
Secure coherent-state quantum key distribution protocols with efficient reconciliation

G. Van Assche,1,* S. Iblisdir,1,2 and N. J. Cerf1
1QuIC, Ecole Polytechnique, Université Libre de Bruxelles, CP 165/59, 1050 Brussels, Belgium

2GAP-Optique, University of Geneva, 20 rue de l’Ecole-de-Médecine, CH-1211 Genève, Switzerland
sReceived 8 October 2004; published 4 May 2005d

We study the equivalence of a realistic quantum key distribution protocol using coherent states and homo-
dyne detection with a formal entanglement purification protocol. Maximally entangled qubit pairs that one can
extract in the formal protocol correspond to secret key bits in the realistic protocol. More specifically, we define
a qubit encoding scheme that allows the formal protocol to produce more than one entangled qubit pair per
entangled oscillator pair or, equivalently for the realistic protocol, more than one secret key bit per coherent
state. The entanglement parameters are estimated using quantum tomography. We analyze the properties of the
encoding scheme and investigate the resulting secret key rate in the important case of the attenuation channel.
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I. INTRODUCTION

The quantum key distributionsQKDd, also called quan-
tum cryptography, allows two parties, Alice and Bob, to
share a secret key that can be used for encrypting messages
using a classical cipher—e.g., the one-time pad. The main
interest of such a key distribution scheme is that any eaves-
dropping is, in principle, detectable because the laws of
quantum mechanics imply that measuring a quantum state
generally disturbs it.

The resources required by QKD comprise a source of
nonorthogonal quantum states on Alice’s side, a quantum
channel conveying these states to Bob, a measuring appara-
tus on Bob’s side, and aspublicd authenticated classical
channel between Alice and Bob. In addition to being used to
generate a secret key, the quantum channel is subject to prob-
ing by the legitimate parties, so as to determine how many
secret bits can be generated.

Most interest in the QKD has been devoted to protocols
involving san approximation tod a single-photon source on
Alice’s side and a single-photon detector on Bob’s sidessee
f1g and the references thereind. However, protocols involving
quantum continuous variables have been considered with an
increasing interestssee e.g.,f2–12g.d Of special importance
are Gaussian-modulated coherent-state protocolsf13,14g.
The quantum source at Alice’s side randomly generates co-
herent states of a light mode with Gaussian-distributed
quadratures, and Bob’s measurements are homodyne mea-
surements. These protocols seem to allow for facilitated
implementations and higher secret-key generation rates than
the protocols involving single-photon sourcesf14g.

Consequently, there is an increasing interest in studying
the security of coherent-state protocols under general classes
of attacks. Individual Gaussian attacks are considered in
f13,14g and are found to be optimal in the more general class
of finite-width non-Gaussian incoherent attacksf15g. Indi-
vidually probed collective attacks are also considered in
f16,17g. The recent techniques off18,19g do not make any

assumptions on the eavesdropper’s technology and are also
considered inf16,17g for coherent-state protocols, although
giving lower secret key rates.

In this paper, we study the security of a prepare-and-
measure QKD protocolf13,14g by establishing its equiva-
lence to an entanglement purificationsEPd protocol, which
produces maximally entangled qubit pairs. A maximally en-
tangled qubit pair is by definition completely factored from
its environment, and thus the values obtained by measuring
each side are fully correlated and secret. The equivalent
prepare-and-measure QKD protocol also enjoys this prop-
erty. This particular technique thus allows one to relieve
from any assumptions on the eavesdropper’s strategy and
was used inf20g to assess the security of the Bennett-
Brassard 1984sBB84d protocol and extended inf5g for a
squeezed-state protocol. More recently, this technique was
extended to the case of coherent-state protocolsf21g.

To show the equivalence between a QKD protocol and of
an EP protocol, one has to explicitly take into account the
secret key distillation—that is, the techniques used to make
Alice’s and Bob’s keys equalsreconciliationd and fully secret
sprivacy amplificationd. In f20g, the EP protocol uses
Calderbank-Shor-SteanesCSSd quantum codesf22,23g,
which are equivalent in the QKD to reconciliation with syn-
dromes of binary linear codes and privacy amplification by
multiplication with a parity-check matrix. In contrast to the
BB84 protocol, the modulation of coherent states in the pro-
tocol we consider here iscontinuous, therefore producing
continuous key elements from which to extract a secret key.
Reconciliation of a Gaussian-distributed key was studied in
f24g, and a generic protocol called sliced error correction was
designed so as to distill abinary key.

In contrast tof21g, the EP protocol investigated here is
constructed in such a way that it is equivalent to a QKD
protocol with sliced error correction for reconciliation. The
advantage is the higher secret key rate and the better resis-
tance to attenuation that one can achieve. In particular, more
than one maximally entangled pairsor secret key bitd can be
produced per coherent state. Furthermore, thanks to its gen-
erality, the asymptotic efficiency of the EP protocol inherits
to some extent the asymptotic efficiency of the classical rec-
onciliation protocol.*Electronic address: gvanassc@ulb.ac.be
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The paper is organized as follows. First, in Sec. II, we
sketch the formal EP protocol and its equivalent QKD pro-
tocol that are used throughout the paper. Then, in Sec. III, we
show how the channel can be probed so as to determine the
number of secret key bits that Alice and Bob can generate.
The encoding of qubits—that is, the generalization of sliced
error correction to EP—is described in Sec. IV. Then, Sec. V
deals with the important particular case of an attenuation
channel. Finally, the asymptotic properties of the qubit en-
coding scheme are detailed in Sec. VI.

II. FROM ENTANGLEMENT PURIFICATION TO SECRET
KEY DISTILLATION

After we review the case of EP using CSS codes and its
equivalence to the BB84 protocol, we give a high-level de-
scription of a QKD protocol based on EP. We consider this
protocol as formal; that is, we do not expect a physical
implementation of it. Instead, we propose a prepare-and-
measure QKD protocol, derived from the formal one, which
also encompasses error correction and privacy amplification.

A. Binary CSS codes

In the case of the BB84 protocol, the CSS codes can
readily be used to establish the equivalence between an EP
protocol and a QKD protocolf20g. Since we will use CSS
codes as an ingredient for the EP and QKD protocols below,
let us briefly review their properties.

Starting from the Einstein-Podolski-RosensEPRd state

uf+l = 2−1/2su00l + u11ld,

Alice keeps half of the state and sends the other half to Bob.
His part may undergo a bit errorsuf+l→ uc+ld, phase error
suf+l→ uf−ld, or both errors suf+l→ uc−ld, with uf−l
=2−1/2su00l− u11ld and uc±l=2−1/2su01l± u10ld. Given that not
too many such errors occur, Alice and Bob can obtain, from
many instances of such a transmitted state, a smaller number
of EPR pairs using only local operations and classical com-
municationssLOCC’sd. One way to do this is to use CSS
codes.

Let C1 andC2 be two binary error correcting codes ofn
bits si.e., C1 and C2 are vector spaces ofF2

nd with parity
check matricesH1 and H2, respectively. They are chosen
such thath0j,C2,C1,F2

n. A CSS code is ak-dimensional
subspace ofHn, the Hilbert space ofn qubits, with k
=dim C1−dim C2 f22,23g. The codeC1 allows one to correct
bit errors, whileC2

' sthe dual code ofC2d allows one to
correct phase errors—one important property of the CSS
codes is to be able to correct bit errors and phase errors
independently.

For entanglement purification, Alice and Bob must com-
pare their syndromes, both for bit errors and phase errors.
The relative syndrome determines the correction that Bob
must apply to align his qubits to Alice’s. Translating this into
the BB84 protocol, one can showf20g that the relative syn-
drome for bit errors in the EP protocol is equal to the relative
syndrome for bit errors that Alice and Bob would have rec-
onciled in the BB84 protocol. So, reconciliation can be done

using theC1 code. Phase errors of the EP protocol do not
have such a direct equivalent in the BB84 protocol: The
prepare-and-measure protocol works as if Alice measured
her part of the state in thehu0l , u1lj basis, thereby discarding
information on the phase. However, one does not really need
to correct the phase errors in the BB84 protocol. Instead, if
C2

' would be able to correct them in the EP protocol, the
syndrome ofC2 in C1 of Alice and Bob’s bit string turns out
to be a valid secret key in the prepare-and-measure protocol.
Stated otherwise,H1 determines the syndrome Alice has to
send to Bob to perform reconciliation, whileH2 determines
the way the final key is computed for privacy amplification.

Overall, the number of secret key bits is thusk=dim C1
−dim C2, provided thatC1 sC2

'd is small enough to correct
all the bit sphased errors. When considering asymptotically
large block sizes, the CSS codes can produce

k = rn → nf1 − hsebd − hsepdg = Rn,

EPR pairs or secret key bits, witheb sepd the bit sphased error
rate and hspd=−p log2 p−s1−pdlog2s1−pd f20g. Here, r
=k/n indicates the rate obtained for a particular code and
R=1−hsebd−hsepd is the asymptotically achievable rate.

We conclude this section by noting that the bit error rate
eb determines the number of bits revealed by reconciliation
fasymptoticallyhsebdg, whereas the phase error rateep deter-
mines the number of bits discarded by privacy amplification
due to eavesdroppingfasymptoticallyhsepdg.

B. Quantum key distribution based on entanglement
purification

In the BB84 protocol, the modulation of qubits can be
transposed as if Alice prepares auf+l state and measures her
part. In the case of the QKD protocol with Gaussian-
modulated coherent states, the formal state that Alice pre-
pares is of course different, as it must reduce to the proper
modulation when Alice measures her part. We define the for-
mal state as

uCl =E dxdpgsx,pduxla1
^ upla2

^ ux + iplb, s1d

where gsx,pd denotes a bivariate Gaussian distribution
gsx,pd=ÎG1sxdG2spd. The ketsuxl, upl, ux+ ipl are shorthand
notation for, respectively, ax-quadrature eigenstate with ei-
genvaluex, a p-quadrature eigenstate with eigenvaluep, and
a coherent state whosex mean value equalsx and whosep
mean value equalsp. The subscriptsa1, a2 sbd denote that
the system is lying on Alice’s sidesBob’s sided.

The states1d does not have a direct physical meaning. In
particular, the systemsa1 anda2 must be understood as clas-
sical pointers—e.g., resulting from thesformald homodyne
measurement of an EPR state as studied inf25g.

In the entanglement purification picture, theb part of the
system is sent to Bobsand possibly attacked by Eved and the
a part stays at Alice’s station. If Alice measuresx in a1 and
p in a2, the state is projected as if Alice sent Bob a coherent
state centered onx+ ip.

Let us now describe the EP protocol, which reduces to the
prepare-and-measure QKD protocol described further.

VAN ASSCHE, IBLISDIR, AND CERF PHYSICAL REVIEW A71, 052304s2005d

052304-2



sid Alice createsl +n copies of the stateuCl, of which she
sends theb part to Bob.

sii d Bob acknowledges reception of the states.
siii d Out of the l +n states,n will serve for estimation

purposes. These states are chosen randomly and uniformly
by Alice, who informs Bob about their positions.

sivd For the remainingl states, Alice and Bob perform
entanglement purification, so as to producerl s0ø r ø1d
states very close touf+l. Measured in the computational
bases, the produced states yieldrl secret bits on both Alice’s
and Bob’s sides.

The details of the EP procedure, which uses CSS codes as
an ingredient, are given in Sec. IV, while the estimation is
detailed in Sec. III.

C. Prepare-and-measure quantum key distribution

By virtually measuring thea part of the stateuCl, the
protocol above reduces to the following one.

sid Alice modulatesl +n coherent statesux+ ipl that she
sends to Bob. The choice of the values ofx andp follow the
distribution ugsx,pdu2=G1sxdG2spd.

sii d Bob acknowledges reception of the states.
siii d Out of the l +n states,n will serve for estimation

purposes. These states are chosen randomly and uniformly
by Alice, who informs Bob about their positions.

sivd For the remainingl states, Bob measuresx. Alice and
Bob perform secret key distillationsreconciliation and pri-
vacy amplificationd, so as to producerl secret bits.

The reconciliation and privacy amplification procedures
are based on classical error correcting codes, which derive
from the CSS codes used in the formal EP protocol.

III. ERROR RATES ESTIMATION USING TOMOGRAPHY

In QKD protocols derived from EP, an important step is to
show how one can infer the bit and phase error rates of the
samples that compose the key. A fraction of the samples sent
by Alice to Bob are sacrificed so as to serve as test samples.
By randomly choosing them within the stream of data, they
are statistically representative of the whole stream.

In f5,20g, one can simply make measurements and di-
rectly count the number of bit and phase errors from the
results. This is possible since Bob’s apparatus can measure
both bit and phase values. Inf21g, however, it is not possible
to measure directly phase errors. Yet some data post-
processing can be applied on measurements so as to infer the
number of phase errors in the stream of data. In this section,
we wish to show that we can extend this to more general
sand more efficientd encodings of qubitssin the EP pictured
or bits sin the derived QKD protocold.

The encoding of bits will be described in a further section.
For the moment, the qubit pair system, which Alice and Bob
will process using CSS codes, is not explicitly described.
However, it is sufficient to describe the CSS codes in terms
of the Pauli bit-flip and phase-flip operators of Alice’s qubit
system ina1—namely,Zs sphase flipd andXs sbit flipd—and
of the Pauli operators in Bob’s qubit system inb—namely,
Ze andXe. sThe subscriptss ande stand for slice and esti-

mator, respectively, to follow the convention of the following
sections.d The bit errors are assumed to be easy to determine;
that is,Zs has a diagonal expansion inuxla1

kxu, andZe can
directly be determined by a single homodyne measurement
on b. This ensures, in the derived prepare-and-measure QKD
protocol, that Alice knows the bit value she sent and Bob can
determine the received bit value. A measurement of the ob-
servableXsI a2

Xe associated with the phase error rate, how-
ever, cannot be implemented by a single homodyne measure-
ment on b. Therefore, we have to invoke quantum
tomography with a quorum of operatorsf26g to get an esti-
mate of the phase error rate.

A. Estimating phase errors in the average state

In the EP picture, letrsnd be the state of then samples
used for estimation of the phase error ratesi.e.,n instances of
thea1a2b systemd. To count the number of phase errors in a
set ofn samples, one needs to measureO=XsI a2

Xe on then
samples and sum the resultsswith I a2

the identity in the
systema2d. This is equivalent to measuringOsnd=oiI a1a2b

^ i−1

^ XsI a2
Xe ^ I a1a2b

^n−i . If the true phase error probability in the
n+ l samples isep, the error variance iss1

2=2eps1−epd /n,
and thus the probability of making an estimation error of
more thanD is f5,20g asymptotically expf−D2n/4eps1−epdg.
It is easy to see that

TrsOsndrsndd = nTrsOrd,

wherer=n−1oiTrAll\ hijsrsndd is the density matrix of the aver-
age state measured. So we can estimate the number of phase
errors using the average state, even if the eavesdropper inter-
acts jointly with all the statessr^nÞrsndd, in which case we
say that the eavesdropping is joint.

If the measurement ofO=XsI a2
Xe cannot be made di-

rectly, one instead looks for a quorum of operatorsQl such
that O=edlosldQl; estimatingkOl comes down to measur-
ing several timesQl for values ofl chosen randomly and
independently of each other, and averaging the results
weighted byosld: O<oioslidQli

f26g. If the values ofl are
chosen independently of the sample index on whichQl is
applied, we get unbiased results, as TrsOrd=ElfTrsQlrdg,
with E the expectation. Of course, the estimation of TrsOrd
with a quorum cannot be perfect and results in an estimation
variances2

2. The variance of the estimatedkOl must increase
by this amount, and the resulting total variance iss2=s1

2

+s2
2.

B. Estimating phase errors using coherent states
and homodyne detection

We now explain how the phase error rate can be esti-
mated, in principle, using coherent states modulated in both
quadratures and homodyne detection in all quadratures.

It is clear that the knowledge of matrix elements of the
average stater gives the knowledge ofkOl. Let r0

= uClkCu be the state that Alice and Bob would share if the
transmission was perfect. Since thea part of the system stays
at Alice’s station, we only need to learn about how theb part
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of the system is affected. In the prepare-and-measure picture,
let T be the completely positivesCPd map that maps the
states sent by Alice onto the states received by Bob,sId
^ Tdsr0d=r. In particular, let the coherent stateux+ iplkx
+ ipu be mapped ontorTsx+ ipd and thespseudodposition state
uxlkx8u be mapped ontorTsx,x8d. The functionsrTsx+ ipd and
rTsx,x8d are related by the following identity:

rTsx + ipd ~E dx8dx9e−sx8 − xd2/4N0−sx9 − xd2/4N0

3eisx8−x9dp/2N0rTsx8,x9d,

with N0 the variance of the vacuum fluctuations. By setting
D=x8−x9 andS=x8+x9−2x, we get

rTsx + ipd ~E dDdSe−S2/8N0−D2/8N0+iDp/2N0

3rTsx + S+ D,x + S− Dd, s2d

which shows thatrTsx,x8d is integrated with an invertible

kernelsGaussian convolution inS, multiplication bye−D2/8N0

and Fourier transform inDd. So in principle, any different
CP mapT8ÞT implies a different effect on coherent states,
rTsx+ ipdÞrT8sx+ ipd. The modulation of coherent states in
both quadratures is thus crucial for this implication being
possible.

By inspecting Eq.s2d, it seems that due to the factors
e−S2/8N0 and e−D2/8N0, two different CP mapsT and T8 may
makerTsx+ ipd and rT8sx+ ipd only vanishingly different. It
thus seems unlikely that Eq.s2d should allow us to extract
the coefficientsrTsx+S+D ,x+S−Dd. However, assuming
that T depends only on a finite number of parameters, a
variation of these parameters will induce a measurable varia-
tion of rTsx+ ipd. We will now discuss why it is reasonable to
make such an assumption.

Due to the finite variance of the modulation of coherent
states, the probability of emission of a large number of pho-
tons vanishes—this intuitively indicates that we only need to
consider the description ofT for a bounded number of emit-
ted photons. More precisely, one can consider the emission
of w joint copies of the stater0b=Trasr0d. For w sufficiently
larger0b

^w can be represented in the typical subspaceGdsr0bd
of dimension not greater than 2wsHsr0bd+dd, for anyd.0 f27g,
whereHsrd is the von Neumann entropy of a stater. The
probability mass ofr0b

^w outside the typical subspace can be
made arbitrarily small and does not depend on the eaves-
dropping strategy. This means that the support for the input
of T has finite dimension, up to an arbitrarily small deviation.

The number of photons received by Bob can also be upper
bounded. Alice and Bob can first assume that no more than
nmax photons are received. This fact may depend on a mali-
cious eavesdropper, so Bob has to do hypothesis testing. The
test comes down to estimatingkPl with P=on.nmax

unlknu. If
the threshold is well chosen so thatn.nmax never occurs, we
can apply the central limit theorem and upper bound the
probability thatkPl.e for any chosene.0. The positivity
of the density matrices implies that the off-diagonal coeffi-
cients are also bounded. We can thus now expressrTsx

+ ipd asrTsx+ ipd=on,n8ønmax
rTsx+ ip ,n,n8dunlkn8u. Note that

the test can be implemented either by explicitly measuring
the intensity of the beamstherefore requiring an additional
photodetectord or by exploiting the correlation between the
high intensity of the beam and the high absolute values ob-
tained when doing homodyne measurements in all directions.

Finally, the estimation of the coefficient ofunlkn8u can be
done with arbitrarily small statistical error using homodyne
detection in all directionsf26,28g. This is achieved by con-
sidering the quorum of operatorssxud0øu,2p, where xu

=cosux+sinup denotes the amplitude of the quadrature in
direction u. Considering a finite combination of arbitrarily
small statistical errors on parameters also gives arbitrarily
small overall statistical error on the phase error rate.

IV. ENCODING OF MULTIPLE QUBITS IN AN
OSCILLATOR

Reconciliation and privacy amplification are integral parts
of the prepare-and-measure protocols derived from entangle-
ment purification protocols. In our case, we wish to derive a
prepare-and-measure protocol with sliced error correction
sSECd f24g as reconciliation, which allows us to obtain a
higher secret key rate and a better resistance to losses than in
f21g. We therefore need to describe an entanglement purifi-
cation procedure that reduces to the SEC when the corre-
sponding prepare-and-measure protocol is derived. An over-
view of the SEC is proposed next.

A. Sliced error correction with invertible mappings

We here recall the main principles of the SEC in a form
that is slightly different from the presentation inf24g. To suit
our needs, we here describe the SEC in terms of invertible
functions giving the slices and the estimators—the invertibil-
ity property will be required when we generalize the SEC to
entanglement purification. Also, from the generality off24g,
two parameters are fixed here: The binary error correction is
operated by sending syndromes of classical linear error-
correcting codessECC’sd, and we momentarily restrict our-
selves to the case of one-dimensional real valuesX andX8.

Suppose Alice and Bob havel pairs of correlated random
variables sX1,X18d , . . . ,sXl ,Xl8d, with Xi ,Xi8PR, i =1. . .l,
from which they intend to extract common bits.

First, Alice wishes to convert each of her variablesX into
m bits and thereby definesm binary functions:
S1sXd , . . . ,SmsXd. To make the mapping invertible, she also

defines a functionS̄sXd such that mapping fromX to the

vector fS̄sXd ,S1,. . .,msXdg is bijective. As a convention, the

range of S̄sXd is f0;1g. The mapping fromR to f0;1g
3 h0,1jm,

x → fS̄sxd,S1,. . .,msxdg,

is collectively denoted asS.
Concretely, the functionsSisXd implicitly cut the real line

into intervalssseef24g for more detailsd, whereasS̄sXd indi-
cates where to findX within a given interval.
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Then, we can assemble the bits produced by thel random
variablesX1, . . . ,Xl into m l-bit vectors. To each bit vector
s“slice”d SisX1,. . .,ld=(SisX1d , . . . ,SisXld) is associated an ECC
that Alice and Bob agreed upon. To proceed with the correc-
tion, Alice sends the syndromeji

b=Hi
bSisX1,. . .,ld to Bob over

the public authenticated channel, whereHi
b is thel i

b3 l parity
check matrix of the ECC associated with slicei. Alice also
sendsS̄sX1,. . .,ld.

Bob would like to recoverS1,. . .,msX1,. . .,ld from his knowl-

edge ofX1,. . .,l8 , j1,. . .,m
b , andS̄sX1,. . .,ld. To do so, he also con-

verts each of his variablesX1,. . .,l8 into m bits, but he does so
in a consecutive manner. He tries to produce bits that are best
correlated to Alice’s and takes advantage of the corrected bits
of slices j , i before trying to estimate the bits of slicei. In
particular, to produce bits that are best correlated to Alice’s
first slice S1sX1,. . .,ld, he uses a functionE1(X8 ,S̄sXd), which
gives his best estimate on Alice’s corresponding bitS1sXd
given the known correlations betweenX andX8. By applying
the functionE1 on all the variablesX1,. . .,l8 andS̄sX1,. . .,ld, Bob
is able to construct a string ofl bits that is equal to Alice’s up

to some error ratee1
b. Given the knowledge ofj1

b and assum-
ing the adequacy of the ECC, Bob has enough information to
determineS1sX1,. . .,ld with high probability. Then, for slicei
.1, he estimatesSisX1,. . .,ld using the estimator function

Ei(X8 ,S̄sXd ,b1, . . . ,bi−1), where b j is the random variable
indicating Bob’s knowledge ofSjsXd, so thatb j =SjsXd with
arbitrarily high probability.fNote that the estimators can also
be written as jointly working onl samples at once:

Ei(X1,. . .,l8 ,S̄sX1,. . .,ld ,j1
b , . . . ,ji−1

b ), but we will preferably use
the previous notation for its simplicity since, besides the
ECC decoding, all the operations are done on each variableX
or X8 independently.g

We also need a supplementary function to ensure that the
process on Bob’s side is described using bijective functions:

Ē(X8 ,S̄sXd ,b1, . . . ,bm) sor jointly

Ē(X1,. . .,l8 ,S̄sX1,. . .,ld ,j1
b, . . . ,jm

b ). As a convention, the range of

Ē is f0;1g. Ē is chosen so that the mappingE defined below
is invertible,

E:ss̄,s1,. . .,m8 ,x8d → „s̄,s1,. . .,m8 ,E1sx8,s̄d, . . . ,Emsx8,s̄,s1,. . .,m−18 d,Ēsx8,s̄,s1,. . .,m8 d….

Similarly to S, the functionsE1,. . .,m of E cut the real line
into intervals. However, these intervals are adapted as a func-
tion of the information sent by Alice, so as to estimate Al-
ice’s bits more reliably. Like forS̄, the functionĒ indicates
where to findX8 within an interval.

The mappingS summarizes Alice’s process of conversion
of her real valuesX into m bits splus a continuous compo-
nentd. The mappingE represents the bitssand a continuous
componentd produced by Bob from his real valuesX8 and his
knowledge ofS̄sXd and of the syndromesj1,. . .,m

b . The bits
produced by the functionsEi are not yet corrected by the
ECC, even though they take as input the corrected values of
the previous slicesSjsXd, j , i. The description of the map-
ping E with the bits prior to ECC correction allows us to
easily express the bit error rate between Alice’s slices and
Bob’s estimators and thereby to deduce the size of the parity
matrices of the ECC’s needed for the binary correction. Sim-

ply, we defineei
b=PrfSisXdÞEi(X8 ,S̄sXd ,S1. . .i−1sXd)g. As the

block sizel →`, there exist ECC’s with sizel i
b→ lhsei

bd and
arbitrarily low probability of decoding error. The number of
commonsbut not necessarily secretd bits produced by SEC is
therefore asymptotically equal toH(S1,. . .,msXd)−oi=1

m hsei
bd

per samplef24g.
The generalization of the SEC to a quantum entanglement

purification protocol is examined next.

B. Quantum sliced error correction

From classical binary error correcting codes, one can con-
struct CSS quantum codes and use them to extract EPR pairs

from noisy qubit pairs. We will now show that, similarly,
from SEC, it is possible to construct an encoding and decod-
ing procedure, which, when applied to entangled quantum
oscillator systems, also allows one to extract pure EPR pairs.
Such a purification protocol is formal, as it would of course
be very difficult to implement in practice.

The purification uses a few quantum registers, which we
now list. Alice’s systema1 is split into m qubit systems
s1,. . .,m and a continuous registers̄. On Bob’s side, the system
b is split into m qubit systemse1,. . .,m and a continuous reg-
ister ē. He also needsm qubit registerss1,. . .,m8 for temporary
storage. All these registers must of course be understood per
exchanged sample: As Alice generatesl copies of the state
uCl, the legitimate parties usel instances of the registers
listed above.

The usual bit-flip and phase-flip operatorsX and Z, re-
spectively, can be defined as acting on a specific qubit reg-
ister among the systemssi and ei. E.g., Zsi

is defined as
acting onsi only. These operators are used by Alice and Bob
to construct the CSS codes that produce entangled qubits,
which are in turn used to produce EPR pairs in the registers
siei for i =1, . . . ,m. Since each CSS code operates in its own
register pair, the action of one does not interfere with the
action of the other. It is thus possible to extract more than
one EPR pairuf+l per stateuCl. If asymptotically efficient
binary codes are used, the rate or EPR pairs produced isR
=oif1−hsei

bd−hsei
pdg, where ei

b sei
pd indicates the bit error

rate sthe phase error rated f20g.
The process that defines the content of the registers is

described next.
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1. MappingsQS andQE
First, we define the unitary transformationQS: L2sRd

→L2sf0;1gd ^ H^m by its application to the basis of quadra-
ture eigenstates:

uxla1
→ ssxduS̄sxdls̄ ^ uS1sxdls1

^ ¯ ^ uSmsxdlsm
. s3d

The statesus̄ls̄, 0ø s̄ø1, form an orthogonal basis of

L2sf0;1gd, ssxd=sdxS̄d−1/2sxd is a normalization function, and
usilsi

, si P h0,1j, denotes the canonical basis ofH, the Hilbert
space of a qubit. As a convention, the systemsi is called
slice i. The transformationQS is depicted in Fig. 1.

For each slicei, Alice and Bob agree on a CSS code,
defined by its parity matricesHi

b for bit error correction and
Hi

p for phase error correction. For the entanglement purifica-
tion, let us assume that Alice computes the syndromes of the
CSS code with a quantum circuit. For each slice, she pro-
ducesl i

b qubits in the stateuji
bl and l i

p qubits in the stateuji
pl

that she sends to Bob over a perfect quantum channel, so that
the syndromes are received without any distortion. In the
entanglement purification picture, the syndromes can be
transmitted over a nonperfect channel if they are encoded
using appropriate error correcting codes. Also, after reduc-

tion to a prepare-and-measure protocol, this perfect transmis-
sion is actually done over the public authenticated channel.
Alice also sends thes̄ system to Bob.

Then, the slice estimators are defined as the unitary trans-
formation QE from L2sf0;1gd ^ H^m^ L2sRd to L2sf0;1gd
^ H^m^ H^m^ L2sf0;1gd:

us̄ls̄us1,. . .,m8 ls1,. . .,m8 ux8lb → esx8,s̄,s1,. . .,m8 dus̄ls̄us1,. . .,m8 ls1,. . .,m8 ^ i=1
m uEisx8,s̄,s1,. . .,i−18 dlei

uĒsx8,s̄,s1,. . .,m8 dlē, s4d

whereesx8 , s̄,s1,. . .,m8 d=s]x8Ēd−1/2sx8 , s̄,s1,. . .,m8 d is a normaliza-
tion function; ux8lb is a quadrature eigenstate withx eigen-
valuex8; ueilei

, ei P h0,1j, denotes the canonical basis ofH;
uēlē, 0ø ēø1, form an orthogonal basis ofL2sf0;1gd. As the
classical mappingE is invertible,QE is unitary with the ap-
propriate normalization functione. This mapping is defined
to act on individual states, with the slice valuess1,. . .,m8 as
input in the systems1,. . .,m8 , whose purpose is actually to hold
Bob’s sequentially corrected bit valuesb1,. . .,m. The complete
transformation jointly involvingl systems would be fairly
heavy to describe. Only the ECC correction needs to be de-
scribed jointly, and assuming it is correctly sizedsi.e., l i

b are
large enoughd, Bob has enough information to reconstruct
Alice’s bit values. Let us now sketch how the systems1,. . .,m8
is constructed.

Assume that Bob first calculates, using a quantum circuit,
the first slice estimatorfclassically: E1(X8 ,S̄sXd)g, which
does not depend on any syndrome. That is, he applies the
following mapping, defined on the bases ofs̄ and b:

us̄ls̄ux8lb→ us̄ls̄uE1sx8 , s̄dle1
uĒ1sx8 , s̄dlē1

sup to normalizationd,
where the functionĒ1 is needed only to make the mapping
unitary. From thel qubits in thel systemse1 and the syn-
drome sent by Aliceuj1

bl, there exists a quantum circuit that
calculates the relative syndrome of Alice’s and Bob’s bits—
that is, a superposition of the classical quantitiesj1

b

% H1
bE1sX1,. . .,ld. From this, a quantum circuit calculates the

coset leader of the syndrome—that is,sa superposition ofd
the most probable difference vector between Alice’s and
Bob’s qubits. An extral − l1

b blank qubits are needed for this
operations; we assume they are all initialized tou0l:

uH1
bss1

sld
% e1

slddls
18

sl1
bdu0ls

18
sl−l1

bd → us1
sld

% e1
sldls18

sld.

Then, using a controlled-NOT operation between Bob’s bits
scontrold and the difference vectorstargetd, we producel qu-
bits containing the same bit values as Alice’s, with an arbi-
trarily large probability:

ue1
sldle1

sldus1
sld

% e1
sldls18

sld → ue1
sldle1

sldus1
sldls18

sld.

This is how thel systemss18 are created.
Following this approach for the next slices, we can define

us̄ls̄us1ls18
uE1sx8 , s̄dle1

uĒ1sx8 , s̄dlē1

→ us̄ls̄us1ls18
uE1sx8 , s̄dle1

uE2sx8 , s̄,s1de2
uĒ2sx8 , s̄,s1dlē2

and rea-
sonably assume that the bit value given ins18 is equal to
Alice’s S1sXd. This reasoning can be applied iteratively, so as
to fill the systems1,. . .,m8 with all the corrected bit values and

with an extra step to setĒsx8 , s̄,s1,. . .,md in ē.
As a last step, Bob can revert the ECC decoding opera-

tions and come back to the situation where he has blank
qubits ins1,. . .,m8 as depicted in Fig. 2.

FIG. 1. Schematic description ofQS.
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Finally, the qubits produced byQE can be transformed
into EPR pairs using the CSS codes and the syndromes Alice
sent to Bob.

2. Phase coherence

Neither the unitary transformationQS nor QE take into
account the modulation of the coherent state in thep quadra-
ture. By ignoring what happens in thea2 system of Eq.s1d,
the reduced systemra1b lacks phase coherence:

ra1b =E dxdx8dpÎG1sxdG1sx8dG2spduxla1
kx8u

^ Dsipdux + i0lbkx8 + i0uD†sipd.

To remedy this, we assume that Alice also sends thea2 sys-
tem to Bob, just like she does for thes̄ system and the
syndromes, since the modulation in thep quadrature is inde-
pendent of the key. Bob can take it into account before ap-
plying QE, by displacing his state along thep quadrature in
order to bring it on thex axis.

Actually, we could formally include thisa2-dependent op-
eration in theQE mapping by addingupla2

to its input and
output sunmodifiedd and by multiplying by a factor of the
form eix8p/4N0 in Eq. s4d with N0 the vacuum fluctuations. For
notation simplicity, however, we mention it here without ex-
plicitly writing it.

Also, for the simplicity of the notation in the next section,
we can assume without loss of generality that the coefficients
of uCl in thex basis ofb are real, after adjustment by Bob as
a function ofp.

3. Construction of S̄and Ē

Let us now make explicit the construction of the functions

S̄ and Ē. First assume, for simplicity, that we have only one
slice sm=1d—for this we do not write the slice index as a
subscript. The mapping has thus the following form:

uxla1
ux8lb → ssxduSsxdlsuS̄sxdls̄e„x8,S̄sxd,Ssxd…

^ uE„x8,S̄sxd…leuĒ„x8,S̄sxd,Ssxd…lē,

wheressxd=sdxS̄d−1/2sxd, esx8 , s̄,sd=s]x8Ēd−1/2sx8 , s̄,sd, andS̄

and Ē range between 0 and 1.
Let us take some stater of the systemsss̄eē. In the

entanglement purification picture, our goal is to be able to
extract entangled pairs in the subsystemrse=TrAll\ hs,ejsrd.
We thus wantr to be a product state of the formrse ^ rs̄ē. If

S̄sXd contains information aboutSsXd or if Ē(X8 ,S̄sXd ,SsXd)
contains information aboutE(X8 ,S̄sXd), the subsystemrse
will not be pure. In the prepare-and-measure picture, infor-

mation onSsXd in S̄sXd will be known to Eve and therefore
may not be considered as secure. Note that information in

Ēs¯d is not disclosed, but since it is excluded from the sub-
systems from which we wish to extract entanglementsor
secrecyd, any correlation withē will reduce the number of
entangled qubitssor secret bitsd; or stated otherwise, the cal-

culated number of secret bits will be done as ifĒs¯d was

public. As an extreme example, ifSsXd andE(X8 ,S̄sXd) are
perfectly correlated and ifSsXd can be found directly as a

function of S̄sXd, then rse will be of the form rse
=p0u00lk00u+p1u11lk11u, which does not allow us to extract
any EPR pairs or, equivalently, does not contain any secret

information. Consequently,S̄ andĒ should be as statistically
independent as possible ofS andE.

We defineS̄andĒ as the following cumulative probability

functions: S̄sxd=PrfXøxuSsXd=Ssxdg and Ēsx8 , s̄,sd=PrfX8

øx8 u S̄sXd= s̄,SsXd=s,EsX8 , s̄d=Esx8 , s̄dg. By definition,
these functions are uniformly distributed between 0 and 1,
independently of the other variables available to the party

calculating it sAlice for S̄ and Bob forĒd. These functions
also enjoy the property of making the subsystemrse pure in
absence of eavesdroppingsi.e., whenr is pured, indicating

that this choice ofS̄ andĒ does not introduce more impurity
in rse thanr already has.

FIG. 2. Schematic description ofQE and the use of the systemss1,. . .,m8 .
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For a pure stateucl=edxdx8fsx,x8duxla1
ux8lb, with uxla1

sux8lbd anx eigenstate ina1 sin bd, the application ofQS and
QE gives

o
s,ePh0,1j

E ds̄dēssxdesx8,s̄,sdfsx,x8duslsus̄ls̄ueleuēlē,

where x and x8 are shorthand notation forxss, s̄d and
x8se,ē, s̄d, respectively. Let f1 and f2 be real and non-
negative functions verifyingfsx,x8d= f1sxdf2sx,x8d. f1sxd is
chosen such thatuf1sxdu2 is the probability density function of
Alice’s modulation andf2sx,x8d such thatuf2sx,x8du2 is the
probability density function of Bob’s measured valuex8 con-
ditionally to Alice sendingx. Then, it is easy to check that
we can factoroa,bPh0,1jaabuablse out of ucl by setting

ssxss,s̄dd = s0ssdff1„xss,s̄d…g−1, s5d

ess̄,x8se,ē,s̄d,sd = e0se,sdff2„xss,s̄d,x8se,ē,s̄d…g−1, s6d

where

s0
2ssd =E

x:Ssxd=s

uf1sxdu2dx, s7d

e0
2se,sd =E

x,x8:Ssxd=s,E„x8,S̄sxd…=e

uf2sx,x8du2dxdx8. s8d

The conclusion follows from the definition ofs ande.

When more than one slice is involved, the functionsS̄and

Ē are defined similarly:

S̄sxd = PrfX ø xuS1,. . .,msXd = S1,. . .,msxdg, s9d

Ēsx8,s̄,s1,. . .,md = PrfX8 ø x8uS̄sXd = s̄

∧ S1,. . .,msXd = s1,. . .,m

∧ E1sX8,s̄d = E1sx8,s̄d ∧

¯ ∧ EmsX8,s̄,s1,. . .,m−1d

= Emsx8,s̄,s1,. . .,m−1dg. s10d

V. ATTENUATION CHANNEL

We now apply the slicing construction and display some
results on the rates one can achieve in an important practical
case. These results serve as an example and do not imply an
upper bound on the achievable rates or distances. Instead,
they can be viewed as lower bounds on an achievable secure
rate in the particular case of an attenuation channel with
given losses. Stated otherwise, this section simulates the
rates we would obtain in a real experiment where Alice and
Bob would be connected by an attenuation channel. For
more general properties of the construction, refer to Sec. VI.

The purpose of this section is twofold. First, we wish to
illustrate the idea of the previous section and show that it
serves realistic practical purposes. Beyond the generality of

the sliced error correction, its implementation may be easier
than it first appears. Furthermore, the purificationsdistilla-
tiond of more than one qubitsbitd per sample is useful, as
illustrated below.

Second, it is important to show that the construction
works in a case as important as the attenuation channel.
Clearly, requesting that a QKD protocol yields a nonzero
secret key rate under all circumstances is unrealisitic—an
eavesdropper can always block the entire communication.
On the other hand, a QKD protocol that would always tell
Alice and Bob that zero secure bits are available would be
perfectly secure but obviously also completely useless. Of
course, between these two extreme situations, the practical
efficiency of a QKD protocol is thus important to consider.

The attenuation channel can be modeled as if Eve in-
stalled a beam splitter in between two sections of a lossless
line, sending vacuum at the second input. We here assume
that Alice sends coherent states with a modulation variance
of 31N0, with N0 the vacuum fluctuations, which gives Alice
and Bob up toIsA;Bd=2.5 common bits in absence of losses
or noise. This matches the order of magnitude implemented
in f14g. We define the slicesS1 and S2 by dividing the real
axis into four equiprobable intervals labeled by two bits,
with S1 representing the least significant bit andS2 the most
significant one. More precisely,S1sxd=0 whenxø−t or 0
,xøt and S1sxd=1 otherwise, with t
=Î2331N0 erf−1s1/2d, and S2sxd=0 when xø0 and S2sxd
=1 otherwise.

In this constructed example, we wish to calculate the the-
oretical secret key rate we would obtain in an identical set-
ting. For various loss values, the secret key rates are evalu-
ated by numerically calculating TrfsZsi

^ Zei
drg, to obtain

the bit error rates of slicesi =1,2 and TrfsXsi
^ Xei

drg to
obtain the phase error rates. Then, assuming asymptotically
efficient binary codes, the rate isR=R1+R2=oi=1,2f1
−hsei

bd−hsei
pdg.

Using this two-slice construction, we were able to get the
EPR rates described in Table I. For the case with no losses, it
is thus possible to distillR=0.752+0.938=1.69 EPR pairs
per sample. Also, note that the phase error rate increases
faster with the attenuation forr2 than for r1, with ri =rsiei
=TrAll\ hsi,eij

srd. This intuitively follows from the fact that the
information Eve can gain from her output of the beam split-
ter affects first the most significant bit contained inS2sXd.

Due to the higher bit error rate inr1, it was not possible to
distill EPR pairs in slice 1 with losses beyond 0.7 dB. It was,
however, still possible to distill EPR pairs in slice 2, up to
1.4 dB lossessabout 10 km with fiber optics with losses of
0.15 dB/kmd. This result does not pose any fundamental
limit, as it can vary with the modulation variance and with
the choice of the functionsS1 and S2. Note that the slice
functions could be optimized in various ways, one of which
being to use other intervalssas done inf24g, not necessary
equiprobable and possibly chosen as a function of the lossesd
and another being to consider multidimensional slices as ex-
plained in the next section.

Finally, note that although this example involves a Gauss-
ian channel, this particularity is not exploited here and such a
calculation can be as easily done for a non-Gaussian attack.
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VI. ASYMPTOTIC BEHAVIOR

In this section, we study the behavior of the slice con-
struction when the slice and slice estimator mappings take as
input a block ofw states, withw arbitrarily large. Inf24g, the
classical sliced error correction is shown to reduce to
Slepian-Wolf codingf29g sasymmetric case with side infor-
mationd when using asymptotically large block sizes. We
here study the quantum case, which is different at least by
the fact that privacy amplification is explicitly taken into
account.

For simplicity of the notation, we will study the
asymptotic behavior in the case of an individually probed
channel onlysalthough Eve’s measurement can be collec-
tived. A study of finite–width probing with a width much
smaller than the key size would give the same results, since
in both cases it allows us to consider a sequence of identical
random experiments and to study the typical case. However,
joint attacks, with the width as large as the key size, are
outside the scope of this section, as the statistical tools pre-
sented here would not be suitable.

It is important to stress that we here investigate what the
secret key rates would be if the actual channel is an individu-
ally probed one. The use of the protocol of this paper still
requires us to evaluate the phase error rate in all cases and
this quantity is sufficient to determine the number of secret
key bits. In the case of joint attacks, the secret key rates
stated in the special cases below would then differ from the
one obtained using the phase error rate.

A. Direct reconciliation

We thus here consider a block ofw states and the func-

tionsS, S̄, E, andĒ on blocks ofw variables as well. Among
the qubits produced byQS, there is a certain number of them
whose disclosed value allows Alice and Bob to correctsal-
mostd all bit errors for the remaining slices. Then, among the
remaining slices, a certain number of qubits allows Alice and
Bob to correctsalmostd all phase errors for the rest of the
qubits. These last qubits are thus equivalent to secret key bits
in the prepare-and-measure protocol.

We consider the following state, with the action of the
channel modeled as joining systemb with that of an eaves-
dropper Eve and withp left out as a public classical param-
eter:

uCspdl =E dxgsxduxla1
ufsx,pdlb,eve. s11d

We considerw such states coherently, and the mappingsQS
andQE take allw states as input. We will follow the lines of
the reasoning inf27,30,31g to show that the secret key rate
tends toIsX;X8d− IsX;Ed for w→`, with X the random vari-
able representing Alice’s measure ofa1 with x, X8 the mea-
sure of b with x, and IsX;Ed=HsXd+Hsreved−Hsra1,eved,
whereHsrd is the von Neumann entropy of a stater. The
remainder of the discussion must be understood for any
e ,eU.0, with w sufficiently large.

Consider a mappingU from R to a finite setU of size 2m,
for some sufficiently largem, such that I(UsXd ;X8)

ù IsX;X8d−eU. Let S̄sXd be the remaining continuous infor-
mation not contained inUsXd, defined as in Sec. IV B 3. Let

xss̄,ud be the mapping that recoversx from S̄sxd andUsxd.
We here recall some definitions fromf30g. For a given

value of s̄swd and pswd ss̄swd ,pswdPRwd, a Holevo-
Schumacher-WestmorelandsHSWd codef27,31g B is a sub-
set of Uw such that the correspondingw-wide states
ufswd(xswdss̄swd ,uswdd ,pswd)bswd,eve, uswdPB, can be distin-
guished by Bob with probability at least 1−e. A privacy
amplificationsPAd setE is a subset ofUw such that the sum
of the corresponding states

ouswdPE ufswd
„xswdss̄swd,uswdd,pswd

…lbswd,eve

factors Eve. Finally, a key generation codeB is a HSW code
that can be divided into a collection of nonoverlapping PA
setsB=økEk. In the sequel, we drop thew superscript for
simplicity.

Consider three consecutive rangesI =1, . . . ,uI u, J= uI u
+1, . . . ,uI u+ uJu, andK= uI u+ uJu+1, . . . ,uI u+ uJu+ uKu with sizes
uI u= dwH(UsXd uX8)+ee, uJu= dwI(UsXd ;E)e, and uKu
= bwI(UsXd ;X8)−wI(UsXd ;E)−ec. Note that uI u+ uJu+ uKu
øwH(UsXd)+2øwm+2. These three ranges will corre-
spond to three kinds of slices in the derived prepare-and-
measure protocol:SI, SJ, and SK. SI will give Bob enough
information to perform error correction,SJ will contain bits,
equal between Alice and Bob, which will be sacrificed with
PA since they are not necessarily secret, andSK will contain
equal and secret bitssi.e., key bitsd.

From f30g, it is possible to cover the space ofswm+2d-bit
vectors with 2uI u key generation codesCsI

of size 2uJu+uKu. To

TABLE I. Error and EPR rates with two slices in an attenuation channel.

Losses
sdBd

r1 r2

e1
b e1

p R1 e2
b e2

p R2

0.0 3.11% 0.53% 0.752 0.0000401 0.710% 0.938

0.4 3.77% 13.7% 0.193 0.0000782 28.6% 0.135

0.7 4.32% 20.0% 0.0204 0.000125 37.5% 0.0434

1.0 — 0.000194 42.3% 0.0147

1.4 — 0.000335 45.6% 0.00114
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each element ofUw, we assign auI u-bit vector that identifies
the key generation code it belongs to; this defines the firstuI u
slicesSIsXd.

By providing the bit syndromesjI
b to Bob, he can identify

SIsXd=sI and the associated key generation codeCsI
. By defi-

nition, he has enough information to identify an element
within it. Such an element can be uniquely labeled by a
suJu+ uKud-bit vector, thereby definingSJ andSK. So there ex-
ists a mapping that mapsusIlsI8

ufsxss̄,ud ,pdlb,eve onto
usIlsI8

usJKleJK
uf8(xss̄,ud ,p)lē,eI,eve with probability at least 1

−e and, thus,ei
bøe, ∀i PJøK.

Each key generation code contains 2uKu PA sets of size 2uJu

eachf30g. The labeling can be such thatSK corresponds to
the identification of the PA set andSJ the element inside the
PA set.

Providing the phase syndromesjJ
p to Bob gives him

enough information to determine the phase of Alice’s qubits
in sJ. If the phase errors are corrected by Bob, measuring or
tracing out subsystemssJeJ is equivalent to summing the
slices inJ over all possible bit values and thus factoring out
Eve. More precisely, withs̄, sI, and p fixed sand the corre-
sponding subsystems not shownd and with usj

*ls j
* =2−1/2fu0ls j

+s−1dsj
*
u1ls j

g sand similarly fore j and s j8d, the system after
correction ofsI is of the form

uCl = o
sKsJ

usJKlsJK
u0lsJ8

usJKleJK
uf8ssJKdlē,eI,eve

= o
sKsJsJ

*eJ
*

s− 1dsJssJ
*+eJ

* dusJ
*lsJ

* usKlsK

^ u0lsJ8
ueJ

*leJ
* usKleK

uf8ssJKdlē,eI,eve.

Then Alice sends to Bob information about her phasessJ
*d,

which he stores in his auxiliary registersJ8. The state be-
comes

o
sKsJsJ

*eJ
*

s− 1dsJssJ
*+eJ

* dusJ
*lsJ

* usKlsK

^ usJ
*lsJ8

ueJ
*leJ

* usKleK
uf8ssJKdlē,eI,eve.

The difference between Alice’s and Bob’s phases is calcu-
lated insJ8 and the correction is applied toeJ

* . Overall, this
transformation can be summarized asusJ

*lsJ8
ueJ

*leJ
* → usJ

*

+eJ
*lsJ8

usJ
*leJ

* . This gives the following state:

o
sKsJ

*

usJ
*lsJ

* usKlsK
usJ

*leJ
* usKleK

^ o
sJ,ssJ

*+eJ
* d

s− 1dsJssJ
*+eJ

* d

3usJ
* + eJ

*lsJ8
uf8ssJKdlē,eI,eve = o

sKsJ
*

usJ
*lsJ

* usKlsK
usJ

*leJ
* usKleK

^ o
sJ

usJlsJ8
* uf8ssJKdlē,eI,eve.

Finally, the sumosJ
usJlsJ8

* uf8ssJKdlē,eI,eve factors out Eve, by
definition of a PA set.

Given the size ofK, we conclude that the secret bit rate
can asymptotically come as close as desired toIsX;X8d
− IsX;Ed. Note that in the particular case of the attenuation

channel, an evaluation of the secret key rate can be found in
f16,17g.

B. Reverse reconciliation

So far, we have always assumed that the slices apply to
Alice and the slice estimators to Bob. However, there are
some cases for which the opposite case increases the secret
bit rate f14g.

Let us start again from the stateuCspdl as in Eq.s11d and
rewrite ufsx,pdlb,eve as ufsx,pdlb,eve
=edx8fsx,p,x8dux8lbufsx,p,x8dleve. Let hsx8 ,pd be a non-
negative real function such that h2sx8 ,pd
=edxugsx,pdfsx,p,x8du2. Then,

uCspdl =E dx8hsx8,pdux8lbuf8sx8,pdla1,eve,

with

uf8sx8,pdla1,eve =E dxgsx,pdfsx,p,x8d/hsx8,pd

3uxla1
ufsx,p,x8dleve.

Thus, by applying the same argument as for direct reconcili-
ation, we can asymptotically reachIsX;X8d− IsX8 ;Ed secret
bits whenQS is applied on systemb andQE on systema1.
The evaluation of the secret key rate for reverse reconcilia-
tion can also be found inf16,17g, which indicates that such a
quantity is always strictly positive in the case of an attenua-
tion channel, regardless of the losses, for a sufficiently large
modulation variance.

VII. CONCLUSION

In this paper, we studied the equivalence between an EP
protocol and a QKD protocol with sliced error correction for
reconciliation. In the QKD protocol, Alice sends Gaussian-
modulated coherent states to Bob, who measures the result
using homodyne detection. To probe the channel and deter-
mine the amount of entanglement that can be transmitted
through it, Bob has to make homodyne measurements in all
quadratures.

We found that the EP protocol based on sliced error cor-
rection is indeed efficient and allows its equivalent prepare-
and-measure QKD protocol to produce a secret key which is
secure against any eavesdropping strategy. Although the qu-
bit encoding scheme is derived from a reconciliation proto-
col easily implementable in practicef14g, the main drawback
of the method is the possibly huge number of measurements
to get a statistically relevant estimation of the phase error
rate and thus the number of secret key bits. Yet in theory, the
sample set can be reduced to an arbitrarily small fraction of
the produced key, when an arbitrarily large number of quan-
tum states are processed through secret key distillation.

An advantage of this method is that it can in principle be
adapted to other modulation distributions—the fact that the
modulation is Gaussian is not crucial. In practice, the finite
range of the amplitude modulator does not allow one to pro-
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duce a real Gaussian distribution for the prepare-and-
measure protocol, and one can take this effect explicitly into
account. Also, it may be more efficient to consider a modu-
lation of coherent states along a uniform distribution over a
finite domain ofsx,pd fe.g., a square or a circle centered on
s0,0dg so as to increase the correlations between Alice and
Bob.

Open problems for further research include the improve-
ment of the statistical estimation of the EP parameters, the
investigation of other modulation distributions, and the opti-
mization of the encoding scheme for practical implementa-
tions.
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