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We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of
d-dimensional quantum systems prepared in an arbitrary isotropic state. It maximizes the entanglement of
formation contained in the two copies of any maximally entangled input state, while preserving the separability
of unentangled input states. Moreover, it cannot increase the entanglement of formation of isotropic states. For
large d, the entanglement of formation of each clone tends to one-half the entanglement of the input state,
which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields
entangled clones with one-fourth the input entanglement in the large-d limit.
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I. INTRODUCTION

The no-cloning theorem �1� precludes a perfect cloning of
arbitrary quantum states. However, an imperfect cloning is
possible and various quantum cloning machines �QCM’s�,
which duplicate quantum states with the highest fidelity,
have been proposed following the seminal paper of Buzek
and Hillery �2�. Recently, the question of whether quantum
entanglement can be cloned or not was raised in �3�. Since
quantum entanglement is a resource for quantum computa-
tion, quantum communication, and quantum cryptography, it
is important to know up to what extent this resource can be
duplicated. For maximally entangled �ME� states in two di-
mensions, an entanglement no-cloning principle was formu-
lated: “if a quantum operation can be found that perfectly
duplicates the entanglement of all ME states, then it neces-
sarily does not preserve separability.” A QCM was proposed
that optimally �but imperfectly� clones the entanglement of a
pair of two-dimensional systems �qubits� while preserving
separability.

In the present paper, we extend these results to pairs of
d-dimensional quantum systems, with arbitrary d. We show
that a �symmetric� cloning machine can be defined, which
maximizes the amount of entanglement of the two clones of
ME states, while producing separable clones in the case of
unentangled input states. We analyze the entanglement of the
clones in terms of fidelity, but show that optimizing the clon-
ing machine in terms of fidelity actually leads to maximizing
the entanglement of formation of the clones provided that we
restrict ourselves to isotropic input states �including ME
states� and cloning machines that are covariant under local
unitaries. We then compare the resulting optimal d�d en-
tanglement cloner to a “local” cloning transformation that
can be achieved by applying a separate universal cloning
machine to each component of the bipartite system.

II. COVARIANT CLONER UNDER LOCAL UNITARIES
IN DIMENSION dÃd

Following the ideas presented in �3�, we seek for a clon-
ing transformation that �i� preserves separability and �ii�
maximizes the entanglement of the two clones resulting from

any ME input state. We will characterize a cloner by consid-
ering the transformation of an input that is maximally en-
tangled with a reference system �see �4��. Using the isomor-
phism between completely positive �CP� maps S and
positive semidefinite operators S�0 on the tensor product of
input and output Hilbert spaces Hin � Hout �5�, we shall rep-
resent our cloning transformation by a quantum state S.

Let us illustrate this isomorphism following Ref. �6�. Con-
sider first a ME state on Hin

�2:

��+� =
1
�d

�
j=0

d−1

�j�1�j�2, �1�

where d=dim�Hin�. Applying the map S to the subsystem 2
one obtains the resulting �generally mixed� quantum state

S = I1 � S2�d��+�	�+�� , �2�

which is isomorphic to S. A trace preserving map satisfies

Trout�S� = 1in. �3�

The CP map �out=S��in� can be expressed in terms of S as
follows:

�out = Trin��in
T

� 1outS� , �4�

where T denotes the transposition in the Schmidt basis of
��+�. We shall call “reference” the part of state S which
corresponds to Hin and denote this Hilbert space as HR.

For the 1→2 cloning transformation we observe, first,
that the output Hilbert space Hout must include at least a
tensor product Ha � Hb of two clones a and b. In addition,
one needs to introduce an ancilla, which we shall denote as
A. Therefore the total output state must be endowed with the
tensor product structure Hout=Ha � Hb � HA. The ancilla is
necessary in order to purify the state S into a pure state �S�
such that S=TrA �!S�	S ! � �4�. Together with the reference
component the overall state !S� belongs to the product space
HR � Ha � Hb � HA.

Thus following the arguments of Refs. �4� and �6�, we
shall construct the state �S� as a linear combination of prod-
ucts of four components: namely, the reference system,
which we denote as R, two blanc states for future clones
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denoted as a and b, and an ancilla state denoted by A. As we
are interested in cloning entanglement, all four components
are now d2-dimensional bipartite states. The general form for
such a cloning transformation is defined in the computational
basis 
�i�� �where �i�= ��iA��iB�� by the state

�S�R,a,b,A = �
i,j,k,l

sijkl�i�R�j�a�k�b�l�A. �5�

All the summations here are d2 dimensional since each index
i , j ,k, or l actually represents a couple of indices running
each from 0 to d−1—e.g., i= 
iA , iB�, with iA , iB� �0;d−1�.
Of course, index A stands for Alice’s component of the bi-
partite states, while B stands for Bob’s component.

As mentioned above, the joint state of the two clones and
the ancilla is obtained by performing an appropriate projec-
tion on the reference system. Thus, for an input state ���
=�ini�i�, the result of the cloning transformation is of the
form

��� = R	�*�S�R,a,b,A = �
i,j,k,l

sijklni�j�a�k�b�l�A. �6�

Then, the state of any one of the clones is further obtained by
tracing out the ancilla and the other clone. This is a kind of
global transformation that clones jointly the components A
and B of the entangled initial state resulting in two bipartite
entangled states as shown in Fig. 1 �ii�.

Next, we impose the following covariance condition on
our cloning machine. Since we know that any local unitary
operation acting on the A and B components of a bipartite
state preserves its entanglement, we require that any such
transformation act similarly on the clones. This condition
amounts to imposing

�S�R,a,b,A = U*
� U � U � U*�S�R,a,b,A, �7�

where U is the product of any two unitary transformations
acting separately on each d-dimensional component of the
bipartite state—that is

U = UA � UB, �8�

where the indices A and B denote Alice’s and Bob’s compo-
nents. Defined in this way, the operator U possesses a
SU�d� � SU�d� symmetry. The covariance property implies
that sijkl in Eq. �1� satisfies the transformation

sijkl = Uii�
* Ujj�Ukk�Ull�

* si�j�k�l�, �9�

where U* denotes the matrix-element-wise complex conju-
gate of U with respect to the computational basis. �Here, the
summation over all repeated indices is implicit.� If the trans-
formation with respect to Alice’s component is real—i.e., a
rotation under SO�d�—then Eq. �5� implies that sijkl is a
rank-4 isotropic tensor—i.e., invariant under all possible real
rotations of the reference frame. There are only three inde-
pendent components of such isotropic tensor �see �7��:
�iAjA

�kAlA
, �iAkA

� jAlA
, and �iAlA

� jAkA
. Furthermore, if the trans-

formation is complex—i.e., a rotation under SU�d�—then the
term �iAlA

� jAkA
must be excluded since, for example, it does

not fulfill Eq. �9� with the phase transformation Uij
=ei��iAjA

�iBjB
for any angle �. The same reasoning holds for

Bob’s component. Then, combining all possible terms com-
patible with Eq. �9�, the general form for the resulting tensor
is

sijkl = A�iAjA
�kAlA

�iBjB
�kBlB

+ B�iAjA
�kAlA

�iBkB
� jBlB

+ C�iAkA
� jAlA

�iBkB
� jBlB

+ D�iAkA
� jAlA

�iBjB
�kBlB

.

�10�

For a symmetric cloner, the output state must be invariant
under the interchange of the two clones—i.e., under permu-
tations �jA , jB�↔ �kA ,kB�. This implies that A=C and B=D,
so we are left with only two complex parameters A and B to
be determined.

III. OPTIMAL ENTANGLEMENT CLONER IN DIMENSION
dÃd

The covariance condition �7� guarantees that our QCM
transforms all states which are equivalent up to local unitar-
ies �which have therefore the same entanglement� into
equally entangled clones. In particular, the clones of all ME
states will be equally entangled. Then, a cloner that is opti-
mized on a particular ME input state will be optimal for all
ME states. We choose as an initial d�d ME state

��� = �
iA,iB=0

d−1

niAiB
�iA��iB� , �11�

where niA,iB
=�iAiB

/�d. As we shall show later on, we can
maximize the entanglement of the clones simply by optimiz-
ing our QCM in terms of the fidelity of the clones,

F = 	���a��� , �12�

where

�a = TrA,b����	��� �13�

is the state of clone a. For the ME state �11�, this fidelity is
found to be

F = �A�2�d2 + 3� + 4�B�2 + 4 Re�AB*�
d2 + 1

d
. �14�

Taking into account the normalization condition for the joint
output state ���,

FIG. 1. �i� Optimal d�d entanglement cloner; �ii� “local” en-
tanglement cloner, as defined in Sec. IV. Here, A and B stand for
Alice’s and Bob’s part of the bipartite state, while a and b stand for
two clones. Entanglement is indicated by double loops.
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2��A�2 + �B�2��d2 + 1� + 8d Re�AB*� = 1, �15�

we can maximize the fidelity, Eq. �14�, which yields

F =
1

4
�d2 + 1

d2 − 1
+�1 +

4

d2d2 − 2

d2 − 1
�2� . �16�

Note that, for d=2, this result coincides with the maximal
fidelity of the entanglement cloner for two qubits obtained in
�3�—namely,

F =
5 + �13

12
� 0.7171. �17�

The corresponding solution in d dimensions is

A =
d�1 + Y�d� − �1 − Y�d�

2�d2 − 1�
, �18�

B = −
d�1 − Y�d� + �1 + Y�d�

2�d2 − 1�
, �19�

where

Y�d� = 1 −
�d2 − 2�2

d2�d2 − 1�2 + 4�d2 − 2�2�1/2

. �20�

IV. COMPARISON WITH OTHER CLONERS

We compare the fidelity achieved by our optimal
�d�d�-dimensional entanglement cloner, Eq. �16�, with that
of the universal cloner �4�,

Fu =
1

2
+

1

d2 + 1
, �21�

as well as that of the optimal real cloner �8�,

Fr =
1

2
+

�d4 + 4d2 + 20 − d2 + 2

4�d2 + 2�
. �22�

In order to make this comparison consistent, we have ob-
tained formulas �21� and �22� by replacing the argument d by
d2 in the original formulas. This is done because, in our
consideration, the dimension d stands for the dimension of
each component of the bipartite input state, so that the total
dimension of our input state is d2.

In Table I, we compare the fidelity F of our entanglement
cloner with Fu and Fr for several values of the dimension d.
Our cloner performs better than the universal cloner in d2

dimensions for all d, which is obviously due to the fact that
the ME states span only a subset of the entire set of
d2-dimensional states. In contrast, the real d2-dimensional
cloners outperform our cloners, except if d=2 where they
coincide �3�. This can be interpreted by noting that the set of
d2-dimensional real states is generated by SO�d2�, with
�d2�d2+1� /2�−1 real degrees of freedom, while the set of
ME states is generated by SU�d��SU�d�, with �d2−1�2 real
degrees of freedom. For d=2, they coincide, so that our
cloner provides the same fidelity as that of the real cloner in
dimension 4—namely, Eq. �17�. This is related to the fact
that the set of ME two-qubit states is isomorphic to the set of
four-dimensional real states �3�. For d�2, the set of ME
states is in some sense “larger” than the set of real states, so
that the achievable fidelity of the entanglement cloner is
lower. The fidelity of our cloner drops faster than that of the
real cloner with increasing d, but remains always higher than
the fidelity of the universal cloner. As expected, in the limit
d→	, all three fidelities tend to the asymptotic value 1/2. In
this limit, all quantum cloners can be interpreted simply as a
classical transformation that maps the original state to one of
the clones, chosen at random, the other clone being prepared
in a maximally mixed state.

Interestingly, we may also compare Eq. �16� to the fidelity
of a “local cloner” obtained by applying a cloner separately
to Alice’s and Bob’s components �see Fig. 1 �ii��. Since the
state of Alice’s or Bob’s subsystem is maximally mixed
�hence nonpolarized� when the bipartite state is ME, it is
natural to use a universal d-dimensional cloner. We may ob-
serve that if we consider a cloning transformation that per-
forms such a local universal cloning, then it is represented by
a joint state of the same type as Eq. �5�; see Ref. �4�. The
only difference is that in expression �10� for the tensor sijkl,
all coefficients must be equal—i.e., A=B=C=D. The nor-
malization condition �15� then gives immediately A
=1/ �2�d+1��. Substituting this expression into Eq. �14� re-
sults in the fidelity

Floc =
1

4
+

d + 2

2d�d + 1�
�23�

for the local cloner. This fidelity is compared in Table I with
that of the other cloners. It appears that cloning Alice’s and

TABLE I. Optimal fidelity F of the d�d entanglement cloner for various dimensions d. It is compared to
the fidelity of the real cloner Fr and universal cloner Fu, both in d2 dimensions, to the fidelity of the d�d
“local” cloner Floc, and to the fidelity of a “local” cloner “improved” by classical communication FLOCC. The
fidelities are shown in decreasing order.

d�d Fr F Fu FLOCC Floc

2�2 0.7171 0.7171 0.7000 0.625 0.5833

3�3 0.6069 0.6019 0.6000 0.4583

4�4 0.5617 0.5592 0.5588 0.4000

5�5 0.5398 0.5386 0.5385 0.3667

6�6 0.5277 0.5271 0.5270 0.3452
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Bob’s parts locally leads to a much lower fidelity. Note that
for d=2, the value of the fidelity Floc in Table I coincides
with the value 7/12 obtained in �3�. In the limit d→	, this
fidelity tends to 1/4, which can be easily understood as fol-
lows. To contribute to the fidelity, both cloners indeed need
to map Alice’s and Bob’s components of the original state
onto the right clone, which only happens with probability
�1/2�2=1/4. An interesting observation made in Ref. �9� is
that classical communication can improve local cloners. The
result for d=2 presented in Table I shows indeed the in-
creased value of FLOCC compared to the fidelity Floc of the
local universal cloner. This value, however, is lover than the
result for all considered nonlocal cloners.

V. ENTANGLEMENT OF FORMATION OF THE CLONES

In order to investigate the entanglement properties of our
cloning transformation, we will use as an entanglement mea-
sure for the clones the entanglement of formation �10�,
which was computed for several classes of states that are
invariant under some groups of local symmetries �11�. In
particular, we will be interested in the class of states that are

invariant under the transformations U � U* for all U in
SU�d�, called isotropic states in �11,12�. These states may be
written in a general form as �13�

� =
1 − F

d2 − 1
�1 − ���	��� + F���	�� , �24�

where 1 is the identity and ��� is given by Eq. �11�. Due to
the covariance condition �7�, our QCM transforms U � U*

invariant states into states that are also invariant under U
� U*. We can check that, by cloning the particular ME state
���, which is U � U* invariant, we obtain a clone of the form

�a = ��d2 + 2��A�2 + 2�B�2 + 4d Re�A*B�����	��

+ �A�2 + 2�B�2 +
4

d
Re�A*B��1 , �25�

which is indeed an isotropic state and is consistent with Eq.
�14�. Hence, as a consequence of our covariance condition,
all ME states, which can be obtained from ��� by applying
local unitaries, are cloned onto isotropic states. For this class
of states, the entanglement of formation is known for arbi-
trary dimensions �11,13�

EF��� =�
0, F 


1

d
,

R1,d−1�F� , F � �1

d
,
4�d − 1�

d2 � ,

d log2�d − 1�
d − 2

�F − 1� + log2 d , F � �4�d − 1�
d2 ,1� ,

� �26�

where

R1,d−1�F� = H2„��F�… + �1 − ��F��log2�d − 1� , �27�

��F� =
1

d
��F + ��d − 1��1 − F��2, �28�

H2�p� = − p log2�p� − �1 − p�log2�1 − p� . �29�

As shown in Fig. 2, the entanglement of formation, EF���,
is a monotonically increasing function of the fidelity F for
isotropic states in any dimension d. Therefore, by optimizing
our QCM in terms of fidelity we maximize, at the same time,
the entanglement of the clones measured by their entangle-
ment of formation. The circles in Fig. 2 correspond to the
maximal fidelity F that is achieved by our entanglement
cloner, Eq. �16�. They show as well the corresponding en-
tanglement of formation in each dimension. The crosses
mark the crossover between the expression of the fidelity
corresponding to the second and third lines of Eq. �26�. One

notes that only for d�7 are there values of the fidelity for
which the entanglement of formation has to be evaluated
according to the third line of Eq. �26�.

In order to visualize how the entanglement itself is
cloned, we plot in Fig. 3 the entanglement of formation, EF,
of the clones as a function of the entanglement of formation
of the input ME state, Ein, which is simply the von Neumann
entropy of the reduced density matrix, Ein= log2 d. We note
that the entanglement of the clones is always less than one-
half the entanglement of the input state, while it asymptoti-
cally approaches this value for large d. The apparent “dis-
continuity” �if one can say so for a discrete graph�
corresponds to d=7—i.e., the crossover between the second
and third lines of Eq. �26� when calculating the entropy of
formation. In the limit of d→	, the third line of Eq. �26�
tends to EF=F log2 d=FEin. Since the cloner can be viewed,
in this limit, as a classical random distribution process asso-
ciated with a fidelity F=1/2, then the entanglement of each
clone tends to one-half the entanglement of the initial state,
EF=Ein /2.

In Fig. 3, we also plot the entanglement of formation re-
sulting from the “local” cloner discussed above. Recall that
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this cloner differs from our optimal �nonlocal� entanglement
cloner only by setting A=B. Therefore it is also covariant,
satisfying Eq. �7�, and all our arguments about the entangle-
ment of formation of the clones are applicable to this cloner
as well. Thus, using the fidelity of the clones Eq. �23�, we
may plot the entanglement of formation of the clones. We see
that the local cloner leads to a lower entanglement of forma-

tion, and even the asymptotics of EF for large d is no more
than one-fourth the entanglement of the input state. The rea-
son is that in the limit of large d, the classical random dis-
tribution only succeeds with probability 1 /2 independently
for Alice’s and Bob’s components, so the fidelity is 1 /4.
Hence, EF→Ein /4. These observations confirm that by in-
creasing the dimensionality, we make the system behavior
look more and more classical.

VI. SEPARABILITY CONSERVATION

The last point to check is that our cloner does not create
entanglement by itself; that is, it clones separable states into
separable states. First, an important observation is that our
cloner is such that the input-to-single-clone transformation is
a positive partial transposition �PPT� map. Using Eqs. �5�
and �10� and tracing the joint state �S�R,a,b,A over the ancilla
A and one of the clones—say, b—we arrive at the following
expression for the state of the reference and the other clone:

SR,a = �A�2�1A � 1B�R,a + d2
„�d2 + 2��A�2 + 2�B�2

+ 4d Re�A*B�…����A	��A � ���B	��B�R,a

+ d„d�B�2 + 2 Re�A*B�…����A	��A � 1B

+ 1A � ���B	��B�R,a, �30�

where 1A is the identity operator in the joint space of Alice’s
component of the reference R and clone a, while ���A

=d−1/2�i=0
d−1�i�A,R�i�A,a is a ME state in the same space. �The

same notations are used for Bob’s analogous quantities 1B
and ���B.� The cloning map is thus PPT since �SR,a�TB �0,
where TB stands for the partial transposition with respect to
Bob’s components of the reference R and clone a. This PPT
property ensures that the cloning of any isotropic state can-
not increase its fidelity, hence its entanglement of formation
�14�. In particular, all separable isotropic states are necessar-
ily transformed into separable clones.

In order to generalize this separability conservation prop-
erty to all separable input states, outside the restricted class
of isotropic states, we consider the cloning of a product state
�A � �B. By tracing ��A � �B�TSR,a over the reference R, we
obtain for the first clone a state of the form

�a = �A�2�1A � 1B�a + ��d2 + 2��A�2 + 2�B�2 + 4d Re�A*B��

���A � �B�a + �d�B�2 + 2 Re�A*B��

���A � 1B + 1A � �B�a, �31�

where 1A and 1B are identities in Alice’s and Bob’s subspaces
of clone a, respectively. Since all terms in Eq. �31� are prod-
uct states and all coefficients are positive semidefinite for all
d, we verify that �a is separable. By linearity of the trace, this
result also holds for any linear combination �ipi�i

A
� �i

B with
pi�0 and �ipi=1—that is, for a generic separable state.
Thus, we can conclude that our entanglement cloner trans-
forms all initially separable states into separable clones.

VII. CONCLUSION

In conclusion, we have constructed an optimal �symmet-
ric� entanglement cloner, which is universal over the set of

FIG. 2. Entanglement of formation, EF, of the clone of a maxi-
mally entangled input state versus the fidelity F of the clone for
various dimensions d=2–20 �the lowest curve corresponds to d
=2, while the highest curve corresponds to d=20�. The circles show
the maximum achievable fidelity and the corresponding entangle-
ment of formation. The crosses mark the crossover between the
expression of the fidelity corresponding to the second and third
lines of Eq. �26�.

FIG. 3. Entanglement of formation, EF, of the clones of a maxi-
mally entangled state obtained by the optimal �nonlocal� cloner ���
and the local cloner �� versus the entanglement of the input state,
Ein, for various dimensions d=2–200. The apparent “discontinuity”
in both curves is due to the crossover from the second to the third
line of Eq. �26� for d�7 �optimal cloner� and d�13 �local cloner�.
Solid lines represent the asymptotics of EF for large d in both cases.

CLONING QUANTUM ENTANGLEMENT IN ARBITRARY… PHYSICAL REVIEW A 72, 042314 �2005�

042314-5



d�d ME states in arbitrary dimension d. On the one hand,
all separable input states are cloned by this cloner into sepa-
rable states. On the other hand, the entanglement of the
clones of ME input states is maximum. In addition, the en-
tanglement of isotropic states cannot be increased by the
cloner �and we conjecture this property holds in general for
any input state�. The optimization of the parameters of our
QCM was performed by maximizing the fidelity of the
clones, but the monotonic behavior of the entanglement of
formation as a function of the fidelity for isotropic states
guarantees that such an optimization maximizes the en-
tanglement of the clones at the same time. We expect that
entanglement is cloned “monotonically” also for nonisotro-
pic states; that is, higher entangled states result in higher
entangled clones, and therefore the ME input states are those
which generate the clones with the maximum achievable en-
tanglement. If this very natural assumption is right, then,
based on our result, one can state that our cloner optimally
duplicates the entanglement of any pair of d-dimensional
quantum systems. Moreover, the maximal entanglement at-
tainable by cloning is always below one-half of the entangle-

ment of the input state and saturates this value in the limit of
large dimension d. This is consistent with the idea that, since
our QCM transforms separable states into separable clones,
no additional entanglement is produced by cloning, so we
can only split the entanglement of the input state between the
two clones. This explains as well the asymptotic value of
one-fourth the initial entanglement for the local cloner at the
limit of large d. It is natural to expect all these conclusions
remain valid for asymmetric entanglement cloners as well.
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