that satisfy the
canonical commutation relationsfxj ,pkg= id jk, j ,kP hA,Bj.

To avoid the locality loophole, the whole experiment has
to be carried out in the pulsed regime and a proper timing is
necessary. In particular, the measurement events on Alice’s
and Bob’s sidessincluding the choice of phasesd have to be
spacelike separated. A specific feature of the proposed setup
is that the non-Gaussian entangled state needed in the Bell
test is generated conditionally when both “event-ready” de-
tectorsf48g PDA and PDB click. However, we would like to
stress that this does not represent any loophole if proper tim-
ing is satisfied; namely, in each experimental run, the detec-

FIG. 1. sColor onlined Conceptual scheme of the proposed experimental setup for observing a violation of Bell inequalities with balanced
homodyning. The source emits a two-mode squeezed vacuum state in modesA and B. A small part of the beams is subtracted on two
unbalanced beam splitters BSA and BSB and sent onto single-photon detectors PDA and PDB. The two remaining beamsA andB, which are
conditionally prepared in a non-Gaussian entangled state, are sent to Alice and Bob, respectively, who perform each a balanced homodyne
detection using their local oscillators LOA and LOB.
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tion of the clickssor no clicksd of photodetectors PDA and
PDB at the source should be spacelike separated from Alice’s
and Bob’s measurements. This guarantees that the choice of
the measurement basis on Alice’s and Bob’s sides cannot in
any way influence the conditioning “event-ready” measure-
ment f16,42,48g.

A scheme for observing a Bell inequality violation with
balanced homodyning very similar to the setup depicted in
Fig. 1 was proposed by Nha and Carmichaelf43g. They also
consider de-Gaussification by means of photon subtraction
with inefficient detectors exhibiting single-photon sensitivity
but no single-photon resolution. The difference between the
setup shown in Fig. 1 and the scheme of Nha and Carmichael
is that in the latter case the single-photon detectors are lo-
cated on Alice’s and Bob’s sides while in our case the detec-
tors are spatially separated from the two observers.

The position of the photodetectors is irrelevant as far as
the state preparation is concerned and both schemes condi-
tionally produce the same photon-subtracted two-mode
squeezed vacuum. However, the position of these detectors
plays a crucial role in the Bell test. If the single-photon de-
tectors are placed together with the balanced homodyne de-
tectors on Alice’s and Bob’s sides, then the choice of the
measurement basis may influenceswithin the local-hidden-
variable modelsd whether the single-photon detector will
click or not. This must be avoided, which is achieved by
spatially separating the state preparation and homodyne de-
tection and by proper timing as in our setup.

To demonstrate that the experimental data recorded by
Alice and Bob are incompatible with the concept of local
realism, we shall consider the Bell-CHSH inequality origi-
nally devised for a two-qubit systemf49g. In this scenario,
Alice sBobd randomly and independently decides between
one of two possible quantum measurementsa1,a2 sb1,b2d
which should have only two possible outcomes +1 or −1. We
define the Bell parameter

S= ka1b1l + ka1b2l + ka2b1l − ka2b2l, s1d

wherekajbkl denotes the average over the subset of experi-
mental data where Alice measuredaj and, simultaneously,
Bob measuredbk. If the observed correlations can be ex-
plained within the framework of the local-hidden-variable
theories, thenS must satisfy the Bell-CHSH inequalityuSu
ø2.

In the proposed experiment, Alice and Bob measure
quadratures that have a continuous spectrum. We discretize
the quadratures by postulating that the outcome is +1 when
xù0 and −1 otherwise. The two different measurements on
each side correspond to the choices of two relative phases
u1,u2 and f1,f2. Quantum mechanically, the correlation
Esu j ,fkd;kajbkl can be expressed as

Esu j,fkd =E
−`

`

sgnsxu j

Axfk

B dPsxu j

A ,xfk

B ddxu j

Adxfk

B , s2d

where Psxu j

A ,xfk

B d;kxu j

A ,xfk

B urc,ABuxu j

A ,xfk

B l is the joint prob-
ability distribution of the two commuting quadraturesxu j

A and
xfk

B , andrc,AB denotes thesnormalizedd conditionally gener-
ated non-Gaussian state of modesA and B. In practice, the

correlations would be determined from the subset of the ex-
perimental data corresponding to the successful conditional
de-Gaussification, i.e., Alice and Bob would discard all re-
sults obtained in measurement runs where either PDA or PDB
did not click. We emphasize again that this does not open
any loophole in the Bell test.

B. Ideal photodetectors

We shall first present a simplified description of the setup,
assuming ideal photodetectorsshPD=1d with single-photon
resolution and conditioning on detecting exactly a single
photon at each detectorf44,45g. This idealized treatment is
valuable since it provides an upper bound on the practically
achievable Bell factorS. Moreover, as noted above, in the
limit of high transmittance of BSA and BSB, T→1, the real-
istic sinefficientd detector with single-photon sensitivity is in
our case practically equivalent to these idealized detectors.

The two-mode squeezed vacuum state can be expressed in
the Fock state basis as follows:

ucinsldlAB = Î1 − l2o
n=0

`

lnun,nlAB, s3d

wherel=tanhssd ands is the squeezing constant. In the case
of ideal photodetectors, the single-photon subtraction results
in the state

ucoutlAB ~ âAâBucinsTldlAB, s4d

whereâA,B are annihilation operators and the parameterl is
replaced byTl in order to take into account the transmit-
tance of BSA and BSB. A detailed calculation yields

ucoutlAB =Îs1 − T2l2d3

1 + T2l2 o
n=0

`

sn + 1dsTldnun,nlAB, s5d

and the probability of the conditional preparation of states5d
can be expressed as

P = s1 − Td2l2s1 − l2d
1 + T2l2

s1 − T2l2d3 . s6d

For pure states exhibiting perfect photon-number correla-
tions, the correlation coefficients2d depends only on the sum
of the anglesEsu j ,fkd=Esu j +fkd. With the help of the gen-
eral formula derived by Munrof39g we obtain for the state
s5d

Eswd =
s1 − T2l2d3

1 + T2l2 o
n.m

8ps2Tldn+m

n ! m ! sn − md2sn + 1dsm+ 1d

3 fFsn,md − Fsm,ndg2cosfsn − mdwg, s7d

whereFsn,md=G−1(s1−nd /2)G−1s−m/2d andGsxd stands for
the Euler gamma function.

We have numerically optimized the anglesu1,2 andf1,2 to
maximize the Bell factorS. It turns out that for anyl, it is
optimal to chooseu1=0, u2=p /2, f1=−p /4, andf2=p /4.
The Bell factorS for this optimal choice of angles is plotted
as a function of the effective parameterTl in Fig. 2sad, and
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the corresponding probability of success of the conditional
preparation of the stateucoutl is plotted in Fig. 2sbd. We can
see thatS is higher than 2 so the Bell inequality is violated
when Tl.0.45. The maximal violation is achieved forTl
<0.57, giving S<2.048. This figure is quite close to the
maximum Bell factorS=2.076 that could be reached with
homodyne detection, sign binning, and arbitrary states exhib-
iting perfect photon-number correlationsucl=oncnun,nl
f39g.

III. REALISTIC MODEL

In this section we will consider a realistic scheme with
inefficient shPD,1d photodetectors exhibiting single-photon
sensitivity but no single-photon resolution, and realistic ho-
modyning with efficiencyhBHD,1. The mathematical de-
scription of this realistic model of the proposed experiment
becomes strikingly simple if we work in the phase-space
representation and use the Wigner function formalism. Even
though the state used to test Bell inequalities is non-
Gaussian, it can be expressed as a linear combination of four
Gaussian states, so all the powerful Gaussian tools can still
be used.

This section is further divided into three subsections. The
first one gives a brief overview of the Gaussian states, linear
canonical transformations of quadrature operators, and
Gaussian completely positive maps. In the second subsec-
tion, an analytical formula for the Bell factorS is derived,
and the influence of detector inefficiencies, losses, and noise
on the proposed Bell experiment is investigated in detail.
Finally, an extended setup involving two-photon subtraction
from each mode is studied in the third subsection.

A. Gaussian states and Gaussian operations

In quantum optics Gaussian states are often encountered
as states ofn modes of light. These states are completely
specified by the first and second moments of the quadrature
operatorsrk with r =sx1,p1, . . . ,xn,pndT. Here rk satisfy the
canonical commutation relationssCCR’sd fxj ,pkg= id j ,k. In-
stead of referring to the density matrix one may refer to the
Wigner function defined on phase space,

W=
1

pnÎdetg
expf− sr − ddTg−1sr − ddg, s8d

whered is the vector of first moments,dj =kr jl, andg is the
covariance matrix

gi,j = kr ir j + r jr il − 2didj . s9d

In this paper we shall deal only with states with zero dis-
placementdj =0. Some relevant examples of Gaussian states
that we shall need in what follows includesid the n-mode
vacuum state withdj =0 and covariance matrix equal to the
identity matrix, gvac= I2n; sii d the single-mode squeezed
vacuum state withdj =0 and covariance matrix

gSMS= Fe2s 0

0 e−2sG , s10d

where s is the squeezing parameter;siii d the two-mode
squeezed vacuum state withdj =0 and covariance matrix

gTMS = 3
coshs2sd 0 sinhs2sd 0

0 coshs2sd 0 − sinhs2sd
sinhs2sd 0 coshs2sd 0

0 − sinhs2sd 0 coshs2sd
4 .

s11d

Optical operations that can be implemented with beam
splitters, phase shifters, squeezers, and homodyne detection
correspond to Gaussian operations. Their important property
is that they map a Gaussian input state onto a Gaussian out-
put state. Gaussian unitary transformations realize the map-
ping r → r8=Sr which preserves the CCR’s. This is the case
if SPSps2n,Rd, the so-called real symplectic group. On the
covariance matrix level the transformation reads

g → SgST. s12d

A particular subset of symplectic transformations is formed
by the symplectic matricesS that are also orthogonal,S
PSps2n,RdùOs2nd. Those transformations are called pas-
sive because they do not change the total number of photons.
The most common passive transformations includesid mix-
ing two modes of light with a beam splitter ofsintensityd
transmittanceT and reflectance 1−T

SBS = 3
ÎT 0 Î1 − T 0

0 ÎT 0 Î1 − T

− Î1 − T 0 ÎT 0

0 − Î1 − T 0 ÎT
4 , s13d

and a phase shift of a single mode

SPSsud = F cosu sinu

− sinu cosu
G . s14d

All passive linear canonical transformations ofn modes can
be implemented by optical interferometers consisting of
beam splitters and phase shifters.

The second group of linear canonical transformations are
the active transformations that describe phase-sensitive am-

FIG. 2. sad Bell factor S plotted as a function of the effective
squeezing parameterTl for u1=0, u2=p /2, f1=−p /4, and f2

=p /4. sbd ProbabilityP of successful conditional generation of the
stateucoutl as a function of the effective squeezing parameterTl,
assumingT=0.95.
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plification of light. The archetypal examples are the single-
mode squeezer

SSMS= Fes 0

0 e−sG s15d

and the two-mode squeezer

STMS = 3
coshssd 0 sinhssd 0

0 coshssd 0 − sinhssd
sinhssd 0 coshssd 0

0 − sinhssd 0 coshssd
4 .

s16d

These matrices describe the operation of an ideal degenerate
sSSMSd or nondegeneratesSTMSd optical parametric amplifier
sOPAd. In particular, a nondegenerate OPA provides a source
of entanglement since it transforms the input vacuum into a
two-mode squeezed vacuum state.

Noisy channels and phase-insensitive amplifiers are irre-
versible quantum operations which cannot be described by
Gaussian unitary transformations. Instead, they can be mod-
eled within the more general framework of trace-preserving
Gaussian completely positivesCPd mapsf28,29g. The cova-
riance matrix transformation reads

g → AgAT + G. s17d

Of particular importance is the propagation through a lossy
quantum channel with transmittanceh, which is character-
ized by A=ÎhI and G=s1−hdI. In what follows, we shall
use lossy channels followed by perfect detectors to model
inefficient detectors.

B. Two photon subtractions

We shall now present a detailed calculation of the Bell
factor for our proposed setup, taking into account realistic
photodetectorsshPD,1d with single-photon sensitivitysbut
not resolutiond, imperfect homodyning, and added electron-
ics noise.

1. Preparation of a non-Gaussian state

As shown in Fig. 3, the modesA andB are initially pre-
pared in a two-mode squeezed vacuum state, and the auxil-
iary modesC and D are in the vacuum state. The Wigner
function of the four-mode stateABCD is a Gaussian centered
at the origin,

Win,ABCD=
1

p4Îdetgin

expf− rTgin
−1rg, s18d

wherer =fxA,pA, . . . ,xD ,pDg. The initial state is fully charac-
terized by the covariance matrix

gin = gTMS,AB % ICD, s19d

wheregTMS is the covariance matrix of a two-mode squeezed
vacuums11d and % denotes the direct sum of matrices.

The imperfect single-photon detectorssbalanced homo-
dyne detectorsd with detector efficiencyhPD shBHDd are mod-
eled as a sequence of a lossy channel with transmittancehPD
shBHDd followed by an ideal photodetectorshomodyne detec-
tord. In our setup, the modesAC sBDd interfere on the un-
balanced beam splitters BSA sBSBd and pass through the four
“virtual” lossy channels before impinging on ideal detectors.
The covariance matrix of the mixed Gaussian staterout,ABCD
just in front of thesideald detectors is related togin via a
Gaussian CP map,

gout = ShSmixginSmix
T Sh

T + G, s20d

where

Sh = ÎhBHDIAB % ÎhPDICD, s21d

G = s1 − hBHDdIAB % s1 − hPDdICD, s22d

and the symplectic matrix

Smix = SBS,AC % SBS,BD s23d

describes the mixing of modesA with C andB with D on the
unbalanced beam splitters BSA and BSB, respectively.

The staterc,AB is prepared by conditioning on observing
clicks at both photodetectors PDA and PDB. These detectors
respond with two different outcomes, either a click, or no
click. Mathematically, an ideal detector with a single-photon
sensitivity is described by a two-component positive operator
valued measuresPOVMd consisting of the projectors onto
the vacuum state and on the rest of the Hilbert space,P0
= u0lk0u, P1= I − u0lk0u. The resulting conditionally prepared
staterc,AB can be calculated from the density matrixrout,ABCD
as follows:

rc,AB = TrCDfrout,ABCDsIAB ^ P1,C ^ P1,Ddg. s24d

It is instructive to rewrite the partial trace in Eq.s24d in
terms of Wigner functions, taking into account that

FIG. 3. sColor onlined Scheme of the pro-
posed experimental setup for observing a viola-
tion of Bell inequalities considering realistic pho-
todetectors shPD,1d with single-photon
sensitivity, imperfect homodyningshBHD,1d,
and unbalanced beam splitters of transmittance
T,1.
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TrfXYg = s2pdNE
−`

`

WXsrdWYsrdd2Nr , s25d

whereWXsrd andWYsrd denote the Wigner representations of
the operatorsX andY, respectively, andN is the number of
modes we trace over. The POVM elementP1 is a difference
of two operators whose Wigner representations are both
Gaussian functions,WI =1/s2pd, W0=p−1e−x2−p2

. After
somewhat lengthy but otherwise straightforward calculations
we find that the Wigner functionWc,AB of the snormalizedd
conditionally prepared states24d can be expressed as a linear
combination of four Gaussian functions,

Wc,ABsrd =
1

p2PG
Îdetgout

o
j=1

4
qj

ÎdetG j ,CD

e−rTG j ,ABr , s26d

whereq1=1, q2=q3=−2, andq4=4. The corresponding prob-
ability of success is given by

PG =
1

Îdetgout
o
j=1

4
qj

ÎdetsG j ,ABG j ,CDd
. s27d

To define the various matrices appearing in Eqs.s26d and
s27d, we first introduce a matrixG=gout

−1 and we divideG into
four smaller submatrices with respect to the bipartiteAB vs
CD splitting,

G = FGAB s

sT GCD
G . s28d

It holds that

G j ,AB = GAB − sG j ,CD
−1 sT, s29d

and the four matricesG j ,CD read

G1,CD = GCD,

G2,CD = GCD + IC % 0D,

G3,CD = GCD + 0C % ID,

G4,CD = GCD + ICD. s30d

2. Correlation coefficient E„uj ,fk…

The joint probability distributionPsxu j

A ,xfk

B d of the quadra-
turesxu j

A andxfk

B appearing in the formulas2d for the corre-
lation coefficientEsu j ,fkd can be obtained from the Wigner
function s26d as a marginal distribution. We have

Psxu j

A ,xfk

B d =E
−`

` E
−`

`

Wc,ABsSsh
T ru j,fk

ddpu j

Adpfk

B , s31d

where ru j,fk
=fxu j

A ,pu j

A ,xfk

B ,pfk

B g and the symplectic matrix
Ssh=SPS,Asu jd % SPS,Bsfkd describes local phase shifts applied
to modesA andB that map the measured quadraturesxu j

A and
xfk

B onto the quadraturesxA andxB, respectively.
In order to express the result of the integration in Eq.s31d

in a compact matrix notation, we reorder the elements of the
vector ru j,fk

as follows:

3
xu j

A

xfk

B

pu j

A

pfk

B
4 = 3

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
43

xu j

A

pu j

A

xfk

B

pfk

B
4 , s32d

which defines a matrixShom. After these algebraic manipula-
tions, the four matricesG j ,AB appearing in the exponents in
Eq. s26d transform to

G j ,AB8 = ShomSshG j ,ABSsh
T Shom

T ; FAj Cj

Cj
T Bj

G , s33d

where we have divided the matrixG j ,AB8 into four submatrices
with respect to thex vs p splitting. A straightforward inte-
gration overpu j

A and pfk

B in Eq. s31d then yields the joint
probability distribution

Psxu j

A ,xfk

B d =
1

pPG
Îdetgout

o
j=1

4
qje

−yTG jy

ÎdetG j ,CD
ÎdetBj

, s34d

wherey=sxu j

A ,xfk

B dT and

G j = Aj − CjBj
−1Cj

T. s35d

Taking into account the choice of binning, the normalization
of the joint probability distribution, and its symmetry
Psxu j

A ,xfk

B d=Ps−xu j

A ,−xfk

B d, we can express the correlation co-
efficient as follows:

Esu j,fkd = 4E
0

` E
0

`

Psxu j

A ,xfk

B ddxu j

Adxfk

B − 1. s36d

This last integral can be easily evaluated analytically. For a
given G j matrix

FIG. 4. A one-dimensional cut of the Wigner function of the
two-mode staterc,AB along the linexB=xA, pA=pB=0 for l=0.6
and beam splitters BSA and BSB transmittancesT=0.95. Notice the
regions whereW is negative.
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G j = Faj cj

cj bj
G , s37d

the integral of the exponential term

Gj =E
0

` E
0

`

e−ajy1
2−bjy2

2−2cjy1y2dy1dy2 s38d

can be calculated by transforming to polar coordinates and
integrating first over the radial coordinate and then over the
angle. After some algebra, we finally arrive at

Gj =
1

2Îajbj − cj
2Fp

2
− arctan

cj

Îajbj − cj
2G . s39d

The final fully analytical formula for the correlation coeffi-
cient reads

Esu j,fkd =
4

pPG
Îdetgout

Fo
j=1

4
qjGj

ÎdetG j ,CD
ÎdetBj

G − 1

s40d

and the Bell factor can be expressed as

S= Esu1,f1d + Esu1,f2d + Esu2,f1d − Esu2,f2d. s41d

3. Violation of Bell-CHSH inequalities

A necessary condition for the observation of a violation of
Bell inequalities with homodyne detectors is that the Wigner
function of the two-mode state used in the Bell test is not
positive definite. Figure 4 illustrates that the Wigner function
s26d of the conditionally generated staterc,AB is indeed nega-
tive in some regions of the phase space. The area of negativ-

ity, as well as the attained negative values ofW, are rather
small, which indicates that we should not expect a high Bell
violation with homodyning.

As we have shown in Sec. II, the maximum Bell factorS
achievable with our setup and sign binning is aboutS
=2.048. We conjecture that this binning is optimal or close to
optimal. This is supported by the simple structure of the joint
probability distributions34d. As can be seen in Figs. 5sad and
5sbd, P exhibits two peaks, both located in the quadrants
where Alice’s and Bob’s measured quadratures have the
same sign. Note also that the two-peak structure is a clear
signature of the non-Gaussian character of the statefcf. Figs.
5scd and 5sddg. We have carried out numerical calculations of
S for several other possible binnings which divide the
quadrature axis into three or four intervals, and have not
found any binning that would provide higherS than the sign
binning. We have also performed optimization over the
anglesu j andfk and all the results and figures presented in
this section were obtained for the optimal choice of angles
u1=0, u2=p /2, f1=−p /4, f2=p /4.

Figure 6sad illustrates that the Bell-CHSH inequalityuSu
ø2 can be violated with the proposed setup, and shows that
there is an optimal squeezinglopt that maximizesS. This
optimal squeezing is well predicted by the simple model as-
suming perfect detectors with single-photon resolutionsSec.
II B d, loptT<0.57. The curve plotted forT=0.99 practically
coincides with the results obtained from the simple model
presented in Sec. II Bfcf. Fig. 2sadg. This confirms that in the
limit T→1 the detectors with single-photon sensitivity be-
come for our purposes equivalent to photodetectors with
single-photon resolution. The maximum Bell factor achiev-
able with our scheme is aboutSmax<2.045 which represents
a violation of the Bell inequality by 2.2%. To get close to the
Smax one needs sufficiently highsbut not too strongd squeez-
ing. In particular, the valuel<0.57 corresponds to approxi-

FIG. 5. Joint probability distri-
bution Psxu j

A ,xfk

B d. Panelssad and
sbd show the distribution for the
conditionally prepared non-
Gaussian state withT=0.99. Pan-
elsscd andsdd display the distribu-
tion for the initial Gaussian two-
mode squeezed vacuum state. The
curves are plotted for perfect de-
tectors hPD=hBHD=100%,
squeezingl=0.6, uAlice=0, and
fBob=p /4.
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mately 5.6 dB of squeezing. Figure 6sbd illustrates that there
is a clear trade-off betweenS and the probability of success
PG. To maximizeS one should use highly transmitting beam
splitters but this would reducePG. The optimalT that should
be chosen would clearly depend on the details of the experi-
mental implementation.

4. Sensitivity to the experimental imperfections

It is shown in Fig. 7sad that the Bell factorSdepends only
very weakly on the efficiencyhPD of the single-photon de-
tectors, so the Bell inequality can be violated even ifhPD
<1%. This is very important from the experimental point of
view because, although the quantum detection efficiencies of
the avalanche photodiodes may be of the order of 50%, the
necessary spectral and spatial filtering which selects the
mode that is detected by the photodetector may reduce the
overall detection efficiency to a few percent. Low detection
efficiency only decreases the probability of conditional gen-
eration PG of the non-Gaussian statefsee Fig. 7sbdg. The
dependence ofPG on hPD and T can be very well approxi-
mated by a quadratic functionPG<hPD

2 s1−Td2 which
quickly drops whenhPD decreases. In practice, the minimum
necessaryhPD will be determined mainly by the constraints
on the total time of the experiment and by the dark counts of
the detectors.

In contrast, the Bell factorS strongly depends on the ef-
ficiency of the homodyne detectors, andhBHD must be above

,90% in order to observe Bell violationssee Fig. 8d. How-
ever, this is not an obstacle because suchsand even higherd
efficiency has been already achieved experimentallyssee,
e.g.,f50gd. Interestingly, we have found that it is possible to
partially compensate for imperfect homodyning with effi-
ciency hBHD,1 by increasing the squeezing of the initial
state. This effect is illustrated in Fig. 8sbd which shows the
dependence of the Bell factorS on hBHD for optimal squeez-
ing lopt. Figure 8scd then shows how the optimal squeezing
increases with decreasinghBHD.

In addition to imperfect detection efficiencyhBHD, the
electronic noise of the homodyne detector is another factor
that may reduce the observed Bell violation. We model the
added electronic noise by assuming that the effective quadra-
ture that is detectedxdet is related to the signal quadraturexS
by a formula

xdet= ÎhBHDxS+ Î1 − hBHDxvac+ ÎNelxnoise,

where xvac and xnoise are two independent Gaussian-
distributed quadratures with zero mean and variance 1/2,
and Nel is the electronic noise variance expressed in shot
noise units. On the level of covariance matrices,Nel can be
included by modifying the formula for the noise matrixG,

G = s1 − hBHD + NeldIAB % s1 − hPDdICD. s42d

The homodyne detector with electronic noise is actually
equivalent to a detector without noise but with a lower ho-

FIG. 6. Violation of Bell-
CHSH inequality with the condi-
tionally prepared non-Gaussian
state.sad Bell factor S as a func-
tion of the squeezing.sbd Prob-
ability of success of the genera-
tion of the non-Gaussian state as a
function of the squeezing. The
curves are plotted for perfect de-
tectors shPD=hBHD=100%d with
T=0.9 ssolid lined, 0.95 sdashed
lined, and 0.99sdot-dashed lined.

FIG. 7. Effect of the ineffi-
ciency of the photodetectors PDA

and PDB. sad Bell parameterSas a
function of the efficiencyhPD of
the photodetectors.sbd Probability
of success as a function of the ef-
ficiency hPD. The curves are plot-
ted for Tl=0.57, hBHD=100%,
and the same transmittances as in
Fig. 6.
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modyne detector efficiencyhBHD8 =hBHD/ s1+Neld. This can
be shown by noting that the renormalized quadrature
xdet/Î1+Nel is exactly a quadrature that would be detected
by a balanced homodyne detector withNel=0 and efficiency
hBHD8 . Our calculations reveal that the electronic noise should
be 15–20 dB below shot noisefsee Figs. 9sad and 9sbdg,
which is currently attainable with low-noise charge amplifi-
ers. Again, higher squeezing can partially compensate for the
increasing noise.

So far we have assumed that the source in Fig. 1 emits a
pure two-mode squeezed vacuum state. However, experi-
mentally, it is very difficult to generate a pure squeezed
vacuum saturating the Heisenberg inequality. It is more real-
istic to consider a mixed Gaussian state such as a squeezed
thermal state which can be equivalently represented by add-
ing quadrature-independent Gaussian noise with variance
Vnoise to each mode of the two-mode squeezed vacuum. The
effect of the added noise stemming from the input mixed

Gaussian state is quite similar to the influence of the elec-
tronic noise of the homodyne detectorfsee Figs. 9scd and
9sddg. We find again that the added noise in the initial Gauss-
ian state should be 15–20 dB below the shot noise.

In the experimental demonstration of single-photon sub-
traction f47g, a main source of noise and imperfections was
that the single-photon detector was sometimes triggered by a
photon coming from other modes than the mode detected in
the balanced homodyne detector. The single-mode descrip-
tion of a parametric amplifier is only an approximation and
the amplifier produces squeezed vacuum in several modes. A
balanced homodyne detector very efficiently selects a single
mode defined by the spatiotemporal profile of the local os-
cillator pulse. However, this reference is missing in the case
of a single-photon detector, where the effective single mode
has to be selected by spatial and spectral filtering, which
reduces the overall detection efficiencyh. In practice, the
filtering is never perfect; hence the photodetector PDA sPDBd

FIG. 8. Effect of inefficient homodyning.sad Bell parameterS as a function of the efficiencyhBHD of the homodyning. The curve is
plotted for Tl=0.57, hPD=30%, and the same transmittances as in Fig. 6.sbd Bell parameter achieved for the optimal squeezinglopt is
plotted as a function ofhBHD. scd Optimal squeezinglopt is plotted as a function ofhBHD. The curves are plotted forhPD=30% and the same
transmittances as in Fig. 6.

FIG. 9. Effect of the electronic
noise and thermal input states.sad
Maximum achievable Bell param-
eter S with the optimal squeezing
lopt as a function of the electronic
noise Nel. sbd Optimal squeezing
lopt giving the highest Bell pa-
rameterS for a given electronic
noise. scd Maximum Bell param-
eterS as a function of the thermal
noise of the input stateVnoise. sdd
Optimal squeezinglopt giving the
highest Bell parameterS for a
given thermal noise at the input.
The curves are plotted forhPD

=30%, hBHD=95%, and T=0.9
ssolid lined, 0.95 sdashed lined,
and 0.99sdot-dashed lined.
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can sometimes click although no photon was removed from
modeA sBd.

We can model this false triggering by redefining the
POVM elementP1,C sP1,Dd appearing in Eq.s24d. The new
P1 becomes a convex mixture of the original POVM element
I − u0lk0u, which corresponds to triggering by a photon com-
ing from the modeA sBd, and the identity operatorI, which
corresponds to the false triggering. We can writeP1sjd= I
−ju0lk0u and the coefficient 0øjø1 can be related to the
fraction of false triggersPf. Assuming for simplicity a pure
two-mode squeezed vacuum in modesA and B, the single-
mode state inC or D just before detection is a thermal state
with mean number of chaotic photonsn̄=hPDs1−Tdl2/ s1
−l2d. sNote that this includes the effect of imperfect detec-
tors with efficiencyhPD.d The probability of projection of the
thermal state on vacuum readsPvac=1/sn̄+1d. The probabil-
ity of false triggerPf can be expressed in terms of the prob-
ability of a trigger Psjd=1−jPvac and the probability of a
correct triggering eventPsj=1d=1−Pvac,

Pf =
Psjd − Psj = 1d

Psjd
. s43d

From this formula we obtain

j =
1 − s1 + n̄dPf

1 − Pf
. s44d

The analytical formulas41d for the Bell factorS can still be
used even in the presence of false triggering. We only have
to redefine the four coefficientsqj as follows:q1=1, q2=q3
=−2j, q4=4j2.

The effect of the false triggers is illustrated in Fig. 10. As
expected, the achievable Bell factor decreases with increas-
ing Pf. The results are shown for a realistic set of parameters
as identified inf42g and for three different values ofT. For
high transmittancesT=0.99d up to 13% of false triggers can
be tolerated while forT=0.95 the acceptable fraction of false
triggers decreases toPf =9%. In a recent experimentf47g,
the estimated fraction of false triggers wasPf <30% which
would have to be significantly reduced in the Bell test ex-
periment. Possible ways of suppressing false triggers include

better filtering and/or using sources that produce squeezed
light in well-defined spatial modes, such as nonlinear peri-
odically poled waveguides.

C. Four photon subtractions

Until now we have focused on a single-photon subtraction
on each sidesone photon removed from modeA and one
from mode Bd. If we now consider a scheme where two
photons are subtracted from each mode, the de-
Gaussification of the state will be stronger and we may ex-
pect a higher Bell violation than before. To subtract two pho-
tons from each mode, we only need to add one more
unbalanced beam splitter and photodetector on each side in-
side the source in Fig. 1. A successful state generation would
be indicated by simultaneous clicks of all four detectors. As-
suming perfect photon-number resolving detectors, the state
generated from two-mode squeezed vacuums3d by subtract-
ing two photons from each mode can be expressed as

ucoutlAB ~ âA
2âB

2ucinsT2ldlAB ~ o
n=0

`

sn + 2dsn + 1dsT2ldnun,nlAB,

s45d

and the probability of success reads

FIG. 10. Influence of false triggers. The Bell factorS is plotted
as a function of the probability of false triggeringPf for T=0.9,
l=0.72 ssolid lined, T=0.95, l=0.66 sdashed lined, and T=0.99,
l=0.62 sdot-dashed lined, hPD=30%, andhBHD=95%.

FIG. 11. Violation of Bell-
CHSH inequality with four photon
subtractions.sad Bell parameterS
as a function of the squeezingl
for perfect detectorshPD=hBHD

=100%.sbd Bell parameterS as a
function of the efficiencyhBHD of
the homodyning. The curve is
plotted for T2l=0.40, hPD

=100%, and the same transmit-
tances as in Fig. 6.
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P4ph= 2T2s1 − Td4l4s1 − l2d
1 + 10T4l2 + T8l4

s1 − T4l2d5 . s46d

Since the states45d exhibits perfect photon-number correla-
tions, the Munro formula for the Bell factor can again be
directly appliedf39g. Numerical calculations show that the
maximum Bell violation with the states45d and sign binning
of quadratures is achieved forT2l=0.40 which yields
Smax,4ph=2.064, which is indeed higher than the maximum
achievable with two-photon subtraction,Smax,2ph=2.048, and
very close to the maximum valueS=2.076f39g.

A more realistic description of the four-photon subtraction
scheme that takes into account realistic imperfect detectors
can be developed using the approach described in detail in
Sec. III B. We find that the Wigner function of the condition-
ally generated state is a linear combination of 16 Gaussians.
The results of numerical calculations are shown in Figs.
11sad and 11sbd, which illustrate that the two-photon subtrac-
tion from each mode yields higher violation of the Bell-
CHSH inequality than one-photon subtraction only for very
high transmittancesT.0.95. For lower transmittances, the
fact that the photodetectors do not distinguish the number of
photons reduces the Bell factor. Moreover, adding a second
stage of photon subtractions dramatically decreases the prob-
ability of generating the non-Gaussian state. The probability
can be estimated asPG<hPD

4 s1−Td4, so for T.0.95 and
hPD=50% we getPG<10−6 and the duration of data acqui-
sition would make the experiment infeasible. We conclude
that from the practical point of view there seems to be no
advantage in using the scheme with four photon subtractions
instead of the much simpler scheme with two photon sub-
tractions.

IV. ALTERNATIVE SCHEMES

In this section we will study the violation of Bell-CHSH
inequalities for a large group of alternative schemes, which
involve from one to four photon subtractions. The main ob-
jective of this section is to compare the maximum Bell-
CHSH factorSobtained for the different proposed setups. As
the main purpose of this section is the comparison of the
different schemes, we will consider only idealized schemes
with almost perfect single-photon subtraction on the beam
splitterssT=0.99d, and perfect photodetectors and homodyn-
ing shPD=hBHD=100%d. The maximum achievable Bell fac-
tor for each scheme presented below was determined by op-
timizing over the anglesu1,2 and f1,2 as well as over the

squeezingl of the initial Gaussian states. The sign binning
of the measured quadratures has been used in all cases. All
the schemes presented in this section use the symbol conven-
tion depicted in Fig. 12.

In the preceding section, we have seen that the probability
of successful generation of a non-Gaussian state decreases
significantly with the number of photon subtractions. At the
same time the complexity of the implementation of the ex-
perimental setup increases with the number of photon sub-
tractions. It is then obvious that the most interesting schemes
for a Bell-CHSH violation are those involving only one pho-
ton subtraction. Unfortunately, for the schemes that we have
consideredssee Fig. 13d, no violation was observed.1 In this
case, the maximal value of the Bell-CHSH factor isS=2,
which is achieved at the limit of an infinite squeezing. In
fact, all the schemes considered here that do not result in a
Bell violation correspond toS=2, a point which is associated
with the limit l→1. Indeed, in this limit, the photodetector
of single-photon sensitivity placed after the beam splitter of
fixed transmittanceT almost always gives a click, so that the
conditional degaussification fails. We are thus left with a
state that is very close to the originalsGaussiand two-mode
squeezed vacuum state, for which our choice of angles
makes it possible to saturate the Bell-CHSH inequality
sS=2d. This so because, in the infinite-squeezing limit, thex
spd quadratures of the two modes are fully correlatedsanti-
correlatedd.

After one-photon subtraction, the simplest schemes are
those with two photon subtractions. In the preceding sections
it was shown that it is possible to violate the Bell-CHSH
inequality with two photon subtractionsfscheme Fig. 14sadg.
It follows from Fig. 14 that several other schemesfsee Figs.
14sdd and 14sedg also violate Bell-CHSH inequality, but the

1Note that we represent the two-mode squeezer using its theoret-
ical equivalent scheme composed of two orthogonal single-mode
squeezers followed by a beam splitter. Even though these two
schemes correspond to physically distinct optical implementations,
this choice of representation is better adapted to the comparison
between the different possible positions of the photon subtraction.

FIG. 12. Symbol convention.sad Single-mode squeezer along
the x quadrature.sbd Beam splitter.scd Conditional subtraction of a
photon as described in the preceding section.

FIG. 13. Schemes with only one photon subtraction. The first
column labels the different setups proposed, the second shows the
scheme, and finally the last column gives the maximal Bell factorS
obtained when optimizing the squeezing.sad Photon subtraction af-
ter the creation of the two-mode squeezed vacuum.sbd Photon sub-
traction before mixing two single-mode squeezed states on a beam
splitter.
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maximal achievable Bell factorSappears to be much smaller
in comparison to the scheme shown in Fig. 14sad.

By adding one more photon subtraction to the schemes
shown in Fig. 14, we can construct an ensemble of schemes
with three photon subtractions. After numerical optimization
we have found that none of these schemes succeeds in vio-
lating the Bell-CHSH inequality. This striking result together
with the fact that we have not found any violation for
schemes based on a single subtraction suggests that it may be
necessary to have a scheme with an even number of photon
subtractions in order to observeS.2.

In the preceding section, we have also proposed one
scheme with four photon subtractions that violates Bell-
CHSH inequalityfFig. 15sadg. Many other possible schemes

exist where four photons are subtracted. Figure 15 illustrates
some particular examples, which are based on the prepara-
tion of two-mode squeezed vacuum via mixing of two
single-mode squeezed states on a balanced beam splitter. The
photon subtractions are symmetrically placed to both modes.
Strikingly, if all four photons are subtracted either before or
after mixing on a beam splitter, then we getS.2. However,
if a single photon is subtracted from each mode both before
and after combining the modes on a beam splitter, then we
do not obtain any Bell violation.

Finally we have also studied an alternative group of
schemes where instead of subtracting photons separately
from modesA andB, we mix the auxiliary modesC andD
on a balanced beam splitter before the detection on the pho-
todetectors. Consider the scheme depicted in Fig. 16sad
where only a single photon is subtracted. The mixing of
modesC and D on a beam splitter erases the information
about the origin of the detected photon which implies that
the conditionally prepared state is a coherent superposition
of states where a single photon has been removed either from
modeA or from modeB. However, even this modification
does not lead to Bell violation with just a single subtraction.

We can extend the scheme by placing a photodetector at
both output ports of the beam splitterfcf. Fig. 16sbdg. In the
limit of a high transmittanceT→1, the conditioning on the
click of each detector selects the events where there were
altogether two photons at the beam-splitter inputs. The
bosonic properties of the photons imply that a simultaneous
click of both photodetectors occurs only if the two subtracted
photons are coming from the same modesA or Bd f51g, but
again we do not know from which mode the two photons are
subtracted. This scheme is thus equivalent to the superposi-

FIG. 14. Schemes with two photon subtractions. The right col-
umn gives the maximal value of the Bell factorS for the proposed
setups.

FIG. 15. Schemes with four photon subtractions. Last column
gives the maximal value of the Bell factorS for the proposed
setups.

FIG. 16. Schemes consisting of superpositions of other schemes
proposed above.sad Superposition of one photon subtraction on
modeA or B. sbd, scd Superposition of two photon subtractions on
modeA or B.
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tion of two schemes of the type shown in Fig. 14scd. Unlike
the scheme in Fig. 14scd, the scheme in Fig. 16sbd is sym-
metric with respect to the modesA andB. However, no vio-
lation can be observed. On the other hand, the scheme in Fig.
16scd leads toS.2 by realizing a superposition of states
where two photons are subtracted from a single-mode
squeezed vacuum state and this state is then mixed with an-
other single-mode squeezed vacuum on a balanced beam
splitter fsee Fig. 14sddg. In comparison to the scheme in Fig.
14sdd, we obtain much higher violationS=2.046.

V. CONCLUSIONS

We have proposed an experimentally feasible setup allow-
ing for a loophole-free Bell test with efficient homodyne
detection using a non-Gaussian entangled state generated
from a two-mode squeezed vacuum state by subtracting a
single photon from each mode. We have presented a full
analytical description of a realistic setup with imperfect de-
tectors, noise, and mixed input states. We have studied in
detail the influence of the detector inefficiencies, the elec-
tronic noise of the homodyne detector, and the input mixed
states on the achievable Bell violation. The main feature of
the present scheme is that it is largely insensitive to the de-
tection efficiency of the avalanche photodiodes that are used
for conditional preparation of the non-Gaussian state, so that
detector efficiencies of the order of a few percent are suffi-
cient. On the other hand, the detection efficiency of the bal-
anced homodyne detector should be of the order of 90% and
the electronic noise of the homodyne detector should be at
least 15 dB below the shot noise level. The optimal squeez-
ing that yields maximum Bell violation depends on the ex-
perimental circumstances but is, generally speaking, within
the range of experimentally attainable values. As a rule, the
optimal squeezing increases with decreasinghBHD and in-
creasing noise.

We have also discussed several alternative schemes that
involve the subtraction of one, two, three, or four photons.
The experimentally simplest and most appealing schemes are
those where only a single photon is subtracted because pho-
ton subtraction is a delicate operation and also each subtrac-
tion in the scheme drastically reduces the probability of suc-
cessful state generation. Unfortunately, we have not been
able to find a scheme with only a single subtraction which
would exhibit violation of Bell inequalities. However, the
class of schemes that we have studied is still somewhat re-
stricted. One can thus hope that such a scheme may be de-
signed by considering more complicated setups involving

unbalanced beam splitters and possibly a different binning
proceduref52g. Moreover, we may discretize the measured
quadratures into a higher-dimensional alphabetsinstead of
using a binary alphabetd and then possibly use the extended
Bell inequalities in higher dimensions in order to exhibit
non-locality. These issues certainly deserve further investiga-
tion.

Among all the schemes where two photons are subtracted,
the maximum violationS=2.046 is achieved by the scheme
discussed in Secs. II and III. Taking into account that we
have not found any scheme with three photon subtractions
which would violate Bell-CHSH inequality, the only way of
exceeding the 2.046 violation appears to be by subtracting
four photons. This scheme has been analyzed in some detail
in Sec. III C where it was shown that this allows us to reach
the Bell factorS=2.06. Unfortunately, the price to pay for
this slight increase ofS is that the probability of successful
conditional generation is so low that it makes the experiment
infeasible.

The results presented in this paper provide a clear ex-
ample of the utility of conditional photon subtraction which
can be considered as an important tool in quantum optics and
quantum-information processing with continuous variables.
Besides violation of Bell inequalities, this method can be
used to generate highly nonclassical states of lightf47g and
to improve the fidelity of teleportation of continuous variable
statesf44–46g and it forms a key ingredient of the recently
proposed entanglement purification protocols for continuous
variablesf31,32g. The very recent experimental demonstra-
tion of a single photon subtraction from a single-mode
squeezed vacuum state provides a strong incentive for further
theoretical and experimental developments along these lines,
and we can thus expect that some of the schemes discussed
in the present paper will be experimentally implemented in
the not too distant future.
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