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Secure coherent-state quantum key distribution protocols with efficient reconciliation
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We study the equivalence of a realistic quantum key distribution protocol using coherent states and homo-
dyne detection with a formal entanglement purification protocol. Maximally entangled qubit pairs that one can
extract in the formal protocol correspond to secret key bits in the realistic protocol. More specifically, we define
a qubit encoding scheme that allows the formal protocol to produce more than one entangled qubit pair per
entangled oscillator pair or, equivalently for the realistic protocol, more than one secret key bit per coherent
state. The entanglement parameters are estimated using quantum tomography. We analyze the properties of the
encoding scheme and investigate the resulting secret key rate in the important case of the attenuation channel.
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I. INTRODUCTION assumptions on the eavesdropper’s technology and are also

S considered i 16,17 for coherent-state protocols, although
The quantum key d|Str|bUt|0(QKD), also called quan- g|v|ng lower secret key rates.

tum cryptography, allows two parties, Alice and Bob, to ~ |n this paper, we study the security of a prepare-and-
share a secret key that can be used for encrypting messag@gasure QKD protocdl13,14 by establishing its equiva-
using a classical cipher—e.g., the one-time pad. The maifence to an entanglement purificatiéBP) protocol, which
interest of such a key distribution scheme is that any eavesgproduces maximally entangled qubit pairs. A maximally en-
dropping is, in principle, detectable because the laws ofangled qubit pair is by definition completely factored from
guantum mechanics imply that measuring a quantum statés environment, and thus the values obtained by measuring
generally disturbs it. each side are fully correlated and secret. The equivalent
The resources required by QKD comprise a source oprepare-and-measure QKD protocol also enjoys this prop-
nonorthogonal quantum states on Alice’s side, a quanturfrty. This particular technique thus allows one to relieve
channel conveying these states to Bob, a measuring appaff0m any assumptions on the eavesdropper’s strategy and
tus on Bob’s side, and #public) authenticated classical Was used in[20] to assess the security of the Bennett-
channel between Alice and Bob. In addition to being used trassard 1984BB84) protocol and extended ifb] for a
generate a secret key, the quantum channel is subject to proggueezed—state protocol. More recently, this technique was

: o - ; xtended to the case of coherent-state protd@il$
ing by the legitimate parties, so as to determine how man X
secret bits can be generated. To show the equivalence between a QKD protocol and of

Most interest in the QKD has been devoted to protocolsan EP protocol, one has to explicitly take into account the

. . e . secret key distillation—that is, the techniques used to make
involving (an approximation tba single-photon source on

Y . ) Alice’s and Bob’s keys equdteconciliation) and fully secret
AI|cesds;§ie a?d a smglﬁ—phpton detector on I3|ops Sﬁlsibe (privacy amplification. In [20], the EP protocol uses
[1] and the references thergitdowever, protocols involving Calderbank-Shor-Stean¢CSS quantum codes[22,23,

quantum continuous variables have been considered with Anich are equivalent in the QKD to reconciliation with syn-

increasing i_nteres(tjele e.é;.[Z—hlZ].) Of special importance 3 mes of hinary linear codes and privacy amplification by
are Gaussian-modulated coherent-state protofd&14. . iivlication with a parity-check matrix. In contrast to the

;he quantum so;JrcelgthAllce’z S'de. Landomly_ ger&grat_gs C$884 protocol, the modulation of coherent states in the pro-
er%nt states Od g tl)g t mode wit Gauss;:an- |dstr| Uteqocol we consider here isontinuous therefore producing
quadratures, and Bob's measurements are homodyne megsiin ous key elements from which to extract a secret key.

surements. These protocols seem to allow for facilitateGrqonciliation of a Gaussian-distributed key was studied in

|mpIementat|o.ns an_d hlg.her secret-key generation rates thaf@{l, and a generic protocol called sliced error correction was
the protocols involving single-photon sourdds<}]. designed so as to distill hinary key.

Consequently, there is an increasing interest in studying In contrast to[21], the EP protocol investigated here is

the security of coherent-state protocols under general Class‘éﬁnstructed in such a way that it is equivalent to a QKD
of attacks. Individual Gaussian attacks are considered ify. .01 with sliced error correction for reconciliation. The

(13,14 and are found to be optimal in the more general clas dvantage is the higher secret key rate and the better resis-

of finite-width non-Gaussian incoherent attadi$]. Indi- — yace 1o attenuation that one can achieve. In particular, more

vidually probed collective attacks are also considered irthan one maximall .
i y entangled pdar secret key bjtcan be
[16,17). The recent techniques 918,19 do not make any produced per coherent state. Furthermore, thanks to its gen-

erality, the asymptotic efficiency of the EP protocol inherits
to some extent the asymptotic efficiency of the classical rec-
*Electronic address: gvanassc@ulb.ac.be onciliation protocol.
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The paper is organized as follows. First, in Sec. I, weusing theC, code. Phase errors of the EP protocol do not
sketch the formal EP protocol and its equivalent QKD pro-have such a direct equivalent in the BB84 protocol: The
tocol that are used throughout the paper. Then, in Sec. lll, wprepare-and-measure protocol works as if Alice measured
show how the channel can be probed so as to determine ther part of the state in thg0),|1)} basis, thereby discarding
number of secret key bits that Alice and Bob can generateinformation on the phase. However, one does not really need
The encoding of qubits—that is, the generalization of slicedo correct the phase errors in the BB84 protocol. Instead, if
error correction to EP—is described in Sec. IV. Then, Sec. C; would be able to correct them in the EP protocol, the
deals with the important particular case of an attenuatiosyndrome ofC, in C, of Alice and Bob’s bit string turns out
channel. Finally, the asymptotic properties of the qubit ento be a valid secret key in the prepare-and-measure protocol.

coding scheme are detailed in Sec. VI. Stated otherwiset; determines the syndrome Alice has to
send to Bob to perform reconciliation, whil¢, determines
Il. FROM ENTANGLEMENT PURIFICATION TO SECRET the way the final key is computed for privacy amplification.
KEY DISTILLATION Overall, the number of secret key bits is thkrsdim C;

) ) ~—dim C,, provided thatC, (C,) is small enough to correct
After we review the case of EP using CSS codes and itg| the bit (phas¢ errors. When considering asymptotically

equivalence to the BB84 prOtOCOI, we give a high-level de-|arge block SizeS, the CSS codes can produce
scription of a QKD protocol based on EP. We consider this

protocol as formal; that is, we do not expect a physical k=rn— n[1-h(e") - h(e’)]=Rn,
implementation of it. Instead, we propose a prepare—andEPR pairs or secret key bits, with (e?) the bit(phase error

measure QKD protocol, derived from the formal one, whichrate and h(p)=—p log, p-(1-p)log,(1-p) [20]. Here, r

also encompasses error correction and privacy ampl|f|cat|on:.k/n indicates the rate obtained for a particular code and

R=1-h(e?)-h(e) is the asymptotically achievable rate.
A. Binary CSS codes We conclude this section by noting that the bit error rate
In the case of the BB84 protocol, the CSS codes car§® determines the number of bits revealed by reconciliation
readily be used to establish the equivalence between an HBSymptoticallyh(e”)], whereas the phase error rafedeter-
protocol and a QKD protocd20]. Since we will use CSS Mmines the number of bits discarded by privacy amplification
codes as an ingredient for the EP and QKD protocols belowdue to eavesdroppinigisymptoticallyh(e?) ].
let us briefly review their properties.

Starting from the Einstein-Podolski-RoséEPR state B. Quantum key distribution based on entanglement

purification

+\ — 9—1/2
|¢7) =2774]00) +[11), In the BB84 protocol, the modulation of qubits can be

Alice keeps half of the state and sends the other half to Bodransposed as if Alice preparesdl) state and measures her
His part may undergo a bit errdf¢*)— |*)), phase error part. In the case of the QKD protocol with Gaussian-
(|¢*y—1|¢7)), or both errors (|¢*)—|¢7)), with |¢7) modulated coherent states, the formal state that Alice pre-

—o-1/2 _ 4\ _-1/2 : ares is of course different, as it must reduce to the proper

=2""4]00)-|11)) and|y)=2 (.|Ol>i|1o>)' Given that' not ﬁwodulation when Alice measures her part. We define tr?e fgr-

too many such errors occur, Alice and Bob can obtain, from
. ; mal state as

many instances of such a transmitted state, a smaller number

of EPR pairs using only local operations and classical com-

munications(LOCC's). One way to do this is to use CSS W) :f dxdpg(x,p)[X)a, ® [P)a, ® [X+ip)y, (1)

codes.

Let C; andC, be two binary error correcting codes of  where g(x,p) denotes a bivariate Gaussian distribution
bits (i.e., C; and C, are vector spaces dfy) with parity  g(x,p)=1G;(x)G,(p). The ketsx), |p), [x+ip) are shorthand
check matricesH; and H,, respectively. They are chosen notation for, respectively, a-quadrature eigenstate with ei-
such thaf0} C C,C C; CFj5. A CSS code is &-dimensional  genvaluex, ap-quadrature eigenstate with eigenvapjend
subspace ofH", the Hilbert space ofn qubits, with k  a coherent state whosemean value equals and whosep
=dimC;-dimC, [22,23. The codeC, allows one to correct mean value equalp. The subscript®,, a, (b) denote that
bit errors, whileC, (the dual code ofC,) allows one to the system is lying on Alice’s sidéBob’s side.
correct phase errors—one important property of the CSS The stateg(1) does not have a direct physical meaning. In
codes is to be able to correct bit errors and phase errofsarticular, the systenms, anda, must be understood as clas-
independently. sical pointers—e.g., resulting from tHérmal) homodyne

For entanglement purification, Alice and Bob must com-measurement of an EPR state as studief®j.
pare their syndromes, both for bit errors and phase errors. In the entanglement purification picture, thepart of the
The relative syndrome determines the correction that Bolgystem is sent to Boand possibly attacked by Evand the
must apply to align his qubits to Alice’s. Translating this into a part stays at Alice’s station. If Alice measunresn a, and
the BB84 protocol, one can shd&0] that the relative syn- p in a,, the state is projected as if Alice sent Bob a coherent
drome for bit errors in the EP protocol is equal to the relativestate centered ox+ip.
syndrome for bit errors that Alice and Bob would have rec- Let us now describe the EP protocol, which reduces to the
onciled in the BB84 protocol. So, reconciliation can be doneprepare-and-measure QKD protocol described further.
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(i) Alice created +n copies of the statgl), of which she  mator, respectively, to follow the convention of the following
sends théy part to Bob. sections). The bit errors are assumed to be easy to determine;

(i) Bob acknowledges reception of the states. that is,Z¢ has a diagonal expansion |in>al<x|, andZ, can

(iii) Out of thel+n states,n will serve for estimation directly be determined by a single homodyne measurement
purposes. These states are chosen randomly and uniformiyn b. This ensures, in the derived prepare-and-measure QKD
by Alice, who informs Bob about their positions. protocol, that Alice knows the bit value she sent and Bob can

(iv) For the remaining states, Alice and Bob perform determine the received bit value. A measurement of the ob-
entanglement purification, so as to produdg0=<r=<1)  servableXl, X, associated with the phase error rate, how-
states very close t¢¢"). Measured in the computational ever, cannot be implemented by a single homodyne measure-
bases, the produced states yididecret bits on both Alice’s ment on b. Therefore, we have to invoke quantum
and Bob's sides. tomography with a quorum of operatdi6] to get an esti-

The details of the EP procedure, which uses CSS codes agate of the phase error rate.
an ingredient, are given in Sec. 1V, while the estimation is

detailed in Sec. II. A. Estimating phase errors in the average state

In the EP picture, lep™ be the state of th@ samples
used for estimation of the phase error r@te., n instances of

By virtually measuring thea part of the statd¥), the theajab system. To count the number of phase errors in a
protocol above reduces to the following one. set ofn samples, one needs to measOreXl, Xe on then

(i) Alice modulatesl +n coherent statefx+ip) that she samples and sum the resultsith la, the identity in the
sends tq Bob. The choice of the valuesxandp follow the  systema,). This is equivalent to measurin@(”)=2ilfli;21b
d'StK'b“t'O”|9(X'p)|2:Gl(X)GZ(p)-. ®Xslazxe®lfl’;‘2ib. If the true phase error probability in the

(!!.) Bob acknowledges recepan of the states.. . n+l samples ise?, the error variance isrszep(l—eP)/n,

(iii) Out of thel+n states,n will serve for estimation nd thus the probability of making an estimation error of

urposes. These states are chosen randomly and unifor . .
Ey Xlice who informs Bob about their positior)(s ore thanA is [5,20] asymptotically exp-A*n/4e%(1-¢P)].
' X It is easy to see that

(iv) For the remaining states, Bob measuresAlice and
Bob perform secret key distillatiofreconciliation and pri- Tr(O"p™) =nTr(Op),
vacy amplification, so as to producd secret bits. 1 o ) )
The reconciliation and privacy amplification proceduresWherep=n""2Trx\(p'") is the density matrix of the aver-
are based on classical error correcting codes, which derivage state measured. So we can estimate the number of phase
from the CSS codes used in the formal EP protocol. errors using the average state, even if the eavesdropper inter-
acts jointly with all the stategp®"+ p™), in which case we

say that the eavesdropping is joint.
Ill. ERROR RATES ESTIMATION USING TOMOGRAPHY If the measurement 0D=Xl, X, cannot be made di-

In QKD protocols derived from EP, an important step is to€ctly, one instead looks for a quorum of operat@ssuch
show how one can infer the bit and phase error rates of thi1atO=/d\o(\)Q,; estimating(O) comes down to measur-
samples that compose the key. A fraction of the samples seilg several timeLQ, for values ofA chosen randomly and
by Alice to Bob are sacrificed so as to serve as test sampleldependently of each other, and averaging the results
By randomly choosing them within the stream of data, theyweighted byo(A): O=Z;0(\)Q,, [26]. If the values ofx are
are statistically representative of the whole stream. chosen independently of the sample index on whghis

In [5,20], one can simply make measurements and diapplied, we get unbiased results, agQpw)=E,[Tr(Q,p)],
rectly count the number of bit and phase errors from thewith E the expectation. Of course, the estimation ofQp)
results. This is possible since Bob’s apparatus can measuvdgth a quorum cannot be perfect and results in an estimation
both bit and phase values. [21], however, it is not possible variances3. The variance of the estimaté®) must increase
to measure directly phase errors. Yet some data poshy this amount, and the resulting total varianceofs o?
processing can be applied on measurements so as to infer the?,
number of phase errors in the stream of data. In this section,
we wish to show that we can extend this to more general
(and more efficientencodings of qubitgin the EP picturg
or bits (in the derived QKD protocgl

The encoding of bits will be described in a further section. We now explain how the phase error rate can be esti-
For the moment, the qubit pair system, which Alice and Bobmated, in principle, using coherent states modulated in both
will process using CSS codes, is not explicitly describedquadratures and homodyne detection in all quadratures.
However, it is sufficient to describe the CSS codes in terms It is clear that the knowledge of matrix elements of the
of the Pauli bit-flip and phase-flip operators of Alice’s qubit average statep gives the knowledge of(O). Let pg
system ina;—namely,Z (phase flip and X (bit flip)—and  =|¥)¥| be the state that Alice and Bob would share if the
of the Pauli operators in Bob’s qubit systembir—namely, transmission was perfect. Since th@art of the system stays
Z. andX,. (The subscripts ande stand for slice and esti- at Alice’s station, we only need to learn about how ltheart

C. Prepare-and-measure quantum key distribution

B. Estimating phase errors using coherent states
and homodyne detection
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of the system is affected. In the prepare-and-measure picturejp) aSpT(x+ip)=2n,n,<nmmpT(x+ip,n,n’)|n>(n’|. Note that

let T be the completely positivéCP) map that maps the the test can be implemented either by explicitly measuring
states sent by Alice onto the states received by B, the intensity of the bearttherefore requiring an additional
®T)(pg)=p. In particular, let the coherent state+ip){(x  photodetectgror by exploiting the correlation between the
+ip| be mapped ontp(x+ip) and the(pseudgposition state  high intensity of the beam and the high absolute values ob-
[x)(x'| be mapped ontp(x,x’). The functionsp(x+ip) and  tained when doing homodyne measurements in all directions.

pr(x,x") are related by the following identity: Finally, the estimation of the coefficient ¢f)(n’| can be
done with arbitrarily small statistical error using homodyne
prix+ip) f dx’ dx"e™ (X' = %)7/4Ng=(x" = x)%14Ng detection in all direction$26,28. This is achieved by con-
sidering the quorum of operator&,)o<g<2- Where x,

=coséx+sin dp denotes the amplitude of the quadrature in
direction 6. Considering a finite combination of arbitrarily
with N, the variance of the vacuum fluctuations. By settingsmall statistical errors on parameters also gives arbitrarily

% ei (Xr_xﬂ)p/ZNopT(X/ ,X”) ’

D=x'-Xx" andS=x’+x"-2x, we get small overall statistical error on the phase error rate.
. _ _p2 i
pr(x+ip) = f dDdS e /8No-D7/8Ng+Dp/2Ng IV. ENCODING OF MULTIPLE QUBITS IN AN
OSCILLATOR
xpT(X+S+ D1X+S_ D)a (2)

Reconciliation and privacy amplification are integral parts
which shows thaipr(x,x’) is integrated with an invertible of the prepare-and-measure protocols derived from entangle-
kernel(Gaussian convolution i, multiplication bye—D2/8No ment purification protocols. In our case, we wish to derive a
and Fourier transform ifD). So in principle, any different prepare-and-measure protocol with sliced error correction
CP mapT’ # T implies a different effect on coherent states, (SEQ [24] as reconciliation, which allows us to obtain a
pr(x+ip) # pp.(x+ip). The modulation of coherent states in higher secret key rate and a better resistance to losses than in
both quadratures is thus crucial for this implication being[21]- We therefore need to describe an entanglement purifi-
possible. cation procedure that reduces to the SEC when the corre-

By inspecting Eq.(2), it seems that due to the factors SPonding prepare-and-measure protocol is derived. An over-
eS80 and e—D2/8N0' two different CP mapg and T’ may view of the SEC is proposed next.
make pr(x+ip) and pr(x+ip) only vanishingly different. It
thus seems unlikely that E¢2) should allow us to extract A. Sliced error correction with invertible mappings
:Egt 'Cl'ozzlgvlaenrg:p;(n)i; So;Da’leTnSiteDrilunﬂsgeX? r&,aa;:‘i:ggg a We here recall the main principles of the SEC in a form

variation of these parameters will induce a measurable varia- atis slightly different from the presentation[i24]. To suit

. . i . o our needs, we here describe the SEC in terms of invertible
tion of pr(x+ip). We will now discuss why it is reasonable to . - . . . I

. functions giving the slices and the estimators—the invertibil-
make such an assumption.

Due to the finite variance of the modulation of coherentIty property will be required when we generalize the SEC to

tates. th bability of emissi fal ber of bh entanglement purification. Also, from the generality 24],
states, the probability of emiSsion of a fargeé nNUMbEr of pog, parameters are fixed here: The binary error correction is
tons vanishes—this intuitively indicates that we only need to

. o . r ndin ndrom f classical linear error-
consider the description df for a bounded number of emit- operated by sending syndromes of classical linear erro

ted phot M isel der th .. correcting codesECC's), and we momentarily restrict our-
ed photons. Viore precisely, one can consider e emissiogl, s 1o the case of one-dimensional real vakiesid X'
of w joint copies of the statpg,=Tr,(pg). Forw sufficiently

, i Suppose Alice and Bob haveairs of correlated random
large gy can be represented in the typical subspBg@qs) variables (X, X)), ....(X,X), with XX eR, i=1..l,
of dimension not greater thaf® o+ for any §> 0 [27], '

here H(») is th N ¢ ™ from which they intend to extract common bits.
whereH(p) is the von Neumann entropy of a staieThe First, Alice wishes to convert each of her variablemto

probability mass opg," outside the typical subspace can b€y bits and thereby definesm binary functions:

made arbitrarily small and does not depend on the eavess (x), ... .S (X). To make the mapping invertible, she also

dropping strategy. This means that the support for the inpué f f T h th ina fromx h

of T has finite dimension, up to an arbitrarily small deviation. efines a unctior&(X) such that mapping fronX to the
The number of photons received by Bob can also be upperector [S(X),S, . n(X)] is bijective. As a convention, the

bounded. Alice and Bob can first assume that no more thafange of S(X) is [0;1]. The mapping fromR to [0;1]

Nmax Photons are received. This fact may depend on a malix {0, 1™,

cious eavesdropper, so Bob has to do hypothesis testing. The o

test comes down to estimatibl) with I1=S_, _[n)n). If x—[S(x),S, . (3],

the threshold is well chosen so that n,,,, never occurs, we i '

can apply the central limit theorem and upper bound thdS collectively denoted as. o _

probability that(IT)> € for any chosere>0. The positivity Concretely, the function§(X) implicitly cut the real line

of the density matrices implies that the off-diagonal coeffi-into intervals(see[24] for more detail whereasS(X) indi-

cients are also bounded. We can thus now expggés  cates where to fin& within a given interval.
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Then, we can assemble the bits produced by tladom
variablesXy, ..., X, into m |-bit vectors. To each bit vector
(“slice”) S(Xy,.. )=(S(Xy), ...,S(X)) is associated an ECC

that Alice and Bob agreed upon. To proceed with the correc

tion, Alice sends the syndrom®=HPS(X, ) to Bob over
the public authenticated channel, whH{éis thelibx | parity
check matrix of the ECC associated with slicéAlice also
sendsS(X; ).

Bob would like to recovess; (X, . ;) from his knowl-
edge ofX; |, g*l’m andS(X; ). To do so, he also con-
verts each of his variables; | into m bits, but he does so

PHYSICAL REVIEW A 71, 052304(2005

to some error rate?. Given the knowledge of? and assum-
ing the adequacy of the ECC, Bob has enough information to
determineS;(X; ;) with high probability. Then, for slice
>1, he estimatesS(X; ;) using the estimator function

Ei(X’,g(X),,Bl, ..-»Bi-1), where g; is the random variable
indicating Bob’s knowledge 0§(X), so thatg;=S(X) with
arbitrarily high probability] Note that the estimators can also

be written as jointly working onl samples at once:

Ei(Xi_._,,g(le___J),gb, ...,&2)), but we will preferably use
the previous notation for its simplicity since, besides the

in a consecutive manner. He tries to produce bits that are be5CC decoding, all the operations are done on each varxable
correlated to Alice’s and takes advantage of the corrected biter X independently.

of slicesj <i before trying to estimate the bits of sliceln

We also need a supplementary function to ensure that the

particular, to produce bits that are best correlated to Alice’rocess on Bob’s side is described using bijective functions:

first slice S;(X;,.. ), he uses a functioi, (X", (X)), which
gives his best estimate on Alice’s corresponding $itX)
given the known correlations betweXrandX'. By applying
the functionE, on all the variablex| , andS(X; ), Bob
is able to construct a string dbits that is equal to Alice’s up

Similarly to S, the functionsg; |, of £ cut the real line

E(X",SX), By, .- B (or jointly
E(Xp,S(X1. ), &, ....&). As a convention, the range of

E is[0;1]. E is chosen so that the mappidgdefined below
is invertible,

from noisy qubit pairs. We will now show that, similarly,

into intervals. However, these intervals are adapted as a funérom SEC, it is possible to construct an encoding and decod-

tion of the information sent by Alice, so as to estimate Al-

ice’s bits more reliably. Like foiS, the functionE indicates
where to findX’ within an interval.

ing procedure, which, when applied to entangled quantum
oscillator systems, also allows one to extract pure EPR pairs.
Such a purification protocol is formal, as it would of course

The mappingS summarizes Alice’s process of conversion Pe very difficult to implement in practice.

of her real valuesX into m bits (plus a continuous compo-
nend. The mapping® represents the bitand a continuous
componentproduced by Bob from his real valu&s$ and his
knowledge ofS(X) and of the syndromesi___m. The bits
produced by the functiong; are not yet corrected by the
ECC, even though they take as input the corrected values
the previous slice§(X), j <i. The description of the map-

ping £ with the bits prior to ECC correction allows us to

easily express the bit error rate between Alice’s slices an

The purification uses a few quantum registers, which we
now list. Alice’s systema, is split into m qubit systems
s1,...mand a continuous registsr On Bob's side, the system
b is split intom qubit systemse;  ,, and a continuous reg-
istere. He also needm qubit registers; , for temporary

Sforage. All these registers must of course be understood per

exchanged sample: As Alice generatesopies of the state
|¥), the legitimate parties uskinstances of the registers
clj ted above.

The usual bit-flip and phase-flip operatofsand Z, re-

Bob’; estimators and thereby to deducg the size of _the parité‘pectively, can be defined as acting on a specific qubit reg-
matrices of the ECC’s needed for the binary correction. Simjgar among the systens and e;. E.g., Z< is defined as

ply, we definee’=Pi{S(X) # E;(X',S(X),Sy..i-1(X))]. As the
block sizel — o, there exist ECC's with siz€— Ih(e) and

acting ons; only. These operators are used by Alice and Bob
to construct the CSS codes that produce entangled qubits,

arbitrarily low probability of decoding error. The number of which are in turn used to produce EPR pairs in the registers

common(but not necessarily secjdiits produced by SEC is
therefore asymptotically equal ti(S; m(X))—Eirﬂlh(elb)
per samplg 24].

sie; fori=1,... m. Since each CSS code operates in its own
register pair, the action of one does not interfere with the
action of the other. It is thus possible to extract more than

The generalization of the SEC to a quantum entanglemerfine EPR paif¢*) per statel¥). If asymptotically efficient

purification protocol is examined next.

B. Quantum sliced error correction

binary codes are used, the rate or EPR pairs produc&d is
=3[1-h(eP)-h(eP)], wheree’ (") indicates the bit error
rate (the phase error rax¢20].

From classical binary error correcting codes, one can con- The process that defines the content of the registers is
struct CSS quantum codes and use them to extract EPR paugscribed next.
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1. MappingsQS and Q&
First, we define the unitary transformatiadS: L%(R) a S

—L2([0;1]) ® H®™ by its application to the basis of quadra- —1> —1>

ture eigenstates:

[¥a, = 0(ISX)5® [$1(X)s, @ -+ @ [SyX)s, . (3)

The states[s)s; O<s=<1, form an orthogonal basis of QS Sm
L2([0;1)), o(x)=(d,S)"4x) is a normalization function, and —
|s>5i, s € {0, 1}, denotes the canonical basisf the Hilbert é
space of a qubit. As a convention, the systgms called L

slicei. The transformatio@S is depicted in Fig. 1.

For each slice, Alice and Bob agree on a CSS code,
defined by its parity matriceldib for bit error correction and
HP for phase error correction. For the entanglement purifica- FIG. 1. Schematic description @S.
tion, let us assume that Alice computes the syndromes of the
CSS code with a quantum circuit. For each slice, she pro-
ducesl? qubits in the statég’f’) and|P qubits in the stat¢g’)  tion to a prepare-and-measure protocol, this perfect transmis-
that she sends to Bob over a perfect quantum channel, so thsibn is actually done over the public authenticated channel.
the syndromes are received without any distortion. In theAlice also sends the system to Bob.
entanglement purification picture, the syndromes can be Then, the slice estimators are defined as the unitary trans-
transmitted over a nonperfect channel if they are encodetbrmation Q& from L2([0:1]) ® H®*™® LAR) to L%[0:1])
using appropriate error correcting codes. Also, after reduc® H*M® H*™® L%([0;1]):

Felst, s X eSS, IS, s OMIEGC S ) [EX S8, ()

wheree(x' 5,5, ._.m)=(9x/E)_l/2(X' 5.8, ) is a normaliza- coset leader of the syndrome—that (a, superposition of
tion function; '}, is a quadrature eigenstate witheigen- the most probable dlffegence vector between Alice’'s and
valuex': |e|>q, e €{0,1}, denotes the canonical basisf  Bob's gublts. An extrd -13 blank qub|.t§ are needed for this
[€s; 0<e=1, form an orthogonal basis &f([0;1]). As the ~ Operations; we assume they are all initializedQo

classical mapping is invertible, Q€ is unitary with the ap-

propriate normalization functios. This mapping is defined IHE(sV @ &)y 1[0y -5 — IS @ e)gn.

to act on individual states, with the slice valugs ,, as _ h ' _ ' _
input in the Systemi’.”m, whose purpose is actua”y to hold Then, using a COf:ItrOlledOT Operatlon between Bob’s bits
Bob's sequentially corrected bit valugs . The complete ~(contro) and the difference vectdtargel, we produce qu-
transformation jointly involvingl systems would be fairly bits containing the same bit values as Alice’s, with an arbi-
heavy to describe. Only the ECC correction needs to be ddtarily large probability:

scribed jointly, and assuming it is correctly sizee., Iib are

large enough Bob has enough information to reconstruct ey en|s @ egrtr — [eyen|syg .

Alice’s bit values. Let us now sketch how the systsm ! ! ! !

's constructed. This is how thel systemss; are created
Assume that Bob first calculates, using a quantum circuit, . > SY 1 s .
— Following this approach for the next slices, we can define

the first slice estimatofclassically: E;(X’,S(X))], which , =
does not depend on any syndrome. That is, he applies t@ﬁSﬁSﬂEl(x '§>91|E1(X §)§ -

following mapping, defined on the bases sf and b: —>|§§g}sl>si E.(x’ ,§5>el|E2(x’,s,sl)62|E2(x’ ,S,S1))e, and rea-
[S)slX")o — [STSE1(X ,9)e [Ex(X'9)s, (up to normalization  sonably assume that the bit value givensinis equal to
where the functiorE, is needed only to make the mapping Allc_es Si(X). Th|s, reasoning can be applied |t§rat|vely, SO as
unitary. From thel qubits in thel systemse; and the syn- to fill the systems; _, with all the corrected bit values and
drome sent by Alicéb), there exists a quantum circuit that with an extra step to sé(x’,s,s; ) in e

calculates the relative syndrome of Alice’s and Bob’s bits— As a last step, Bob can revert the ECC decoding opera-
that is, a superposition of the classical quantiti$ tions and come back to the situation where he has blank
EBHEEl(Xl,._.,). From this, a quantum circuit calculates the qubits ins;  as depicted in Fig. 2.
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FIG. 2. Schematic description @¢ and the use of the systers§ .

Finally, the qubits produced b@€& can be transformed

into EPR pairs using the CSS codes and the syndromes Alice

sent to Bob.

2. Phase coherence

Neither the unitary transformatio@S nor Q& take into
account the modulation of the coherent state inglygiadra-
ture. By ignoring what happens in tf# system of Eq(1),
the reduced systemy, lacks phase coherence:

Pajb = J dxdx’dpyG1(X)G1(X') Go(p)[X)a (X'|

® D(ip)|x +i0),(x’ +i0|D'(ip).

To remedy this, we assume that Alice also sendsathsys-
tem to Bob, just like she does for the system and the
syndromes, since the modulation in fheguadrature is inde-
pendent of the key. Bob can take it into account before ap
plying Q&, by displacing his state along tipequadrature in
order to bring it on the axis.

Actually, we could formally include thia,-dependent op-
eration in theQ& mapping by addin@p)az to its input and
output (unmodified and by multiplying by a factor of the
form €X'P4No in Eq. (4) with Ny the vacuum fluctuations. For
notation simplicity, however, we mention it here without ex-
plicitly writing it.

Also, for the simplicity of the notation in the next section,
we can assume without loss of generality that the coefficient

of |[¥) in thex basis ofb are real, after adjustment by Bob as f

a function ofp.

3. Construction of Sand E

Let us now make explicit the construction of the functions
SandE. First assume, for simplicity, that we have only one

slice (m=1)—for this we do not write the slice index as a t

subscript. The mapping has thus the following form:

[X)a, X ) — 0(X)|S())s|SX))se(x', S(X), S(X))
® [E(X',S(X)))e|E(X', S, 50))s;

wherea(x) =(d,S)Y3(x), e(x’,s,9) = (3 E)Y3x’,s,9), andS
andE range between 0 and 1.

Let us take some state of the systemsssee. In the
entanglement purification picture, our goal is to be able to
extract entangled pairs in the subsysteg=Tra sej(p)-

We thus wanp to be a product state of the forpg, ® pge: If

S(X) contains information abomB(X) orif E(X’ S(X),S(X))
contains information abouE(X’,S(X)), the subsystenps,

will not be pure. In the prepare-and-measure picture, infor-
mation onS(X) in S(X) will be known to Eve and therefore
may not be considered as secure. Note that information in
E(--+) is not disclosed, but since it is excluded from the sub-
systems from which we wish to extract entanglemémt

secrecy, any correlation withe will reduce the number of
entangled qubitgor secret bits or stated otherwise, the cal-

culated number of secret bits will be done a€if--) was
public. As an extreme example, §X) and E(X',S(X)) are
perfectly correlated and i8(X) can be found directly as a
function of S(X), then pg. will be of the form pge
=po|00)00/+p,|12)(11|, which does not allow us to extract
any EPR pairs or, equivalently, does not contain any secret

information. Consequentlhs andE should be as statistically
independent as possible SfandE.

s We defineSandE as the following cumulative probability
unctions: S(x) P{X=x|S(X)=9(x)] and E(x 's,s)=PX’
=x' |§(X) =s,9X)=s,E(X’,9)=E(x’,5)]. By definition,
these functions are uniformly distributed between 0 and 1,
independently of the other variables available to the party

calculating it(Alice for Sand Bob forE) These functions
also enjoy the property of making the subsystegnpure in
absence of eavesdroppirige., whenp is pure, indicating

hat this choice oS andE does not introduce more impurity
in pse thanp already has.
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For a pure stat¢¢>=fdxdx’f(x,x’)|x>a1|x’>b, with |x>a11
(|x")p) anx eigenstate ir, (in b), the application oS and
Q€ gives

p)

see{0,1}

dsdea(x)e(x’,5,9)f(x,X")|9)s[5€)e [

where x and x’ are shorthand notation foxk(s,s) and
x'(e,e,s), respectively. Letf; and f, be real and non-
negative functions verifyind (x,x")=f;(x)f,(x,x’). f1(x) is
chosen such that;(x)|? is the probability density function of
Alice’s modulation andf,(x,x’) such that/f,(x,x’)|? is the
probability density function of Bob’s measured vakiecon-

ditionally to Alice sendingx. Then, it is easy to check that

we can factoiZ, . (o yyap/ab)se OUt Of [4) by setting

o(x(s,9)) = oo(9)[f1(x(s,9) ]2, (5)
e(sX'(€,6,9),9 = eg(e,9[f2x(s,9,X (e,€9)] ™", (6)
where
o9 = |f1(x)|2dx, 7
X:S(X)=s
ees) = f (X)) |dxdx . (8)
xX":S(x)=s,E(x",S(x))=e

The conclusion follows from the definition @f and €
- When more than one slice is involved, the functi@snd
E are defined similarly:

SX) =PIX=XS,. ¥ =S ], (9)

E(X',581 ) =PIX <x[SX) =5
0S, m(X)=s1  m
OE,(X',9) =E4(X',9) O
+ DEn(X', S5, 1)

=En(X' ,g,sl,_ ] (10

V. ATTENUATION CHANNEL

PHYSICAL REVIEW A71, 052304(2005

the sliced error correction, its implementation may be easier
than it first appears. Furthermore, the purificatialistilla-
tion) of more than one qubitbit) per sample is useful, as
illustrated below.

Second, it is important to show that the construction
works in a case as important as the attenuation channel.
Clearly, requesting that a QKD protocol yields a nonzero
secret key rate under all circumstances is unrealisitic—an
eavesdropper can always block the entire communication.
On the other hand, a QKD protocol that would always tell
Alice and Bob that zero secure bits are available would be
perfectly secure but obviously also completely useless. Of
course, between these two extreme situations, the practical
efficiency of a QKD protocol is thus important to consider.

The attenuation channel can be modeled as if Eve in-
stalled a beam splitter in between two sections of a lossless
line, sending vacuum at the second input. We here assume
that Alice sends coherent states with a modulation variance
of 31Ny, with Ng the vacuum fluctuations, which gives Alice
and Bob up td(A;B)=2.5 common bits in absence of losses
or noise. This matches the order of magnitude implemented
in [14]. We define the slice§; and S, by dividing the real
axis into four equiprobable intervals labeled by two bits,
with S; representing the least significant bit aBdthe most
significant one. More precisely;(x)=0 whenx<-7or 0
<X<T and Si(x)=1 otherwise, with 7
=\V2X 31Ny erf1(1/2), and S,(x)=0 whenx=<0 and Sy(x)
=1 otherwise.

In this constructed example, we wish to calculate the the-
oretical secret key rate we would obtain in an identical set-
ting. For various loss values, the secret key rates are evalu-
ated by numerically calculating IZs ®Z¢)p], to obtain
the bit error rates of slices=1,2 and Tf(Xs ® Xe,)p] to
obtain the phase error rates. Then, assuming asymptotically
efficient binary codes, the rate IR=R;+R,=Zi-; 1
~h(e})=h(eP)].

Using this two-slice construction, we were able to get the
EPR rates described in Table I. For the case with no losses, it
is thus possible to distilR=0.752+0.938=1.69 EPR pairs
per sample. Also, note that the phase error rate increases
faster with the attenuation fgs, than for p;, with Pi=Pse,
=Tran(s,e)(p)- This intuitively follows from the fact that the
information Eve can gain from her output of the beam split-
ter affects first the most significant bit contained3tX).

Due to the higher bit error rate jm, it was not possible to
distill EPR pairs in slice 1 with losses beyond 0.7 dB. It was,

We now apply the slicing construction and display somehowever, still possible to distill EPR pairs in slice 2, up to

results on the rates one can achieve in an important practical4 dB lossegabout 10 km with fiber optics with losses of
case. These results serve as an example and do not imply @rl5 dB/kn). This result does not pose any fundamental
upper bound on the achievable rates or distances. Instealimit, as it can vary with the modulation variance and with
they can be viewed as lower bounds on an achievable secutiee choice of the function§;, and S,. Note that the slice
rate in the particular case of an attenuation channel witliunctions could be optimized in various ways, one of which
given losses. Stated otherwise, this section simulates thigeing to use other interval@s done in24], not necessary
rates we would obtain in a real experiment where Alice andequiprobable and possibly chosen as a function of the Ipsses
Bob would be connected by an attenuation channel. Foand another being to consider multidimensional slices as ex-
more general properties of the construction, refer to Sec. Viplained in the next section.

The purpose of this section is twofold. First, we wish to  Finally, note that although this example involves a Gauss-
illustrate the idea of the previous section and show that ifan channel, this particularity is not exploited here and such a
serves realistic practical purposes. Beyond the generality afalculation can be as easily done for a non-Gaussian attack.

052304-8



SECURE COHERENT-STATE QUANTUM KEY.. PHYSICAL REVIEW A 71, 052304(2005

TABLE I. Error and EPR rates with two slices in an attenuation channel.

p1 p2
Losses
(dB) e e R, e e R,
0.0 3.11% 0.53% 0.752 0.0000401 0.710% 0.938
0.4 3.77% 13.7% 0.193 0.0000782 28.6% 0.135
0.7 4.32% 20.0% 0.0204 0.000125 37.5% 0.0434
1.0 — 0.000194 42.3% 0.0147
1.4 — 0.000335 45.6% 0.00114

VI. ASYMPTOTIC BEHAVIOR
|q’(p)>:fng(X)|X>a1|¢(Xyp))b,eve- (11
In this section, we study the behavior of the slice con-

struction when the slice and slice estimator mappings take agfe considemw such states coherently, and the mappigys
input a block ofw states, withw arbitrarily large. IN24], the  and Q& take allw states as input. We will follow the lines of
classical sliced error correction is shown to reduce tahe reasoning i27,30,3] to show that the secret key rate
Slepian-Wolf coding 29] (asymmetric case with side infor- tends tol (X; X")—1(X; E) for w— o, with X the random vari-
mation when using asymptotically large block sizes. We able representing Alice’s measure af with x, X’ the mea-
here study the quantum case, which is different at least bgure of b with x, and 1(X;E) =H(X)+H(peye) ~H(pa. eve)
the fact that privacy amplification is explicitly taken into whereH(p) is the von Neumann entropy of a staitaThe

account. . . remainder of the discussion must be understood for any
For simplicity of the notation, we will study the ¢ >0, with w sufficiently large.

asymptotic behavior in the case of an individually probed  consider a mappiny from R to a finite set/ of size 2",
channel only(although Eve's measurement can be collecfor some sufficiently largem, such that I(U(X):X’)
tive). A study of finite—width probing with a width much -

. . - =1(X;X")—¢,. Let S(X) be the remaining continuous infor-
smaller than the key size would give the same results, since " u- == ’ ) -
y g ation not contained ikJ(X), defined as in Sec. IV B 3. Let

in both cases it allows us to consider a sequence of identicdl! =
random experiments and to study the typical case. Howevek(s,u) be the mapping that recovexsrom S(x) and U(x).
joint attacks, with the width as large as the key size, are We here recall some definitions frof80]. For a given
outside the scope of this section, as the statistical tools presalue of s and p™ (s™,pWeRY), a Holevo-
sented here would not be suitable. Schumacher-WestmorelattdSW) code[27,31] B is a sub-
It is important to stress that we here investigate what theset of /Y such that the correspondingr-wide states
secret key rates would be if the actual channel is an individut™ (xX*") (™ ,u™) , p™)yw eve, U™ e B, can be distin-
ally probed one. The use of the protocol of this paper stillguished by Bob with probability at least ¥-A privacy
requires us to evaluate the phase error rate in all cases aathplification(PA) set& is a subset of/" such that the sum
this quantity is sufficient to determine the number of secrebf the corresponding states
key bits. In the case of joint attacks, the secret key rates
stated in the special cases below would then differ from the 2w | E,uW), pY))pw eve

one obtained using the phase error rate. . _ _
factors Eve. Finally, a key generation colés a HSW code

that can be divided into a collection of nonoverlapping PA

A. Direct reconciliation setsB=U,&. In the sequel, we drop the superscript for
simplicity.
We thus here consider a block uf states and the func- Consider three consecutive rangés1i, ... |[l]|, J=|I|
tionsS, S, E, andE on blocks ofw variables as well. Among  +1, ... [I[+[3], andK=[I|+[J]+1, ... JI|+[J|+[K]| with sizes

the qubits produced b@S, there is a certain number of them [I[=WHUX)[X")+€l,  [J]=[wI(U(X);E)], and K]
whose disclosed value allows Alice and Bob to corf@dt ~ =IwI(U(X); X")-wI(U(X);E)—¢€l. Note that [I[+]J]+[K|
mos all bit errors for the remaining slices. Then, among theswH(U(X))+2<wm+2. These three ranges will corre-
remaining slices, a certain number of qubits allows Alice andspond to three kinds of slices in the derived prepare-and-
Bob to correct(almos} all phase errors for the rest of the measure protocol§, S;, and S¢. § will give Bob enough
gubits. These last qubits are thus equivalent to secret key biteformation to perform error correctiotg; will contain bits,
in the prepare-and-measure protocol. equal between Alice and Bob, which will be sacrificed with
We consider the following state, with the action of the PA since they are not necessarily secret, Saavill contain
channel modeled as joining systdmmwith that of an eaves- equal and secret bis.e., key bit3.
dropper Eve and witlp left out as a public classical param-  From[30], it is possible to cover the space @im+2)-bit
eter: vectors with 2| key generation codes; of size 2/*Kl. To
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each element of", we assign dl|-bit vector that identifies channel, an evaluation of the secret key rate can be found in
the key generation code it belongs to; this defines thelfirst [16,17.
slices§(X).

By providing the bit syndromeé’ to Bob, he can identify
S(X)=s and the associated key generation cGdeBy defi- _
nition, he has enough information to identify an element SO far, we have always assumed that the slices apply to
within it. Such an element can be uniquely labeled by aAlice and the slice estimators to Bob. However, there are
(3] +|K|)-bit vector, thereby defininG, andS¢. So there ex- Some cases for which the opposite case increases the secret
ists a mapping that map$s)s/|¢(x(s,u),P)peve ONtO bit rate[14].

1505718506 | &' (X(5, 1), P))se eve With probability at least 1 Lgt us start again from the staté'(p)) as in Eq.(11) and
—€ é.nd tIt]]KUS,ebg e Oie JLIJ K rewrite |¢(X1 p)>b,eve as |¢(X1 p)>b,eve
1 | 1 .

Each key generation code contairt§ PA sets of size 3 =fdxt_f(x,p,x )|Xl>b|¢(fx’p’t?( Veve: LEthh(X ,tpr? tbehza ,non—
each[30]. The labeling can be such th&t corresponds to Te%a lve frea , 2u2cg|on suc a (x".p)
the identification of the PA set ar@ the element inside the ~J Xg(x,p)f(x,p,x")|>. Then,

PA set.

Providing the phase syndromed to Bob gives him |‘If(p)>:fdx’h(x’,p)|x’>b|¢’(x’,p)>al,eve,

enough information to determine the phase of Alice’s qubits

in s;. If the phase errors are corrected by Bob, measuring ofith

tracing out subsystems;e; is equivalent to summing the

slices inJ over all possible bit values and thus factoring out o _ , ,

Eve. More precisely, witfs, s, andp fixed (and the corre- |4'(x P)a,eve = f dxg(x, p)T(x,p.x")/h(X", p)
sponding subsystems not showand with |S;>S;:2_l/2[|0>sj

+(—1)S;|1>S_] (and similarly fore; and sj’), the system after

B. Reverse reconciliation

X |X>a1| DX, P,X"))eve-

correction ofs, is of the form Thus, by applying the same argument as for direct reconcili-
ation, we can asymptotically readhX;X’)—1(X";E) secret
W)= 2 18505, O)s[S3de b (S0, eve bits whenQS is applied on systerb and Q& on systema,.
S The evaluation of the secret key rate for reverse reconcilia-
= > (- 1)sJ(s§+e3) e |S)s tion can also be found i[il6,17]_,_whi_ch indicates that such a
Sesse J K quantity is always strictly positive in the case of_a_n attenua-
o tion channel, regardless of the losses, for a sufficiently large

® |O>53 eJ>ez|sK>eK|qs’(sJK))g,el,eve. modulation variance.

Then Alice sends to Bob information about her phésg,

which he stores in his auxiliary registef.. The state be- VIl. CONCLUSION

comes In this paper, we studied the equivalence between an EP

protocol and a QKD protocol with sliced error correction for
reconciliation. In the QKD protocol, Alice sends Gaussian-

X modulated coherent states to Bob, who measures the result
eJ>93|sK>eK|qb’(sJK))gyelveve. using homodyne detection. To probe the channel and deter-
. ) . mine the amount of entanglement that can be transmitted
The difference between Alice’s and Bob's phases is calcuthrough it, Bob has to make homodyne measurements in all
lated ins) and the correction is applied ®,. Overall, this quadratures.

S DU elss,

«
SkS35;€5

® |33>sj

transformation can be summarized 4s))s1[€))e; — s) We found that the EP protocol based on sliced error cor-
+eJ>53|sJ>e3. This gives the following state: rection is indeed efficient and allows its equivalent prepare-
. . o and-measure QKD protocol to produce a secret key which is
> [S)s:[SK)s,[Sper|Se, ® > (-p¥ere secure against any eavesdropping strategy. Although the qu-
Sy sy(sy+e)) bit encoding scheme is derived from a reconciliation proto-

« . col easily implementable in practi¢&4], the main drawback
S))s;|SK)sIS)es[SKde,  of the method is the possibly huge number of measurements

X |SS + e3>sj|¢’(SJK)>€e|,eve = E

S to get a statistically relevant estimation of the phase error
©> IS)er*| & (S30)Vs rate and thus the number of secret key bits. Yet in theory, the
. s JK/e.e eve: sample set can be reduced to an arbitrarily small fraction of

the produced key, when an arbitrarily large number of quan-

Finally, the sumSs |sy)s:*| ¢’ (Syk))ee, eve factors out Eve, by tum states are processed through secret key distillation.
definition of a PA set. An advantage of this method is that it can in principle be
Given the size oK, we conclude that the secret bit rate adapted to other modulation distributions—the fact that the
can asymptotically come as close as desiredl(¥;X’) modulation is Gaussian is not crucial. In practice, the finite
-1(X;E). Note that in the particular case of the attenuationrange of the amplitude modulator does not allow one to pro-
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