
Reduced randomness in quantum cryptography with sequences of qubits encoded
in the same basis

L.-P. Lamoureux,1 H. Bechmann-Pasquinucci,2,3 N. J. Cerf,1 N. Gisin,4 and C. Macchiavello2

1Quantum Information and Communication, Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Brussels, Belgium
2Quantum Information Theory group (QUIT), Dipartimento di Fisica “A. Volta” and INFM - Unità di Pavia, Via Bassi 6,

I-27100 Pavia, Italy
3UCCI.IT, via Olmo 26, I-23888 Rovagnate, Italy

4Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
�Received 6 July 2005; published 2 March 2006�

We consider the cloning of sequences of qubits prepared in the states used in the BB84 or six-state quantum
cryptography protocol, and show that the single-qubit fidelity is unaffected even if entire sequences of qubits
are prepared in the same basis. This result is only valid provided that the sequences are much shorter than the
total key. It is of great importance for practical quantum cryptosystems because it reduces the need for
high-speed random number generation without impairing on the security against finite-size cloning attacks.

DOI: 10.1103/PhysRevA.73.032304 PACS number�s�: 03.67.Dd, 03.65.�w

I. INTRODUCTION

The security of quantum cryptography �1–3� is based on
two main ingredients. The first refers to the impossibility of
perfectly cloning some unknown quantum state selected
from a nonorthogonal set �4�. As a result, the potential eaves-
dropper Eve cannot clone the quantum state transmitted by
Alice and retransmit it undisturbed to the receiver Bob. The
second ingredient, although often mentioned only implicitly
in the literature, is also an absolute requirement: truly ran-
dom numbers must be available on both Alice’s and Bob’s
sides. Indeed, with pseudorandom number generators, the se-
quence of choices made by Alice and Bob could in principle
be predicted by Eve if the seed is known to her. Clearly,
quantum cryptography should use quantum randomness.
But, in practice, this is a severe constraint because a com-
plete protocol requires a huge amount of random numbers,
from Alice’s state choices to Bob’s basis choices, as well as
for the random choices and random permutations needed in
error correction and privacy amplification. Making high-
speed quantum random-number generators is a big techno-
logical challenge, so that most realizations of quantum cryp-
tography today rely on an active �16� choice that uses a
standard random-number generator. It is therefore of a great
importance to investigate whether this requirement of high-
rate random number generation can be relaxed, at least in
part.

In this paper, we consider a variant of the BB84 �1� or
six-state �5,6� protocols in which the basis chosen for encod-
ing is kept unchanged over long sequences of qubits instead
of being drawn at random for each qubit. Quite surprisingly,
we show that, if the sequences are much shorter than the
key, the security is unaffected by this modification of the
protocol although the random number generation rate is
significantly reduced. The BB84 and six-state protocols are
among the cryptographic schemes for which the security
has exhaustively been studied. In various cases the optimal
eavesdropping strategy has been found explicitly �5–7�,
and was shown to coincide with approximate cloning �8�.

For this reason, we restrict our analysis to cloning-based
attacks in the following. Also, note that other methods
for saving random numbers have been proposed, but rely on
totally different modifications of quantum cryptographic
protocols �9�.

We consider the cloning of sequences of N qubits. In each
sequence the qubits are prepared in the same basis, but the
state is chosen at random among the basis states �17�. This is
viewed as the optimal eavesdropping attack against a quan-
tum cryptographic protocol in which we do not restrict Alice
and Bob to make random choices of bases for every qubit,
but allow them to use the same basis for the entire length-N
sequence �N is assumed to be publicly known and much
smaller than the size of the key�. That is, for each sequence,
Alice and Bob make new and independent random choices of
bases. At first sight, one could imagine that this encoding
would increase Eve’s knowledge about the secret key, but we
shall see that for the class of cloning transformations we
have studied, this is not the case: Eve’s optimal cloning at-
tack provides her with no more Shannon information, for a
given quantum bit error rate, than in the usual case where
Alice and Bob make random basis choices for each qubit and
Eve applies a cloning attack on each qubit. Under the as-
sumption that this class of approximate cloning transforma-
tions corresponds to the optimal eavesdropping strategy, we
have thus proven that the requirement for random number
generation can be reduced without impairing on the security
against finite-size attacks �10�. It should be noted that the
security analysis in Ref. �8� differs fundamentally from the
security analysis performed here. In this paper we are inter-
ested in the single-qubit fidelity for a cloned sequence of
qubits �a d-dimensional system� whereas in Ref. �8� the au-
thors are also interested in cloning d-dimensional systems
�they consider secure QKD with such higher dimensional
systems� but where the figure of merit is the fidelity of the
total cloned d-dimensional system.

The paper is organized as follows. In Sec. II, we describe
a general formalism for quantum cloning �11,12�, and adapt
it to the case of interest here. In Secs. III and IV, we apply
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this formalism to two-qubit cloning attacks in the BB84 and
six-state protocols, respectively, and show that using the
same bases does not affect the cloning fidelity. Section V
contains a generalization of these results in dimensions being
any power of 2. Finally, in Sec. IV, we summarize our
results.

II. GENERAL QUANTUM CLONING FORMALISM

We refer to a general class of cloning transformations
as defined in Refs. �11,12�. Considering an arbitrary state ���
in a 2N-dimensional Hilbert space, we wish to produce two
�approximate� clones. The class of cloning transformations
we will analyze is built following the “Cerf ansatz”: if the
input state is ���, then the resulting joint state of the two
output clones �noted E and B� and the cloning machine
�noted C� is

��� → �
m−,n̄=0

2N−1

am̄,n̄Um̄,n̄���E�Bm̄,n̄�B,C

= �
m̄,n̄=0

2N−1

bm̄,n̄Um̄,n̄���B�Bm̄,n̄�E,C, �1�

where the couple �m̄ , n̄	Û �m1¯mN ,n1¯nN	 and mi ,ni

� �0,1	. Here, E, B, and C are 2N-dimensional systems and
Um̄,n̄ is defined as

Um̄,n̄ = �
i=1

N

XmiZni, �2�

where XmiZni represents the identity and the three Pauli
matrices

X0Z0 = I ,

X1Z0 = �x,

X0Z1 = �z,

X1Z1 = − i�y .

Here, �Bm̄,n̄� is defined as

�Bm̄,n̄� = �
k̄=0

2N−1

�− 1��k̄·n̄��k̄��k̄ + m̄� , �3�

where k̄ · n̄ represents the bitwise scalar product, i.e.,

k̄ · n̄=�ikini. Thus Um̄,n̄ is the tensor product of N Pauli ma-
trices each acting on a two-dimensional subsystem. An error
operator Umi,ni

is associated to each subsystem. Such an op-
erator shifts the state by mi units �modulo 2� in the compu-
tational basis, and multiplies it by a phase so as to shift its
Fourier transform by ni units �modulo 2�. Equation �3� de-
fines the d2 generalized Bell states for a pair of
2N-dimensional systems with �Bm̄,n̄�=Um̄,n̄ � I �B0̄,0̄�.

Tracing over systems B and C �or E and C� yields
the final states of clone E �or clone B�: if the input state

is ���, the clones E and B are in a mixture of the states
��m̄,n̄�=Um̄,n̄ ��� with respective weights pm̄,n̄ and qm̄,n̄:

�E = �
m̄,n̄=0

2N−1

pm̄,n̄��m̄,n̄�
�m̄,n̄�,

�B = �
m̄,n̄=0

2N−1

qm̄,n̄��m̄,n̄�
�m̄,n̄� . �4�

In addition, the weight functions of the two clones �pm̄,n̄ and
qm̄,n̄� are related by

pm̄,n̄ = �am̄,n̄�2, qm̄,n̄ = �bm̄,n̄�2, �5�

where am̄,n̄ and bm̄,n̄ are two �complex� amplitude functions
that are dual under N two-dimensional Fourier transforms:

bm̄,n̄ =
1

2N �
x̄,ȳ=0

2N−1

�− 1�n̄·x̄−m̄·ȳax̄,ȳ . �6�

The fidelity of a clone, say E, is given by

FE = 
���E��� = �
m̄,n̄=0

2N−1

�am̄,n̄�2�
��Um̄,n̄����2 �7�

and similarly for the B clone �replace the �am̄,n̄�2 term by
�bm̄,n̄�2�.

III. BB84 PROTOCOL WITH TWO-QUBIT
CORRELATED BASES

In this section we compare the amount of information that
can be gained by Eve when performing a cloning attack on
individual qubits �two-dimensional� and on pairs of qubits
�four-dimensional� which may have been chosen from corre-
lated bases. We study here how this affects the BB84 proto-
col and in the next section we move on to the six-state
protocol.

In the BB84 protocol, Alice chooses from states belong-
ing to two mutually unbiased bases. Two bases A and B for a
d-dimensional system are said to be MU �13� if a state pre-
pared in any element of A �such as �A ,��� has a uniform
probability distribution of being found in any element of B,
namely

�
A,��B,��� =
1
�d

. �8�

Conventionally, Alice and Bob choose the first basis as the
so-called computational basis �eigenstates of �z� ��0� , �1�	
and the second as the dual basis �eigenstates of �x�
�1/�2��0�± �1��	.

A. BB84–single qubit attack–no basis correlation

If Eve chooses to clone the qubits individually, she must
use a cloning strategy which is optimal for this set of states.
When using the cloning formalism described in Sec. I, one
can easily verify that the expression of the fidelity for all
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states of a given basis is the same. The reader familiar with
this calculation can easily skip to the next subsection without
any loss of generality. Here and throughout the paper, we
consider fidelities as expressed by Eq. �7�. Particularly for
Eve’s clone one finds that the fidelity for the computational
basis is FE= �a0,0�2+ �a0,1�2 and the dual basis is FE= �a0,0�2
+ �a1,0�2. A cloning machine that acts equally well for this set
of states implies �a0,0�2+ �a0,1�2= �a0,0�2+ �a1,0�2. Since there is
a priori no reason why the optimal values of these elements
be different from each other, we make the hypothesis that
they should all be equal and real. Furthermore, we extend
our hypothesis to the remaining element, �a1,1�2 such that the
form of the amplitude matrix reduces to

am̄,n̄ = �v x

x y

 . �9�

Eve’s fidelity is now expressed as FE=v2+x2 and normaliza-
tion requires v2+2x2+y2=1. Bob’s clone can be character-
ized by a similar amplitude matrix by making the same hy-
potheses:

bm̄,n̄ = �v� x�

x� y�

 , �10�

where the different matrix elements are related to the am,n
coefficients by Eq. �6�. Thus Bob’s fidelity is FB=v�2+x�2 in
both bases and the corresponding mutual information be-
tween Alice and Bob �if the latter measures his clone in the
good basis� is given by

IAB = 1 + FBlog2FB + �1 − FB�log2�1 − FB� . �11�

Maximizing Eve’s fidelity FE for a given value of Bob’s
fidelity FB under the normalization constraint yields

v =
1

2
+ �FB�1 − FB� ,

x = FB −
1

2
,

y =
1

2
− �FB�1 − FB�

such that the corresponding optimal fidelity for Eve is

FE =
FB

2
+

1 − FB

2
+ �FB�1 − FB� . �12�

Under the assumption that Alice and Bob exchange many
sequences which are short in comparison to the size of the
total key, Alice and Bob can rely on the randomness of the
sequence basis distribution to guarantee the security of their
exchange. Csiszár and Körner’s theorem �14� provides a
lower bound on the rate R at which Alice and Bob can gen-
erate secret key bits using privacy amplification:

R � max�IAB − IAE,IAB − IBE� , �13�

where IAE and IBE represent the mutual information between
Alice and Eve, and Bob and Eve, respectively. It is therefore

a sufficient condition that IAB� IAE in order to establish a
secret key with nonzero rate for one way communication
channels. It has been shown in Ref. �8� that Bob and Eve’s
information curves intersect exactly where the fidelities co-
incide because, in this particular case, the mutual informa-
tion shared between Alice and Eve is also expressed by Eq.
�11�. This yields the optimal symmetric fidelity of phase co-
variant cloning �15�,

FE = FB =
1

2
+

1
�8

� 0.8536. �14�

Note that this result is independent of the fact that Alice may
have chosen to encode sequences of consecutive qubits in the
same basis since Eve is intercepting them individually.

B. BB84–two qubit attack–no correlation

Suppose now that Eve intercepts the qubits in sequences
of two and clones them. We make the same assumption as
before, namely that Alice has randomly chosen the basis she
has encoded her qubit with. We would like to know if Eve
can gain more information per qubit using this cloning ap-
proach as opposed to cloning them individually. Our first
task is to determine the set of states that she will have to
clone. If Alice chooses among the computational and dual
bases, the possible sequences Eve might encounter are prod-
ucts of eigenstates of �z

�2: �00�, �01�, �10�, �11�, products of
eigenstates of �x

�2:

1

2
��00� + �01� + �10� + �11�� ,

1

2
��00� − �01� + �10� − �11�� ,

1

2
��00� + �01� − �10� − �11�� ,

1

2
��00� − �01� − �10� + �11�� ,

and products between eigenstates of these two bases ��z

� �x and �x � �z�:

1
�2

��00� ± �01��,
1
�2

��10� ± �11�� ,

1
�2

��00� ± �10��,
1
�2

��01� ± �11�� .

Because we are now dealing with a four-dimensional Hilbert
space �N=2� with tensor product structure, the Um̄,n̄ opera-
tors take the following form:

Um1m2;n1n2
= � I Z

X Y

 � � I Z

X Y

 .

Each of these matrix elements consists in a tensor product of
two Pauli operators each acting on an associated qubit. Eve
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is interested in the information she can gain from a single
qubit when she clones them in sequences of two. In other
words, Eve is interested in the optimal four-dimensional
cloning map where the figure of merit is not the single-clone
four-dimensional fidelity but rather the single-clone, single-
qubit two-dimensional fidelity averaged over the two qubits.
To obtain this fidelity, we must trace over the second qubit
subsystem and compute the fidelity of the first qubit, repeat
this operation for the second qubit by tracing out the first
qubit subsystem and finally average over the two fidelities.
For example, the reduced density matrix of the first qubit for
Eve’s clone is expressed as

�E
1 = Tr2��

m̄,n̄

�am̄,n̄�2Xm1Zn1�	1�
	1�Zn1Xm1 � Xm2Zn2�	2�



	2�Zn2Xm2

=�

m̄,n̄

�am̄,n̄�2Xm1Zn1�	1�
	1�Zn1Xm1,

where �	i� is a two-dimensional system. For sequences of
qubits both drawn from eigenstates of �z the fidelity is

FE,zz
1 = �

m̄=0,n̄=0

2N−1

�am̄,n̄�2�
	1�Xm1Zn1�	1��2 = �
m̄=0,n̄=0

2N−1

�am̄,n̄�2�m1,0

�15�

for the first qubit and

FE,zz
2 = �

m̄=0,n̄=0

2N−1

�am̄,n̄�2�
	2�Xm2Zn2�	2��2 = �
m̄=0,n̄=0

2N−1

�am̄,n̄�2�m2,0

�16�

for the second qubit. For clusters of qubits both drawn from
eigenstates of �x the fidelity is

FE,xx
1 = �

m̄=0,n̄=0

2N−1

�am̄,n̄�2�n1,0 �17�

for the first qubit and

FE,xx
2 = �

m̄=0,n̄=0

2N−1

�am̄,n̄�2�n2,0 �18�

for the second qubit. To be complete, we must also compute
the fidelity for clusters expressed as tensor products drawn
from eigenstates of �z � �x and �x � �z. The former yields
FE,zx

1 =FE,zz
1 for the first qubit and FE,zx

2 =FE,xx
2 for the second

qubit. The latter yields a fidelity of FE,xz
1 =FE,xx

1 for the first
qubit and FE,xz

2 =FE,zz
2 for the second qubit. The expressions

for these fidelities FE
i can easily be interpreted as follows.

Every single-qubit fidelity consists in a sum of eight terms
for which the first four express the fidelity of the four-
dimensional system in question �in other words the contribu-
tion from the am̄,n̄ coefficients where no errors occur on ei-
ther qubits� while the remaining four terms correspond to the
am̄,n̄ coefficients for which the ith qubit is not affected by an

error but the remaining one is. Generally, the fidelity of the
ith qubit is expressed as

FE
i = F4E + DE

i , �19�

where F4E is the fidelity of the four-dimensional system and
DE

i is the disturbance of the ith qubit and is expressed as

DE
i = �

m̄=0,n̄=0

2N−1

�am̄,n̄�2�mi,1
�m¬i,0

�20�

for qubits drawn from the computational basis and

DE
i = �

m̄=0,n̄=0

2N−1

�am̄,n̄�2�ni,1
�n¬i,0

�21�

for qubits drawn from the dual basis. Here, the qubit of the
pair which is not the ith qubit is given the index ¬i. The
average qubit fidelity of Eve’s clone is therefore

FE = F4E +
1

2
�DE

1 + DE
2� . �22�

A similar analysis can be made for Bob’s clone from which
we obtain a single-qubit fidelity

FB = F4B +
1

2
�DB

1 + DB
2� �23�

which is function of the bm̄,n̄ coefficients. We are again inter-
ested in the mutual information shared between Alice and
Bob and Alice and Eve. To do this, let us first compute Eve’s
optimal fidelity FE for a fixed value of Bob’s fidelity FB
under the normalization constraint

�
m̄=0,n̄=0

3

�am̄,n̄�2 = 1 �24�

and the constraint that the single-qubit fidelity be the same
for all 16 considered input states. The optimization yields the
following am̄,n̄ matrix:

am̄,n̄ = �v1 x1

x1 y1

 � �v2 x2

x2 y2

 , �25�

where

v1 = v2 =
1

2
+ �FB�1 − FB� ,

x1 = x2 = FB −
1

2
,

y1 = y2 =
1

2
− �FB�1 − FB�

such that

FE =
FB

2
+

1 − FB

2
+ �FB�1 − FB� . �26�

From the previous subsection we know that Bob and Eve’s
information curves intersect exactly where the fidelities co-
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incide. This implies that Alice and Bob can share secret bits
via privacy amplification as long as FB�FE, that is

FB �
1

2
+

1
�8

.

This optimal symmetric fidelity turns out to be the same as
the optimal fidelity obtained when the cloner is designed for
two-dimensional systems meaning that the optimal four-
dimensional cloning map for single-qubit single-clone fidel-
ity boils down to the tensor product of the two-dimensional
optimal cloners.

C. BB84–two qubit attack–correlated bases

Now consider the situation where Alice is limited by her
random number generator and must therefore send two con-
secutive states drawn from the same basis in order to keep a
decent cadence �10�. Of course if Eve intercepts every qubit
individually, the fidelity she obtains after cloning is just the
same as before, namely F= 1

2 +1/�8. If she intercepts them in
sequences of two qubits she will necessarily find that they
are correlated: either she expects to find two qubits drawn
from the computational basis �z �equivalently, a four-
dimensional state drawn from the eigenstates of �z � �z� or
two qubits drawn from the dual basis �x �equivalently, a
four-dimensional state drawn from the eigenstates of
�x � �x�. Compared to the previous situation where no cor-
relation was present, the set of input states Eve has to con-
sider has now decreased. Intuitively we should expect that
the optimal single-qubit cloner would give rise to a higher
fidelity. We shall see that this is not the case.

The cloner is again characterized by the “Cerf ansatz” �1�
such that the single-qubit fidelity for this set of input states is
defined exactly like Eqs. �15� and �16� for eigenstates of �z
and like Eqs. �17� and �18� for eigenstates of �x. These are
the four expressions of the fidelity for which the am̄,n̄ �and
consequently the bm̄,n̄� coefficients must be optimized for.
The constraints we must consider here are the normalization
constraint and the constraint that these four expressions be
equal. Of course, these fidelities are again characterized by
Eq. �22�. Interestingly, the constrained optimization yields
am̄,n̄ coefficients which have exactly the same form as Eq.
�25� and therefore the same expressions for Eve’s fidelity as
a function of Bob’s. Once again, the lower bound on the
mutual information Alice and Bob must share in order to
generate a secret key is given by

F �
1

2
+

1
�8

.

We conclude that even if Alice chooses to encode two con-
secutive states in the same basis, Eve’s optimal cloning strat-
egy does not permit her to gain more information than com-
plete random choices. In Sec. V we will generalize this idea
for sequences of N qubits, but first let us examine how these
cloning strategies apply to the six-state protocol.

IV. SIX-STATE PROTOCOL WITH TWO-QUBIT
CORRELATED BASES

The six-state protocol is very similar to the BB84 proto-
col, the only difference being that Alice now has the choice
to pick up states from a third basis MU to the other two.
Again, let us choose the first two bases as the computational
basis and the dual basis and let the third basis be the eigen-
states of �y: ��1/�2���0�± i �1��	.

A. Six-state protocol–single qubit attack–no correlation

The cloner that must be used for the six-state protocol is
an asymmetric two-dimensional universal cloner �8� charac-
terized by the same amplitude matrix as Eq. �9� except that
we make the change y=x:

am̄,n̄ = �v x

x x

 .

Eve’s fidelity is expressed as FE=v2+x2 and normalization
requires v2+3x2=1. Maximizing her fidelity for a fixed value
of Bob’s fidelity yields the optimal cloner:

v =�3FB − 1

2
,

x =�1 − FB

2
.

Bob’s clone is characterized by a similar amplitude matrix:

bm̄,n̄ = �v� x�

x� x�

 , �27�

where as before, v� and x� are given by Eq. �6� while the
mutual information he shares with Alice by Eq. �11�. It has
been shown in Ref. �8� that the mutual information shared
between Alice and Eve for the six-state protocol is given by

IAE = 1 + �FB + FE − 1�log2�FB + FE − 1

FB



+ �1 − FE�log2�1 − FE

FB

 �28�

such that for a given FB, IAE is lower than for the BB84
protocol which is consistent with the stronger requirement
we put on that cloner. This implies that the fidelity FB for
which IAE= IAB is slightly lower, and equal to FB�0.8436.

B. Six-state–two qubit attack–no basis correlation

If Eve chooses to clone the incoming states in sequences
of two, the set of four-dimensional states she has to clone
consists of tensor products of states belonging to the three
maximally unbiased bases above. The single-qubit fidelity is
computed as above, with the exception that there are extra
constraints, namely that the fidelity should also clone equally
well eigenstates of �y:
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FE,yy
1 = �

m̄=0,n̄=0

2N−1

�am̄,n̄�2�m1,n1

for the first qubit and

FE,yy
2 = �

m̄=0,n̄=0

2N−1

�am̄,n̄�2�m2,n2

for the second qubit. The other constraints come from tensor
products of �y � �z, �y � �x and vice versa. The expression
for the fidelity of the ith qubit can be expressed as

FE
i = F4E + DE

i , �29�

where, for eigenstates of �y,

DE
i = �

m̄=0,n̄=0

2N−1

�am̄,n̄�2�mi,ni+1�m¬i,n¬i
. �30�

The average qubit fidelity is again

FE = F4E +
1

2
�DE

1 + DE
2� . �31�

As before a similar analysis can be made for Bob’s clone
from which we obtain a single-qubit fidelity,

FB = F4B +
1

2
�DB

1 + DB
2� . �32�

We are again interested in the mutual information shared
between Alice and Bob, and Alice and Eve. We compute
Eve’s optimal fidelity FE for a fixed value of Bob’s fidelity
FB under the normalization constraint Eq. �24� and the con-
straint that the single-qubit fidelity be the same for all input
states. The optimization yields the following am̄,n̄ matrix:

am̄,n̄ = �v1 x1

x1 x1

 � �v2 x2

x2 x2

 , �33�

where

v1 = v2 =�3FB − 1

2
,

x1 = x2 =�1 − FB

2

such that

FE = 1 −
FB

2
+

1

4
�6FB − 2�2 − 2FB. �34�

In the previous subsection, we have seen how to express IAB
and IAE. Again in this case the lower bound on Bob’s fidelity
needed for IAB� IAE is given by FB�0.8436 which is the
same fidelity for individual attacks. Thus, so far, we arrive to
the same conclusions as for the BB84 protocol.

C. Six-state–two qubit attack–correlated bases

If Alice is again limited by her random number generator
and must encode two consecutive qubits in the same basis,

Eve can clone the incoming states by sequences of two ex-
pecting to find four-dimensional states expressed as eigen-
states of �z � �z, �x � �x, or �y � �y. By making a similar
reasoning as in the previous subsection we arrive to the same
conclusions as before, namely that the information Eve can
gain when cloning a four-dimensional system boils down to
the optimal single qubit information.

V. CLONING OF N-QUBIT SEQUENCES

We now proceed to generalize the cloning strategies con-
sidered in the previous sections. We suppose that Alice en-
codes her qubits using the same basis for sequences of N
qubits. We also suppose that N is much smaller than the total
size of the raw key she will be exchanging with Bob. We also
suppose that Eve is aware of when a new sequence begins
and ends.

Generally, for a sequence of N qubits, the reduced density
matrix of the ith qubit for a given clone �say E� is written as

�E
i = Trj�i�

m̄,n̄

�am̄,n̄�2 �
j=1

N

XmjZnj�	 j�
	 j�ZnjXmj

= �
m̄,n̄

�am̄,n̄�2XmiZni�	i�
	i�ZniXmi, �35�

such that fidelity of the jth qubit is written as

FE
j = FE2N + DE

j �36�

and similarly for qubits of Bob’s clone. The average qubit
fidelity is therefore expressed as

FE = FE2N +
1

N
�
i=1

N

DE
i . �37�

If we assume that the optimal am̄,n̄ amplitude matrices are
expressed as

am̄,n̄ = �v x

x y

�N

�38�

for the BB84 protocol and

am̄,n̄ = �v x

x x

�N

�39�

for the six-state protocol, we can check that they indeed sat-
isfy a constrained optimization. Since the information curves
are both monotonically increasing functions of the fidelities,
we use the Lagrange multiplier method to optimize Eve’s
fidelity for a fixed value of Bob’s.

The constraint that the fidelity for different qubits in the
sequence be the same is already satisfied by the hypothesized
am̄,n̄ matrix. The function is
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L = FE + �1FB + �2� �
m̄,n̄=0

2N−1

�am̄,n̄�2 − 1

=

1

N
�
m̄=0

N �N − �
i=1

N

mi
�
i=1

N

�v2 + x2�mi�1�x2 + y2�mi

+ �1� 1

N
�
m̄=0

N �N − �
i=1

N

mi
�
i=1

N �1

2
+ vx + xy
mi�1


�1

2
− vx − xy
mi� + �2��v2 + 2x2 + y2�N − 1� ,

�40�

where the modular sum is in base 2. The equivalent expres-
sion of Eq. �40� for the six-state protocol is very similar
except that one should exchange y2 for x2.

We have checked, using a symbolic calculator, that the
hypothesized amplitude matrices satisfy the constrained op-
timization and yield the optimal fidelities �Eqs. �26� and
�34�� for N=2 and N=3.

VI. CONCLUSION

We have considered the cloning of sequences of N qubits,
where all the qubits in each sequence are prepared in the
same basis while each state is chosen at random. This situa-
tion is very different from the usual scenario of cloning mul-
tiple copies, where all the copies are prepared in the same
state. Our investigation was motivated by the situation in
quantum cryptography where the legitimate users are re-
quired to make truly random choices for each single qubit.
From a practical point of view, this requirement on high-rate
random-number generation is a severe constraint. Indeed,
high-rate quantum random number generators on the market
today produce much lower rates than the anticipated high-
rate �e.g., 100 Mb/s� quantum key distribution of the future.

However, under the assumption that the class of cloning
transformations we considered here provides the optimal

eavesdropping strategy, we have shown that this requirement
can be relaxed, so that Alice can prepare long sequences of
qubits in the same basis without compromising the security.
Surprisingly, Eve cannot exploit her knowledge that the used
basis is fixed for the entire sequence, regardless of its length
provided it is much shorter than the total key size. The con-
straint on the sequence size is necessary because even though
we assume Alice and Bob to exchange qubits encoded by a
single photon source �i.e., Eve cannot exploit photon number
splitting attacks�, Eve could still make a naive attack where
she randomly guesses the value of the basis for each se-
quence. For example in the extreme case where the sequence
is the same size as the key, i.e., when the variance of the
information gain is high, Eve would, with probability 1

2 ,
completely guess the secret key. Conversely, when N=1 �i.e.,
the standard BB84 or six-state protocol� the variance will be
lower and implies that the optimal eavesdropping strategy is
achieved through cloning. In order to avoid this security
threat, Alice and Bob should choose N in such a way that the
variance of the information gain implies that the optimal
strategy Eve should use remains the single-qubit cloning
strategies utilized in the original BB84 and six-state proto-
cols. We leave as an open question as to which bounds can
be achieved. Nevertheless, even with reasonably low values
of the sequence size, such as N=10, the saving of the random
bits is already significant �in this case, 45%�. This result is
quite important for practical applications of quantum cryp-
tography as it implies that higher secret-key rates may be
obtained using the same random number generator but with
this new modified protocol.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the Ac-
tion de Recherche Concertée de la Communauté Française
de Belgique, from the IUAP program of the Belgian Federal
Government under Grant No. V-18, and from the European
Union through projects RESQ �Grant No. IST-2001-37559�
and SECOQC �Grant No. IST-2003-506813�.

�1� C. H. Bennett and G. Brassard, in Proceedings of the IEEE
International Conference on Computers, Systems and Signal
Processing, Bangalore, India, 1984, pp. 175–179.

�2� A. Ekert, Phys. Rev. Lett. 67, 661 �1991�.
�3� N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.

Phys. 74, 145 �2002�.
�4� W. K. Wootters and W. H. Zurek, Nature �London� 299, 802

�1982�.
�5� D. Bruß, Phys. Rev. Lett. 81, 3018 �1998�.
�6� H. Bechmann-Pasquinucci and N. Gisin, Phys. Rev. A 59,

4238 �1999�.
�7� C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres,

Phys. Rev. A 56, 1163 �1997�.
�8� N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys.

Rev. Lett. 88, 127902 �2002�.
�9� H.-K. Lo, H. F. Chau, and M. Ardehali, J. Cryptology 18, 2

�2005�.
�10� N. Gisin, quant-ph/0303052.
�11� N. J. Cerf, Proceedings of the 1st NASA International Confer-

ence QCQC’98, Palm Springs, February 1998; also in Acta
Phys. Slov. 48, 115 �1998�.

�12� N. J. Cerf, Phys. Rev. Lett. 84, 4497 �2000�; J. Mod. Opt. 47,
187 �2000�.

�13� J. Lawrence, C. Brukner, and A. Zeilinger, Phys. Rev. A 65,
032320 �2002�.

�14� I. Csiszár and J. Körner, IEEE Trans. Inf. Theory 24, 339
�1978�.

�15� D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello,
Phys. Rev. A 62, 012302 �2000�.

�16� Note that if the choice is passive, based on quantum effects
�e.g., the photon being detected at one or the other output port
of a beam splitter at Bob’s station�, then it is still not com-

REDUCED RANDOMNESS IN QUANTUM CRYPTOGRAPHY¼ PHYSICAL REVIEW A 73, 032304 �2006�

032304-7



pletely equivalent to using a quantum random-number genera-
tor. Indeed, in the latter case, the photon involved in the
random-number generation is generated locally, and has not
been transmitted over the line and potentially tapped by Eve.

�17� Note that this situation is different from the usual scenario of
N→M cloning transformations, where N identical replicas of a
quantum state are considered at the input, and are used to
produce M clones.

L.-P. LAMOUREUX et al. PHYSICAL REVIEW A 73, 032304 �2006�

032304-8


