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Experimental Error Filtration for Quantum Communication Over Highly Noisy Channels
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Error filtration is a method for encoding the quantum state of a single particle into a higher dimensional
Hilbert space in such a way that it becomes less sensitive to noise. We have realized a fiber optics
demonstration of this method and illustrated its potentialities by carrying out the optical part of a quantum
key distribution scheme over a line whose phase noise is too high for a standard implementation of BB84
to be secure. By filtering out the noise, a bit error rate of 15:3%� 0:1%, which is beyond the security
limit, can be reduced to 10:6%� 0:1%, thereby guaranteeing the cryptographic security.
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FIG. 1. Fiber optics QKD setup with error filtration. A repre-
sents the attenuator, C the circulator, and D the single photon
detector.
One of the central results in quantum information is that
errors can, in principle, be corrected [1,2]. This discovery
transformed quantum information from an intellectual
game into a field which could revolutionize the way we
process information. Practical realizations of quantum
error correcting codes are, however, extremely difficult
because they require multiparticle interactions. A first ex-
perimental demonstration of quantum error correction has
recently been realized [3], but it is still very far from being
usable in practical applications. An alternative method,
called error filtration, allows errors to be filtered out during
quantum communication, and can in contrast be easily
implemented using present technology [4]. The main
idea of error filtration is to encode one qubit in a single
particle within a Hilbert space of dimension greater than
two. It is then possible to detect, with high probability,
whether an error has occurred, and if so, to discard the
state. This quantum error detection scheme is less powerful
than full error correction, but, for many applications such
as quantum key distribution (QKD), discarding the state
affected by noise is sufficient. The advantage of this
method is that the encoding and decoding operations do
not require multiparticle interactions, hence they are rela-
tively easy to implement by interferometric techniques.

Here, we report on a proof-of-principle experimental
demonstration of the capabilities of error filtration. For a
detailed theoretical introduction to the method, we refer to
[4] where it is also shown that error filtration can be
extended to the purification of entanglement. Our experi-
mental scheme is based on the fiber optics ‘‘plug-and-
play’’ quantum cryptosystem [5,6] and its extension to
more than two dimensions introduced in [7]. The interest
of error filtration is illustrated by performing the optical
part of a QKD scheme over a noisy quantum communica-
tion channel with so much noise that a secure BB84 pro-
tocol cannot be realized. (BB84, introduced in [8], is the
standard protocol used in QKD. It is based on the use of
two maximally conjugate bases in a two dimensional
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space.) It is known that if the bit error rate (BER) exceeds
14.6%, then a simple cloning attack makes the BB84
protocol insecure. On the other hand, if the BER is lower
than 11.0%, then the BB84 protocol is provably secure; see
[9] for a review. Between the two boundaries lies a gray
zone where the security of BB84 is unknown [10]. In our
experiment, we consider an error prone QKD scheme
with a BER � 15:3%� 0:1%, which is therefore insecure.
Using error filtration, the BER is brought down to 10:6%�
0:1% so that QKD is rendered secure. Nevertheless, the
present work will probably not have immediate practical
applications because phase noise is not the main limiting
factor in present day QKD. However, better detectors and
new techniques such as quantum repeaters (see [11] for a
recent proposal) will be used in the future. Then, the
contribution of phase noise could become the main limit-
ing factor and error filtration could provide a solution.
Finally, note that it was realized previously that the use
of higher dimensional systems can increase the resistance
of QKD to noise [12]. Error filtration presents advantages
over these earlier suggestions as we discuss below.

Our experimental error filtration setup works with at-
tenuated coherent states traveling in localized time bins
in optical fibers (standard SMF-28); see Fig. 1. Bob uses
a laser diode at 1:55 �m to produce a 3 ns light pulse.
The pulse is attenuated by an optical attenuator (Agilent
1-1  2005 The American Physical Society



FIG. 2. Visibility (detector dark counts subtracted) as a func-
tion of the standard deviation of the noise signal produced by the
function generator. The proportionality factor between the x axis
and � was determined by fitting the experimental data without
filtration with Eq. (3). The squares (full circles) represent the
measured visibilities without (with) filtration, while the curves
are the theoretical predictions of Eqs. (3) and (7). The open
circles show filtration in the quantum regime where the state sent
by Alice contains on average 0.8 photons (which is in the regime
where QKD is secure against photon-number splitting attacks
[13]). The inset magnifies the data in the region where one passes
from an insecure (V � 70:7%) to a secure (V > 78:0%) QKD
protocol. The crisscrossed area shows that a visibility that is
either insecure or of unknown security can be increased to a
provably secure one. By averaging over 200 000 runs, the error
bars were made smaller than the plotting points.
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8156A), and then split by a first 50=50 coupler (C1) to
produce two pulses. These pulses impinge on the input
ports of a polarization beam splitter (PBS) with a time
delay � � 60 ns. Their polarizations are rotated, using
polarization controllers, so that the two pulses exit by the
same port of the PBS. Next, the two pulses are processed
through an unbalanced Mach-Zehnder (MZ) interferome-
ter C2C3 with a path length difference equivalent to 2�.
This produces four emerging pulses traveling down a
900 ns delay line (representing the noisy communication
channel). Then, at Alice’s site, the pulses are reflected back
by a Faraday mirror. The use of a Faraday mirror makes the
setup insensitive to birefringence in the delay line. Alice
may modify the phases of the four pulses using a phase
modulator (�A) (Trilink) controlled by a pattern generator
(Agilent 81110A). When they reach Bob’s site, the pulses
pass through the MZ interferometer and interfere at the C2

coupler, which, as we shall show, realizes error filtration.
The six emerging pulses then travel trough Bob’s phase
modulator (�B) (Trilink) and the PBS to the coupler C1,
where they interfere and are sent to a single-photon detec-
tor (id Quantique id200) via a circulator. The detector was
gated by a pattern generator during a 5 ns window around
the arrival time of the central pulse. Its output was regis-
tered using a time-to-digital delay converter (ACAM-GP1)
connected to a computer. All electronic components were
triggered by a pulse generator (Standford Research Inc.
DG355). In order to maximize the interference visibilities,
polarization controllers were introduced in the long arm of
the MZ interferometer and in front of the polarization-
sensitive phase modulators. Once optimized, the setup
was stable for days.

Before discussing error filtration, let us first consider the
case where the MZ interferometer C2C3 is absent. Then our
setup is identical to the plug-and-play quantum cryptog-
raphy setup [5]. The wave function describing the state
after Alice has encoded her phase �A can be written as
1
��

2
p �jt0iH � ei�A jt1iV�, where the subscripts H and V rep-

resent the polarization states while the subscripts 0 and 1
represent the relative delay of time bin i, i.e., ti � i 	�. In
the BB84 protocol, the phase�A must be chosen randomly
in f0; 
2 ; 
;

3

2 g. The ( � 1) phase in front of jt1iV takes into

account the conventional relative phase of 
=2 between
the reflected and transmitted light at coupler C1 and at the
PBS. The state leaving Alice’s site thus reads

j i �
1
���

2
p �jt0iV � ei�A jt1iH
; (1)

where the polarizations have been interchanged because of
the Faraday mirror.

Intrinsic noise in the plug-and-play QKD scheme is
actually very low, see [6], so that in our experiment we
had to simulate the noisy channel by making Alice’s phase
modulator imperfect. This was achieved by electronically
combining the signal from the pattern generator with the
output of a function generator (Agilent 33250A) producing
23050
Gaussian electronic noise with an adjustable amplitude and
a 50 MHz 3 dB bandwidth. Since the time bins are sepa-
rated by 60 ns, the phase noise in the successive time bins
can be considered as independent. The state produced by
Alice is thus

1
���

2
p �ei’0 jt0iV � ei��A�’1�jt1iH
; (2)

where the ’i’s are independent random phases drawn
from a Gaussian probability distribution P�’i� �

1
���������

2
�2
p �

exp��’2
i =�2�

2�
 of tunable variance �2. The density
matrix obtained by averaging over the random phases is
� � e��

2
j ih j � �1� e��

2
�1=2, so that phase noise

amounts to the admixture of isotropic noise. In terms of
bit error rate, this noise level thus corresponds to
BER � 1� h j�j i � �1� e��

2
�=2.

The two pulses travel back to Bob, who performs a
measurement in the 1

��

2
p �jt0iV � e�i�B jt1iH� basis by apply-

ing the phase �B 2 f0; 
2g. Bob’s detector is connected to
either output port P1 or P2. The probability for Bob to
detect a count (assuming a perfect detector) is 1

2 �
1
2 �

cos�’1 � ’0 ��A ��B� where the sign depends on
which output port is used. The predicted visibility of the
1-2
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interference fringes measured by Bob is

V �
Imax � Imin

Imax � Imin
� e��

2
: (3)

The measured values of V (after subtracting dark counts)
agree well with this prediction; see the lower curve in
Fig. 2. Note that the visibility is related to the bit error
rate via BER � �1� V�=2.

The idea of error filtration is that if the noise on the
different time bins is independent, then one can reduce its
effect by using more than two time bins. Indeed, if the
receiver lets several time bins interfere then the noise will
have a tendency to average out in the useful constructive
port, while the anticorrelated part of the noise is rejected.
This globally reduces the noise at the expense of intensity;
see [4]. In order to implement this idea we use the addi-
tional MZ interferometer C2C3. Each pulse exiting from
the PBS is split into two pulses by the MZ interferome-
ter according to jt0iH ! �jt0iH � jt2iH�=2, jt1iV !
�jt1iV � jt3iV�=2. The factor 1=2 takes into account that
half of the intensity is lost at coupler C3. After Alice has
encoded her phase �A and the pulses have been reflected
by the Faraday mirror, the state becomes
23050
1

2
���

2
p �jt0iV � jt2iV � ei�A�jt1iH � jt3iH�
: (4)

This is formally identical to the BB84 protocol since Alice
effectively uses the two-dimensional space S spanned by
�jt0iV � jt2iV� and �jt1iH � jt3iH�. The time bins t2 and t3
are just replicas of the time bins t0 and t1, respectively.
Then, because of the noise, the four pulses get random
phases ’0, ’1, ’2, and ’3, respectively. The state that
Alice sends back to Bob is thus

1

2
���

2
p �ei’0 jt0iV � ei’2 jt2iV � ei�A�ei’1 jt1iH � ei’3 jt3iH�
:

It now belongs to the full space spanned by jt0iV , jt1iV ,
jt2iH, and jt3iH, since the phase noise has taken it out of the
space S. The idea of error filtration is for Bob to project the
state back onto S in order to selectively enhance the
visibility. This projection is realized by the MZ interfer-
ometer. At coupler C3 each time bin has amplitude 1=

���

2
p

of
following the long path and amplitude 1=

���

2
p

to follow the
short path. The resulting state after C2 is
1

4
���

2
p �ei’0 jt0iV � ei��A�’1�jt1iH � �ei’0 � ei’2�jt2iV � ei�A�ei’1 � ei’3�jt3iH � ei’2 jt4iV � ei��A�’3�jt5iH�
: (5)

Time bins t0, t1, t4, t5 will not be used. As we discuss below, their appearance is due to the specific implementation we use
and gives rise to a loss which is not intrinsic to the method.

Bob now realizes his measurement by putting his phase�B on time bins 1, 3, and 5: jt1;3;5i ! ei�B jt1;3;5i. At the PBS the
V-polarized photons take the long path whereas theH-polarized photons take the short path. The state at the output of C1 is

�1

4
���

2
p ��ei’0 � ei��A��B�’1��jt1i � �ei’2 � ei��A��B�’3��jt5i � ��ei’0 � ei’2� � ei��A��B��ei’1 � ei’3�
jt3i
; (6)
where the � sign depends on which output port (P1 or P2)
the state exits.

When the photon comes out in time bin t3, the visibility
of the interference fringes, assuming that the noise affect-
ing the different time bins is independent, is

V � 2=�1� e�
2
�: (7)

Comparing with Eq. (3) we see that filtration affects an
increase of visibility.

The generalization of Eq. (7) to the case where Alice
uses 2N time bins to encode her qubit is immediate. One
finds that the visibility becomes V2N � N=�N � 1� e�

2
�;

see [4].
There are two sources of loss in the above implementa-

tion. The first is not intrinsic to the method and is due to the
photons ending up in time bins t1 and t5 after Bob’s
measurement, see Eq. (6), which do not have improved
visibility and are therefore discarded. In principle this
could be remedied by replacing coupler C3 by a switch
that deterministically sends pulses t0 and t1 in the initial
state Eq. (5) along the long path and pulses t2 and t4 along
the short path. We did not implement this because high
speed low loss switches do not exist commercially at
present. The second source of loss is intrinsic to the method
of error filtration: visibility is enhanced by separating the
signal into two components: a noisy one which is discarded
and a good one which is kept. This intrinsic loss occurs in
our experiment at coupler C2 in time bins t2, t3 where the
light emerging from the unused output port (P4) is com-
pletely noisy and is simply discarded. The probability of
discarding the state in port P4 is zero in the absence of
noise and increases to 1=2 as the amount of noise increases.
This should be contrasted with the fact that no intrinsic
losses occur at coupler C1: both output ports P1 and P2
contain useful information.

The measured average visibilities (after subtracting de-
tector dark counts) are plotted in Fig. 2 as a function of the
phase-noise standard deviation in the case where Alice
applies �A � 0 and Bob measures the output port P1. In
this case, without noise, the maximal visibilities exceeded
99%. With unfiltered noise (lower curve), the visibility
decreases exponentially with the amount of noise in accor-
dance with Eq. (3). The filtration achieved by our setup
(upper curve) is also very close to the theoretical prediction
of Eq. (7). Visibilities in the range from 65% to 78% are
1-3
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enhanced, by filtration, to the range from 78% to 85%; see
inset of Fig. 2. Noting that the security threshold BER<
11:0% translates into V > 78:0% while the insecurity
threshold BER � 14:6% corresponds to V � 70:7%, we
conclude that our setup transforms a BB84 protocol which
is insecure (or of unknown security) into a provably secure
one. Note that the visibilities were also tested for the other
possible values of �A � 
=2, 
, 3
=2 used in the BB84
protocol and for both ports P1 and P2. The visibilities all
exceeded 97.2% in the case where no noise is added. The
lowest visibilities are associated with the cases where Alice
and Bob choose the f
2 ;

3

2 g basis since then both parties

must apply a potential to their phase modulator which
makes the setup noisier.

In Fig. 2, the visibilities were measured in a regime
where the overall number of photons in all time bins
when they leave Alice’s site is approximately 120 photons.
In this way, the dark counts of the detector are negligible.
To consider a realistic QKD implementation, we also ran
the experiment in the regime where the quantum state sent
by Alice back to Bob contains on average approximately
0.8 photons in total (which is in the regime where QKD is
secure against photon-number splitting attacks [13]). The
difficulty in this case is that dark counts become very
important (they give a raw error rate of about 30%) because
we use 3-ns pulses [14]. Nevertheless, we were able to
show in this regime that a visibility of 69:4%� 0:2% in the
absence of filtration can be turned into 78:8%� 0:2% by
filtration (where the statistical error due to subtracting the
dark counts was calculated for a 95% confidence level); see
open circles in Fig. 2. These visibilities are averaged over
all four choices of �A and for the two output ports P1 and
P2, so they are the relevant quantities for characterizing a
QKD scheme. This averaging explains why these points lie
slightly off the curves in Fig. 2. Note that in QKD the errors
due to the dark counts can in principle be removed using
error correction codes without altering the security,
although in practice this is probably impossible for the
high level of dark counts we have here.

We conclude by comparing this method with other QKD
schemes that use higher dimensional systems [12]. The
noise model in both cases is the same: a d-dimensional
state j i entering the communication channel exits as � �

e��
2
j ih j � �1� e��

2
�1=d. This makes the comparison

meaningful. The QKD schemes based on sets of mutually
unbiased bases considered in [12] can only tolerate a noise
level up to e��

2
< 1=2. This is because when e��

2
� 1=2,

there is a simple attack in which the eavesdropper (Eve)
does not modify the state with probability 1=2, while with
probability 1=2, she keeps the state and sends a random one
instead. In contrast, error filtration can tolerate arbitrarily
high levels of noise if d is sufficiently large since the
visibility Vd tends to 1 for large d and fixed e��

2
. The

reason why the above attack no longer works in the case of
error filtration is that when Eve replaces the quantum state
23050
by a random one, the filtration preferentially removes the
corresponding noisy term. In other words, the noise is
replaced by a higher effective loss. On the other hand,
this means that a QKD scheme using error filtration can
be vulnerable to attacks which exploit loss when weak
coherent states are used, such as photon splitting attacks.
However, recent work [13] shows that this is a less serious
issue than initially thought.

In summary, the present experiment demonstrates the
optical part of a quantum key distribution scheme which
can operate with a phase-noise level that is too high for a
standard implementation of the BB84 to be secure. This
demonstrates the power and simplicity of error filtration as
a practical method for circumventing phase noise in quan-
tum communication.
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under ARC 00/05-251 and from the IUAP programme of
Belgian government under Grant No. V-18.
1-4
[1] P. W. Shor, Phys. Rev. A 52, R2493 (1995); A. M. Steane,
Phys. Rev. Lett. 77, 793 (1996).

[2] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher,
J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722
(1996).

[3] J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and
A. Zeilinger, Nature (London) 423, 417 (2003).

[4] N. Gisin, N. Linden, S. Massar, and S. Popescu, quant-ph/
0407021 [Phys. Rev. A (to be published)].

[5] G. Ribordy et al., Electron. Lett. 34, 2116 (1998).
[6] D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and

H. Zbinden, New J. Phys. 4, 41 (2002).
[7] E. Brainis, L.-P. Lamoureux, N. J. Cerf, Ph. Emplit,

M. Haelterman, and S. Massar, Phys. Rev. Lett. 90,
157902 (2003).

[8] C. H. Bennett and G. Brassard, Proceedings of IEEE
International Conference on Computers, Systems, and
Signal Processing, Bangalore, India (IEEE, New York,
1984), pp. 175–179.

[9] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev.
Mod. Phys. 74, 145 (2002).

[10] These bounds refer to BB84 with one way classical post-
processing which is the case in all practical implementa-
tions. For two way postprocessing the bounds change. See
H.-K. Lo and D. Gottesman, IEEE Trans. Inf. Theory 49,
457 (2003).

[11] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and
N. Gisin, Nature (London) 421, 509 (2003).

[12] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin,
Phys. Rev. Lett. 88, 127902 (2002).

[13] H.-K. Lo, X. Ma, and K. Chen, quant-ph/0407021 [Phys.
Rev. Lett. (to be published)].

[14] By using shorter laser pulses, we should be able to
decrease the dark count rate by at least a factor of 10.


