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The bosonic quantum channels have recently attracted a growing interest, motivated by the hope that they
open a tractable approach to the generally hard problem of evaluating quantum channel capacities. These
studies, however, have always been restricted to memoryless channels. Here, it is shown that the classical
capacity of a bosonic Gaussian channel with memory can be significantly enhanced if entangled symbols are
used instead of product symbols. For example, the capacity of a photonic channel with 70%-correlated thermal
noise of one-third the shot noise is enhanced by about 11% when using 3.8-dB entangled light with a modu-
lation variance equal to the shot noise.
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I. INTRODUCTION

A main goal of quantum information theory is to evaluate
the information capacities of quantum communication chan-
nels. In particular, an important question is to determine how
much classical information can be processed asymptotically
via a quantum channel. This problem has been solved, today,
only for a few quantum channels, and it has been addressed
only recently for bosonic channels, i.e., continuous-variable
quantum channels acting on a bosonic field such as the elec-
tromagnetic field �1�. The classical capacity of a purely lossy
bosonic channel was solved exactly only very recently �2�,
while the case of a noisy bosonic channel is still not com-
pletely solved. More precisely, the classical capacity of the
Gaussian bosonic channel �a continuous-variable quantum
channel undergoing a Gaussian-distributed thermal noise�
has been derived in �3� but this result only holds provided the
optimal input ensemble is a tensor product of Gaussian pure
states, as conjectured by several authors but not rigorously
proven today �see, e.g., �4� for recent progress on this prob-
lem�. All these studies, however, have been restricted to
memoryless bosonic channels.

In this paper, we investigate the capacity of a bosonic
Gaussian channel that exhibits memory. This study is moti-
vated by the recent finding that, for some extension of the
depolarizing channel with correlated noise, sending en-
tangled qubit pairs can enhance the classical capacity �5�.
Such an effect, which has even been experimentally demon-
strated in optical fibers exhibiting slowly fluctuating birefrin-
gence �6�, contrasts with the common knowledge that en-
tanglement is of no use for information transfer via a
memoryless quantum channel. Here, we consider channels
with a thermal noise that has a finite bandwidth. The result-
ing memory effect is modeled by assuming that the noise
affecting two subsequent uses of the channel follows a bi-
variate Gaussian distribution with a nonvanishing correlation
coefficient, measuring the degree of memory of the channel.
We prove that if the memory is nonzero and if the input

energy is constrained, then the transmission rate can be sig-
nificantly enhanced by using entangled symbols instead of
product symbols. The relation between the degree of
memory and the resulting optimal input entanglement is ana-
lyzed.

II. BOSONIC GAUSSIAN CHANNELS

Let us define a memoryless bosonic Gaussian channel T
acting on a mode of the electromagnetic field associated with
the annihilation and creation operators a and a†, or, equiva-
lently, the quadrature components q= �a+a†� /�2 and p
= i�a†−a� /�2, satisfying the commutation relation �q , p�= i.
If the input of the channel is initially in state �, we have

� � T��� =� d2� q���D����D†��� , �1�

where d2�=d�Re����d�Im����, while D���=e�a†−�*a denotes
the displacement operator �such that ���=D����0� with �0�
being the vacuum state and ��� being a coherent state of
mean value ��. For a Gaussian channel, the kernel is a bi-
variate Gaussian distribution with variance N, that is, q���
= ��N�−1e−���2/N. The channel then randomly displaces an in-
put coherent state according to a Gaussian distribution,
which results in a thermal state �N is the variance of the
added noise on the quadrature components q and p, or,
equivalently the number of thermal photons added by the
channel�. The Gaussian CP map effected by this channel can
also be characterized via the covariance matrix. Restricting
to Gaussian states with a vanishing mean value, a complete
state characterization is provided by the covariance matrix

� = 	 
q2� 1
2 
qp + pq�

1
2 
qp + pq� 
p2�

� . �2�

The Gaussian channel can then be written as
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� � � + 	N 0

0 N
� . �3�

III. CLASSICAL CAPACITY OF A QUANTUM
CHANNEL

The coding theorem for quantum channels asserts that the
one-shot classical capacity of a quantum channel T is given
by

C1�T� = max�S	
i

piT��i�� − 
i

piS�T��i��� , �4�

where S���=−Tr�� log �� is the von Neumann entropy of the
density operator �. In Eq. �4�, the maximum is taken over all
probability distributions �pi� and collections of density op-
erators ��i� satisfying the energy constraint


i

piTr��ia
†a� � n̄ , �5�

with n̄ being the maximum mean photon number at the input
of the channel. For a monomodal bosonic Gaussian channel,
it is conjectured that a Gaussian mixture of coherent states
�i.e., a thermal state� achieves the channel capacity. In the
rest of this paper, we will not question this generally admit-
ted conjecture, so our analysis will be restricted to Gaussian
states. The sum over i is replaced by an integral over �,
where the input states ��

in= ���
�� are drawn from the prob-

ability density p���= ��n̄�−1e−���2/n̄. Thus, the one-shot clas-
sical capacity of the channel becomes

C1�T� = S��̄� −� d2� p���S���
out� , �6�

where we have defined the individual output states

��
out = T���

in� =
1

�N
� d2� e−

�� − ��2

N ���
�� �7�

and their mixture �saturating the energy constraint�

�̄ =� d2� p�����
out =

1

��n̄ + N�
� d2� e−

���2

n̄+N ���
�� . �8�

In order to calculate the entropy of a state �, one computes
the symplectic values of its covariance matrix �, i.e., the
solutions of the equation ��−�J�=0, where

J = 	 0 i

− i 0
� . �9�

It can be shown that these values always come as a pair ±�,
so that the entropy is given by S���=g����− 1

2
�, where

g�x� = ��x + 1�log2�x + 1� − x log2x , x 	 0,

0, x = 0,
� �10�

is the entropy of a thermal state with a mean photon number
of x. Since the input states ��

in are coherent states with a
covariance matrix

�in =
1

2
	1 0

0 1
� , �11�

the individual output states ��
out and their mixture �̄ are asso-

ciated with the covariance matrices

�out =
1

2
	1 + 2N 0

0 1 + 2N
� , �12�

�̄ =
1

2
	1 + 2�n̄ + N� 0

0 1 + 2�n̄ + N�
� , �13�

so that the one-shot capacity of the channel is

C1�T� = g�n̄ + N� − g�N� . �14�

IV. BIMODAL CHANNEL

Consider two subsequent uses of a memoryless channel T,
defining the bimodal channel

� � T12��� =� d2�1d2�2q��1,�2�


D��1� � D��2�� D†��1� � D†��2� , �15�

where q��1 ,�2�= ��N�−2e−���1�2�+��2�2/N since the noise affect-
ing the two uses is uncorrelated. Ordering the quadrature
components of the two modes in a column vector R
= �q1 , p1 ,q2 , p2�T, we define the covariance matrix �12 of a
bimodal state �12 as

�12 = Tr�R�12R
T� − 1

2J1 � J2, �16�

where each Jj takes the form �9�. We restrict ourselves to
bimodal Gaussian states, characterized by

�12 = 	 �1 �12

�12
T �2

� , �17�

where �1 is the covariance matrix associated with the re-
duced density operator �1=Tr2��12� of mode 1 �and similarly
for �2�, while �12 characterizes the correlation and/or en-
tanglement between the two modes. For a memoryless chan-
nel, the optimal input states are simply products of coherent
states, with a covariance matrix �12

in =�1
in

� �2
in where �1

in and
�2

in both take the form �11�, while �12
in =0. The optimal input

modulation is a product of Gaussian distributions, p��1 ,�2�
= ��n̄�−2e−���1�2+��2�2�/n̄. It follows that the classical capacity of
this channel is additive, 1

2 
C1�T12�=C1�T�.

V. BOSONIC GAUSSIAN CHANNEL WITH MEMORY

Let us investigate what happens if the noise is correlated,
for instance, when the two uses are closely separated in time
and the channel has a finite bandwidth. We assume that the
noise distribution takes the general form

q��1,�2� =
1

�2���N�
e−�†�N

−1�, �18�

where �= �Re��1� , Im��1� ,Re��2� , Im��2��T and �N is the
covariance matrix of the noise quadratures, chosen to be
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�N =�
N 0 − xN 0

0 N 0 xN

− xN 0 N 0

0 xN 0 N
� . �19�

Thus, the map T12 can be expressed by �12��12+�N, so that
the noise terms added on the p quadratures of modes 1 and 2
are correlated Gaussians with variance N �those added on the
q quadratures are anticorrelated Gaussians with variance N
�7��. The correlation coefficient x ranges from x=0 for a
memoryless channel to x=1 for a channel with full memory.

We will now prove that for correlated thermal noise, the
capacity is attained if some appropriate degree of entangle-
ment is injected at the input of the channel �8�. Intuitively, if
we take an Einstein-Podolsky-Rosen �EPR� state, i.e., the
common eigenstate of q1+q2 and p1− p2 with respective ei-
genvalues q+ and p−, it is clear that the noise on q+ and p−
effected by the channel is reduced as x increases. This sug-
gests that using entangled input states may decrease the ef-
fective noise, hence increase the capacity. However, EPR
states have infinite energy so they violate the energy con-
straint. Instead, we may inject �finite-energy� two-mode
vacuum squeezed states, whose covariance matrix is given
by

�1
in = �2

in =
1

2
	cosh 2r 0

0 cosh 2r
� , �20�

�12
in =

1

2
	− sinh 2r 0

0 sinh 2r
� , �21�

with r being the squeezing parameter. Note that purely clas-
sical correlations between the quadratures in the input distri-
bution p��1 ,�2� also help increase the capacity when x	0,
so we have to check that entanglement gives an extra en-
hancement in addition to this.

The mean photon number in each mode of the state char-
acterized by Eqs. �20� and �21� is sinh2r, so that the maxi-
mum allowed modulation �for a fixed maximum photon
number n̄� decreases as entanglement increases. Remarkably,
there is a possible compromise between this reduction of
modulation and the entanglement-induced noise reduction on
q+ and p−. To show this, consider input states with sinh2r
=�n̄, where � measures the degree of entanglement and is
used to interpolate between a product of vacuum states ��
=0�, which can be maximally modulated, and an entangled
state ��=1�, for which the entire energy is due to entangle-
ment and no modulation can be applied. At the output of the
channel, we get states with a covariance matrix �12

out where

�1,2
out =

1

2
	cosh2r + 2N 0

0 cosh2r + 2N
� , �22�

�12
out =

1

2
	− sinh2r − 2xN 0

0 sinh2r + 2xN
� , �23�

while the mixture �̄12 of these states is characterized by

�̄1,2 = �1,2
out + 	�1 − ��n̄ 0

0 �1 − ��n̄
� , �24�

�̄12 = �12
out + 	y�1 − ��n̄ 0

0 − y�1 − ��n̄
� , �25�

assuming that the energy constraint is saturated. Here, y
stands for the classical input correlation coefficient �to com-
pensate for the noise, the q displacements need to be corre-
lated, and the p displacements anticorrelated�.

VI. ENTANGLED-ENHANCED CAPACITY

In order to evaluate the transmission rate achieved by
these states, we need first to compute the symplectic values

�12
out and �̄12 of �12

out and �̄12, respectively. The symplectic
values ±�12 of a covariance matrix �12 of the generic form
�17� are the solutions of the equation ��12−�12�J1 � J2��=0,
or, equivalently, the biquadratic equation

�12
4 − ���1� + ��2� + 2��12���12

2 + ��12� = 0. �26�

Using Eqs. �22�–�25�, we see that �12
out and �̄12 admit each

one pair of doubly degenerate symplectic values, namely,

�12
out= ±�uout

2 −vout
2 and �̄12= ±�ū2− v̄2, with

uout =
1

2
+ �n̄ + N, vout = ��n̄�1 + �n̄� + xN ,

ū =
1

2
+ n̄ + N, v̄ = ��n̄�1 + �n̄� + xN − y�1 − ��n̄ .

The transmission rate per mode is then given by

R�y,�� = g���̄12� − 1
2� − g���12

out� − 1
2� . �27�

When x	0, the optimized rate R over y increases with the
degree of entanglement � and attains a maximum at some
optimal value �*	0 �see Fig. 1�, so that the maximum is
achieved by entangled input states as advertised.

It now suffices to maximize R with respect to both y and
� in order to find the channel capacity C �assuming that the
restriction to Gaussian states is justified and that no product
but non-Gaussian states may outperform the Gaussian en-
tangled states considered here�. If we keep the signal-to-
noise ratio n̄ /N constant, it is visible from Fig. 2 that the
optimal degree of entanglement �* is the highest at some
particular value of the mean input photon number n̄, and then
decreases back to zero in the large-n̄ limit �except if x=0 or
1�. Clearly, in this limit, the channel T tends to a couple of
classical channels with Gaussian additive noise �one for each
quadrature�, so that entanglement cannot play a role any
more �9�. Figure 3 shows the corresponding optimal value of
the input correlation coefficient y* for the same values of the
other relevant parameters. Note that, even in the classical
limit n̄→, some nonzero input correlation is useful to en-
hance the capacity of a Gaussian channel with x	0.
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VII. CONCLUSIONS

We have shown that entangled states are useful to enhance
the classical capacity of a bosonic channel undergoing a ther-
mal noise with memory. We determined the amount of en-
tanglement that maximizes the information transmitted over
the channel for a given input energy �mean photon number
per mode� and noise level �mean number of thermal photons
per mode�. For example, the capacity of a channel with a
mean number of thermal photons of 1 /3 and a correlation
coefficient of 70% is enhanced by 10.8% if the mean photon
number is 1 and the two-mode squeezing is 3.8 dB at the
input. This capacity enhancement may seem paradoxical
since using entangled signal states necessarily decreases the
modulation variance for a fixed input energy, which seem-
ingly lowers the capacity. However, due to the quantum cor-
relations of entangled states, the noise affecting one mode
can be partly compensated by the correlated noise affecting
the second mode, which globally reduces the effective noise.
Interestingly, there exists a regime in which this latter effect

dominates, resulting in a net enhancement of the amount of
classical information transmitted per use of the channel. The
capacity gain G, measuring the entanglement-induced capac-
ity enhancement, is plotted in Fig. 4. It illustrates that a ca-
pacity enhancement of tens of percents is achievable by us-
ing entangled light beams with experimentally accessible
levels of squeezing.
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FIG. 1. Transmission rate R �maximized over the classical cor-
relation coefficient y� as a function of the input entanglement � for
a thermal channel with a degree of memory x. The mean number of
photons is n̄=1 at the input, while the number of added thermal
photons is N=1/3.

FIG. 2. Optimal degree of input entanglement �* as a function
of the mean input photon number n̄ for a fixed signal-to-noise ratio
n̄ /N=3.

FIG. 3. Optimal degree of input correlation y* as a function of
the mean input photon number n̄ for a fixed signal-to-noise ratio
n̄ /N=3.

FIG. 4. Capacity gain G=maxy,�R�y ,�� /maxyR�y ,0� as a func-
tion of the mean input photon number n̄ for a fixed signal-to-noise
ratio n̄ /N=3.
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