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loning of states in a Hilbert spa
e of arbitrarydimension. We derive the 
lass of optimal and fully asymmetri
 1 ! 3 
loners, whi
hprodu
e three 
opies, ea
h having a di�erent �delity. A simple parametri
 expressionfor the maximum a
hievable 
loning �delity triplets is then provided. As a side-produ
t,we also prove the optimality of the 1! 2 asymmetri
 
loning ma
hines that have beenproposed in the literature.Keywords: quantum 
loningCommuni
ated by : S Braunstein & C. Fu
hs1 Introdu
tionQuantum information theory exploits the laws of quantum me
hani
s to devise novel meansof pro
essing, manipulating and transmitting information. Among the most 
elebrated ap-pli
ations one �nds quantum 
omputing and quantum 
ryptography. The latter allows ase
ure key distribution among two distant partners, the se
urity of the distributed key beingguaranteed by the laws of quantum me
hani
s [1℄. In parti
ular, the linearity of quantumme
hani
s implies that an unknown quantum state 
annot be 
opied [2℄. Thus any attemptby an eavesdropper to learn about the state transmitted from the sender to the re
eiver willunavoidably introdu
e some noise, whi
h 
an be dete
ted at the re
eiver's station.Although perfe
t 
opying is forbidden it is still possible to 
arry out an approximate
loning of quantum states. This issue has attra
ted a lot of attention during the re
ent yearsand the optimal universal symmetri
 
loning ma
hines whi
h produ
e M approximate 
opiesout of N inputs have been found [3, 4, 5, 6, 7, 8℄. In the 
ontext of quantum 
ryptography, oneis parti
ularly interested in the asymmetri
 
loning ma
hines whi
h produ
e two 
lones withdi�erent �delities [9, 10, 11, 12, 13, 14℄. This allows one to study the interplay between theinformation gained by an eavesdropper and the noise introdu
ed in the 
hannel. Importantly,the asymmetri
 
loning proved to be a very eÆ
ient (or even optimal) individual eavesdroppingatta
k on 
ertain kinds of QKD proto
ols [15, 16, 17, 18℄. Re
ently, optimal asymmetri
 1! 2583
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loning in arbitrary dimension
loning of qubits en
oded as polarization states of single photons has been demonstratedexperimentally [19℄.However, the universal asymmetri
 
loning ma
hines 
onsidered in the literature [9, 10,12, 13℄ are only 
onje
tured to be optimal, and so far the proof of optimality has beenmissing (ex
ept for the qubit 
ase [10℄). In this paper, we provide su
h a proof. We willthen go beyond the 1 ! 2 asymmetri
 
loning and shall 
onsider a novel 
lass of universalasymmetri
 ma
hines whi
h produ
e three 
lones, ea
h of them with possibly di�erent �delity.These ma
hines were re
ently proposed and brie
y dis
ussed in Ref. [20℄ whi
h introdu
edthe general 
on
ept of a fully asymmetri
 N !M 
loning ma
hine produ
ingM approximate
lones withM di�erent �delities. In this paper we expand this dis
ussion and derive expli
itlythe optimal 
loning transformation, present the details of the optimality proof, and provide asimple parametri
 des
ription of the optimal universal asymmetri
 1! 3 
loning ma
hines inarbitrary dimensions. We expe
t that our �ndings will play an important role in investigationsof multi-party quantum 
ommuni
ation proto
ols and quantum information distribution inquantum networks. An independent similar study of multipartite asymmetri
 
loning of qubitsis reported in [21℄.The paper is stru
tured as follows. In Se
tion II we prove the optimality of the universal1 ! 2 asymmetri
 
loning ma
hines for qudits. In Se
tion III we investigate the fully asym-metri
 optimal universal quantum tripli
ators whi
h produ
e three approximate 
lones withthree di�erent �delities. Finally, Se
tion IV 
ontains a brief summary and 
on
lusions.2 Asymmetri
 quantum dupli
atorsLet us begin by brie
y reviewing an isomorphism between 
ompletely positive maps S andpositive semide�nite operators S � 0 on the tensor produ
t of the input and output Hilbertspa
es of map S, denoted respe
tively as Hin and Hout. Consider a maximally entangledstate on H
2in , j�+i = 1pd dXj=1 jjijji (1)
with d = dim(Hin). If the map S is applied to the se
ond subsystem while nothing happensto the �rst one, the resulting (generally mixed) quantum state 
ontains all the informationabout the map. Qualitatively speaking, if we proje
t the �rst subsystem onto the (
omplex
onjugate of the) input state so that the se
ond subsystem is proje
ted onto the input state,then, after applying S, it is left in the 
orresponding output state. The �rst subsystem istherefore 
onventionally 
alled the referen
e system, denoted with the subs
ript R, sin
e itkeeps a memory of the state that was pro
essed in the 
hannel. Mathemati
ally, the positivesemide�nite operator S = I 
 S(d�+RO) (2)is therefore isomorphi
 to the map S, where the subs
ript O denotes here the output system,�+ = j�+ih�+j, and the prefa
tor d has been introdu
ed for normalization purposes. Thefa
t that the map S is tra
e preserving indeed implies the 
onditionTrO[S℄ = IR; (3)



J. Fiur�a�sek, R. Filip, and N.J. Cerf 585where I denotes the identity operator. The map S 
an be expressed in terms of S as�! S(�) = TrR[�TR 
 IO S℄; (4)where T denotes the transposition in the S
hmidt basis of state j�+i.Let us now assume that S des
ribes the 1 ! 2 
loning transformation of qudits. Theoutput Hilbert spa
e is endowed with tensor produ
t stru
ture, Hout = HA 
HB , where thesubs
ripts A and B label the two 
lones. For ea
h parti
ular input state j i, we 
an 
al
ulatethe �delity of ea
h 
lone as follows,FA( ) = Tr( TR 
  A 
 IB S);FB( ) = Tr( TR 
 IA 
  B S); (5)where R labels the input system and  � j ih j is a short hand notation for the densitymatrix of a pure state. We are usually interested in the average performan
e of the 
loningma
hine, whi
h 
an be quanti�ed by the mean �delities,FA = Z FA( ) d ; FB = Z FB( ) d ; (6)where the measure d determines the kind of the 
loning ma
hines we are dealing with.Universal 
loning ma
hines whi
h 
lone equally well all states from the input Hilbert spa
e
orrespond to 
hoosing d to be the Haar measure on the group SU(d). The �delities (6) arelinear fun
tions of the operator S,FA = Tr[SLA℄; FB = Tr[SLB ℄; (7)where the positive semide�nite operators Lj are given byLA = Z  TR 
  A 
 IB d ; LB = Z  TR 
 IA 
  B d : (8)In 
ase of universal 
loning, the integral over d 
an be easily 
al
ulated with the help ofS
hur's lemma, and we get, for instan
e,Z  TR 
  A d = 2d(d+ 1)(�+RA)TR = 1d(d+ 1) [IR 
 IA + d�+RA℄:Here, �+ denotes a proje
tor onto symmetri
 subspa
e of two qudits, d(d + 1)=2 is thedimension of this subspa
e, and TR stands for transposition with respe
t to the subsystem R.Thus, we have LA;B = 1d(d+ 1) [IRAB + d ~LA;B ℄; (9)with ~LA = �+RA 
 IB ; ~LB = �+RB 
 IA: (10)The optimal asymmetri
 
loning ma
hine S should maximize a 
onvex mixture of the mean�delities FA and FB [22, 23℄, F = pFA + (1� p)FB = Tr[SL℄; (11)
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loning in arbitrary dimensionwhere L = pLA + (1� p)LB and p is a parameter that 
ontrols the asymmetry of the 
loner.The maximization of F for a given value of p 
an be equivalently rephrased as a maximizationof FB for a �xed value of FA. Suppose that we �nd S that maximizes F . It is then 
lear thatfor a given FA this map yields maximum possible FB , be
ause any higher FB would in
reaseF . This explains why optimal asymmetri
 
loners 
an be found simply by maximizing the
onvex mixture of single-
lone �delities with variable mixing ratio.The maximum a
hievable F is upper bounded by the maximum eigenvalue �max of theoperator L [24℄. Taking into a

ount the tra
e-preservation 
ondition, we haveF � d �max: (12)Although this bound need not be saturated in general [24, 25℄, it is rea
hed by the optimalasymmetri
 1 ! 2 universal 
loning ma
hines, as we shall show below. It follows that wehave to 
al
ulate the eigenvalues of the operatorL = 1d(d+ 1) [IRAB + d ~L℄ (13)with ~L = p ~LA + (1� p) ~LB: (14)We 
an negle
t the trivial part of L whi
h is proportional to the identity operator, and onlyneed to investigate the eigenstates and eigenvalues of ~L. Lu
kily, this problem is greatlysimpli�ed by noting that ~L has a support of dimension 2d, spanned by j�+iRAjkiB andj�+iRBjkiA. This implies that ~L has at most 2d non-zero eigenvalues. Moreover, it turns outthat there are only two d-fold degenerate eigenvalues, �1 and �2. The eigenstates have thefollowing form, j�j ; ki = � j�+iRAjkiB + � j�+iRBjkiA; (15)where j = 1; 2 and k = 1; � � � ; d. The two eigenvalues �1 > �2 are roots of the quadrati
equation �2 � �+ p(1� p)[1� d�2℄ = 0 (16)and the ratio �=�, whi
h �xes the eigenstate (15), 
an be expressed in terms of �, p, and d as�� = d(�=p� 1): (17)Sin
e � is real, we 
an assume without loss of generality that � and � are both real and � � 0.By properly normalizing the eigenstates j�j ; ki, we get�2 + �2 + 2��d = 1: (18)The optimal 
loning transformation S is then simply the proje
tor onto the d-dimensionalsub-spa
e spanned by the eigenstates j�1; ki 
orresponding to the maximum eigenvalue �1,
S = dXk=1 j�1; kih�1; kj: (19)
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e both � and � in Eq. (15) are positive. One 
an easily 
he
k thatTrAB [S℄ = IR, hen
e S is a tra
e-preserving map.Moreover, F = d �max by 
onstru
tion, whi
h proves the optimality. The �delities of theoptimal 
lones A and B 
an be obtained in terms of the 
oeÆ
ients � and � by noting �rstthat h�1; kj~LA j�1; ki = (�+ �=d)2;h�1; kj~LB j�1; ki = (� + �=d)2; (20)so that, using Eq. (18), we getTr[S ~LA℄ = d� d2 � 1d �2; Tr[S ~LB ℄ = d� d2 � 1d �2: (21)Therefore, we obtain for the �delities of the asymmetri
 
lonerFA = 1� d� 1d �2; FB = 1� d� 1d �2; (22)where �2 and �2 are the so-
alled depolarizing fra
tions as dis
ussed in Ref. [9℄. The expres-sions (18) and (22) exa
tly 
oin
ide with the formula 
hara
terizing the 
lass of asymmetri

loning ma
hines derived in [9℄, whi
h therefore is optimal.The optimal 
loning map (19) 
an be realized unitarily by purifying S into the statej�i = � j�+iRAj�+iBE + � j�+iRBj�+iAE ; (23)where E stands for an an
illary system, that is, we get S when tra
ing over E. The resultingisometry that transforms the input single-qudit state j i onto the output state of three qudits(two 
lones and one anti-
lone) 
an be written, by proje
ting the referen
e system R ontoj �i, as j i ! � j iAj�+iBE + � j iB j�+iAE : (24)3 Asymmetri
 quantum tripli
atorsHaving proved the optimality of the universal asymmetri
 1 ! 2 
loning ma
hines, we nowuse the same te
hniques to 
onstru
t the optimal universal asymmetri
 1! 3 
loners. Thesema
hines produ
e three 
lones, A, B, and C, ea
h 
lone possibly having a di�erent �delity(FA, FB , and FC). The optimal asymmetri
 
loning ma
hine should maximize the 
loning�delities su
h that for a given pair of �delities (say FA and FB) the �delity of the third 
lone(FC) is maximum.The output Hilbert spa
e of the asymmetri
 quantum tripli
ator is a tensor produ
t ofHilbert spa
es of the three 
lones. The average �delity of jth 
lone 
an be again expressed asFj = Tr[SLj ℄ with j 2 fA;B;Cg, where nowLA = 1d(d+ 1) [IR 
 IA + d�+RA℄
 IBC ; (25)where R indi
ates the referen
e, and LB and LC 
an be obtained by 
y
li
 permutation ofA;B;C. In analogy with Eq. (11), the optimal asymmetri
 1 ! 3 
loning ma
hine shouldmaximize a 
onvex 
ombination of the three single-
lone �delities,F = aFA + bFB + 
FC ; (26)
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 quantum 
loning in arbitrary dimensionwhere a+ b + 
 = 1, a; b; 
 � 0 and the asymmetry of the 
loner is determined by the ratiosa=b and a=
. The �delity (26) 
an be rewritten as F = Tr[SL℄, where L = aLA+ bLB + 
LC .Similarly as in the 
ase of 1! 2 
loning, we have to determine the eigenspa
e 
orrespondingto the maximum eigenvalue ofL = 1d(d+ 1) hIRABC + d ~Li ; (27)where ~L = a�+RA 
 IBC + b�+RB 
 IAC + 
�+RC 
 IAB : (28)Due to the high symmetry, the operator ~L has only six di�erent non-zero eigenvalues. Threeof them are d(d+ 1)=2-fold degenerate and the 
orresponding eigenstates read,j�+; kli = � j�+iRAjkl+iBC + � j�+iRB jkl+iAC + 
 j�+iRC jkl+iAB ; (29)with l � k. Here we take jkl+i = (jkli + jlki)=p2 if k 6= l, while jkk+i = jkki. The threeeigenvalues (�+;1 > �+;2 > �+;3) 
an be determined as roots of the 
ubi
 equationP+(�+) � �3+ � �2+ + �+(ab+ b
+ a
) �1� d�2��ab
 �1 + 2d�3 � 3d�2� = 0; (30)and the 
oeÆ
ients �; �; 
 
an be expressed in terms of a; b; 
, and �+ by solving the systemof linear equations (�+ � a)�� ad (� + 
) = 0;(�+ � b)� � bd (�+ 
) = 0;(�+ � 
)
 � 
d (�+ �) = 0: (31)The normalization of the eigenstate j�+; kli imposes the 
onstraint�2 + �2 + 
2 + 2d (�� + �
 + �
) = 1: (32)The other three eigenvalues 
orrespond to the anti-symmetri
 
ombinations of jkli and jlki,that is, jkl�i = (jkli� jlki)=p2, and are thus d(d� 1)=2-fold degenerate. The eigenstates aregiven by j��; kli = �j�+iRAjkl�iBC + �j�+iRB jkl�iAC + 
j�+iRC jkl�iAB; (33)with l > k, and the 
ubi
 equation for the eigenvalues �� readsP�(��) � �3� � �2� + ��(ab+ b
+ a
) �1� d�2��ab
 �1� 2d�3 � 3d�2� = 0: (34)Sin
e the polynomials P+(�) and P�(�) di�er only in their zeroth order terms, their graphslook identi
al up to a verti
al shift of 4ab
=d3. This simple geometri
al observation revealsthat the maximum eigenvalue �+;1 is always larger than the maximum eigenvalue ��;1. Hen
e,
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loning transformation, whi
h 
orresponds to the maximum eigen-value of (27), we have to 
onsider only the eigenstates (29). It follows from the stru
ture ofthe operator ~L that �+;1 � max(a; b; 
). This, together with Eq. (31) implies that the 
o-eÆ
ients �, �, and 
 of an eigenstate 
orresponding to the maximum eigenvalue �+;1 mustbe all positive (or all negative). The optimal tra
e-preserving 1 ! 3 
loning map 
an thenbe expressed simply as the properly normalized proje
tor onto the subspa
e spanned by thed(d+ 1)=2 eigenstates (29) with eigenvalue �+;1,S = 2d+ 1Xl�k j�+;1; klih�+;1; klj; (35)
where the prefa
tor originates from the 
onstraint that Tr(S) = d. A unitary implementationof this CP map requires two an
illa systems, E and F , and 
an be 
hara
terized by thepuri�
ation of S, namelyj�i = pd C �� j�+iRA(j�+iBE j�+iCF + j�+iBF j�+iCE)+� j�+iRB(j�+iAE j�+iCF + j�+iAF j�+iCE)+
 j�+iRC(j�+iAE j�+iBF + j�+iAF j�+iBE)� ;where we have used the identity2dXl�k jkl+iBC jkl+iEF = j�+iBE j�+iCF + j�+iBF j�+iCE ; (36)
and the normalization 
onstant is C =pd=(2(d+ 1)). Therefore, by proje
ting R onto j �i,we see that any pure input state j i transforms a

ording toj i ! C ��j iA(j�+iBE j�+iCF + j�+iBF j�+iCE)+�j iB(j�+iAE j�+iCF + j�+iAF j�+iCE)+
j iC(j�+iAE j�+iBF + j�+iAF j�+iBE)� :It 
an be easily veri�ed that this transformation is universal, i.e. the single-
lone �delities donot depend on the input state.We 
an express the �delities in terms of the 
oeÆ
ients �, �, and 
, by noting thath�+;1; klj�+RA 
 IBC j�+;1; kli = (�+ �=d+ 
=d)2;h�+;1; klj�+RB 
 IAC j�+;1; kli = (� + �=d+ 
=d)2;h�+;1; klj�+RC 
 IAB j�+;1; kli = (
 + �=d+ �=d)2: (37)Using the normalization 
ondition (32), we obtain the �delity tripletFA = 1� d� 1d ��2 + 
2 + 2�
d+ 1� ;FB = 1� d� 1d ��2 + 
2 + 2�
d+ 1� ;FC = 1� d� 1d ��2 + �2 + 2��d+ 1� : (38)
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Fig. 1. The trade-o� between the �delities FA and FB for a �xed �delity FC is shown for theoptimal universal asymmetri
 1! 3 
loning of qubits. The 
urves are plotted for several di�erentvalues of FC(n) = 0:6 + 0:05n, n = 0; : : : ; 7, the most inward 
urve 
orresponding to the highestvalue of FC .
This, together with the normalization 
ondition (32) and the 
onstraints � � 0; � � 0; 
 � 0,provides a parametri
 des
ription of the whole 
lass of the optimal universal asymmetri
1! 3 
loning ma
hines in a Hilbert spa
e of arbitrary dimension d.As an example, in Fig. 1 we plot the trade-o� between FA and FB for several di�erentvalues of the �delity of the third 
lone FC for 1! 3 asymmetri
 
loning of qubits, d = 2. Note,that in the limit where one of the three 
oeÆ
ients �; �; 
 is equal to zero the asymmetri
1 ! 3 
loning essentially redu
es to the optimal asymmetri
 1 ! 2 
loning. However,even in this 
ase the �delity of the third 
lone is larger than 1=2, whi
h is what one 
ouldhave naively expe
ted. This interesting e�e
t is 
learly visible in Fig. 1. The endpoints ofthe 
urves showing the trade-o� between FA and FB for a �xed FC 
orrespond to optimal1 ! 2 asymmetri
 
loning in the subspa
e of qubits A and C (or B and C). Note that theendpoints do not lie on the line FB = 1=2 (FA = 1=2) and the �delity FB (FA) is thus higherthan 1=2 even in this limit 
ase. This behavior 
an be easily understood by noting that inthe 1 ! 2 
loning, the an
illa (anti-
lone) 
arries some information about the input and athird 
lone with �delity larger than 1=2 
an be produ
ed simply by applying the optimalapproximate universal-NOT gate [26, 27℄ to the anti-
lone. In parti
ular, for � = � = 1=p3and 
 = 0 we obtain the optimal triplet of �delities FA = FB = 5=6 and FC = 5=9. The three
lones exhibiting these �delities 
an be prepared by �rst performing the optimal symmetri
1! 2 universal 
loning whi
h produ
es two 
lones with �delity 5=6. The third 
lone is thenobtained from the anti-
lone by applying the approximate UNOT whi
h yields a 
lone with�delity exa
tly 5=9.
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lusionsIn summary, we have investigated asymmetri
 universal 
loning in arbitrary dimension. Wehave proved the optimality of the universal asymmetri
 1 ! 2 
loning ma
hines that havebeen previously 
onsidered as possible eÆ
ient atta
ks on 
ertain 
lasses of quantum key dis-tribution proto
ols. We have then extended the 
on
ept of asymmetri
 
loning to quantumtripli
ators, whi
h produ
e three 
lones of di�erent �delity. We have derived a simple para-metri
 des
ription of the optimal asymmetri
 1 ! 3 
loning ma
hines and we have providedan expli
it formula for the optimal 
loning transformation.We anti
ipate that our results may play an important role in quantum information theory,for instan
e in the analysis of quantum information distribution in quantum networks and instudies of eavesdropping strategies on multi-party quantum 
ommuni
ation proto
ols.A
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