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We propose a scheme for the conditional generation of arbitrary finite superpositions of Fock states in a
single mode of a traveling optical field. The setup requires a source of squeezed vacuum states, beam splitters,
strong coherent beams, photodetectors with single-photon sensitivity, and a final squeezer. If we want to
generate a squeezed superposition of Fock states, which is sufficient in several applications, then the last
squeezer is not even needed. The thrust of this method is that it achieves a high fidelity without requiring
photodetectors with a high efficiency or a single-photon resolution. The possibility to improve its scaling by
using a quantum memory is also discussed.
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I. INTRODUCTION

During recent years, it has been widely recognized that
nonclassical states of light represent a valuable resource for
numerous applications ranging from ultrahigh precision mea-
surements �1–3� to quantum lithography �4,5� and quantum
information processing �6�. It is often desirable to generate
nonclassical states of traveling optical modes, as opposed to
the cavity QED experiments where the generated state is
confined in a cavity and can be probed only indirectly. Many
ingenious schemes have been proposed and experimentally
demonstrated to generate the single-photon states �7,8� and
various multiphoton entangled states such as the GHZ states
�9�, cluster states �10�, and the so-called NOON states
�11–15�.

Considerable attention has also been devoted to the prepa-
ration of arbitrary single-mode states �16–19� and, in particu-
lar, the quantum superpositions of coherent states �“Schro-
dinger cat-like” states� �20,21�, which can represent a
valuable resource for quantum information processing
�22,23�. The experimental generation of arbitrary superposi-
tions of vacuum and single-photon states has been accom-
plished using parametric down-conversion with the input
signal mode prepared in a coherent state �24�, employing
the quantum scissors scheme �25,26�, or conditioning on
homodyne measurements on one part of a nonlocal single
photon in two spatial modes �27�. It is, however, very diffi-
cult to extend these experiments to superpositions involving
two or more photons. The known schemes for conditional
generation of arbitrary superpositions of Fock states require
single-photon sources and/or highly efficient detectors with
single-photon resolution, which represents a formidable ex-
perimental challenge.

In this paper, we propose a state preparation scheme that
does not require single-photon sources and can operate with
high fidelity even with low-efficiency detectors that only dis-
tinguish the presence or absence of photons. Our scheme is
inspired by the proposal of Dakna et al. �16�, who showed
that an arbitrary single-mode state can be engineered starting
from vacuum by applying a sequence of displacements and

single-photon additions. Our crucial observation is that if the
initial state is a squeezed vacuum, then the single-photon
addition can be replaced with single-photon subtraction
�28,29�, which is much more practicable. Indeed, a single-
photon subtraction can be achieved by diverting a tiny frac-
tion of the beam with a beam splitter toward a photodetector,
so that a click means that a photon has been subtracted from
the beam �this process becomes exact for a transmittance
tending to 1�. In fact, the single-photon subtraction from a
squeezed vacuum has already been experimentally demon-
strated �30�, which provides strong evidence for the practical
feasibility of our scheme. We note that the photon subtrac-
tion is an extremely useful tool which allows one to generate
states suitable for the tests of Bell inequality violation with
balanced homodyning �31,32�. It can also be used to improve
the performance of dense coding �33�, and forms a crucial
element of the entanglement distillation schemes for continu-
ous variables �34�. However, the counterpart of using photon
subtraction in our preparation scheme lies in the fact that a
final antisqueezing operation needs to be performed. The
implementation of this operation is technically more in-
volved than the initial squeezed vacuum preparation, al-
though it has already been experimentally demonstrated
�35–38�. In addition, a new method based on homodyne de-
tection followed by a feed-forward displacement has been
proposed recently �39�.

The present paper is organized as follows. In Sec. II, we
explain the mechanism of state generation on the simplest
nontrivial example of a superposition of vacuum and single-
photon states. Our setup then consists of two displacements,
one conditional photon subtraction, and two squeezers
�squeezing conjugate quadratures�. We present the details of
the calculation of the Wigner function of the generated state
for a realistic setup involving imperfect photon subtraction
�obtained with imperfect detectors and beam splitters with a
nonunity transmittance�. In order to evaluate the perfor-
mance of the scheme, we investigate the achieved fidelity
and the preparation probability for various target states. We
also discuss the feasibility of the final squeezing operation.
In Sec. III, we extend the scheme to the generation of an
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arbitrary single-mode state and show how to calculate the
displacements that need to be applied during the state prepa-
ration. As an illustration, we consider the generation of sev-
eral states which are superpositions of vacuum, single-
photon, and two-photon Fock states. In Sec. IV, we propose
an iterative state generation scheme that uses a quantum
memory in order to reduce very significantly the total num-
ber of required operations. Finally, the conclusions are drawn
in Sec. V.

II. GENERATION OF A SUPERPOSITION OF �0‹ AND �1‹

In this section, we introduce our setup for the generation
of an arbitrary superposition of vacuum and single-photon
state, which consists of two squeezers and two displacements
with a photon subtraction in between, as schematically
sketched in Fig. 1. This setup represents a basic building
block of our universal scheme: as shown in Sec. III, any
superposition of the first N+1 Fock states can be generated
from a single-mode squeezed vacuum by a displacement fol-
lowed by a sequence of N photon subtractions and displace-
ments, completed by a final antisqueezing operation.

A. Pure-state description

We first provide a simplified pure-state description of the
setup, assuming perfect detectors with single-photon resolu-
tion, which will give us an insight into the mechanism of
state generation. We will show that, conditionally on observ-
ing a click of the photodetector PD, the setup produces a
superposition of vacuum and single-photon states,

���target = c0�0� + c1�1� . �1�

Our state engineering procedure starts with a single-mode
squeezed vacuum state, which is generated in an optical
parametric amplifier,

S�sin��0� =
1

�cosh�sin�
	
n=0

� ��2n�!
2nn!

�tanh�sin��n�2n� , �2�

where S�s�=exp�s�a†2−a2� /2� denotes the squeezing opera-
tor with a�a†� being the annihilation �creation� operator, and

sin denotes the initial squeezing constant. The single-mode
squeezed vacuum passes through three highly transmitting
beam splitters, which realize a sequence of a displacement
followed by a single-photon subtraction and another dis-
placement. The state is displaced by combining it on a highly
unbalanced beam splitter BSD with transmittance TD�99%
with a strong coherent state �� /rD�, where rD=�RD and
RD=1−TD is the reflectance of BSD �40�. In the limit
TD→1, the output beam is displaced by the amount �. This
method has been used, e.g., in the continuous-variable quan-
tum teleportation experiments �41�. For the sake of simplic-
ity, we shall assume that TD=1 and the displacement opera-
tion is exact. The conditional single-photon subtraction
requires a highly unbalanced beam splitter BS with transmit-
tance T, followed by a photodetector PD placed on the aux-
iliary output port. A successful photon subtraction is heralded
by a click of the detector. In the limit T→1, the most prob-
able event leading to a click of the detector is that exactly a
single photon has been reflected from the beam splitter. The
probability of removing two or more photons is smaller by a
factor of 1−T and becomes totally negligible in the limit
T→1. The conditional single-photon subtraction can be de-
scribed by the nonunitary operator

X = tnra , �3�

where n=a†a is the photon-number operator, while t=�T and
r=�1−T denote the amplitude transmittance and reflectance
of BS, respectively.

The input-output transformation corresponding to the se-
quence of operations in Fig. 1 reads

���out = S†�sout�D��2�XD��1�S�sin��0� , �4�

where D���=exp��a†−�*a� is the displacement operator.
We will show later on how the displacements �1 and �2
depend on the target state �1�, as well as how the output
squeezing value sout depends on the initial squeezing sin for a
given transmittance T�1. But, to make it simple, let us as-
sume first that T=1, �1=−�2=�, and sout=sin=s. Then, using
D���†aD���=a+�, the conditionally generated state can be
written as

���out = S†�s��a + ��S�s��0� . �5�

Taking into account that a and a† transform under the
squeezing operation according to

S†�s�aS�s� = a cosh�s� + a† sinh�s� ,

S†�s�a†S�s� = a† cosh�s� + a sinh�s� , �6�

we obtain

���out = �a cosh�s� + a† sinh�s� + ���0� = sinh�s��1� + ��0� .

�7�

We can see that by setting �= �c0 /c1�sinh�s�, we obtain the
target state �1�. This simple analysis illustrates the principle
of the scheme shown in Fig. 1. However, the limit T=1 is
unphysical, because the probability of successful state gen-
eration vanishes when T→1. Let us now take into account
T�1.

FIG. 1. Proposed experimental setup for generating ���=c0�0�
+c1�1�. An optical parametric amplifier generates a single-mode
squeezed vacuum state �of squeezing parameter sin�, which then
propagates through three highly unbalanced beam splitters �BSD,
BS, and BSD� in order to realize a sequence of two displacements
interspersed with one conditional photon subtraction. Finally, an
antisqueezing S†�sout� operation is applied, resulting in the output
mode Aout. Successful state preparation is heralded by a click of the
photodetector PD.

FIURÁŠEK, GARCÍA-PATRÓN, AND CERF PHYSICAL REVIEW A 72, 033822 �2005�

033822-2



In order to simplify the expression �4�, we first rewrite all
displacement operators in a normally ordered form,
D���=e−���2/2e�a†

e−�*a, and we obtain

���out � S†�sout�e�2a†
e−�2

*atnae�1a†
e−�1

*aS�sin��0� . �8�

Next, we propagate the operator tn to the right by using the
relations

tne�*a = e�*a/ttn, tne�a†
= et�a†

tn. �9�

After these algebraic manipulations, we obtain

���out � S†�sout�e�2a†
aet�1a†

e−��2
*+�1

*/t�atnS�sin��0� . �10�

Note that we have also moved to the right the operator e−�2
*a

and used the fact that e�a†
e�*a=e−��*

e�*ae�a†
.

The combined action of the operators tnS�sin� on vacuum
produces a single-mode squeezed vacuum state just as with-
out applying tn but with a lower squeezing constant s satis-
fying

tanh�s� = t2 tanh�sin� , �11�

that is,

tnS�sin��0� � S�s��0� . �12�

Finally, we move the operator e�2a†
to the right, using the

formula e�2a†
a= �a−�2�e�2a†

, which results in

���out � S†�sout��a − �2�e	a†
e−
*aS�s��0� , �13�

where 	=�2+ t�1 and 
=�2+�1 / t. With the help of Eq. �6�,
we can write

e	a†
e−
*aS�s��0� � S�s�e�	 cosh�s�−
* sinh�s��a†

�0� , �14�

which is a state with a generally nonzero coherent displace-
ment. This displacement can be set to zero if �1 and �2
satisfy

��2 + t�1�cosh�s� = ��2
* + �1

*/t�sinh�s� . �15�

in which case the output state reads

���out � S†�sout��a − �2�S�s��0� . �16�

Finally, if we choose sout=s, we obtain

���out � sinh�s��1� − �2�0� . �17�

Thus, the desired superposition of the first two Fock states
�1� can be obtained by choosing

�2 = −
c0

c1
sinh�s� , �18�

�1 = t
�tanh2�s� − t2��2 + �t2 − 1�tanh�s��2

*

t4 − tanh2�s�
, �19�

where the displacement �1 has been determined from the
condition �15�. Note that we may assume that the coefficient
c1 of the Fock state �1� is nonzero; otherwise, no photon
subtraction is needed to generate the target state.

B. Final antisqueezing operation

In order to obtain a superposition of Fock states at the
output, we need to apply the final antisqueezing operation
S†�sout�, which squeezes a quadrature conjugate to that
squeezed by the first squeezer S�sin�. This operation can be
implemented by injecting the signal beam into a nonlinear
medium that is strongly pumped by a laser, as demonstrated
in �35–38�. A difficulty of this method lies in the fact that a
good spatio-temporal overlap between the signal and the
pump beams must be achieved. However, a recently pro-
posed alternative method can be used to avoid this problem.
Here, an auxiliary mode that is prepared in a squeezed
vacuum state is combined with the signal beam at a beam
splitter. The auxiliary mode is then measured with a homo-
dyne detector and the appropriate quadrature of the signal
beam is displaced proportionally to the measurement out-
come �39�. The great advantage of this latter approach is that
it only requires the interference between two beams at a
beam splitter, which is much easier to achieve than the direct
phase-sensitive deamplification of the signal in a nonlinear
medium. A very similar scheme has been in fact successfully
demonstrated in the recent experiment of continuous variable
quantum erasing �42�.

Note that if we remove the last squeezing operation
S†�sout�, we obtain a simpler optical setup which produces a
squeezed superposition of Fock states S�sout��c0�0�+c1�1��. In
many cases, however, this squeezing may not be an obstacle
or may even represent an advantage. For example, the gen-
eration of Schrödinger cat states ���− �−�� can, for small ���,
be very well approximated by a squeezed single-photon state
S�s��1� �21,29�.

C. Realistic model

We shall now present a more realistic description of the
proposed scheme, taking into account that the photodetectors
exhibit only single-photon sensitivity, but cannot resolve the
number of photons in the mode, and have a detection effi-
ciency ��1. Such detectors have two outcomes, either a
click or a no-click. We model this detector as a sequence of
a beam splitter with transmittance � followed by an idealized
detector which performs a projection onto the vacuum and
the rest of the Hilbert space, �0= �0�
0� �no click�,
�1=1− �0�
0� �a click�.

Similarly to Ref. �31�, it is convenient to work in the
phase-space representation and consider the transformation
of Wigner functions. The setup in Fig. 1 involves two modes,
the principal mode A and an auxiliary mode B. Initially, the
mode A is in a squeezed vacuum state and the covariance
matrix is diagonal, 
A=diag�e−2sin ,e2sin�. The Gaussian
Wigner function of the initial state of mode A after the first
displacement thus reads

WG�rA;
A,dA� =
�det 
A

�
e−�rA − dA�T
A�rA−dA�, �20�

where rA= �xA , pA�T is the vector of quadratures of mode A
and dA=z1��2�Re �1 , Im �1�T is the displacement. The ma-
trix 
A is the inverse of the covariance matrix 
A.
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In a second step, the modes A and B are mixed on an
unbalanced beam splitter BS and then mode B subsequently
passes through a �virtual� beam splitter of transmittance �
which models the imperfect detection with efficiency �. This
transformation is a Gaussian completely positive �CP� map
M, and the resulting state of modes A and B is still a Gauss-
ian state with the Wigner function

WAB�rAB� =
�det 
AB

�2 e−�rAB − dAB�T
AB�rAB−dAB�, �21�

where rAB= �xA , pA ,xB , pB�T. The vector of the first moments
dAB= �dA ,dB�T and the covariance matrix 
AB=
AB

−1 can be
expressed in terms of the initial parameters of mode A before
the mixing on BS �i.e., z1 and 
A� as follows:

dAB � �dA

dB

 = S�z1

0

 ,


AB = S�
A � IB�ST + G , �22�

where S=S�SBS, S�= IA � ��IB, and G=0A � �1−��IB model
the inefficient photodetector, and SBS is a symplectic matrix
which describes the coupling of the modes A and B on an
unbalanced beam splitter,

SBS = �
t 0 r 0

0 t 0 r

− r 0 t 0

0 − r 0 t
� . �23�

After the photon subtraction, the density matrix �A,out of
mode A conditioned on a click of the photodetector PD mea-
suring the auxiliary mode B becomes

�A,out = TrB��AB�1A � �1,B�� , �24�

where TrB denotes a partial trace over mode B, and �AB is the
two-mode density matrix of the Gaussian state characterized
by the Wigner function �21�. Then, after the second displace-
ment of z2��2�Re �2 , Im �2�T, the Wigner function of mode
A can be written as a linear combination of two Gaussian
functions �20�, namely

W�r�P = C1WG�r;
1,d1� + C2WG�r;
2,d2� , �25�

where P is the probability of successful generation of the
target state. The expression �25� can be derived by rewriting
Eq. �24� in the Wigner representation. One uses the fact that
the Wigner function of the POVM element �1,B is a differ-
ence of two Gaussian functions,

W�1
�r� =

1

2�
−

1

�
e−x2−p2

, �26�

and that the trace of the product of two operators can be
evaluated by integrating the product of their Wigner repre-
sentations over the phase space.

To define the matrices and vectors appearing in Eq. �25�,
we first divide the matrix 
AB=
AB

−1 into four submatrices
with respect to the A �B splitting,


AB = ��A �

�T �B
� . �27�

The correlation matrix 
1 and the displacement d1 appearing
in the first term on the right-hand side of Eq. �25� are given
by


1 = �A − ��B
−1�T,

d1 = dA + z2,

C1 = 1. �28�

Similarly, the formulas for the parameters of the second term
read


2 = �A − ��̃B
−1�T,

d2 = dA + 
2
−1��̃B

−1dB + z2,

C2 = − 2� det�
AB�

det�
2�det��̃B�
exp�− dB

TMdB� , �29�

where �̃B=�B+ I and

M = �B�̃B
−1 − �̃B

−1�T
2
−1��̃B

−1. �30�

The final squeezing operation S†�sout�, described by the
symplectic matrix

Ss = �esout 0

0 e−sout
� , �31�

is applied to mode A after the last displacement. The result-
ing Wigner function of the output mode Aout can be written
as

Wout�r�P = C1WG�r;
1�,d1�� + C2WG�r;
2�,d2�� , �32�

where the inverse covariance matrix 
1,2� and the displace-
ment d1,2 appearing in the right-hand side of Eq. �32� are
given by


1,2� = Ss
−1
1,2Ss

−1,

d1,2� = Ssd1,2. �33�

Since all the Wigner functions in Eq. �25� or �32� are
normalized, the probability of a successful state generation
can be calculated simply as the sum P=C1+C2.

D. Examples

In order to illustrate our method, let us consider the prepa-
ration of the following four superpositions of �0� and �1�
states:

��1� = �1� , �34�

��2� =
1
�2

��0� + �1�� , �35�
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��3� =
1

�10
�3�0� + �1�� , �36�

��4� =
1

�10
��0� + 3�1�� . �37�

The fidelity of the generated state for the target states
�34�–�37� is plotted in Fig. 2�a� as a function of the initial
squeezing. We can see that the conditionally prepared states
are close to the desired states and their optimum fidelities are
reached for a low initial squeezing �below 2 dB�, which is
experimentally accessible. Although it is hardly visible in
Fig. 2�a�, there is typically a nonzero optimal value of the
initial squeezing, giving the highest fidelity. As shown in Fig.
2�b�, the increase of the initial squeezing improves the prob-
ability of successful generation of the target state. A compari-
son of Fig. 2�a� with Fig. 2�b� reveals a clear trade-off be-
tween the achievable fidelity and the preparation probability.

Figure 3�a� shows the dependence of the fidelity on the
beam splitter transmittance T, considering the optimal input
squeezing for each of the states. �Note that for state �34�, we
could not find numerically the optimum squeezing, so we
arbitrarily chose sin=0.50 dB as an optimal value in other to
keep a reasonable generation probability.� We see that as T

approaches unity, the fidelity gets arbitrarily close to unity,
while the probability of successful state generation decreases
as P� �1−T��, as shown in Fig. 3�b�. The value T=0.95
used in Fig. 2 seems to be a reasonable compromise between
the success rate �P�10−3 or P�10−4 depending on the tar-
get state� and the fidelity, F�0.95%.

We also have studied the dependence of the fidelity on the
detection efficiency �. The numerical results are shown in
Fig. 4�a�, where we can see that the scheme is very robust in
the sense that the fidelity almost does not depend on �. Fi-
delities above 95% could be reached even with � of the order
of a few percent if T is high enough. This is in agreement
with the findings of Ref. �31�. However, a low � reduces the
preparation probability, as shown in Fig. 4�b�.

III. ARBITRARY SINGLE-MODE STATE

In the preceding section, we have demonstrated that the
combination of two displacements and a photon subtraction
allows us to build any superposition of �0� and �1� states. In
this section, we shall generalize this procedure to any super-
position of the first N+1 Fock states,

���target = 	
n=0

N

cn�n� , �38�

and show that it can be prepared from a squeezed vacuum
state by applying a sequence of N+1 displacements inter-
spersed with N photon subtractions, and a final antisqueezing
operation as shown in Fig. 5.

A. Pure-state description

As in the preceding section, we first provide a simplified
pure-state description of the setup, assuming perfect detec-
tors with single-photon resolution. This will allow us to de-
termine the dependence of the coherent displacements � j on
the target state �38�. Generalizing the procedure presented in
the preceding section, the input-output transformation corre-
sponding to the sequence of operations in Fig. 5 reads

���out = S†�sout�D��N+1�XD��N�X ¯ D��2�XD��1�S�sin��0� .

�39�

FIG. 2. �a� Fidelity between the generated state and the target
state and �b� probability of successful generation as a function of
the squeezing sin for the four target states �34� �solid line�,
�35��dashed line�, �36� �dot-dashed line�, and �37� �dotted line�,
with T=0.95 and �=0.25.

FIG. 3. �a� Fidelity between the generated state and the target
state and �b� probability of successful generation as a function of T
for the four target states �34�–�37�. The curves are plotted consid-
ering the optimal squeezing sin for each state, namely 0.50 dB for
state �34� �solid line�, 1.66 dB for state �35� �dashed line�, 0.85 dB
for state �36� �dot-dashed line�, and 0.36 dB for state �37� �dotted
line�. The curves are plotted for �=0.25.

FIG. 4. �a� Fidelity between the generated state and the target
state and �b� probability of successful generation as a function of �
for the four target states �34�–�37�. The curves are plotted consid-
ering the optimal squeezing sin for each state, namely 0.50 dB for
state �34� �solid line�, 1.66 dB for state �35� �dashed line�, 0.85 dB
for state �36� �dot-dashed line�, and 0.36 dB for state �37� �dotted
line�. The curves are plotted for T=0.95.
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In order to simplify this expression, we first rewrite all
displacement operators in a normally ordered form and then
move all the operators tn to the right using the relations �9�.
This results in the substitution � j→� jt

N+1−j and
� j

*→� j
*tj−N−1 in the exponents. Next, we propagate all the

exponential operators e−tj−N−1�j
*a to the right,

���out � S†�sout�e�N+1a†
aet�Na†

a ¯ aetN�1a†
e−
*atNnS�sin��0� ,

�40�

where 
=	 j=1
N+1� jt

j−N−1. The combined action of the operators
tNnS�sin� on the vacuum produces a single-mode squeezed
vacuum state, tNnS�sin��0��S�s��0�, where tanh�s�
= t2N tanh�sin�. After some algebraic manipulations and tak-
ing sout=s, we get

���out � �
j=1

N

�a cosh�s� + a† sinh�s� − � j��0� , �41�

where

� j = 	
k=j+1

N+1

�kt
N+1−k. �42�

Formula �41� is valid provided that the overall displacement
is zero, corresponding to the constraint

cosh�s�	
j=1

N+1

� jt
N+1−j = sinh�s�	

j=1

N+1

� j
*tj−N−1, �43�

which generalizes condition �15�.
We now prove that an arbitrary superposition of

the first N+1 Fock states 	n=0
N cn�n� can be expressed

as � j=1
N �A−� j��0��	k=0

N hkA
k�0�, where A=a cosh�s�

+a† sinh�s� and hk are the coefficients of the characteristic
polynomial whose roots are � j. From the condition

	
k=0

N

hkA
k�0� = 	

n=0

N

cn�n� , �44�

we can immediately determine the coefficients hN and hN−1.
This is because only the term AN gives rise to a†N and, simi-
larly, only the expansion of AN−1 contains a†N−1. We thus get

hN =
cN sinh−N�s�

�N!
, hN−1 =

cN−1 sinh1−N�s�
��N − 1�!

. �45�

Once we know hN and hN−1, we insert them back in Eq. �44�,
and, from 	k=0

N−2hkA
k�0�=	n=0

N cn�n�− �hN−1AN−1+hNAN��0�, we
determine hN−2 and hN−3. By repeating this procedure, we
can find all coefficients hj. This proves that the condition
�44� can always be met for any nonzero squeezing, hence our
method is indeed universal and allows us to generate arbi-
trary superpositions. After finding the hj’s, the coefficients
� j’s are calculated as the roots of the characteristic polyno-
mial 	k=0

N hk�
k, and, finally, the N+1 displacements � j’s are

determined by solving the system of N+1 linear equations
�42� and �43�.

B. Realistic model

We shall now present a more realistic description of the
proposed scheme, which takes into account realistic photo-
detectors. After kth photon subtraction and �k+1�th displace-
ment, the density matrix �k,A of mode A conditioned on a
click of photodetector measuring the auxiliary mode B is
related to �k−1,A as follows:

�k,A = Dk+1TrB�M��k−1,A � �0�B
0���1A � �1,B��Dk+1
† ,

�46�

where �0,A=D1S�sin��0�
0�S†�sin�D1
†, Dk+1=D��k+1� is a dis-

placement operator, and M denotes the Gaussian CP map
�22� that describes mixing of the modes A and B on BS and
accounts for imperfect detection. Since each step �46� gives
rise to a linear combination of two Gaussian states from a
Gaussian state, the Wigner function of the state �k,A can be
written as a linear combination of 2k Gaussian functions,

Wk�r�Pk = 	
j=1

2k

Cj,kWG�r;
 j,k,dj,k� , �47�

where Pk is the probability of success of the first k photon
subtractions. The correlation matrices 
 j,k and displacements
dj,k after k photon subtractions and k+1 displacements can
be expressed in terms of 
 j,k−1 and dj,k−1.

Similarly as in Sec. II B, we first define the real displace-
ment vector zk��2�Re �k , Im �k�T and the two-mode cova-
riance matrix and vector of mean values after the action of
the CP map M,

�dj,k,A

dj,k,B

 = S�dj,k

0

 ,


 j,k,AB = S�
 j,k
−1

� IB�ST + G . �48�

We also decompose the inverse matrix 
 j,k,AB=
 j,k,AB
−1 simi-

larly as in Eq. �27�,


 j,k,AB = �� j,k,A � j,k

� j,k
T � j,k,B

� . �49�

The jth term in Eq. �47� gives rise to two new terms. The
�2j−1�th term is parametrized by

FIG. 5. Proposed experimental setup. An optical parametric am-
plifier generates a single-mode squeezed vacuum state S�sin��0�,
which then propagates through 2N+1 highly unbalanced beam
splitters BSD and BS, which realize a sequence of N+1 displace-
ments interspersed with N conditional photon subtractions. A sec-
ond squeezer is used to apply the final antisqueezing operation
S†�sout�. Successful state preparation is heralded by clicks of all N
photodetectors PDk.
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2j−1,k = � j,k−1,A − � j,k−1� j,k−1,B
−1 � j,k−1

T ,

d2j−1,k = dj,k−1,A + zk+1,

C2j−1,k = Cj,k−1. �50�

Similarly, the formulas for the 2jth term read


2j,k = � j,k−1,A − � j,k−1�̃ j,k−1,B
−1 � j,k−1

T ,

d2j,k = dj,k−1,A + 
2j,k
−1 � j,k−1�̃ j,k−1,B

−1 dj,k−1,B + zk+1,

C2j,k = − 2Cj,k−1� det�
 j,k−1,AB�

det�
2j,k�det��̃ j,k−1,B�

� exp�− dj,k−1,B
T Mdj,k−1,B� , �51�

where �̃ j,k−1,B=� j,k−1,B+ I and

M = � j,k−1,B�̃ j,k−1,B
−1 − �̃ j,k−1,B

−1 � j,k−1
T 
2j,k

−1 � j,k−1�̃ j,k−1,B
−1 .

Iterating these formulas N times starting from the initial
�k=0� Gaussian state �20� and then applying the final anti-
squeezing operation S†�sout� which acts on the inverse corre-
lation matrices 
 j,N and displacements dj,N as in �33�, one
obtains the Wigner function of the conditionally generated
state. The probability of state preparation can be calculated

simply as the sum P=	 j=1
2N

Cj,N.

C. Examples

We shall now consider, as an illustration, the generation of
superpositions of �0�, �1�, and �2�. These states, namely

��� =
1

�1 + �c0�2 + �c1�2
�c0�0� + c1�1� + �2�� , �52�

can be prepared with two photon subtractions. Here, we as-
sume that the coefficient c2 of the Fock state �2� is nonzero
�we arbitrarily take it equal to 1�. Otherwise, only one �or
zero� photon subtraction would be needed to generate the
target state. In the case of two photon subtractions inter-
spersed with three displacements, Eq. �41� reduces to

���out � �sinh�s�cosh�s� + �1�2��0� − ��1 + �2�sinh�s��1�

+ �2 sinh2�s��2� . �53�

This state matches the target state �52� if

�1,2 =
− B ± �B2 − 4C

2
, �54�

where

B = �2 sinh�s�c1,

C = �2 sinh2�s�c0 − sinh�s�cosh�s� .

Equations �42� and �43� allow us to calculate the displace-
ments needed to generate this state. Assuming for simplicity

that c0, c1, and s are chosen such that �1 and �2 are both real,
we obtain

�3 = �2,

�2 = ��1 − �3�/t ,

�1 =
tanh�s���3 + �2/t� − ��3 + t�2�

t2 − tanh�s�/t2 . �55�

In order to illustrate our method, let us consider the fol-
lowing four superpositions of the Fock states �0�, �1�, and �2�,

��1� = �2� , �56�

��2� =
1
�2

��1� + �2�� , �57�

��3� =
1
�2

��0� + �2�� , �58�

��4� =
1
�3

��0� + �1� + �2�� . �59�

We plot the behavior of the fidelity and probability of gen-
eration of the target states �56�–�59� as a function of the
initial squeezing sin �Fig. 6�, beam-splitter transmittance
�Fig. 7�, and photodetector efficiency �Fig. 8�. As in the pre-
ceding section, we observe that the fidelity of the generation
for any state gets arbitrarily close to 1 as T approaches unity,
as shown in Fig. 7. We also find that the fidelity is very
robust against small detector efficiency �, as can be seen in
Fig. 8. On the other hand, the preparation probability de-
creases with a growing T and decreasing �, as predicted by
the equation P� �1−T�2�2.

All these features are very similar to those found in the
preceding section, where we considered only states generated
with one photon subtraction. Let us now stress some new
features. First, we note here the existence of a clear optimal
input squeezing, giving the maximum fidelity for each of the
four studied states, see Fig. 6�a�. Observing that for a fixed T
the optimal squeezing has a higher value �from 2.4 dB for
state �58� to 4 dB for state �57�� than those encountered in

FIG. 6. �a� Fidelity between the generated state and the target
state and �b� probability of successful generation as a function of
the squeezing sin for the four target states �56� �solid line�, �57�
�dashed line�, �58� �dot-dashed line�, and �59� �dotted line�, with
T=0.95 and �=0.25.
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the case of one photon subtraction, we can expect an increas-
ing value of the optimal squeezing for an increasing number
of Fock states in the target superposition. It can be checked
that the value of this optimal input squeezing tends to zero
when T tends to 100%, at the expense of a vanishing gen-
eration probability.

Another interesting fact is the existence of very different
values of the maximum fidelity for different target states for
a fixed T=0.95 and �=0.25, as shown in Fig. 6�a�. For ex-
ample, the two-photon state �2� is much more difficult to
generate using our method than the other three states
�57�–�59�. For the state �2�, a transmittance of T�0.99 is
necessary to reach a fidelity of F�0.95, resulting in a very
low probability of generation. This would make the experi-
mental generation of �2� �or S�sout��2� if the final squeezing
operation is omitted� with a good fidelity very challenging.
In contrast, the balanced superposition state �59� can be gen-
erated with a high fidelity F�0.90 even with a transmittance
T�0.90.

Finally, a surprising fact arises when �1��2. Then, Eq.
�55� give two distinct sets of �i’s generating the same target
state, the second set being obtained by making the exchange
�1↔�2. Considering the pure-state description and T→1,
the two alternative choices of displacements become strictly

equivalent. In contrast, when considering the realistic model
with T�1, these two solutions for the same target state do
not have exactly the same behavior. As we can see in Fig.
9�a�, one of the two solutions is indeed more robust to de-
creasing T. However, the two solutions are rather similar as
far as the probability of state generation is concerned, as
shown in Fig. 9�b�.

IV. EFFICIENT STATE PREPARATION USING QUANTUM
MEMORY

We have seen in the preceding sections that the probabil-
ity of successful state preparation decreases exponentially
with the maximum number of photons N in the superposi-
tion, P� �1−T�N�N, which would limit the applicability of
the scheme to N�2 in practice. In order to overcome this
problem and enhance the success rate, we have to use some
additional resources besides linear optics and squeezers. The
main weakness of the present scheme is that all photon sub-
tractions have to succeed simultaneously for the state to be
generated, which results in this exponential scaling. As we
will see, this can be avoided provided that a quantum
memory is employed. Recently, the first experimental dem-
onstrations of quantum memory for light based on the inter-
action of light beams with atomic ensembles have been re-
ported �43,44�. A quantum memory enables us to
deterministically store the state of a light mode for some
time, and to retrieve it later on when required.

Our efficient state preparation scheme works in an itera-
tive manner, with two states with up to N /2 photons being
generated separately and stored in a quantum memory. The
total number of trials required to generate both states then
scales as 1 / PA+1/ PB, instead of 1/ �PAPB�, which would be
the case without a memory. The two states are then merged,
and a state with up to N photons is produced. This merging is
achieved conditionally by combining the two modes on a
balanced beam splitter and projecting one of the output
modes onto vacuum, see Fig. 10�a�. This requires an efficient
detector, being able to discriminate between the presence and
absence of a photon. This is a second extra resource for our
efficient state preparation scheme. The scheme is iterative in

FIG. 7. �a� Fidelity between the generated state and the target
state and �b� probability of successful generation as a function of T
for the four target states �56�–�59�. The curves are plotted consid-
ering the optimal squeezing sin for each state, namely 3.54 dB for
state �56� �solid line�, 4.02 dB for state �57� �dashed line�, 2.43 dB
for state �58� �dot-dashed line�, and 3.24 dB for state �59� �dotted
line�. The curves are plotted for �=0.25.

FIG. 8. �a� Fidelity between the generated state and the target
state and �b� probability of successful generation as a function of �
for the four target states �56�–�59�. The curves are plotted consid-
ering the optimal squeezing sin for each state, namely 3.54 dB for
state �56� �solid line�, 4.02 dB for state �57� �dashed line�, 2.43 dB
for state �58� �dot-dashed line�, and 3.24 dB for state �59� �dotted
line�. The curves are plotted for T=0.95.

FIG. 9. �a� Fidelity between the generated state and the target
state and �b� probability of successful generation as a function of T
for the two target states �57� and �59�. The curves correspond to the
two alternative choices of the displacements �1 and �2 when con-
sidering the optimal squeezing sin for each state, namely 4.02 dB
for state �57� �dotted line, dot-dashed line� and 3.24 dB for state
�59� �dashed line, solid line�. The curves are plotted for �=0.25.
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the sense that each of the states with up to N /2 photons is
itself obtained by merging two states with up to N /4 pho-
tons, etc.

The scheme starts from superpositions of vacuum and
single-photon states c0�0�+c1�1�, which can be prepared con-
ditionally using the scheme discussed in Sec. II. These states
are repeatedly merged together and after each successful
merging the resulting state is stored in a quantum memory,
see Fig. 10�b�. After k successful iterations, an arbitrary state
containing up to 2k photons can be prepared. A similar tech-
nique was proposed by some of the present authors to effi-
ciently generate two-mode N-photon entangled Schrödinger
cat-like states �45�, and it is inspired by the quantum repeater
concept �46,47� where such a recursive method is exploited
to efficiently distribute entanglement through noisy channels
over long distances.

In order to check that the iterative scheme is
universal, note that any state ���2N��=	n=0

2N cn�n� can be
written as ���2N���� j=1

2N �a†−� j��0�. Now choose ��A
�N��

�� j=1
N ��2aA

† −� j��0� and ��B
�N���� j=N+1

2N ��2aB
† −� j��0�. If the

modes A and B are combined on a balanced beam splitter,
then we have in the Heisenberg picture

aA,in =
1
�2

�aA,out + aB,out� ,

aB,in =
1
�2

�aA,out − aB,out� . �60�

As a consequence, the state of the output mode A condi-
tioned on projecting B onto vacuum is proportional to ���2N��.
This decomposition of ���2N�� into ��A

�N�� and ��B
�N�� can be

repeated until we find the 2N basic states c0
k�0�+c1

k�1�,
k=1, . . . ,2N, from which the state ���2N�� can be iteratively
prepared.

As a first example, let us consider the preparation of the
state ���2��=c0�0�+c1�1�+c2�2� by merging the states
a0�0�+a1�1� and b0�0�+b1�1�, where the coefficients aj and bj
can be determined by solving a system of equations

b1

b0
+

a1

a0
= �2

c1

c0
,

a1

a0

b1

b0
= �2

c2

c0
�61�

and using the normalization of the states. The probability of
successful merging is given by

PM = �a0�2�b0�2 +
1

2
�a0b1 + a1b0�2 +

1

2
�a1�2�b1�2. �62�

The probability can be bounded from below, PM �
1
3 , and the

minimum is achieved when a0=b0=1/�3 and a1=−b1
=�2/3. It follows that the total number of elementary opera-
tions required to generate the state ���2�� is Otot�6/ P1,
where P1 is the probability of preparing the superposition of
vacuum and single-photon states. This should be compared
with the total number of trials Otot�1/ P1

2 necessary when
the scheme described in the preceding section is used in-
stead. As we have seen before, P1�10−2, hence the present
procedure reduces the number of necessary operations by
more than an order of magnitude even in this simplest case.
The price to pay, of course, is the need for a quantum
memory and a highly efficient photodetector for the merging
operation.

In order to show that the required resources scale only
subexponentially with N, let us consider preparation of the
single-mode cat-like states �1/�2���0�+ �N��. At the nth itera-
tion step, states �0�±cn−1�2n−1� are merged to produce a state
�0�+cn�2n� �we omitted the normalization prefactors for sim-
plicity�. The coefficients are related as follows:

cn =
cn−1

2

22n−1
2n−1!

�2n!. �63�

Starting from clog2 N=1, all coefficients cn, n� log2 N can be
determined from Eq. �63�. The probability of successful
merging is given by

P�n−1�→n =
1 + �cn�2

�1 + �cn−1�2�2 �64�

and the total number of operations to prepare the state
�0�+cn�2n� can be estimated as On=2On−1 / Pn−1→n. For large
K=2n, we can use the Stirling approximation
K!��2�KKKe−K and we get cn�cn−1

2 / ��2n−1�1/4. Within
this approximation, we can bound the probability �64� as
follows:

Pn−1→n �
1

��2n−1

��2n−1 + �cn−1�4

�1 + �cn−1�2�2 �
1

2��2n−1
. �65�

The recurrence formula for the total number of operations
becomes On=2��2n+1On−1, which can be solved to yield

On =
1

P1
�2�2��n2n�n+1�/4, �66�

where P1 is the probability of preparation of �0�+c0�1�. An
approximate bound on the total number of operations
Ocat,tot�N� required to generate the state �1/�2���0�+ �N�� can
be obtained from Eq. �66� by setting n=log2 N, and we get

Ocat,tot�N� �
1

P1
N�7/4�+�1/2�log2 �N�1/4�log2 N, �67�

which is clearly a subexponential scaling with N. In Fig. 11,
we plot the total number of operations as a function of N
determined by exact numerical calculations. The log-log plot

FIG. 10. �a� Setup for merging two states in modes A and B into
a single state. The procedure succeeds conditionally on detecting no
photons in the left output mode. �b� Starting from superpositions of
�0� and �1� and repeating the merging operation iteratively, it is
possible to prepare states with up to 2n photons after n iterations.
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reveals that the dependence of Ocat,tot�N� on N is essentially
polynomial.

As an example, consider the case N=8. Assuming
P1=10−2, we get Ocat,tot�8�=37000, while if using the
scheme discussed in Sec. III, then eight photon subtractions
would have to be performed simultaneously and about
�1/ P1�8=1016 trials would be required. The scheme employ-
ing a quantum memory is thus 11 orders of magnitude more
efficient.

V. CONCLUSIONS

In summary, we have shown that an arbitrary single-mode
state of light can be engineered starting from a squeezed
vacuum state and applying a sequence of displacements and
single-photon subtractions, followed by a final squeezing op-
eration. More precisely, the setup based on N single-photon
subtractions can be used to generate any superposition of the
N+1 first Fock states. The experimental implementation of
the last squeezing operation may be quite challenging, but
actually the scheme remains useful even if it is skipped �in
which case the scheme simply produces a squeezed superpo-
sition of the N+1 first Fock states�. Indeed, the generation of
squeezed superpositions of Fock states may even represent
an advantage in some cases, such as the preparation of
Schrödinger cat states.

We have shown that the desired target state can be suc-
cessfully produced with very high fidelity using a reasonably
low squeezing ��3 dB� if the transmittance T of the beam
splitter used for photon subtraction is sufficiently close to
unity �e.g., T�95%�. This holds even when inefficient pho-
todetectors with single-photon sensitivity but no single-
photon resolution are employed, such as the standard ava-
lanche photodiodes. We have studied the dependence of the
achievable fidelity on the detection efficiency �, and have
found that the scheme is very robust in the sense that the

fidelity almost does not depend on �. Fidelities above 95%
could be reached even with � of the order of a few percent if
T is high enough. However, low � and high T drastically
reduce the preparation probability, so that a compromise has
to be made when determining T.

Since our proposal does not require single-photon sources
and can operate with low-efficiency photodetectors, we an-
ticipate that its experimental implementation will be much
easier than for the previous proposals, in particular the one
based on repeated photon additions �16�. The recent demon-
stration of single-photon subtraction from a single-mode
squeezed vacuum �30� provides strong evidence of the prac-
tical feasibility of our scheme. In this experiment, a rather
low overall detection efficiency ���1% � was reported, due
to the spectral and spatial filtering of the beam measured by
the photodetector. This filtering is necessary because the op-
tical parametric amplifier emits squeezed vacuum in several
modes, while mode A is precisely selected in the experiment
by the strong local oscillator pulse in the balanced homodyne
detector. Despite this filtering, the single-photon detector PD
can sometimes be triggered by photons coming from other
modes, so this would probably be the main source of imper-
fections in our scheme.

Finally, we have demonstrated that the state preparation
efficiency can be significantly enhanced by using an iterative
scheme starting from superpositions c0�0�+c1�1� and merg-
ing them together in order to generate higher-dimensional
superposition states. This procedure, however, makes the
scheme less practicable since it requires a quantum memory
and highly efficient detectors discriminating between the
presence and absence of photons.

As a conclusion, we may reasonably assert that the gen-
eration of arbitrary squeezed superpositions of �0� and �1�
should be experimentally achievable using our scheme with
the present technology, while some improvement of the fil-
tering and detection efficiency would probably be needed in
order to extend the scheme to the preparation of squeezed
superpositions of �0�, �1�, and �2�. The final antisqueezing
operation required to obtain a finite superposition of Fock
states is technically perhaps the most demanding part of the
scheme, but is also achievable with the current technology.
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FIG. 11. Total number of operations required to prepare a
single-mode Schrödinger cat-like state ��0�+ �N�� /�2.
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