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Non-Gaussian Cloning of Quantum Coherent States is Optimal
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We consider the optimal cloning of quantum coherent states with single-clone and joint fidelity as
figures of merit. While the latter is maximized by a Gaussian cloner, the former is not: the optimal single-
clone fidelity for a symmetric 1-to-2 cloner is 0.6826, compared to 2=3 in a Gaussian setting. This cloner
can be realized with an optical parametric amplifier and certain non-Gaussian bimodal states. Finally, we
show that the single-clone fidelity of the optimal 1-to-1 cloner is 1=2. It is achieved by a Gaussian scheme
and cannot be surpassed even with supplemental bound entangled states.
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The no-cloning theorem states that there is no quantum
apparatus capable of perfectly duplicating an arbitrary
input state [1]. This is a direct consequence of the linearity
of quantum mechanics and a fundamental difference be-
tween classical and quantum information. This theorem
enables one of the most promising applications of quantum
information theory, namely, secure quantum key distribu-
tion. Moreover, the impossibility of perfect cloning ma-
chines is intimately connected to other impossible tasks in
quantum mechanics [2].

Soon after the observation of the no-cloning theorem
as a fundamental feature of quantum mechanics the ques-
tion arose how well an approximative cloning machine
could work. For the case of universal cloning of finite-
dimensional pure states this question was addressed and
answered in [3–9]. There, the figure of merit was the
fidelity, i.e., the overlap between hypothetically perfect
clones and the actual output of the imperfect cloner. In
particular, it was shown that judging single clones leads to
the same optimal cloner as when comparing the joint out-
put with a tensor product of perfect clones [6,7].

Recently, more and more attention has been devoted to
continuous variable systems, especially to states with
Gaussian Wigner function—so-called Gaussian states.
Besides their outstanding importance in quantum optics,
quantum communication [10], and various other fields
(atomic ensembles, ion traps, etc.), they provide a closed
test-bed within which many of the otherwise hardly trac-
table problems in quantum information become feasible.
Restricting to the Gaussian world, i.e., to Gaussian opera-
tions on Gaussian states, led, for instance, to solutions to
open problems in the theory of entanglement measures
[11], quantum channels [12], and secret key distillation
[13]. Similarly, the problem of cloning, in particular, co-
herent states by Gaussian operations has been addressed in
[14,15]. The obtained cloner was shown to be optimal
within the class of Gaussian operations by exploiting the
connection with the state estimation [16]. However, it
remained unclear whether Gaussian operations really
lead to the optimum, even under the assumptions typically
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made in the literature such as phase space translation
covariance or output symmetry.

The present Letter is concerned with the problem of
optimally cloning coherent states without imposing any
restrictions on the cloning operation. After recalling
some preliminaries, we prove that without loss of general-
ity one can restrict to covariant cloners, for which a power-
ful characterization is provided. Based on this, we show
that, in contrast to the finite-dimensional case, the optimal
cloner depends on whether we judge single clones or joint
clones. Surprisingly, in the latter case the known Gaussian
cloners turn out to be optimal, whereas with respect to the
single-clone fidelity, non-Gaussian operations can perform
better. The problem of finding the optimal cloner reduces
to finding the dominant eigenstate of an appropriate opera-
tor. For the optimal 1-to-2 cloner this eigenstate is directly
linked to an optical implementation: it is the bimodal state
of light that has to be injected on the idler mode of an
optical parametric amplifier and the input port of a beam
splitter. We envision that a few-photon approximation of
this cloner, only suboptimal but yet non-Gaussian, might
be feasible, making it possible to experimentally demon-
strate this fidelity enhancement. In addition, we show that a
1-to-1 cloner based on a measure-and-prepare scheme
cannot exceed a fidelity of 1=2, not even with supplemental
bound entangled states. Extended discussions of the mathe-
matical details [17] and the quantum optical aspects [18]
will be reported elsewhere.

Phase space and coherent states.—Consider a system of
n harmonic oscillators with respective canonical operators,
or optical field quadratures, �Q1; P1; . . . ; Qn; Pn� �: R
and the corresponding phase space � � R2n, which is
equipped with an antilinear symplectic form ���; 	�.
Translations in this phase space are governed by the Weyl
or displacement operators W� � ei���;R�, � 2 �, which in
turn obey the Weyl relations

W�W	 � e��i=2���	;��W��	; where � �
Mn
i�1

0 1
�1 0

� �

implements the symplectic form via ���; 	� � �T � � � 	.
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Tensor products in Hilbert space correspond to direct sums
in phase space, and in particular

N
iW�i � W	i�i , where

each of the �i 2 R2 belongs to a single mode.
The expectation values of all Weyl operators completely

determine a state, and the resulting function, which is the
Fourier transform of the Wigner function, is called the
characteristic function [19]. For a coherent state, it is a
Gaussian of the form ���� � tr
�W�� � exp���T � � �

�=4� idT � ��, with covariance matrix � � 1 and dis-
placement vector d. Coherent states are translations of
the harmonic oscillator ground state W�j0i � j�i with d �

� � �. In quantum optical settings, position and momentum
coordinates correspond to the real and imaginary parts of
the complex field amplitude.

Figures of merit.—The fidelity quantifies how close two
states �1 and �2 are [20]. Here, we consider only the case
of pure input states, so we can simply set f��1; �2� �
tr
�1�2�. A 1-to-n cloning transformation T (a ‘‘cloner’’
for short) by definition takes systems in the pure input state
� into n systems whose state is close to n copies of �. We
can express this by requiring the fidelity

fjoint�T; �� � tr
T�����n� (1)

to be as large as possible. This is a very demanding
criterion, as it also depends on the correlations between
the clones. Instead, we might just evaluate the quality of an
individual clone, say the ith,

fi�T; �� � tr
T��� �1 � � � �1 � ��i� � 1 � � � � 1��; (2)

where the upper index denotes the position in the tensor
product. Since any such fidelity can be put to one by
copying the input onto the ith clone, we have to maximize
a weighted sum

P
i�ifi�T; �� with positive weights �i.

Further options arise from the choice of the set of states
� that we want to clone optimally. Here, we consider the
family of coherent states � � j�ih�j, with j�i � W�j0i.
We define fjoint�T� and fi�T� as the respective worst-case
fidelities, i.e., the minima of (1) and (2) over all coherent
states �. Note that this is different from the usual case of
universal cloners in finite-dimensional Hilbert spaces,
where one considers the minimum with respect to all
pure states. This is connected to the infinite number of
dimensions of the continuous variable Hilbert space: Even
minimizing (1) or (2) over all pure squeezed Gaussian
states (a larger though still very small subset of all states)
would already yield a zero fidelity for all T.

Our goal is thus to find the optimal worst-case joint
fidelity

fjoint � sup
T
fjoint�T� � sup

T
inf
�2coh

fjoint�T; ��

as well as the convex set of achievable n tuples of single-
clone fidelities �f1�T�; f2�T�; . . . ; fn�T�� as T varies over
all cloners. This can be simplified as both fidelities are
invariant under displacements in phase space, so we can
choose the optimal cloner to be covariant. Consequently,
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they are optimal with respect to worst-case and average
fidelities.

Covariance.—Let T be a 1-to-n cloning map. If displac-
ing the input in phase space is equivalent to displacing the
outputs by the same amount, then T is called (displace-
ment) covariant:

T��� � W�ny
� T�W��W

y
� �W

�n
� � T����

for all � and �, where we have defined the shifted cloner T�
for later reference. The cloners investigated in [14,15] were
restricted to be covariant. However, this need not be as-
sumed, but rather comes out as a property of the optimal
cloners. As in the case of cloning of finite-dimensional
systems [7], the core of the argument is averaging over the
symmetry group: we have, for f � fjoint or f �

P
i�ifi,

respectively,

f�T� � inf
�
f�T; j�ih�j� � M�f�T�; j0ih0j�

� f�M�T�; j0ih0j� � f�M�T��: (3)

Here M� stands for ‘‘mean with respect to �’’ and is
implemented by an invariant mean [21]. So, the averaged
and thus covariant cloner is at least as good as T for all T,
and we can restrict the search to the covariant case. Note
that the output of such cloners could be singular for this
phase space average. A detailed argumentation shows,
however, that this is not optimal for the fidelities consid-
ered [17].

Optimizing covariant cloners.—In the Heisenberg
picture, (the adjoint of) a covariant cloner maps Weyl
operators onto multiples of Weyl operators, T��W�1;...;�n� �

t��1; . . . ; �n�WP
i�i

, where �i is the pair of phase space
variables of the ith clone [17]. In terms of characteristic
functions of input and output states, t acts as a character-
istic function of the cloner:

�out��1; . . . ; �n� � t��1; . . . ; �n��in

�X
i

�i

�
:

The condition of complete positivity requires that t is the
characteristic function of a state �T , plus a fixed linear
transformation [22]. We call a cloner Gaussian if t has a
Gaussian form and it thus maps Gaussian input states onto
Gaussian output states. Since fidelities are linear in T, and
hence linear in �T , they can be expressed as expectation
values of linear operators:

f�T; �� � tr
�TF�: (4)

The appropriate operators Fjoint and Fi do not depend on T,
which allows us to reduce the supremum of the left-hand
side of (4) to finding the state �T (hence the map T)
corresponding to the largest eigenvalue of F. This is the
core of our method. Physically, the state �T is directly
related to the bimodal state that needs to be injected on
the idler mode of an optical parametric amplifier together
with the input port of a beam splitter in order to realize the
cloner T (see below).
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FIG. 1. Achievable pairs �f1; f2� of single-clone fidelities in
1-to-2 cloning of coherent states. The dots represent the optimal
Gaussian cloner, while the solid curve indicates optimal non-
Gaussian operations. Fidelities in the lower left quadrant are
accessible to measure-and-prepare schemes. The inset shows the
infinite slope at f1 � 1 for non-Gaussian cloners as opposed to
the Gaussian case.
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Optimal fidelities.—Since by Eq. (3) the maximum fi-
delities are reached by covariant cloners, we can restrict
the further discussion to a vacuum input state � � j0ih0j.
For Gaussian input states, the operators F in Eq. (4) are
themselves Gaussian, so that the respective fidelities f are
optimized by Gaussian pure states �T , hence by Gaussian
cloners T. Consequently, the joint fidelity fjoint�T� �
fjoint�T; j0ih0j� � tr
�TFjoint� is maximized by a Gaussian
cloner. The maximum fidelity is given by the largest ei-
genvalue of the appropriately defined operator Fjoint, that
is,

sup
T
fjoint�T� � max spec�Fjoint� �

1

n
:

Thus, the unique optimal cloner in this case is the known
Gaussian cloner of [14–16].

For the single-clone fidelity, we have to maximize
the weighted sum

Pn
i�1 �ifi � tr
�T

Pn
i�1 �iFi�. Since a

linear combination of Gaussian operators does not, in
general, have Gaussian eigenfunctions, the optimal cloners
with respect to single-clone fidelities are, in fact, not
Gaussian. For simplicity, we restrict in the following to
the 1-to-2 cloning problem. In this case the maximum of
the weighted sum of single-copy fidelities �1f1 � �2f2 �
tr
�TF� is the largest eigenvalue of the operator

F � �1e
��Q2

1�P
2
2�=2 � �2e

��Q2
2�P

2
1�=2: (5)

A simple numerical method to find this eigenvalue is to
iterate �n�1 � F�n=kF�nk. Varying the weights �i
yields the fidelity pairs �f1; f2� along the solid curve in
Fig. 1. In comparison, the best Gaussian cloners are given
by rotation invariant Gaussian wave functions with appro-
priate squeezing, and the resulting fidelity pairs are plotted
in Fig. 1 as a dotted curve. At the intersection with the
diagonal of symmetric fidelities lie the respective optimal
cloners. For the optimal non-Gaussian cloner, we obtain
f1 � f2 � 0:6826, which is strictly higher than the fidelity
of the optimal Gaussian cloner, f1 � f2 � 2=3 (cf. [15]).

Studying cloners that are described by highly squeezed
non-Gaussian states �T reveals that on the curve of optimal
fidelity pairs the points with f1 � 1 and f2 � 1 are ap-
proached with infinite slope [17]. It is thus clear that the
iteration for the largest eigenvalue does not become sin-
gular. This regime is of potential interest in quantum key
distribution, since nearly perfect clones for the legitimate
recipient combined with clones of nontrivial fidelity for the
eavesdropper would be the hallmark of a successful clon-
ing attack. On the other hand, the potential room for this
regime is tiny as it is already proven that Gaussian attacks
are optimal for a large class of quantum key distribution
protocols where the channel is probed via second-order
moments of the quadratures [23].

Optical implementation.—The Gaussian symmetric
cloner can be realized by linear amplification of the input
state, followed by distributing the output state into the two
clones with a balanced beam splitter [24]. This corresponds
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to the setup shown in Fig. 2 where the idler mode of the
amplifier (b1) and the second input mode of the beam
splitter (b2) are both initially in the vacuum state. Let us
now analyze the cloning transformation that results from
injecting an arbitrary two-mode state at modes b1 and b2. If
the intensity gain of the optical parametric amplifier is 2,
the modes where the two clones emerge are related to the
input modes via the canonical transformation

a1 � ain � �by1 � b2�=
���
2

p
;

a2 � ain � �by1 � b2�=
���
2

p
:

From this expression, it is straightforward to check that the
underlying cloner is displacement covariant. Moreover, if
the input is in the vacuum state � � j0ih0j, the single-clone
fidelities amount to expectation values of the observables

F1 � e��Q1�Q2�
2=4��P1�P2�

2=4;

F2 � e��Q1�Q2�
2=4��P1�P2�

2=4;

where �Q1; P1� and �Q2; P2� are the canonically conjugate
field quadratures of modes b1 and b2, respectively. This
exactly coincides with expression (5) up to a symplectic
rotation, namely, a beam splitter transformation.

Consequently, the problem of finding the optimal cloner
reduces to finding the eigenstate with the highest eigen-
value of �1F1 � �2F2, that is, to find the optimal bimodal
state j i to be injected in modes b1 and b2. Note that if j i
is an EPR state, i.e., a suitable infinitely squeezed state
[25], then this corresponds to the two extreme points of the
solid curve in Fig. 1. The symmetric case �1 � �2 is
obtained by choosing

j i �
X1
n�0

cnj2nij2ni;

where jni are Fock states and the probability amplitudes cn
correspond to the dominant eigenstate of F1 � F2.
Truncations of this state to finite photon numbers corre-
spond to suboptimal cloners: keeping only the vacuum
1-3
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FIG. 2. Optical scheme of a displacement-covariant cloner.
The input mode ain is injected on the signal mode of an optical
parametric amplifier (OPA) of gain 2, the idler mode being
denoted as b1. After amplification, the signal mode is divided
at a balanced beam splitter (BS), resulting in two clones in
modes a1 and a2. The second input mode of the beam splitter
is noted b2. If both b1 and b2 are initially in the vacuum state, the
corresponding cloner is the Gaussian cloner of [14–16]. In
contrast, if we inject a specific two-mode state j i into b1 and
b2, we can generate the whole set of displacement-covariant
cloners, in particular, the non-Gaussian optimal one.
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term n � 0, we get the optimal Gaussian cloner with
fidelities 2=3, while allowing for n � 2 yields the higher
fidelities f1 � f2 � 0:6801> 2=3. The experimental real-
ization of this cloner does not seem unrealistic, given the
recently proposed schemes for conditionally preparing
arbitrary bimodal states of light based on linear optics
[26]. In the limit n! 1, we arrive at the optimal cloner
with f1 � f2 � 0:6826. Independent studies [27] of the
cloning fidelities of coherent states in finite-dimensional
Hilbert spaces and their numerical extrapolation have in-
dicated that the optimal fidelity ranges between 2=3 and
0.699, which fits our result.

Optimal classical cloning.—Let us finally consider a
classical 1-to-1 cloning map T which is realized by
measuring and repreparing the system. From the line of
arguments above, T can be assumed to be covariant.
Since composing this cloner with time reversal � leads
to a completely positive map, we get � � T��Wp;q� �

�T�
���
2

p
p;

���
2

p
q�W�p;q with �T�p; q� the characteristic func-

tion of a state. Computing the fidelity for coherent input
states immediately yields

fclassical�T; j0ih0j� �
1
2 tr
�T j0ih0j� �

1
2:

The bound is reached by a heterodyne measurement and
repreparation of coherent states, i.e., by a Gaussian
scheme. This limit cannot be surpassed even with the
assistance of PPT bound entanglement [28], since the
respective maps are included in the above argumentation.
In the case of an unassisted measure-and-prepare scheme
an independent proof was recently given in [29].
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