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Noise resistance of adiabatic quantum computation using random matrix theory
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Besides the traditional circuit-based model of quantum computation, several quantum algorithms based on a
continuous-time Hamiltonian evolution have recently been introduced, including for instance continuous-time
quantum walk algorithms as well as adiabatic quantum algorithms. Unfortunately, very little is known today
about the behavior of these Hamiltonian algorithms in the presence of noise. Here, we perform a fully
analytical study of the resistance to noise of these algorithms using perturbation theory combined with a
theoretical noise model based on random matrices drawn from the Gaussian orthogonal ensemble, whose
elements vary in time and form a stationary random process.
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I. INTRODUCTION cussing the scaling of the noise-induced error probability

There has been a growing interest recently in the conceﬁ‘l"th problem size as a function of the noise bandwidth.
of Hamiltonian-based quantum algorithms, as opposed to the
standard circuit-based paradigm of quantum computing. The Il. NOISE MODEL
Hamiltonian algorithms rely on the continuous-time evolu-
tion of a quantum register according to the Schrédinger Suppose we have a Hamiltonian algorithm based on the
equation and include in particular the quantum search a|90|=|amiltonianﬁ(t),
rithms by adiabatic evolutiofl] or by continuous quantum
walks [2,3]. While these algorithms may be translated into o d— — =
circuit-based algorithms so that they could be implemented 'ﬁd_t|'/’(t)> =H(O)g(D)). 1)
on a “standard” quantum computet,5], another possibility
is to consider a “continuous” quantum computer specificallyAt the end of the computatioft=T), we obtain the state

designed to run this type of algorithni8]. For a realistic |,(T)), which, after measurement, defines the output of the

implementation, it seems therefore crucial to investigate hov&lgorithm. Now, suppose that a perturbation(t) adds to
well such a quantum computer would behave in the presencgis Hamiltonian:

of noise. Until now, this question has only been addressed for

some specific algorithms subject to some very particular H(t) = H(D) + eh(t 2
noise. For instance, Childst al. have considered an adia- ® )+ eh(t). @
batic quantum algorithm for solving combinatorial problems|stead OﬂZ(T)% we will get at the end of the computation a

7] affected by an error modeled by an extra term Wh,iCh ISgifferent statdy(T)). The problem in the following will be to
random but deterministically evolves in tinig]. While this evaluate the error probability

study was purely numerical, later on Shewetial. [9] ana-
lytically analyzed the effect of a Markovian stochastic vari- —1 2

able perturbing the amplitude of the oracle Hamiltonian in Perr=1 = KHT[AT))| (3

the specific case of the analog analogue of Grover’s seardfiduced by the perturbation.

algorithm[10]. In contrast, the purpose of the present paper |n order to derive analytical results, we will have to make
is to derive more generic results for an Hamiltonian-basedome assumptions on the noise teshi(t). First, we limit
algorithm perturbed by a noise that is described by a stationpurselves to a noise of small amplitudes 1, so that the use
ary Gaussian random process. This makes it possible to cargf perturbation theory is justified. Second, we assume that, in
out a fully analytical treatment of the tolerance to noise.any basig,) (k=,0... N-1) of the N-dimensional Hilbert

although this is at the price of sonfiairly general assump-  gpace where the computation takes place, the matrix ele-
tions on the noise model and of the use of perturbationments ofh(t) are normal random variables:

theory.

This paper is organized as follows. In Sec. Il, we describe h(t) = (@h(D)| @) € MO,07). (4)
our theoretical model of noise based on the Gaussian or-
thogonal ensemble. In Sec. lll, we use perturbation theory tdlore specifically, we assume that the mathiét) is drawn
analyze the effect of noise on tame-independenHamil-  from a Gaussian orthogonal ensemifteOE), so that the
tonian evolution and apply our results to the analog analogueariance o, of its elements is defined by =(1+5)0?,
of quantum search. In Sec. IV, we consider the tolerance twhereo? is an overall variancésee[11] for more details on
noise of atime-dependenguantum algorithm by adiabatic random matrix ensemblgsMoreover, any two distinct ele-
evolution and then focus on the quantum search by locainents of a GOE matrix are taken as independent random
adiabatic evolution. Finally, in Sec. V, we conclude by dis-variables,
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(ha(Ohyer () =0 940 = 3 By, (10
k
= where|¢,) andE, are the eigenstates and eigenvalues of the
unperturbed Hamiltonian and the amplitudgsollow from
(k,h) # k', 1"y and (k1) # (I',K"). (5) the initial conditions. By use of perturbation theory, we can

i study the effect of a small time-dependent perturbadio(i)
Even though the above assumptions are not based on a spe-

cific physical source of noise, they may be justified by con-oN the HamiltonianH. Expanding the solution of the per-

sidering that the noise is generally caused by many indepellil-”b‘ad equation m_the baS|_s formed by the solutions of the

dent sources of error which, combined together, finally resulynperturbed equation, that is,

in a random Hamiltonian drawn from a GOE as a conse- _ LiEA

quence of the central-limit theorem. A0 = % by(He™ g0, (1D
Furthermore, we assume that the random matrix elements

hy(t) evolve in time as some stationary random process wittand introducing this expression into the Schrodinger equa-

an autocorrelation functiofi. 2] tion, we get

R(7) = (hy(t + )hy (1)) (6) b= - 52 be“thy(t), (12)
For instance, a very typical noise model we can use is a !
white noise with a high-frequency cutot, (see, for in- wherewy=(E,—E)/#. Using thEsame initial state as for the

stance[13]), which yields noiseless evolution—i.eb,(0) =b,—we obtain the system of

sinwgr equations

R(7) = of @)

t
woT — . & :
° bk(t):bk_|%2f by(ty)€ 't (ty)dt;. (13
However, to be slightly more general, we will only assume 70

later on that the autocorrelation function is of the type Using standard perturbation thedisee, e.gf14]), this may

_ 2 be solved iteratively, building step by step the expansion of

R(7) = ogf (o), (8) by(t) in increasing orders ir. From this solution, one can

wheref(x) verifiesf(-x)=f(x) andf(x)<f(0)=1, as well as  derive(an expansion ofthe error probabilitype,, introduced

some other regularity conditionsee next sectiopsThus, ~ bY the perturbatiomh(t). As the matrix elements df(t) are

we only need to assume th&(7) is a function ofwyr. random variables, so wilpe, be, and we will only have
Finally, as we will be interested in the scaling of the per-8CCess to its statistics. In particular, we will focus on its mean

turbed Hamiltonian-based algorithm as a function of the sizéPerr- Using our assumption that(t) is a random matrix

of the problem,N, we need to properly define the depen-drawn from a GOE, we can show that

dence of the noise term iN. For the scaling analysis to be ) — — —— . 5

sensible, we must keep a constant signal-to-noise rathd as  (Per =& {2 lo2(1 = b1 = > (byby)? kl} +0(e%),

increases; that is, the eigenvaluesh@f) should scale simi- kel k!

larly to those ofH(t). As a result of Wigner’s semicircular (14)
|aW, we know that the denSity of eigenvalues of GOE matri'where we have introduced the integra's
ces forN>1 is given by

;

——— —— L =73 f f dtydte a2 f(wy(t; — 1)),  (15)
———V4c?N-E? if |E| < V4o™N, h 0

p(E) — | 4w S (9)

N== 1 otherwise which correspond to the coupling between the statgsand
' |y that is effected by the perturbation. Our problem now is
Therefore, to keep a constant signal-to-noise ratio, we havi® evaluate these integrals. We see that they only depend on
to impose thatr2=E2/4N, whereE is of the order of the the noise model via the aut'ocorrelatlon functigr) and thg
- high-frequency cutoftyy, while they depend on each particu-
lar instance of the problem via the spectrum of the Hamil-
tonian or the frequencias, (as well as the computation time
lll. TIME-INDEPENDENT HAMILTONIAN EVOLUTION T). Therefore|| ; vary for different instances of a problem.
WITH NOISE However, we can derive some general expressions, which
remain valid for a fairly large class of problems.
First of all, sincel j, are integrals over a domain of sizé
Let us study first the simplest case of a time-independerand as the amplitude of their integrand is bounded by 1, we
Hamiltonian evolution. The solution of the unperturbedimmediately see that, whatever the valuesogfand wg, we
Schrddinger equation is have the upper bound

eigenvalues of(t).

A. Perturbation theory
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gﬁlTZ regularity conditions orfi(x),” we may use the lemma 2 twice
52 (16) and finally recover Eq(20). It is interesting to note that in
the low-frequency regime, the coupling integral does not de-

Furthermore, we note that tHgf; couplings only appear be- pend on t.he computation timie We V\.’i” see that, at Ieast.for
tween the eigenstates that arle initially populated and magwe algorithms considered here, this causes a very different

therefore be viewed as the interferences caused by the noi :e? f;‘aVIO:eofithee scaling for this regime as compared to the
between these states. As there is in general a small and fixegd "o F€YIME.

number of eigenstatdsy) that are populatetb, # 0) in the
algorithm? Eq. (14) implies that there will be a fixed number B. Analog quantum search

of | ;; terms contributing to the expression @f,. In con- Let us recall the principle of Farhi and Gutmann’s analog
trast, the number df, terms, corresponding the the coupling quantum searchl0]. Suppose that we may apply an oracle
of the initially populated states to all others, will in general Hamiltonian

grow with the dimensioN of the Hilbert space. Therefore, _

the scaling of the average error probabikipg,,) will mostly H; =E(I = |m)(m|) (21
depend on the integrals,, which is why we now focus on
these in what follows. By changing the integration variable
to u=t;-t, andv=t; +t,, we get

Jo the system, witlE denoting an energy scale of the system.
The problem is to prepare the system in th@eknown so-
lution statelm). In [10], it is shown that this may be achieved
by preparing the system in the uniform superposition of all

2 T v
ly= 2%[ dvf du cog wyu)f(wgu), (17) states,
0 0 -
1
which is the integral of a modulated oscillation. | o) = \_Ngo k), (22

For a white nois€7), we get by direct integration o
and applying the constant Hamiltoni&h=Hy+H;, where

2 - Wy — W, o
_ Oyl {1 Coswy o)T+TSi(wk|—wo)T HO:E("WO)(%D, (23)

Wy — W
during a time
1-co + T
_ Swy + wp) + TSi(wy + wO)T} , (18) ok
wy + wg T= —_V”N. (24
2E

where Sfx) is the sine integral function. Depending on the . _ . .
value of w,, we may consider two limiting regimes: for a This results in a quadratic speed-up with respect to a classi-

high cutoff frequencywy> wy,, we get cal search in an unstructured database of kize
In order to study the robustness of this quantum algorithm
o2 - against a stationary Gaussian noise as defined in Sec. Il, let
- Kl ) ) o=
= h2w20(<1+ w >on), (19 us first consider the spectrum of the HamiltoniliFH,
0 0

+H; (see Fig. L We assume, for simplicity and without loss
of generality, that the problem admits the solutior0. The

two lowest eigenvalues dfi—that is, E;=(1-x)E and E;

o2 © =1 +x)Ewith x=1//N—are nondegenerate and correspond
= s O(l —0) (200 to the ground and first-excited states,

while for a low cutoff frequencywy< wy,, we have

Wy

[1+x X o
Although Eqs(19) and(20) are only valid, strictly speaking, lo) = > |0y + 2% k), (25)
for a white noise, we obtain similar results for a general v X) ke

function f(x). In the highw, regime, since the autocorrela-

tion function R(7) usually tends to zero asincreasegi.e., Note that in order to satisfy the hypotheses of lemma 2 in the
h(t+7) becomes less and less correlated Wigfit) for in-  Appendix,f(x) has to be infinitely differentiable. While this is gen-
creasing 7], Eq. (19) follows from the approximation erally the case for the widely used noise models such as a white
cod wyu) f(wou) =1+0(wy/ wp). In the loww, regime, we noise,f(x) may be discontinuous ir=0 for some specific models,
must integrate a rapidly oscillating function over many peri-Such asf(x)=exp(-|x)), which could follow from a Poissonian pro-

ods, which is treated in the Appendix. Under very generaFeSS' This discontinuity in the first derivative &fx) is actually
linked to the fact that the spectral density of the noise does not

rapidly converge to zero for very high frequencies and therefore
Yn particular we will see that for the analog quantum search, ther¢hat the noise has some probability to vary arbitrarily fast. We will
are only two populated levels along the evolution: namely, thenot consider this case here, but only mention that this would yield a
ground and first excited states drastically different behavior in the lowy regime.
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0 FIG. 2. Average error probabilit§pe,,) (to the second ordedue

to a noise modeled as in Sec. Il with an autocorrelation function
FIG. 1. Spectrum of the unperturbed Hamiltonian f(x)=sinx/x for the analog search amorg=100 elements. Note

ﬁ:H0+ H;. that (per stays very small as long dsvg/ E<1, at which point it
shows a sudden increase. For larger valud&@t it tends progres-
1-x X N-1 sively back to a low value. The peak i~ E scales as/N.
lep) =/ —5710) - > [k, (26)
2 V2(1 = X) k=1 — —
- E 1 E
o Ik2=ﬁ—O - 1+ﬁ_ (k=0,1), (31
whereas thé&\-2 times degenerate eigenvalbg=2E corre- @o AN @o

sponds to the eigenstates which is valid if iwo>E. Clearly, | « should be of order

1/N for {pey not to grow withN, which imposes the condi-

1 .
|‘Pk>:T§(|k>_|l>)y k=2,...N. (27)  ton
N —_
. . . hwy> EVN. 32
Expressing#(t=0))=|4y) in terms of the eigenstatég,) @o= =N (32)
of H, we get Thus, in this regime, the cutoff frequency of the noise must
increase as the square root of the size of the problem in order
to keep a probability of error of constant order. In the case of
14(0)) = &(Wo} — A /1;)(|<P1>- (28) a noise with a low cutoff frequency, E€O) yields
2 2
1 fi
. . Iazz—0<1+@ (k=0,1), (33)
As a consequence, the instantaneous state of the noiseless N E

algorithm|y(t)) is given by Eq.(10) with so we see thafp,y will not grow with N as long asiwg

- Tox  — 1—x <E. Interestingly, this upper bound on the cutoff frequency
bp=\/—, bi=-+/—, (29 does not depend on the size of the problem.
2 2 We conclude that the influence of noise on the analog
guantum search algorithm is negligible if the noise varies
andb,=0 for k= 2. Only two states are populated during the €ither very slowly or very rapidly with respect to the natural
algorithm, and the average error probabilifi) becomes time scale of the problemi/E. For the typical case of a
white noise with a high-frequency cutoff, the exact integra-
(Per) = (N = 2)[ g1 S+ Iy 21 1+ o2 (1 “+17) tion (18) shows that for intermediate values_s)f the cutoff
L - frequencywo~E/#, the average error probability scales as
+(|bo]* + [by|H)1 51— 2 Re (bghy)?l §.1}, (300  €2VN for a given signal-to-noise ratie (see Fig. 2 This
means that there exists a forbidden band for the cutoff fre-
quency wg if we want to keep our algorithm robust with
respect to a constant noi§ies., a noise that scales witth so
to keep a constant signal-to-noise ratiélternatively, we

‘ : see that the signal-to-noise ratoshould scale adi™* in

Thereforg, only the first term of _EchO), Wh'Ch represents order to keep the error probabilityp,,) constant for a cutoff
the coupling of the ground and first-excited stafd® only — i i
initially populated statesto the N-2 others, can grow with frequencyawq of orderE/7. In other words, for an increasing
N and must be taken into account in the scaling analysis. Ledroblem sizeN, the noise variance” must decrease faster
us focus on this term in the two limiting regimes consideredthan E?/4N for the algorithm to remain immune to noise.
above. Finally, let us mention that ~ N~ coincides with the result

For a noise with a high cutoff frequency, E4.9) yields  of Shenviet al.[9], even though their noise model was less

where we have used the normalization conditiog?+|b,[2
=1 and the fact that,,=I , for | =2. For this algorithm, the
bound(16) gives|l i(t)| < /8, which is independent dfl.
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d H
< o) | =

at ¢o(t)>‘
[E-EmP  *x1

and under suitable regularity conditions, we may integrate
Eq. (38) by parts as shown in the Appendix, which yields

ty t
E(k”(t)=—i[Ak(t1)exp<i f w(t’)dt’)] +0(8D). (40)
0 0

general than ours since they only considered an error in the
magnitude of the oracle Hamiltonian, modeled as a Markov-
ian stochastic variable with Gaussian distribution. |

At =7 (39

IV. ADIABATIC EVOLUTION WITH NOISE
A. Adiabatic approximation

Let us recall the adiabatic approximation, which is at the
basis of the quantum algorithms by adiabatic evolution.
Qualitatively speaking, the idea is as follows: if a quantum

system is prepared in its ground state and its HamlltomaWe see that, at the first order, the ampl|tudb§(t)| are
varies “slowly enough,” it remains in a state close to the

bounded by 3. This first-order(so-calledadiabatig ap-
instantaneous ground state of the Hamiltonian at any time )
To be more precise, let us consider the Schrédinger equatidfoximation is acceptableEo(t)| stays close to 1—that is,

for a time-dependent Hamiltonigsee[ 14] for details,

H(O[Ab). (34

Ld—
'ﬁd—t|¢(t)>—

To solve this equation, we express its squtlc;Tﬂt)) in the
basis formed by the instantaneous eigenstptgs)) of the

Hamiltonianﬁ(t),

_ . t
wa) =2 bk<t>exp<— i jo Efl)dtl) @t (39)

whereE,(t) are the corresponding instantaneous eigenvalues

of H(t). By inserting this expression into E¢34), we find
the system of differential equations

dH
- o t < ot | = qt | @ (t)>
by(t) = > b|(t)exp<if0 wkl(tl)dtl) .

Ik E(t) - E(t)

(36)

If the quantum system is initially in its ground std&O))
=|¢o(0)), these equations can be integrated, giving

_ t_ €]
bi(t) = S+ > b|(t1)exp(i f wk|(ti)dti)
1=k Jo 0

<<Pk(t1) dr <P|(t1)>
X dt;.

dt
Ex(ty) — E(ty)

(37)

if the probabilityp(t) ==,.o|b(t)|? of hopping to any excited
state remains small. In other words, if the adiabatic condition

42 sugA(t)]? < &

k+0 [Ot]

(41)

is satisfied, thep(t) < 6°<1, with <1 being a “slowness”
parameter.
Now, suppose that a time-dependent perturbatibft)

adds to the Hamiltoniahi(t). We again express the solution
of the perturbed Schrédinger equation in the basis formed by

the instantaneous eigenstatesHf),

t
)= bk(t)exp<_ i J Edty)
k o h

which transforms Eq(37) into

t ty
by(t) = Soic + > b|(t1)exp<i f wk|(ti)dti)
1%k J 0 0

<(Pk(t1) dr <P|(t1)>
X dt

dt
Edty) - E(ty) '

_|_2f b|(t1)eXP<f wkl(tl)dtl)<‘Pk(tl)|h(tl)

(43

dt1> le(®),  (42)

X ey (ty))dt;.

We may again solve this system of equations iteratively,
which gives after one iteration

As in perturbation theory, these equations may be solved b{"(t) = b(t) i~ f exp( f wko(tl)dt1><<pk(tl)|h(t1)

iteratively, which gives after one iteration

H
o t 4y < ety | —— @o(t1)>
b (t) = f exp(i f wko(tpdq) dy dt,
0 0

Ex(ty) — Eo(ty)

(38)

for k# 0. Now if the variationdH/dt of the Hamiltonian is
slow enough or, more specifically, if

X |o(ty))dty (44)

for k# 0. As before, this first-order approximation remains
valid provided that the probabilitp(t) ==,_.¢|b.(t)|? of hop-
ping to any excited state remains small.

Let us now evaluate the average error probability at the
end of the evolution=T using the same model as before for
the perturbatiorh(t). Defining the error probability ape,
=p(T), we have
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g2 T S B. Adiabatic quantum search
{Pern = Perr * ﬁgo f Jo dtydt; ex 'Jtz wrolt)dt The principle of the adiabatic quantum seafdfj is to
3 apply the HamiltoniarHy=E(I - |yo){#|) to a system pre-
X <<‘Pk(t1)|h(tl)|¢O(t1)><¢k(t2)|h(t2)|()00(t2)>>+O(8 )a pared in its grOUnd Statw& and then to progressively
(45 switch the Hamiltonian H, to the Hamiltonian H;

wherep,,,=p(T) is the error probability of the adiabatic evo- =E( —|m>.(m|), wherem is the solution of the search prob-
lution. Let us note thate,(ty) # |e(t,) in general, so that !em. If this switch is done slowly enough, the system wil
we do not immediately recover the autocorrelation functionSt&Y in the instantaneous ground state of the Hamiltonian and
of one particular matrix element di(t). However, as the us end up in the ground stateldj—i.e., the solution state
different matrix elements ofi(t) are independent in a par- M- The instantaneous Hamiltonian is chosen as

ticular basis, we have ﬁ(s) = (1 -9)Hy + SH:, (53)
(et [h(ty) | eo(t) X ei(ta)[M(to)[eo(t2)) wheres=s(t) is an evolution function which must be opti-
- t t t t) + t t mized so as to reduce the computation time while respecting
[adt)lext) ool ;)RDO( o))+ (et goflta)) the adiabatic conditiot41) (see[15,16 for detail9. In this
X{ @ty @o(ta))] X aipf(wolty = 1) . (46)  case, this condition may be rewritten as
If |¢(t)) varies sufficiently smoothly for €t<T, then the d_s< 5 [Ei(H)-Eyn]? (54

first factor is of order 1O((t;-t,)%/ T?). Thus, we may ap- dt £|<<p1(t)|Hf — Holeo®)]
proximate it by 1 as long a&,T>1—that is, if the noise ] ) )
varies quickly compared to the adiabatic evolution. In thatVithout loss of generality, we may once again suppose that

case, we get for the average error probability m=0. The instantaneous eigenstatesﬁcﬁ@) are
A 3 IN[Ey(s) - s]|¢o) + 5[0
(Perd =Per+ 822 1 1o+ O(8+e)),  (47) o) = e S+ 0 g
k70 VE1(8)”+ (N = 1)[Ey(s) ~ 5]

where the integrals —
VNLEo(S) - sl|4o) +5/0)

2 T t l@1(9)) = = ,
|;0=%’ f fo d,dt, exp(i ft wko(t’)dt’)f(wo(tl—tz)), ’ VEo(8)? + (N = 1)[Eq(s) — s

(56)

1
(48) o) =5K =), k=2 (57)

represent the coupling of the ground state to the excited
states induced by the perturbation. The adiabatic conditiowhere
generalizes in the case of such a perturbation to —

E \/ N-1
S (4 sugAD2+ 62 o) < & (49) Eo(8=5 {1 Lma sl S)] (68)
k=0 [0.T]
Similarly to the case of the perturbed time-independent _ E \/ _N-1
Hamiltonian evolution, the effect of the perturbation on the Eis)= 2 1+y1-4 N s1-9)]. (59)
adiabatic evolution mainly depends on the coupling integrals
| o Which are bounded by E(9)=E, k=2, (60)
ol < o (50) are the instantaneous eigenvaluedi¢$) (see Fig. 3. Since
|H;—Hg||<E, taking an evolution functios(t) that satisfies
and can be approximated as ds &
2 max d_ = ——[Ey(s) — Eo(9)? (61)
- 9o Wyo max t 2hE
lw=73 20\ {1+— —|oT), wo> oy, (51
hwy Wo complies with the adiabatic conditid4) and then leads to
or a computation time
Th —
2 ‘ T=—=VN. (62
- _ Oy wq \
o= minzo<1+ﬁ>v w<wg, (52 o
(Uko kO

Consider that some noise, modeled again as a stationary
in the limiting regimes of high or low cutoff frequenay,, Gaussian random process, perturbs the evolution. Equation

respectively, wheregy"< wyo(t) < wpg for t e [0, T]. (47) then reads
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dition is satisfied here as long #svy<E (just as for the
analog quantum seargtbut also ife < 6.

In summary, we recover essentially the same effects for
the adiabatic quantum search as for the analog quantum
E search; that is, the influence of noise becomes negligible
ol e i only in the case of a very high or a very low cutoff frequency

/2 IE/s/JV .
wg, apart from the influence of the slowness parameter

Bo Regarding this latter parameter, we see that while decreasing
6 gets the noiseless evolution closer to adiabaticity and there-
fore reduces the error probability without noise, in the pres-
0 ! ence of noise it imposes that decreases—i.e., that the
0 05 1 signal-to-noise ratio increases—in both regimes of a high or

8 low cutoff frequency(or that the high cutoff frequency in-
creases as bF).

E;,

e21]

FIG. 3. Instantaneous eigenvaluesﬁifs) for N=32.

<perr> = Herr"' 82[' IO+ (N - 2)' Eo] +0O((6+ S)S)a (63) V. CONCLUSION

_ We have studied the resistance of Hamiltonian quantum
% -
V\{hertehl '<t°s ;_2'/({3;45) as e|1 r(tahsult of _tEOtK'SO);[ Lfrt] u?_ e;nphat dalgorithms(including adiabatic algorithmgo a noise that is
size that, while It was only the excitation 10 th€ TirStexcited ,,qe|eq as a random matrix whose elements are stationary

state that was critical for the noiseless adiabatic algorithm, i~ \<<ian random processes within a fixed bandwidth. This
this case it is the coupling of the_ groun.d state to qll exc'tedstatistical noise model is generic and should therefore make
states that could make the algorithm fail, since their numbe&ur analysis valid over a large class of physical systems
grows as the siz&l of the problem. Moreover, this bound regardless of the exact origin of the added noise. Another

already suggests tha_t _the coup]mg integigls—and there—_ main advantage of this noise model is that it makes it pos-
fore the error probability could increase when the evolution

X sible to perform a fully analytical scaling analysis. Our gen-
SIOWSf down($ decreasgswhich means there must be a COM" ara result is that the Hamiltonian algorithms are resistant to
promise between a slow evolution, very close to perfect adi

. ; | 3oise(i.e., the error probabilityp,,) does not increase with
baticity, and a fast evolution, more robust to noise. . . .
. So ; increasing problem sizeN) as long as the cutoff frequency
As before, let us consider the two limiting regimes of a o . .
: , of the noise is either very high or very low with respect to
high or a low cutoff frequencywg. In the case of a high . R =
cutoff frequency(fiw, >E) Eq. (51) yields the inverse of the characteristic time scale of the sy€tém
q 0 ' =0 y Asides from the influence of the slowness paramétierthe
— — case of the adiabatic algorithms, this resistance is essentially
E ( 1 ( )) Ok 0 (64) similar for adiabatic and time-independent Hamiltonian algo-
' rithms. Our results are in good agreement with the numerical
study of Childset al.[8]. They even corroborate the results
exactly as for the analog quantum search except for the fagf Shenviet al. [9], although their noise model was rather
tor 1/6. The latter factor shows that in order to keep thedgifferent, which supports the idea that using random matrix
algorithm robust to noise, the cutoff frequency has to in-theory provides a rather general description of noise.
crease not only as the size of the databidsgrows (just as Roughly speaking, the two limiting regimes of high or
for the analog quantum seajctbut also as the evolution |ow cutoff frequencies can be understood in the following
slows down(s decreasgs More precisely, we see that the way. If the frequency components of the noise are much

E
1+—
(200]

——

o= —
ko frwo~ \ 8N

perturbed adiabatic conditioid9) is satisfied only if below the inverse of the characteristic time scale of the sys-
) tem, it is intuitively clear that the noise cannot effect transi-
€ = /N [ desired states. On the contrary, if the noise spec-
ﬁwO > —E\N (65) tions to un . . : Y, P
& trum spreads over a band which is much broader than the

. inverse of the characteristic time scale of the system, then the
[compare with Eq.(32)]. When the cutoff frequency be- nqise spectral density is low around the frequencies that ef-
comes very lowfwy<E), Eq.(52) implies that the coupling fect undesired transitions. In the intermediate region, we

integrals behave as found that the error probability unfortunately scales/as®
which implies that some error correction is needed to make
|- _lo 1+@ Hamiltonian algorithms scalable. This last point is particu-
o= — (66) : o ) :
N E larly important as it is plausible that the source of noise

occurring in a physical system typically varies on a time
for all excited states except the first ofie., fork=2). For

the first-exciteq staték=1), we havehwiy'~E/ \““’Nv so Eq. *This scaling has been analytically obtained for a time-
(52) does not yield a useful result. Instead, we simply use thendependent Hamiltonian and is strongly believed to generalize to
general bound ,,< 72/ (645°). Therefore, the adiabatic con- the case of an adiabatic evolution.
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noise should spread over an increasingly large spectrum to
keep the error probability low. In this case, some kind of
error correction should also be implemented if the size of the
problem becomes too large. The case of a low cutoff fre- In this appendix, we give a useful tool to evaluate inte-
guency, however, is more favorable. Indeed, the situation igrals of an oscillating function such as
quite different here as the error probability stays small as b
soon as the cutoff frequency is lower than some fixed value, f dxF(x)e“X, (A1)
even when the size of the problem increases. This fault tol-
e e 7o basic cea etes on Rieman Lebesgue's e
thus will not efficiently couple different eigenstates of the Le_mma L (Riemann-Lebesgué) F(x) is an integrable
Hamiltonian. function on[a,b], then

It should be emphasized that it is not the possible excita- Jb

APPENDIX

a

tion to one particular state that makes the algorithm fail, but lim | dxF)e“*=0.

w—xJ g

the fact the dimension of the Hilbert space increases with the
problem size and hence the number of states that could be This lemma suggests that the integ¢all) will be rela-
accidentally populated as well. This means, in the case adfvely smallif o is sufficiently large The purpose of this
adiabatic computation, that even if the gap between thappendix is to quantify this idea.
ground and first-excited states decreases, the algorithm may First of all, as long a$(x) is differentiable orfa,b], we
remain robust to a noise with a low cutoff frequerteyen if  may integrate Eq(A1) by parts:
this frequency remains constamts long as the gap between . -
the ground states and the other excited states remains lower jox — _ 1 ioxip, L Ur o\ Lox
bounded. Therefore, the algorithm would remain scalable in dxRx)e= w[F(x)e la* wfa dde(x)e ’
the case of a low cutoff frequency as long as the natural
frequencies of the Hamiltonian are much larger than the frewhere[f(x)]2=f(b)~f(a), and, using this last equation itera-
quencies contained in the noise. Of course, throughout thiively, we show that for arN-times differentiable function
analysis, we always made the assumption that the signal-td=(x) on[a,b],
noise ratio remains essentially constant when the size of the b NI
Hilbert space where the computation takes place becomes f foX — _ ( I )nﬂ{ d'F -wx}

dxF(x)€®*=- > (x)€e

a

a

b

large, which may practically not be the case. Thus, even in dx
this low cutoff frequency regime, it may be necessary to
. ) - o AN b AN
devise error correction techniques for Hamiltonian quantum + <'_) f dxd—F(x)ei“’X (A2)
algorithms. Nonetheless, in the case of adiabatic algorithms, dxV '
this conclusion may be overpessimistic since, as long as the
noise is sufficiently slowly varyindthat is, the cutoff fre- The order of the error introduced by neglecting the last term
quency is low, the perturbed evolution may remain adiabaticmay be evaluated as follows:
so that the system would stay in the ground state of the i \N P NE 1 (b dNE
perturbed Hamiltonian. Our perturbative method did not re- (—> f dx—r=(x)eX| < —Nf dx| —(x)
produce this effect because we developed the solution of the w) Jy T W Ja dx
perturbedSchrodinger equation in the basis formed by the (A3)
eigenstates of thanperturbedHamiltonian. Actually, it was
shown, at least numerically, that some slowly varying noiseVe see that the accuracy of this approximation increases
could actually help the computation, even for a high noisewith the oscillation frequency w. Moreover, if
intensity[8]. (1/N)dNF/dxN— 0 for N— o, this error approaches zero as
Note addedOur result is related to a recent papé#], N increases and we prove the following lemma:
which also considers the use of random matrix theory in Lemma 2Let the functionF(x) be infinitely differentiable
adiabatic quantum computing but with a distinct goal:on[a,b]. If
namely, to analyze the spectral statistics of the Hamiltonian

over a large class of problems along an adiab@it noise-
less evolution.

n=0 a

1 dF
ﬁm(x)—> 0 Ox

N—o0
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for some realw, then 1 dVF 00
WO X
b o/ \n+L[ gn b i i i
4 d"F for some real differentiable function(x) on[a,b], then
f dXF(x)e* =~ ( ! ) {dxn(x)e"”x} () on[a.b]
: dxF(x)exp< f w(X )dx)
While this result is helpful to study a time-independent “Ja 0
Hamiltonian evolution, in the case of an adiabatic evolution = _ n+1 -
the typical frequencies become time dependent. However, =>1- ( ! d—(x)ex f w(x")dx’
using the same method, we easily generalize this lemma to n=0 (X)
the case of a varying frequeney(x). b . n+1 -
Lemma 3Let the functionF(x) be infinitely differentiable f dxi(l— d—(x)exp( f w(x)dx’ )
on[a,b]. If dx\ w(X)
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