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Besides the traditional circuit-based model of quantum computation, several quantum algorithms based on a
continuous-time Hamiltonian evolution have recently been introduced, including for instance continuous-time
quantum walk algorithms as well as adiabatic quantum algorithms. Unfortunately, very little is known today
about the behavior of these Hamiltonian algorithms in the presence of noise. Here, we perform a fully
analytical study of the resistance to noise of these algorithms using perturbation theory combined with a
theoretical noise model based on random matrices drawn from the Gaussian orthogonal ensemble, whose
elements vary in time and form a stationary random process.
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I. INTRODUCTION

There has been a growing interest recently in the concept
of Hamiltonian-based quantum algorithms, as opposed to the
standard circuit-based paradigm of quantum computing. The
Hamiltonian algorithms rely on the continuous-time evolu-
tion of a quantum register according to the Schrödinger
equation and include in particular the quantum search algo-
rithms by adiabatic evolutionf1g or by continuous quantum
walks f2,3g. While these algorithms may be translated into
circuit-based algorithms so that they could be implemented
on a “standard” quantum computerf4,5g, another possibility
is to consider a “continuous” quantum computer specifically
designed to run this type of algorithmsf6g. For a realistic
implementation, it seems therefore crucial to investigate how
well such a quantum computer would behave in the presence
of noise. Until now, this question has only been addressed for
some specific algorithms subject to some very particular
noise. For instance, Childset al. have considered an adia-
batic quantum algorithm for solving combinatorial problems
f7g affected by an error modeled by an extra term which is
random but deterministically evolves in timef8g. While this
study was purely numerical, later on Shenviet al. f9g ana-
lytically analyzed the effect of a Markovian stochastic vari-
able perturbing the amplitude of the oracle Hamiltonian in
the specific case of the analog analogue of Grover’s search
algorithm f10g. In contrast, the purpose of the present paper
is to derive more generic results for an Hamiltonian-based
algorithm perturbed by a noise that is described by a station-
ary Gaussian random process. This makes it possible to carry
out a fully analytical treatment of the tolerance to noise,
although this is at the price of somesfairly generald assump-
tions on the noise model and of the use of perturbation
theory.

This paper is organized as follows. In Sec. II, we describe
our theoretical model of noise based on the Gaussian or-
thogonal ensemble. In Sec. III, we use perturbation theory to
analyze the effect of noise on atime-independentHamil-
tonian evolution and apply our results to the analog analogue
of quantum search. In Sec. IV, we consider the tolerance to
noise of atime-dependentquantum algorithm by adiabatic
evolution and then focus on the quantum search by local
adiabatic evolution. Finally, in Sec. V, we conclude by dis-

cussing the scaling of the noise-induced error probability
with problem size as a function of the noise bandwidth.

II. NOISE MODEL

Suppose we have a Hamiltonian algorithm based on the

HamiltonianH̄std,

i"
d

dt
uc̄stdl = H̄stduc̄stdl. s1d

At the end of the computationst=Td, we obtain the state

uc̄sTdl, which, after measurement, defines the output of the
algorithm. Now, suppose that a perturbation«hstd adds to
this Hamiltonian:

Hstd = H̄std + «hstd. s2d

Instead ofuc̄sTdl, we will get at the end of the computation a
different stateucsTdl. The problem in the following will be to
evaluate the error probability

perr = 1 − ukc̄sTducsTdlu2 s3d

induced by the perturbation.
In order to derive analytical results, we will have to make

some assumptions on the noise term«hstd. First, we limit
ourselves to a noise of small amplitude«!1, so that the use
of perturbation theory is justified. Second, we assume that, in
any basisuwkl sk= ,0. . . ,N−1d of the N-dimensional Hilbert
space where the computation takes place, the matrix ele-
ments ofhstd are normal random variables:

hklstd = kwkuhstduwll P Ns0,skl
2 d. s4d

More specifically, we assume that the matrixhstd is drawn
from a Gaussian orthogonal ensemblesGOEd, so that the
varianceskl

2 of its elements is defined byskl
2 =s1+dklds2,

wheres2 is an overall variancesseef11g for more details on
random matrix ensemblesd. Moreover, any two distinct ele-
ments of a GOE matrix are taken as independent random
variables,
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khklstdhk8l8stdl = 0

⇔

sk,ld Þ sk8,l8d andsk,ld Þ sl8,k8d. s5d

Even though the above assumptions are not based on a spe-
cific physical source of noise, they may be justified by con-
sidering that the noise is generally caused by many indepen-
dent sources of error which, combined together, finally result
in a random Hamiltonian drawn from a GOE as a conse-
quence of the central-limit theorem.

Furthermore, we assume that the random matrix elements
hklstd evolve in time as some stationary random process with
an autocorrelation functionf12g

Rstd = khklst + tdhklstdl. s6d

For instance, a very typical noise model we can use is a
white noise with a high-frequency cutoffv0 ssee, for in-
stance,f13gd, which yields

Rstd = skl
2 sinv0t

v0t
. s7d

However, to be slightly more general, we will only assume
later on that the autocorrelation function is of the type

Rstd = skl
2 fsv0td, s8d

where fsxd verifies fs−xd= fsxd and fsxdø fs0d=1, as well as
some other regularity conditionsssee next sectionsd. Thus,
we only need to assume thatRstd is a function ofv0t.

Finally, as we will be interested in the scaling of the per-
turbed Hamiltonian-based algorithm as a function of the size
of the problem,N, we need to properly define the depen-
dence of the noise term inN. For the scaling analysis to be
sensible, we must keep a constant signal-to-noise ratio asN
increases; that is, the eigenvalues ofhstd should scale simi-

larly to those ofH̄std. As a result of Wigner’s semicircular
law, we know that the density of eigenvalues of GOE matri-
ces forN@1 is given by

rsEd ——→
N→` 5 1

4s2p
Î4s2N − E2 if uEu ø Î4s2N,

0 otherwise.
6 s9d

Therefore, to keep a constant signal-to-noise ratio, we have

to impose thats2=Ē2/4N, where Ē is of the order of the

eigenvalues ofH̄std.

III. TIME-INDEPENDENT HAMILTONIAN EVOLUTION
WITH NOISE

A. Perturbation theory

Let us study first the simplest case of a time-independent
Hamiltonian evolution. The solution of the unperturbed
Schrödinger equation is

uc̄stdl = o
k

b̄ke
−iEkt/"uwkl, s10d

whereuwkl andEk are the eigenstates and eigenvalues of the

unperturbed Hamiltonian and the amplitudesb̄k follow from
the initial conditions. By use of perturbation theory, we can
study the effect of a small time-dependent perturbation«hstd
on the HamiltonianH̄. Expanding the solution of the per-
turbed equation in the basis formed by the solutions of the
unperturbed equation, that is,

ucstdl = o
k

bkstde−iEkt/"uwkl, s11d

and introducing this expression into the Schrödinger equa-
tion, we get

ḃk = − i
«

"
o

l

ble
ivklthklstd, s12d

wherevkl=sEk−Eld /". Using the same initial state as for the

noiseless evolution—i.e.,bks0d= b̄k—we obtain the system of
equations

bkstd = b̄k − i
«

"
o

l
E

0

t

blst1deivklt1hklst1ddt1. s13d

Using standard perturbation theoryssee, e.g.,f14gd, this may
be solved iteratively, building step by step the expansion of
bkstd in increasing orders in«. From this solution, one can
derivesan expansion ofd the error probabilityperr introduced
by the perturbation«hstd. As the matrix elements ofhstd are
random variables, so willperr be, and we will only have
access to its statistics. In particular, we will focus on its mean
kperrl. Using our assumption thathstd is a random matrix
drawn from a GOE, we can show that

kperrl = «2Ho
k,l

ub̄ku2s1 − ub̄lu2dI kl
− − o

kÞl

sb̄k
* b̄ld2I kl

+J + Os«3d,

s14d

where we have introduced the integrals

I kl
± =

skl
2

"2 E E
0

T

dt1dt2e
ivklst1±t2df„v0st1 − t2d…, s15d

which correspond to the coupling between the statesuwkl and
uwll that is effected by the perturbation. Our problem now is
to evaluate these integrals. We see that they only depend on
the noise model via the autocorrelation functionfsxd and the
high-frequency cutoffv0, while they depend on each particu-
lar instance of the problem via the spectrum of the Hamil-
tonian or the frequenciesvkl sas well as the computation time
Td. Therefore,I kl

± vary for different instances of a problem.
However, we can derive some general expressions, which
remain valid for a fairly large class of problems.

First of all, sinceI kl
± are integrals over a domain of sizeT2

and as the amplitude of their integrand is bounded by 1, we
immediately see that, whatever the values ofvkl andv0, we
have the upper bound
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uI kl
± u ø

skl
2 T2

"2 . s16d

Furthermore, we note that theI kl
+ couplings only appear be-

tween the eigenstates that are initially populated and may
therefore be viewed as the interferences caused by the noise
between these states. As there is in general a small and fixed

number of eigenstatesuwkl that are populatedsb̄kÞ0d in the
algorithm,1 Eq. s14d implies that there will be a fixed number
of I kl

+ terms contributing to the expression ofkperrl. In con-
trast, the number ofI kl

− terms, corresponding the the coupling
of the initially populated states to all others, will in general
grow with the dimensionN of the Hilbert space. Therefore,
the scaling of the average error probabilitykperrl will mostly
depend on the integralsI kl

− , which is why we now focus on
these in what follows. By changing the integration variables
to u= t1− t2 andv= t1+ t2, we get

I kl
− = 2

skl
2

"2E
0

T

dvE
0

v

ducossvkludfsv0ud, s17d

which is the integral of a modulated oscillation.
For a white noises7d, we get by direct integration

I kl
− =

skl
2

"2v0
F1 − cossvkl − v0dT

vkl − v0
+ TSisvkl − v0dT

−
1 − cossvkl + v0dT

vkl + v0
+ TSisvkl + v0dTG , s18d

where Sisxd is the sine integral function. Depending on the
value of v0, we may consider two limiting regimes: for a
high cutoff frequencyv0@vkl, we get

I kl
− =

skl
2

"2v0
2OXS1 +

vkl

v0
Dv0TC , s19d

while for a low cutoff frequencyv0!vkl, we have

I kl
− =

skl
2

"2vkl
2 OS1 +

v0

vkl
D . s20d

Although Eqs.s19d ands20d are only valid, strictly speaking,
for a white noise, we obtain similar results for a general
function fsxd. In the high-v0 regime, since the autocorrela-
tion functionRstd usually tends to zero ast increasesfi.e.,
hklst+td becomes less and less correlated withhklstd for in-
creasing tg, Eq. s19d follows from the approximation
cossvkludfsv0ud=1+Osvkl /v0d. In the low-v0 regime, we
must integrate a rapidly oscillating function over many peri-
ods, which is treated in the Appendix. Under very general

regularity conditions onfsxd,2 we may use the lemma 2 twice
and finally recover Eq.s20d. It is interesting to note that in
the low-frequency regime, the coupling integral does not de-
pend on the computation timeT. We will see that, at least for
the algorithms considered here, this causes a very different
behavior of the scaling for this regime as compared to the
high-v0 regime.

B. Analog quantum search

Let us recall the principle of Farhi and Gutmann’s analog
quantum searchf10g. Suppose that we may apply an oracle
Hamiltonian

Hf = ĒsI − umlkmud s21d

to the system, withĒ denoting an energy scale of the system.
The problem is to prepare the system in thesunknownd so-
lution stateuml. In f10g, it is shown that this may be achieved
by preparing the system in the uniform superposition of all
states,

uc0l =
1

ÎN
o
k=0

N−1

ukl, s22d

and applying the constant HamiltonianH̄=H0+Hf, where

H0 = ĒsI − uc0lkc0ud, s23d

during a time

T =
p"

2Ē
ÎN. s24d

This results in a quadratic speed-up with respect to a classi-
cal search in an unstructured database of sizeN.

In order to study the robustness of this quantum algorithm
against a stationary Gaussian noise as defined in Sec. II, let

us first consider the spectrum of the HamiltonianH̄=H0
+Hf ssee Fig. 1d. We assume, for simplicity and without loss
of generality, that the problem admits the solutionm=0. The

two lowest eigenvalues ofH̄—that is, E0=s1−xdĒ and E1

=s1+xdĒ with x=1/ÎN—are nondegenerate and correspond
to the ground and first-excited states,

uw0l =Î1 + x

2
u0l +

x
Î2s1 + xd

o
k=1

N−1

ukl, s25d

1In particular we will see that for the analog quantum search, there
are only two populated levels along the evolution: namely, the
ground and first excited states

2Note that in order to satisfy the hypotheses of lemma 2 in the
Appendix, fsxd has to be infinitely differentiable. While this is gen-
erally the case for the widely used noise models such as a white
noise,fsxd may be discontinuous inx=0 for some specific models,
such asfsxd=exps−uxud, which could follow from a Poissonian pro-
cess. This discontinuity in the first derivative offsxd is actually
linked to the fact that the spectral density of the noise does not
rapidly converge to zero for very high frequencies and therefore
that the noise has some probability to vary arbitrarily fast. We will
not consider this case here, but only mention that this would yield a
drastically different behavior in the low-v0 regime.
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uw1l =Î1 − x

2
u0l −

x
Î2s1 − xd

o
k=1

N−1

ukl, s26d

whereas theN−2 times degenerate eigenvalueE2=2Ē corre-
sponds to the eigenstates

uwkl =
1
Î2

sukl − u1ld, k = 2, . . . ,N. s27d

Expressingucst=0dl= uc0l in terms of the eigenstatesuwkl
of H̄, we get

ucs0dl =Î1 + x

2
uw0l −Î1 − x

2
uw1l. s28d

As a consequence, the instantaneous state of the noiseless

algorithm uc̄stdl is given by Eq.s10d with

b̄0 =Î1 + x

2
, b̄1 = −Î1 − x

2
, s29d

andb̄k=0 for kù2. Only two states are populated during the
algorithm, and the average error probabilitys14d becomes

kperrl = «2hsN − 2dfub̄0u2I 02
− + ub̄1u2I 12

− g + ub̄0u2ub̄1u2sI 00
− + I 11

− d

+ sub̄0u4 + ub̄1u4dI 01
− − 2 Refsb̄0

* b̄1d2I 01
+ gj, s30d

where we have used the normalization conditionub̄0u2+ ub̄1u2
=1 and the fact thatI kl

− = I k2
− for l ù2. For this algorithm, the

bounds16d gives uI kl
± stduøp2/8, which is independent ofN.

Therefore, only the first term of Eq.s30d, which represents
the coupling of the ground and first-excited statessthe only
initially populated statesd to theN−2 others, can grow with
N and must be taken into account in the scaling analysis. Let
us focus on this term in the two limiting regimes considered
above.

For a noise with a high cutoff frequency, Eq.s19d yields

I k2
− =

Ē

"v0
OX 1

ÎN
S1 +

Ē

"v0
DC sk = 0,1d, s31d

which is valid if "v0@ Ē. Clearly, I k2
− should be of order

1/N for kperrl not to grow withN, which imposes the condi-
tion

"v0 @ ĒÎN. s32d

Thus, in this regime, the cutoff frequency of the noise must
increase as the square root of the size of the problem in order
to keep a probability of error of constant order. In the case of
a noise with a low cutoff frequency, Eq.s20d yields

I k2
− =

1

N
OS1 +

"v0

Ē
D sk = 0,1d, s33d

so we see thatkperrl will not grow with N as long as"v0

! Ē. Interestingly, this upper bound on the cutoff frequency
does not depend on the size of the problem.

We conclude that the influence of noise on the analog
quantum search algorithm is negligible if the noise varies
either very slowly or very rapidly with respect to the natural

time scale of the problem" / Ē. For the typical case of a
white noise with a high-frequency cutoff, the exact integra-
tion s18d shows that for intermediate values of the cutoff

frequencyv0, Ē/", the average error probability scales as
«2ÎN for a given signal-to-noise ratio« ssee Fig. 2d. This
means that there exists a forbidden band for the cutoff fre-
quency v0 if we want to keep our algorithm robust with
respect to a constant noisesi.e., a noise that scales withN so
to keep a constant signal-to-noise ratiod. Alternatively, we
see that the signal-to-noise ratio« should scale asN−1/4 in
order to keep the error probabilitykperrl constant for a cutoff

frequencyv0 of orderĒ/". In other words, for an increasing
problem sizeN, the noise variances2 must decrease faster

than Ē2/4N for the algorithm to remain immune to noise.
Finally, let us mention that«,N−1/4 coincides with the result
of Shenviet al. f9g, even though their noise model was less

FIG. 1. Spectrum of the unperturbed Hamiltonian

H̄=H0+Hf.

FIG. 2. Average error probabilitykperrl sto the second orderd due
to a noise modeled as in Sec. II with an autocorrelation function
fsxd=sinx/x for the analog search amongN=100 elements. Note

that kperrl stays very small as long as"v0/ Ē,1, at which point it
shows a sudden increase. For larger values of"v0, it tends progres-

sively back to a low value. The peak at"v0, Ē scales asÎN.
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general than ours since they only considered an error in the
magnitude of the oracle Hamiltonian, modeled as a Markov-
ian stochastic variable with Gaussian distribution.

IV. ADIABATIC EVOLUTION WITH NOISE

A. Adiabatic approximation

Let us recall the adiabatic approximation, which is at the
basis of the quantum algorithms by adiabatic evolution.
Qualitatively speaking, the idea is as follows: if a quantum
system is prepared in its ground state and its Hamiltonian
varies “slowly enough,” it remains in a state close to the
instantaneous ground state of the Hamiltonian at any time.
To be more precise, let us consider the Schrödinger equation
for a time-dependent Hamiltoniansseef14g for detailsd,

i"
d

dt
uc̄stdl = H̄stduc̄stdl. s34d

To solve this equation, we express its solutionuc̄stdl in the
basis formed by the instantaneous eigenstatesuwkstdl of the

HamiltonianH̄std,

uc̄stdl = o
k

b̄kstdexpS− iE
0

t Ekst1d
"

dt1Duwkstdl, s35d

whereEkstd are the corresponding instantaneous eigenvalues

of H̄std. By inserting this expression into Eq.s34d, we find
the system of differential equations

b̄
˙

kstd = o
lÞk

b̄lstdexpSiE
0

t

vklst1ddt1DKwkstdUdH̄

dt
UwlstdL

Ekstd − Elstd
.

s36d

If the quantum system is initially in its ground stateuc̄s0dl
= uw0s0dl, these equations can be integrated, giving

b̄kstd = d0k + o
lÞk
E

0

t

b̄lst1dexpSiE
0

t1

vklst18ddt18D
3

Kwkst1dUdH̄

dt1
Uwlst1dL

Ekst1d − Elst1d
dt1. s37d

As in perturbation theory, these equations may be solved
iteratively, which gives after one iteration

b̄k
s1dstd =E

0

t

expSiE
0

t1

vk0st18ddt18DKwkst1dUdH̄

dt1
Uw0st1dL

Ekst1d − E0st1d
dt1

s38d

for kÞ0. Now if the variationdH̄/dt of the Hamiltonian is
slow enough or, more specifically, if

uAkstdu ; "

UKwkstdUdH̄

dt
Uw0stdLU

fEkstd − E0stdg2 ø dk ! 1 s39d

and under suitable regularity conditions, we may integrate
Eq. s38d by parts as shown in the Appendix, which yields

b̄k
s1dstd = − iFAkst1dexpSiE

0

t1

vst8ddt8DG
0

t

+ Osdk
2d. s40d

We see that, at the first order, the amplitudesub̄kstdu are
bounded by 2dk. This first-ordersso-calledadiabaticd ap-

proximation is acceptable ifub̄0stdu2 stays close to 1—that is,

if the probabilityp̄std=okÞ0ub̄kstdu2 of hopping to any excited
state remains small. In other words, if the adiabatic condition

4o
kÞ0

sup
f0,tg

uAkst8du2 ø d2 s41d

is satisfied, thenp̄stdød2!1, with d!1 being a “slowness”
parameter.

Now, suppose that a time-dependent perturbation«hstd
adds to the HamiltonianH̄std. We again express the solution
of the perturbed Schrödinger equation in the basis formed by

the instantaneous eigenstates ofH̄std,

ucstdl = o
k

bkstdexpS− iE
0

t Ekst1d
"

dt1Duwkstdl, s42d

which transforms Eq.s37d into

bkstd = d0k + o
lÞk
E

0

t

blst1dexpSiE
0

t1

vklst18ddt18D
3

Kwkst1dUdH̄

dt1
Uwlst1dL

Ekst1d − Elst1d
dt1

− i
«

"
o

l
E

0

t

blst1dexpSiE
0

t1

vklst18ddt18Dkwkst1duhst1d

3uwlst1dldt1. s43d

We may again solve this system of equations iteratively,
which gives after one iteration

bk
s1dstd = b̄k

s1dstd − i
«

"
E

0

t

expSiE
0

t1

vk0st18ddt18Dkwkst1duhst1d

3uw0st1dldt1 s44d

for kÞ0. As before, this first-order approximation remains
valid provided that the probabilitypstd=okÞ0ubkstdu2 of hop-
ping to any excited state remains small.

Let us now evaluate the average error probability at the
end of the evolutiont=T using the same model as before for
the perturbationhstd. Defining the error probability asperr

=psTd, we have
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kperrl = p̄err +
«2

"2 o
kÞ0

E E
0

T

dt1dt2 expSiE
t2

t1

vk0st8ddt8D
3 kkwkst1duhst1duw0st1dlkwkst2duhst2duw0st2dll + Os«3d,

s45d

wherep̄err= p̄sTd is the error probability of the adiabatic evo-
lution. Let us note thatuwkst1dlÞ uwkst2dl in general, so that
we do not immediately recover the autocorrelation function
of one particular matrix element ofhstd. However, as the
different matrix elements ofhstd are independent in a par-
ticular basis, we have

kkwkst1duhst1duw0st1dlkwkst2duhst2duw0st2dll

= fkwkst2duwkst1dlkw0st1duw0st2dl + kwkst2duw0st1dl

3kwkst1duw0st2dlg 3 sk0
2 f„v0st1 − t2d…. s46d

If uwkstdl varies sufficiently smoothly for 0ø tøT, then the
first factor is of order 1−O(st1− t2d2/T2). Thus, we may ap-
proximate it by 1 as long asv0T@1—that is, if the noise
varies quickly compared to the adiabatic evolution. In that
case, we get for the average error probability

kperrl = p̄err + «2o
kÞ0

I k0
− + O„sd + «d3

…, s47d

where the integrals

I k0
− =

sk0
2

"2 E E
0

T

dt1dt2 expSiE
t2

t1

vk0st8ddt8D f„v0st1 − t2d…,

s48d

represent the coupling of the ground state to the excited
states induced by the perturbation. The adiabatic condition
generalizes in the case of such a perturbation to

o
kÞ0

s4 sup
f0,Tg

uAkstdu2 + «2I k0
− d ø d2. s49d

Similarly to the case of the perturbed time-independent
Hamiltonian evolution, the effect of the perturbation on the
adiabatic evolution mainly depends on the coupling integrals
I k0

− , which are bounded by

uI k0
− u ø

sk0
2 T2

"2 s50d

and can be approximated as

I k0
− =

sk0
2

"2v0
2OXS1 +

vk0
max

v0
Dv0TC, v0 @ vk0

max, s51d

or

I k0
− =

sk0
2

"2vk0
min2OS1 +

v0

vk0
minD, v0 ! vk0

min, s52d

in the limiting regimes of high or low cutoff frequencyv0,
respectively, wherevk0

minøvk0stdøvk0
max for tP f0,Tg.

B. Adiabatic quantum search

The principle of the adiabatic quantum searchf1g is to

apply the HamiltonianH0=ĒsI − uc0lkc0ud to a system pre-
pared in its ground stateuc0l and then to progressively
switch the Hamiltonian H0 to the Hamiltonian Hf

=ĒsI − umlkmud, wherem is the solution of the search prob-
lem. If this switch is done slowly enough, the system will
stay in the instantaneous ground state of the Hamiltonian and
thus end up in the ground state ofHf—i.e., the solution state
uml. The instantaneous Hamiltonian is chosen as

H̃ssd = s1 − sdH0 + sHf , s53d

wheres=sstd is an evolution function which must be opti-
mized so as to reduce the computation time while respecting
the adiabatic conditions41d sseef15,16g for detailsd. In this
case, this condition may be rewritten as

ds

dt
ø

d

2"

fE1std − E0stdg2

ukw1stduHf − H0uw0stdlu
. s54d

Without loss of generality, we may once again suppose that

m=0. The instantaneous eigenstates ofH̃ssd are

uw0ssdl =
ÎNfE1ssd − sguc0l + su0l

ÎE1ssd2 + sN − 1dfE1ssd − sg2
, s55d

uw1ssdl =
ÎNfE0ssd − sguc0l + su0l

ÎE0ssd2 + sN − 1dfE0ssd − sg2
, s56d

uwkssdl =
1
Î2

sukl − u1ld, k ù 2, s57d

where

E0ssd =
Ē

2
F1 −Î1 − 4

N − 1

N
ss1 − sdG , s58d

E1ssd =
Ē

2
F1 +Î1 − 4

N − 1

N
ss1 − sdG , s59d

Ekssd = Ē, k ù 2, s60d

are the instantaneous eigenvalues ofH̃ssd ssee Fig. 3d. Since

iHf −H0iø Ē, taking an evolution functionsstd that satisfies

ds

dt
=

d

2"Ē
fE1ssd − E0ssdg2 s61d

complies with the adiabatic conditions54d and then leads to
a computation time

T =
p

d

"

Ē
ÎN. s62d

Consider that some noise, modeled again as a stationary
Gaussian random process, perturbs the evolution. Equation
s47d then reads
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kperrl ø p̄err + «2fI 10
− + sN − 2dI k0

− g + O„sd + «d3
…, s63d

whereI k0
− øp2/ s64d2d as a result of Eq.s50d. Let us empha-

size that, while it was only the excitation to the first-excited
state that was critical for the noiseless adiabatic algorithm, in
this case it is the coupling of the ground state to all excited
states that could make the algorithm fail, since their number
grows as the sizeN of the problem. Moreover, this bound
already suggests that the coupling integralsI k0

− —and there-
fore the error probability could increase when the evolution
slows downsd decreasesd which means there must be a com-
promise between a slow evolution, very close to perfect adia-
baticity, and a fast evolution, more robust to noise.

As before, let us consider the two limiting regimes of a
high or a low cutoff frequencyv0. In the case of a high

cutoff frequencys"v0@ Ēd, Eq. s51d yields

I k0
− =

Ē

"v0
OX 1

dÎN
S1 +

Ē

"v0
DC ∀ k Þ 0, s64d

exactly as for the analog quantum search except for the fac-
tor 1/d. The latter factor shows that in order to keep the
algorithm robust to noise, the cutoff frequency has to in-
crease not only as the size of the databaseN grows sjust as
for the analog quantum searchd, but also as the evolution
slows downsd decreasesd. More precisely, we see that the
perturbed adiabatic conditions49d is satisfied only if

"v0 @
«2

d3ĒÎN s65d

fcompare with Eq.s32dg. When the cutoff frequency be-

comes very lows"v0! Ēd, Eq.s52d implies that the coupling
integrals behave as

I k0
− =

1

N
OS1 +

"v0

Ē
D s66d

for all excited states except the first onesi.e., for kù2d. For

the first-excited statesk=1d, we have"v10
min, Ē/ÎN, so Eq.

s52d does not yield a useful result. Instead, we simply use the
general boundI k0

− øp2/ s64d2d. Therefore, the adiabatic con-

dition is satisfied here as long as"v0! Ē sjust as for the
analog quantum searchd, but also if«!d.

In summary, we recover essentially the same effects for
the adiabatic quantum search as for the analog quantum
search; that is, the influence of noise becomes negligible
only in the case of a very high or a very low cutoff frequency
v0, apart from the influence of the slowness parameterd.
Regarding this latter parameter, we see that while decreasing
d gets the noiseless evolution closer to adiabaticity and there-
fore reduces the error probability without noise, in the pres-
ence of noise it imposes that« decreases—i.e., that the
signal-to-noise ratio increases—in both regimes of a high or
low cutoff frequencysor that the high cutoff frequency in-
creases as 1/d3d.

V. CONCLUSION

We have studied the resistance of Hamiltonian quantum
algorithmssincluding adiabatic algorithmsd to a noise that is
modeled as a random matrix whose elements are stationary
Gaussian random processes within a fixed bandwidth. This
statistical noise model is generic and should therefore make
our analysis valid over a large class of physical systems,
regardless of the exact origin of the added noise. Another
main advantage of this noise model is that it makes it pos-
sible to perform a fully analytical scaling analysis. Our gen-
eral result is that the Hamiltonian algorithms are resistant to
noisesi.e., the error probabilitykperrl does not increase with
increasing problem sizesNd as long as the cutoff frequency
of the noise is either very high or very low with respect to

the inverse of the characteristic time scale of the systemĒ/".
Asides from the influence of the slowness parameterd in the
case of the adiabatic algorithms, this resistance is essentially
similar for adiabatic and time-independent Hamiltonian algo-
rithms. Our results are in good agreement with the numerical
study of Childset al. f8g. They even corroborate the results
of Shenviet al. f9g, although their noise model was rather
different, which supports the idea that using random matrix
theory provides a rather general description of noise.

Roughly speaking, the two limiting regimes of high or
low cutoff frequencies can be understood in the following
way. If the frequency components of the noise are much
below the inverse of the characteristic time scale of the sys-
tem, it is intuitively clear that the noise cannot effect transi-
tions to undesired states. On the contrary, if the noise spec-
trum spreads over a band which is much broader than the
inverse of the characteristic time scale of the system, then the
noise spectral density is low around the frequencies that ef-
fect undesired transitions. In the intermediate region, we
found that the error probability unfortunately scales asÎN,3

which implies that some error correction is needed to make
Hamiltonian algorithms scalable. This last point is particu-
larly important as it is plausible that the source of noise
occurring in a physical system typically varies on a time

3This scaling has been analytically obtained for a time-
independent Hamiltonian and is strongly believed to generalize to
the case of an adiabatic evolution.

FIG. 3. Instantaneous eigenvalues ofH̃ssd for N=32.

NOISE RESISTANCE OF ADIABATIC QUANTUM… PHYSICAL REVIEW A 71, 032330s2005d

032330-7



scale comparable to the natural time scale of the system, so

that the less favorable regimes"v0, Ēd may be the most
common situation.

Coming back to the two limiting regimes, let us notice
that the high cutoff frequency increases towards higher fre-
quencies whenN raises fsee Eqs.s32d and s65dg. Conse-
quently, the Hamiltonian algorithms will in practice not be
scalable in the high cutoff frequency regime too, since the
noise should spread over an increasingly large spectrum to
keep the error probability low. In this case, some kind of
error correction should also be implemented if the size of the
problem becomes too large. The case of a low cutoff fre-
quency, however, is more favorable. Indeed, the situation is
quite different here as the error probability stays small as
soon as the cutoff frequency is lower than some fixed value,
even when the size of the problem increases. This fault tol-
erance may be explained by the fact that the spectral density
of noise does not contain frequencies close to resonances and
thus will not efficiently couple different eigenstates of the
Hamiltonian.

It should be emphasized that it is not the possible excita-
tion to one particular state that makes the algorithm fail, but
the fact the dimension of the Hilbert space increases with the
problem size and hence the number of states that could be
accidentally populated as well. This means, in the case of
adiabatic computation, that even if the gap between the
ground and first-excited states decreases, the algorithm may
remain robust to a noise with a low cutoff frequencyseven if
this frequency remains constantd as long as the gap between
the ground states and the other excited states remains lower
bounded. Therefore, the algorithm would remain scalable in
the case of a low cutoff frequency as long as the natural
frequencies of the Hamiltonian are much larger than the fre-
quencies contained in the noise. Of course, throughout this
analysis, we always made the assumption that the signal-to-
noise ratio remains essentially constant when the size of the
Hilbert space where the computation takes place becomes
large, which may practically not be the case. Thus, even in
this low cutoff frequency regime, it may be necessary to
devise error correction techniques for Hamiltonian quantum
algorithms. Nonetheless, in the case of adiabatic algorithms,
this conclusion may be overpessimistic since, as long as the
noise is sufficiently slowly varyingsthat is, the cutoff fre-
quency is lowd, the perturbed evolution may remain adiabatic
so that the system would stay in the ground state of the
perturbed Hamiltonian. Our perturbative method did not re-
produce this effect because we developed the solution of the
perturbedSchrödinger equation in the basis formed by the
eigenstates of theunperturbedHamiltonian. Actually, it was
shown, at least numerically, that some slowly varying noise
could actually help the computation, even for a high noise
intensity f8g.

Note added. Our result is related to a recent paperf17g,
which also considers the use of random matrix theory in
adiabatic quantum computing but with a distinct goal:
namely, to analyze the spectral statistics of the Hamiltonian
over a large class of problems along an adiabaticsbut noise-
lessd evolution.
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APPENDIX

In this appendix, we give a useful tool to evaluate inte-
grals of an oscillating function such as

E
a

b

dxFsxdeivx. sA1d

The basic idea relies on Riemann-Lebesgue’s lemma.
Lemma 1 (Riemann-Lebesgue). If Fsxd is an integrable

function onfa,bg, then

lim
v→`

E
a

b

dxFsxdeivx = 0.

This lemma suggests that the integralsA1d will be rela-
tively small if v is sufficiently large. The purpose of this
appendix is to quantify this idea.

First of all, as long asFsxd is differentiable onfa,bg, we
may integrate Eq.sA1d by parts:

E
a

b

dxFsxdeivx = −
i

v
fFsxdeivxga

b +
i

v
E

a

b

dx
dF

dx
sxdeivx,

whereffsxdga
b= fsbd− fsad, and, using this last equation itera-

tively, we show that for anN-times differentiable function
Fsxd on fa,bg,

E
a

b

dxFsxdeivx = − o
n=0

N−1 S i

v
Dn+1FdnF

dxn sxdeivxG
a

b

+ S i

v
DNE

a

b

dx
dNF

dxN sxdeivx. sA2d

The order of the error introduced by neglecting the last term
may be evaluated as follows:

US i

v
DNE

a

b

dx
dNF

dxN sxdeivxU ø
1

vNE
a

b

dxUdNF

dxN sxdU .

sA3d

We see that the accuracy of this approximation increases
with the oscillation frequency v. Moreover, if
s1/vNddNF /dxN→0 for N→`, this error approaches zero as
N increases and we prove the following lemma:

Lemma 2. Let the functionFsxd be infinitely differentiable
on fa,bg. If

1

vN

dNF

dxN sxd ——→
N→`

0 ∀ x
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for some realv, then

E
a

b

dxFsxdeivx = − o
n=0

` S i

v
Dn+1FdnF

dxn sxdeivxG
a

b

.

While this result is helpful to study a time-independent
Hamiltonian evolution, in the case of an adiabatic evolution
the typical frequencies become time dependent. However,
using the same method, we easily generalize this lemma to
the case of a varying frequencyvsxd.

Lemma 3. Let the functionFsxd be infinitely differentiable
on fa,bg. If

1

vsxdN

dNF

dxN sxd ——→
N→`

0 ∀ x

for some real differentiable functionvsxd on fa,bg, then

E
a

b

dxFsxdexpSiE
0

x

vsx8ddx8D
= o

n=0

` H− FS i

vsxd
Dn+1dnF

dxn sxdexpSiE
0

x

vsx8ddx8DG
a

b

+E
a

b

dx
d

dx
S i

vsxd
Dn+1dnF

dxn sxdexpSiE
0

x

vsx8ddx8DJ .
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