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HIGHLY ASYMMETRIC QUANTUM CLONING IN ARBITRARY DIMENSION

JAROM�IR FIUR�A�SEKQUIC, �Eole Polytehnique, CP 165, Universit�e Libre de Bruxelles, 1050 Bruxelles, Belgiumand Department of Optis, Palak�y University, 17. listopadu 50, 77200 Olomou, Czeh RepubliRADIM FILIPDepartment of Optis, Palak�y University, 17. listopadu 50, 77200 Olomou, Czeh RepubliNICOLAS J. CERFQUIC, �Eole Polytehnique, CP 165, Universit�e Libre de Bruxelles, 1050 Bruxelles, BelgiumReeived June 3, 2005Revised August 12, 2005We investigate the universal asymmetri loning of states in a Hilbert spae of arbitrarydimension. We derive the lass of optimal and fully asymmetri 1 ! 3 loners, whihprodue three opies, eah having a di�erent �delity. A simple parametri expressionfor the maximum ahievable loning �delity triplets is then provided. As a side-produt,we also prove the optimality of the 1! 2 asymmetri loning mahines that have beenproposed in the literature.Keywords: quantum loningCommuniated by : S Braunstein & C. Fuhs1 IntrodutionQuantum information theory exploits the laws of quantum mehanis to devise novel meansof proessing, manipulating and transmitting information. Among the most elebrated ap-pliations one �nds quantum omputing and quantum ryptography. The latter allows aseure key distribution among two distant partners, the seurity of the distributed key beingguaranteed by the laws of quantum mehanis [1℄. In partiular, the linearity of quantummehanis implies that an unknown quantum state annot be opied [2℄. Thus any attemptby an eavesdropper to learn about the state transmitted from the sender to the reeiver willunavoidably introdue some noise, whih an be deteted at the reeiver's station.Although perfet opying is forbidden it is still possible to arry out an approximateloning of quantum states. This issue has attrated a lot of attention during the reent yearsand the optimal universal symmetri loning mahines whih produe M approximate opiesout of N inputs have been found [3, 4, 5, 6, 7, 8℄. In the ontext of quantum ryptography, oneis partiularly interested in the asymmetri loning mahines whih produe two lones withdi�erent �delities [9, 10, 11, 12, 13, 14℄. This allows one to study the interplay between theinformation gained by an eavesdropper and the noise introdued in the hannel. Importantly,the asymmetri loning proved to be a very eÆient (or even optimal) individual eavesdroppingattak on ertain kinds of QKD protools [15, 16, 17, 18℄. Reently, optimal asymmetri 1! 2583



584 Highly asymmetri quantum loning in arbitrary dimensionloning of qubits enoded as polarization states of single photons has been demonstratedexperimentally [19℄.However, the universal asymmetri loning mahines onsidered in the literature [9, 10,12, 13℄ are only onjetured to be optimal, and so far the proof of optimality has beenmissing (exept for the qubit ase [10℄). In this paper, we provide suh a proof. We willthen go beyond the 1 ! 2 asymmetri loning and shall onsider a novel lass of universalasymmetri mahines whih produe three lones, eah of them with possibly di�erent �delity.These mahines were reently proposed and briey disussed in Ref. [20℄ whih introduedthe general onept of a fully asymmetri N !M loning mahine produingM approximatelones withM di�erent �delities. In this paper we expand this disussion and derive expliitlythe optimal loning transformation, present the details of the optimality proof, and provide asimple parametri desription of the optimal universal asymmetri 1! 3 loning mahines inarbitrary dimensions. We expet that our �ndings will play an important role in investigationsof multi-party quantum ommuniation protools and quantum information distribution inquantum networks. An independent similar study of multipartite asymmetri loning of qubitsis reported in [21℄.The paper is strutured as follows. In Setion II we prove the optimality of the universal1 ! 2 asymmetri loning mahines for qudits. In Setion III we investigate the fully asym-metri optimal universal quantum tripliators whih produe three approximate lones withthree di�erent �delities. Finally, Setion IV ontains a brief summary and onlusions.2 Asymmetri quantum dupliatorsLet us begin by briey reviewing an isomorphism between ompletely positive maps S andpositive semide�nite operators S � 0 on the tensor produt of the input and output Hilbertspaes of map S, denoted respetively as Hin and Hout. Consider a maximally entangledstate on H
2in , j�+i = 1pd dXj=1 jjijji (1)
with d = dim(Hin). If the map S is applied to the seond subsystem while nothing happensto the �rst one, the resulting (generally mixed) quantum state ontains all the informationabout the map. Qualitatively speaking, if we projet the �rst subsystem onto the (omplexonjugate of the) input state so that the seond subsystem is projeted onto the input state,then, after applying S, it is left in the orresponding output state. The �rst subsystem istherefore onventionally alled the referene system, denoted with the subsript R, sine itkeeps a memory of the state that was proessed in the hannel. Mathematially, the positivesemide�nite operator S = I 
 S(d�+RO) (2)is therefore isomorphi to the map S, where the subsript O denotes here the output system,�+ = j�+ih�+j, and the prefator d has been introdued for normalization purposes. Thefat that the map S is trae preserving indeed implies the onditionTrO[S℄ = IR; (3)



J. Fiur�a�sek, R. Filip, and N.J. Cerf 585where I denotes the identity operator. The map S an be expressed in terms of S as�! S(�) = TrR[�TR 
 IO S℄; (4)where T denotes the transposition in the Shmidt basis of state j�+i.Let us now assume that S desribes the 1 ! 2 loning transformation of qudits. Theoutput Hilbert spae is endowed with tensor produt struture, Hout = HA 
HB , where thesubsripts A and B label the two lones. For eah partiular input state j i, we an alulatethe �delity of eah lone as follows,FA( ) = Tr( TR 
  A 
 IB S);FB( ) = Tr( TR 
 IA 
  B S); (5)where R labels the input system and  � j ih j is a short hand notation for the densitymatrix of a pure state. We are usually interested in the average performane of the loningmahine, whih an be quanti�ed by the mean �delities,FA = Z FA( ) d ; FB = Z FB( ) d ; (6)where the measure d determines the kind of the loning mahines we are dealing with.Universal loning mahines whih lone equally well all states from the input Hilbert spaeorrespond to hoosing d to be the Haar measure on the group SU(d). The �delities (6) arelinear funtions of the operator S,FA = Tr[SLA℄; FB = Tr[SLB ℄; (7)where the positive semide�nite operators Lj are given byLA = Z  TR 
  A 
 IB d ; LB = Z  TR 
 IA 
  B d : (8)In ase of universal loning, the integral over d an be easily alulated with the help ofShur's lemma, and we get, for instane,Z  TR 
  A d = 2d(d+ 1)(�+RA)TR = 1d(d+ 1) [IR 
 IA + d�+RA℄:Here, �+ denotes a projetor onto symmetri subspae of two qudits, d(d + 1)=2 is thedimension of this subspae, and TR stands for transposition with respet to the subsystem R.Thus, we have LA;B = 1d(d+ 1) [IRAB + d ~LA;B ℄; (9)with ~LA = �+RA 
 IB ; ~LB = �+RB 
 IA: (10)The optimal asymmetri loning mahine S should maximize a onvex mixture of the mean�delities FA and FB [22, 23℄, F = pFA + (1� p)FB = Tr[SL℄; (11)



586 Highly asymmetri quantum loning in arbitrary dimensionwhere L = pLA + (1� p)LB and p is a parameter that ontrols the asymmetry of the loner.The maximization of F for a given value of p an be equivalently rephrased as a maximizationof FB for a �xed value of FA. Suppose that we �nd S that maximizes F . It is then lear thatfor a given FA this map yields maximum possible FB , beause any higher FB would inreaseF . This explains why optimal asymmetri loners an be found simply by maximizing theonvex mixture of single-lone �delities with variable mixing ratio.The maximum ahievable F is upper bounded by the maximum eigenvalue �max of theoperator L [24℄. Taking into aount the trae-preservation ondition, we haveF � d �max: (12)Although this bound need not be saturated in general [24, 25℄, it is reahed by the optimalasymmetri 1 ! 2 universal loning mahines, as we shall show below. It follows that wehave to alulate the eigenvalues of the operatorL = 1d(d+ 1) [IRAB + d ~L℄ (13)with ~L = p ~LA + (1� p) ~LB: (14)We an neglet the trivial part of L whih is proportional to the identity operator, and onlyneed to investigate the eigenstates and eigenvalues of ~L. Lukily, this problem is greatlysimpli�ed by noting that ~L has a support of dimension 2d, spanned by j�+iRAjkiB andj�+iRBjkiA. This implies that ~L has at most 2d non-zero eigenvalues. Moreover, it turns outthat there are only two d-fold degenerate eigenvalues, �1 and �2. The eigenstates have thefollowing form, j�j ; ki = � j�+iRAjkiB + � j�+iRBjkiA; (15)where j = 1; 2 and k = 1; � � � ; d. The two eigenvalues �1 > �2 are roots of the quadratiequation �2 � �+ p(1� p)[1� d�2℄ = 0 (16)and the ratio �=�, whih �xes the eigenstate (15), an be expressed in terms of �, p, and d as�� = d(�=p� 1): (17)Sine � is real, we an assume without loss of generality that � and � are both real and � � 0.By properly normalizing the eigenstates j�j ; ki, we get�2 + �2 + 2��d = 1: (18)The optimal loning transformation S is then simply the projetor onto the d-dimensionalsub-spae spanned by the eigenstates j�1; ki orresponding to the maximum eigenvalue �1,
S = dXk=1 j�1; kih�1; kj: (19)



J. Fiur�a�sek, R. Filip, and N.J. Cerf 587Note that �1 > p hene both � and � in Eq. (15) are positive. One an easily hek thatTrAB [S℄ = IR, hene S is a trae-preserving map.Moreover, F = d �max by onstrution, whih proves the optimality. The �delities of theoptimal lones A and B an be obtained in terms of the oeÆients � and � by noting �rstthat h�1; kj~LA j�1; ki = (�+ �=d)2;h�1; kj~LB j�1; ki = (� + �=d)2; (20)so that, using Eq. (18), we getTr[S ~LA℄ = d� d2 � 1d �2; Tr[S ~LB ℄ = d� d2 � 1d �2: (21)Therefore, we obtain for the �delities of the asymmetri lonerFA = 1� d� 1d �2; FB = 1� d� 1d �2; (22)where �2 and �2 are the so-alled depolarizing frations as disussed in Ref. [9℄. The expres-sions (18) and (22) exatly oinide with the formula haraterizing the lass of asymmetriloning mahines derived in [9℄, whih therefore is optimal.The optimal loning map (19) an be realized unitarily by purifying S into the statej�i = � j�+iRAj�+iBE + � j�+iRBj�+iAE ; (23)where E stands for an anillary system, that is, we get S when traing over E. The resultingisometry that transforms the input single-qudit state j i onto the output state of three qudits(two lones and one anti-lone) an be written, by projeting the referene system R ontoj �i, as j i ! � j iAj�+iBE + � j iB j�+iAE : (24)3 Asymmetri quantum tripliatorsHaving proved the optimality of the universal asymmetri 1 ! 2 loning mahines, we nowuse the same tehniques to onstrut the optimal universal asymmetri 1! 3 loners. Thesemahines produe three lones, A, B, and C, eah lone possibly having a di�erent �delity(FA, FB , and FC). The optimal asymmetri loning mahine should maximize the loning�delities suh that for a given pair of �delities (say FA and FB) the �delity of the third lone(FC) is maximum.The output Hilbert spae of the asymmetri quantum tripliator is a tensor produt ofHilbert spaes of the three lones. The average �delity of jth lone an be again expressed asFj = Tr[SLj ℄ with j 2 fA;B;Cg, where nowLA = 1d(d+ 1) [IR 
 IA + d�+RA℄
 IBC ; (25)where R indiates the referene, and LB and LC an be obtained by yli permutation ofA;B;C. In analogy with Eq. (11), the optimal asymmetri 1 ! 3 loning mahine shouldmaximize a onvex ombination of the three single-lone �delities,F = aFA + bFB + FC ; (26)



588 Highly asymmetri quantum loning in arbitrary dimensionwhere a+ b +  = 1, a; b;  � 0 and the asymmetry of the loner is determined by the ratiosa=b and a=. The �delity (26) an be rewritten as F = Tr[SL℄, where L = aLA+ bLB + LC .Similarly as in the ase of 1! 2 loning, we have to determine the eigenspae orrespondingto the maximum eigenvalue ofL = 1d(d+ 1) hIRABC + d ~Li ; (27)where ~L = a�+RA 
 IBC + b�+RB 
 IAC + �+RC 
 IAB : (28)Due to the high symmetry, the operator ~L has only six di�erent non-zero eigenvalues. Threeof them are d(d+ 1)=2-fold degenerate and the orresponding eigenstates read,j�+; kli = � j�+iRAjkl+iBC + � j�+iRB jkl+iAC +  j�+iRC jkl+iAB ; (29)with l � k. Here we take jkl+i = (jkli + jlki)=p2 if k 6= l, while jkk+i = jkki. The threeeigenvalues (�+;1 > �+;2 > �+;3) an be determined as roots of the ubi equationP+(�+) � �3+ � �2+ + �+(ab+ b+ a) �1� d�2��ab �1 + 2d�3 � 3d�2� = 0; (30)and the oeÆients �; �;  an be expressed in terms of a; b; , and �+ by solving the systemof linear equations (�+ � a)�� ad (� + ) = 0;(�+ � b)� � bd (�+ ) = 0;(�+ � ) � d (�+ �) = 0: (31)The normalization of the eigenstate j�+; kli imposes the onstraint�2 + �2 + 2 + 2d (�� + � + �) = 1: (32)The other three eigenvalues orrespond to the anti-symmetri ombinations of jkli and jlki,that is, jkl�i = (jkli� jlki)=p2, and are thus d(d� 1)=2-fold degenerate. The eigenstates aregiven by j��; kli = �j�+iRAjkl�iBC + �j�+iRB jkl�iAC + j�+iRC jkl�iAB; (33)with l > k, and the ubi equation for the eigenvalues �� readsP�(��) � �3� � �2� + ��(ab+ b+ a) �1� d�2��ab �1� 2d�3 � 3d�2� = 0: (34)Sine the polynomials P+(�) and P�(�) di�er only in their zeroth order terms, their graphslook idential up to a vertial shift of 4ab=d3. This simple geometrial observation revealsthat the maximum eigenvalue �+;1 is always larger than the maximum eigenvalue ��;1. Hene,



J. Fiur�a�sek, R. Filip, and N.J. Cerf 589in determining the optimal loning transformation, whih orresponds to the maximum eigen-value of (27), we have to onsider only the eigenstates (29). It follows from the struture ofthe operator ~L that �+;1 � max(a; b; ). This, together with Eq. (31) implies that the o-eÆients �, �, and  of an eigenstate orresponding to the maximum eigenvalue �+;1 mustbe all positive (or all negative). The optimal trae-preserving 1 ! 3 loning map an thenbe expressed simply as the properly normalized projetor onto the subspae spanned by thed(d+ 1)=2 eigenstates (29) with eigenvalue �+;1,S = 2d+ 1Xl�k j�+;1; klih�+;1; klj; (35)
where the prefator originates from the onstraint that Tr(S) = d. A unitary implementationof this CP map requires two anilla systems, E and F , and an be haraterized by thepuri�ation of S, namelyj�i = pd C �� j�+iRA(j�+iBE j�+iCF + j�+iBF j�+iCE)+� j�+iRB(j�+iAE j�+iCF + j�+iAF j�+iCE)+ j�+iRC(j�+iAE j�+iBF + j�+iAF j�+iBE)� ;where we have used the identity2dXl�k jkl+iBC jkl+iEF = j�+iBE j�+iCF + j�+iBF j�+iCE ; (36)
and the normalization onstant is C =pd=(2(d+ 1)). Therefore, by projeting R onto j �i,we see that any pure input state j i transforms aording toj i ! C ��j iA(j�+iBE j�+iCF + j�+iBF j�+iCE)+�j iB(j�+iAE j�+iCF + j�+iAF j�+iCE)+j iC(j�+iAE j�+iBF + j�+iAF j�+iBE)� :It an be easily veri�ed that this transformation is universal, i.e. the single-lone �delities donot depend on the input state.We an express the �delities in terms of the oeÆients �, �, and , by noting thath�+;1; klj�+RA 
 IBC j�+;1; kli = (�+ �=d+ =d)2;h�+;1; klj�+RB 
 IAC j�+;1; kli = (� + �=d+ =d)2;h�+;1; klj�+RC 
 IAB j�+;1; kli = ( + �=d+ �=d)2: (37)Using the normalization ondition (32), we obtain the �delity tripletFA = 1� d� 1d ��2 + 2 + 2�d+ 1� ;FB = 1� d� 1d ��2 + 2 + 2�d+ 1� ;FC = 1� d� 1d ��2 + �2 + 2��d+ 1� : (38)
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Fig. 1. The trade-o� between the �delities FA and FB for a �xed �delity FC is shown for theoptimal universal asymmetri 1! 3 loning of qubits. The urves are plotted for several di�erentvalues of FC(n) = 0:6 + 0:05n, n = 0; : : : ; 7, the most inward urve orresponding to the highestvalue of FC .
This, together with the normalization ondition (32) and the onstraints � � 0; � � 0;  � 0,provides a parametri desription of the whole lass of the optimal universal asymmetri1! 3 loning mahines in a Hilbert spae of arbitrary dimension d.As an example, in Fig. 1 we plot the trade-o� between FA and FB for several di�erentvalues of the �delity of the third lone FC for 1! 3 asymmetri loning of qubits, d = 2. Note,that in the limit where one of the three oeÆients �; �;  is equal to zero the asymmetri1 ! 3 loning essentially redues to the optimal asymmetri 1 ! 2 loning. However,even in this ase the �delity of the third lone is larger than 1=2, whih is what one ouldhave naively expeted. This interesting e�et is learly visible in Fig. 1. The endpoints ofthe urves showing the trade-o� between FA and FB for a �xed FC orrespond to optimal1 ! 2 asymmetri loning in the subspae of qubits A and C (or B and C). Note that theendpoints do not lie on the line FB = 1=2 (FA = 1=2) and the �delity FB (FA) is thus higherthan 1=2 even in this limit ase. This behavior an be easily understood by noting that inthe 1 ! 2 loning, the anilla (anti-lone) arries some information about the input and athird lone with �delity larger than 1=2 an be produed simply by applying the optimalapproximate universal-NOT gate [26, 27℄ to the anti-lone. In partiular, for � = � = 1=p3and  = 0 we obtain the optimal triplet of �delities FA = FB = 5=6 and FC = 5=9. The threelones exhibiting these �delities an be prepared by �rst performing the optimal symmetri1! 2 universal loning whih produes two lones with �delity 5=6. The third lone is thenobtained from the anti-lone by applying the approximate UNOT whih yields a lone with�delity exatly 5=9.
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