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Communications, en particulier Julien Niset, Stefano Pironio et Jérémie Roland qui

sont devenus de vrais amis. Merci aussi aux membres du service Optique et Acous-

tique pour l’aide qu’ils m’ont chacun fournie, particulièrement Pascal Kockaert, Xavier

Hutsebaut, David Amans et Cyril Cambournac.
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j’ai laissé derrière moi au Canada. En particulier, je remercie Eric Lanoue qui sans le
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Chapter 1

Introduction

Quantum mechanics is, without a doubt, the most completely confirmed physical the-

ory that has ever been created in terms of being verified by experiment. Ever since

the validity of Planck’s constant was accurately measured by Millikan in 1916 [Mil16],

experiment has never contradicted the theory. As we look back today, we observe

that a century of quantum mechanical theory has not only given rise to new interpre-

tations of the physical world but is also responsible for revolutionnary technological

offsprings. Its ramifications are incredibly broad as quantum theory is accountable for

many phenomena such as superconductivity, Bose-Einstein condensation, lasers and

scanning tunneling microscopy just to name a few.

Another remarkable theory has distinguished the twentieth century for its important

technological consequences. In 1948 Shannon published his seminal work on source

coding and channel coding therefore mathematically defining the concept of informa-

tion [Sha48]. More specifically, Shannon’s theory set an upper bound to the error

correction rate that can be achieved (and thus the level of noise that can be tolerated)

when sending information on a given channel. The result of this great intellectual

triumph led to the modern theory of information and communication and is greatly

responsible for dominating our economy and knitting together the global community

in which we live in today.

It was quickly observed by Landauer [Lan61] that the concept of information alone is

incomplete. More precisely, he concluded that information cannot be separated from

its physical representation: it is always stored in some physical system, manipulated

by some physical process. This interesting observation has a number of consequences

for information theory. The most important concerns the laws governing the dynam-
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2 1. Introduction
ics of an information carrier. Indeed, Shannon’s theory of information relies on the

fact that information is stored and processed in classical systems. All applications that

can be drawn from this theory are ultimately limited by the laws of classical mechanics.

The arrival of the modern computer brought along Moore’s law [Moo65] which con-

cludes that the decreasing transistor size, and increasing computer performance per

cost will slow down (or perhaps even halt) within the next few decades. The possi-

ble impacts on an information society such as ours are non-negligible and should be

taken seriously. It is important to envision an alternative knowing that as transistors

get smaller, the laws which govern the information carriers will change shifting from

classical to quantum mechanical.

This leads to the natural merger of quantum theory and information theory which oc-

cured gradually during the last few decades. Wiesner was among the first to recognize

that information can be encoded in systems obeying the laws of quantum mechanics.

This discovery enventually led to the field of ”quantum information theory”. Today,

the theory has greatly matured and contains many analoguous concepts present in

Shannon’s classical theory [NC00] such that we now have many tools to understand

the achievable limits of information processing when evolving according to the laws of

quantum mechanics. Furthermore, although still in its infancy, experimental imple-

mentation of quantum informational tasks have made milestone progress over the last

30 years but still offer monumental challenges for the future. The main problem being

decoherence: the fact that quantum information is lost in the environment surround-

ing the quantum mechanical process. These processes are now being implemented,

at a very low scale, with ion-traps, nuclear-magnetic resonance, semiconductors and

optical photons to name a few.

Just as classical information theory, quantum information theory is divided in three

major branches: quantum computation, quantum communication and the study of

quantum ressources. The first can be described as the science of solving abstract

mathematical problems using quantum carriers subjected to a complete set of logical

quantum gates. Several difficult problems such as factoring large integers [Sho95], sort-

ing databases [Gro97] or simulating large quantum systems [Fey82] have been found

to be solved more efficiently using quantum computation. For example, we can prove

the exsistence of quantum algorithms for which a large number N can be factored in

O(logN)3 in time whereas the best classical algorithms achieve only ∼ O(aN) in time.

Although this result is of great intellectual interest it more importantly has profound
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implications in the field cryptography. Indeed, the security of the most widely used

classical cryptographic protocols are based on the fact it is difficult to factor large

numbers using classical computation. Thus, in the advent of quantum computing,

these protocols would automatically breakdown.

The second branch of quantum information, quantum communication, provides an

adequate solution to the above problem and is the core subject of this dissertation.

The main idea in quantum communication is to exploit the laws of quantum mechanics

in order to achieve secure cryptographic tasks. In contrast to classical communication

protocols where the security is based on computational hypotheses [GRTZ02] (such

as the difficulty of factoring large numbers), the security of quantum communication

protocols is guaranteed by the laws of physics. We shall see that certain tasks such as

perfect quantum cloning, prohibited by the laws of quantum mechanics, can cleverly

be used to the advantage of parties wishing to implement communication protocols.

We will also describe how it is possible to implement these protocols using photons in

optical fibers. Before giving any more detail about the outline of the thesis however,

we briefly recall some basic notions of quantum mechanics.

1.1 Quantum information

Classical information theory is based on the concept of the bit, a dichotomic variable

which can assume the values 0 or 1. The quantum analogue of the bit, the qubit, is

defined in a two-dimensional Hilbert space spanned by the basis {|0〉, |1〉}. It can be

interpreted as the superposition quantum state of a spin-1/2 particle. An arbitrary

qubit |ψ〉 in a pure state can then be written as

|ψ〉 = α0|0〉+ α1|1〉 (1.1)

where α0 and α1 are complex numbers and |α0|2 + |α1|2 = 1. The basis {|0〉, |1〉}, is

usually called the computational basis.

Generally a qubit is not in a pure state but a mixed one. In this case the system

is completely described by its density operator ρ, which is a positive operator with

trace one, acting on the state space of the system. The general mixed state is expressed

as

ρ =
∑
i

pi|i〉〈i| (1.2)
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in terms of any complete set of pure states |i〉 realized in the mixture with probability

pi.

1.1.1 Multipartite systems

In many situations we will need to describe the evolution and the properties of the

subsystem of a composite system. The quantum state of a bipartite system composed

of the systems A and B is described by the density operator ρAB. The system A alone

is fully expressed by the reduced density operator defined as

ρA = TrB(ρAB) (1.3)

where TrB is a map of operators known as the partial trace over system B. The partial

trace is defined by

TrB
(|ai〉A〈ai| ⊗ |bi〉B〈bi|

)
= |ai〉A〈ai|TrB(|bi〉B〈bi|) (1.4)

An example of a composite system is the so-called entangled state. The word ”en-

tanglement” was first introduced by Schröedinger in 1935 to explain the unique quan-

tum correlations existing among different subsystems after an adequate ”preparation”.

Quantum entanglement, expressing the counter intuitive, most intriguing condition of

the quantum world, i.e. the quantum ”non-locality”, lies at the heart of many quan-

tum information tasks as, for instance, quantum cryptography.

When is a multipartite system ”separable”, i.e., expressible by a mere ”product state”,

or entangled? Let us consider the simplest case, a system of two qubits A and B in

a pure state |φ〉AB. |φ〉AB is separable if and only if it can be written as the product

state:

|φ〉AB = |a〉A|b〉B (1.5)

in some basis, otherwise it is entangled. For instance, a separable pure state is |0〉A|0〉B,

while the ”singlet” state of two qubits

|Ψ−〉AB =
1

2

[|0〉A|1〉B − |1〉A|0〉B
]

(1.6)

is entangled and usually called a maximally entangled (ME) state [EPR35]. The

density matrices of the subsystems A and B, obtained by applying the partial trace

operator TrB(ρAB) = TrA(ρAB) = 1
2
1, are completely mixed states. A feature of the

singlet state is that under any geometrical ”rotation” R, i.e. SU(2); transformation

affecting simultaneously the systems A and B, it keeps its typical formal expression.
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Note that the definition of entanglement can be extended to the case of mixed states

[HHH96]. Also note that the ME state |Ψ−〉 is an element of the Bell basis consisting

of four orthogonal states spanning 4-dimensional Hilbert space:

|Φ±〉 =
[|00〉 ± |11〉]/

√
2,

|Ψ±〉 =
[|01〉 ± |10〉]/

√
2 (1.7)

and will be widely used throughout the thesis.

1.1.2 Quantum dynamics

The ”completely positive” map, also called CP-map, is the only operation which can

be realized on any quantum mechanical system and determines the evolution of a

general quantum open system. A map Ω : ρ ∈ H → ρ ∈ K is a CP-map if it satifies

the following properties [NC00]:

[1] Tr Ω(ρ) = 1 if Trρ = 1.

[2] Ω must be convex and linear.

[3] Ω is completely positive.

1.1.3 Positive operator valued measures

A projective measurement of the qubit |ψ〉 in the computational basis {|0〉, |1〉} leads as

result to the state |0〉 with probability |α0|2 and state |1〉 with probability |α1|2. Gen-

erally quantum measurements are described by a collection {Mk} of positive measure-

ment operators, satisfying the completeness equation
∑

kM
†
kMk = 1. These operators

act on the state space of the system being measured. The index k refers to the measure-

ment outcomes that may occur in the experiment. If the initial state of the quantum

system is ρ, the probability of obtaining outcome k over ρ is ρ(k) = Tr
[
M †

kMkρ
]

and

the state after measurement can be expressed as

ρk =
M †

kρMk

Tr
[
M †

kMkρ
] . (1.8)

If the result of the measurement is unknown, the output state is

ρout =
∑

k

M †
kρMk. (1.9)
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1.2 Outline of the thesis

The contents of this thesis mainly concerns experimental implementations of quan-

tum communication protocols (also called quantum cryptographic protocols) in optical

fibers. These implementations are all accompanied by thourough theoretical demon-

strations proving their validity. The first part of this thesis will therefore describe

these experiments and their validity. In a second, shorter part, we will be concerned

with the concept of quantum cloning and study the achievable limits that are imposed

by quantum mechanics for specific cases.

In chapter 2, we introduce the first and most famous quantum cryptographic protocol

where two separated parties aim at generating a common secret key without having a

third malicious party gain any information. This is called quantum key distribution

(QKD). In particular, the description of this protocol will introduce many tools and

concepts in quantum and classical information theory which will be necessary through-

out the rest of this dissertation. We will conclude by describing the intimate link be-

tween QKD and quantum cloning and introduce a simple quantum cloning formalism

which will be used in subsequent chapters. In chapter 3, we lay down the general

framework of a clever experimental technique, called ”plug and play”, which enables

one to encode, process and measure quantum information using optical photons and

passive, linear optical components. We will conclude that chapter by illustrating the

power of this technique by describing an original experimental implementation of the

first quantum algorithm introduced by Deutsch and Jozsa in 1992. We will show how

it was possible to implement this algorithm for three qubits, a task that has never

before been accomplished.

In chapter 4, we will turn to the implementation of a QKD protocol over highly

noisy channels. We introduce the concept of error filtration discovered by Gisin et

al [GLMP05] and argue that this method is efficient in order to surpress the effects

of noise in long distance communication. We are the first to realize an experimental

demonstration of this method. We illustrate its potentialities by carrying out the op-

tical part of a QKD scheme over a line whose phase noise is too high for a standard

implementation of a QKD scheme to be secure.

In chapter 5, we present new theoretical results concerning the rate at which a secret

key can be generated during QKD. Our result is of great importance for practical

quantum cryptosystems because it reduces the need for high-speed random number
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generation (an absolute requirement in QKD). Surprisingly, our conclusions do not

impair on the security against the most widely considered type of eavesdropping at-

tack.

In chapters 6 and 7, we will introduce two new quantum cryptographic protocols:

quantum coin tossing and quantum identification. In coin tossing, two distant parties

who do not trust each other aim at generating a random bit without the need for a

third-trusted party. Because the security of classical coin-tossing is based on compu-

tational hypotheses, a party can not leave out the possibility that his adversary has

the capability of performing quantum computational tasks and therfore perfectly bias

the outcome of the toss. We implement a quantum bit-string generation protocol (a

generalisation of coin tossing) using the experimental technique described in chapter

3 and argue that the randomness we generate relies only on the laws of physics. Fur-

thermore, we are the first to prove that our experimental implementation generates a

higher level of randomness than what is achievable with classical bit-string protocols.

As we have mentionned before, the security of quantum cryptography relies on no-go

theorems, that is, tasks which are prohibited by quantum mechanics. In chapter 7, we

devise and implement a new quatum cryptographic protocol based on a no-go theorem

that has never been exploited to realise a cryptographic task. The task we perform is

that of short distance identification where a claimant must prove her/his identity to a

verifier by demonstrating knowledge of a secret known to be shared between the two

parties.

The remaining two chapters of this thesis will be dedicated to specific problems in

quantum cloning. In chapter 8, we study for the first time the problem of entan-

glement cloning. In particular, we show that any quantum operation that perfectly

clones the entanglement of all ME qubit pairs cannot preserve separability. We will

investigate a separability-preserving optimal ”cloning machine” that duplicates all ME

states of two qubits with the same quality.

The penultimate chapter will show how it is possible to exploit the cloning formalism

introduced in chapter 2 in order to optimally clone an important class of quantum

states. Our results are important because they emphasize the simplicity of the cloning

formalism we use as opposed to other, more tideous methods. The last chapter of this

thesis summarizes our results and looks upon future directions.





Chapter 2

Quantum Key Distribution

2.1 Introduction

Quantum Key Distribution is the most advanced field in quantum information science.

In contrast to quantum computation or other quantum cryptographic protocols, QKD

has made major progress not only within its theoretical realm but as well on exper-

imental aspects to such an extent that implementations of QKD protocols are now

commercially available (i.d. quantique, MagiQ). To understand the illustrious path

which the field has taken so far we must head back to 1970 when a paper by Wies-

ner entitled ”Conjugate Coding” [Wie83] (note that the paper was published much

later) introduced the first ideas which would forge their way to become what we now

refer as to QKD. In his seminal paper, Wiesner introduced the concept of ”quantum

money”: unforgeable bank notes based on the laws of quantum mechanics. He sug-

gested that during fabrication a series of two-level quantum systems be added on the

bank note. Each system would be in a well defined state chosen among a finite set of

non-orthogonal states in such a way that to measure a state correctly would require

the extra information concerning the basis in which the state belonged to. Assuming

that the mint be the sole keeper of this extra information, a counterfeiter (who would

have no choice but to measure each state using a random basis) would have very little

chances of perfectly forging the note without disturbing the original and thus having

the mint authorities notice quickly. For the first time in the history of cryptology,

someone had raised the possibility of cryptographic security relying on the fundamen-

tal laws of Nature rather than some mathematical proof or computational hypothesis.

A decade later, another interesting paper authored by Herbert entitled ”FLASH - A

superluminal communicator based upon a new kind of measurement” was submitted

to Foundations of Physics [Her82]. In his paper, Herbert raised the notion of super-

9



10 2. Quantum Key Distribution

luminal signalling - a flagrant violation of the theory of special relativity. He claimed

that an idealized laser cavity could have macroscopically distinguishable outputs when

the input was a single arbitrarily polarized photon. He argued that the noise in this

process would, in principle, not prevent perfectly identifying the polarization state of

the photon. This process, he claimed, would lead the way to superluminal methods of

broadcasting information. The paper, who was reviewed by two referees, was aproved

by only one of them but nevertheless was accepted. The story behind why such a

fundamentally wrong idea still managed to be published is an interesting one. The

referee who recommended its publication, now known to be the late Asher Peres, justi-

fied his choice by expecting ”that it would elicit considerable interest and that finding

the error would lead to significant progress in our understanding of physics.” A year

later, his expectations came true. Almost simultaneously, Wooters and Zurek [WZ82]

and Dieks [Die82], published their version of the no-cloning theorem and therefore the

answer to Herbert’s mistake: the proof that an unknown quantum state cannot be

perfectly cloned. The no-cloning theorem marked a new milestone in the History of

quantum mechanics and, one could argue, inevitably gave birth to the field of quan-

tum information science. This led to a significant number of discoveries, not only in

quantum mechanics but also in computer science, information theory and other fields

of physics expanding the pluridisciplinary character of quantum information science.

The first offspring of these mergers (and one of the most important) turned out to

be a provably secure QKD protocol by Bennett and Brassard in 1984. It tackled the

problem of distributing a secret key by using information carriers evolving according

to the laws of quantum mechanics. The impact has been overwhelming as we now pos-

sess the tools which could potentially revolutionalize the way we process and transmit

information. Although this chapter is devoted to a review of this protocol it is nev-

ertheless important because it introduces the building blocks which will be necessary

in the subsequent chapters. This chapter provides a theoretical introduction to the

protocol whereas chapter 3 will introduce a practical method of implementing both

QKD protocols and quantum algorithms.

2.2 Main Ingredients

The security of QKD relies on two fundamental concepts: true random numbers and

the linearity of quantum mechanics. The former is true for many cryptographic sys-

tems whether classical or quantum mechanical the reason being that many encryption

transformations need to be generated in a manner which is unpredictable to an ad-

versary. Regardless, one must be extremely cautious in his/her method of generating
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unpredictable quantities. Computer generated random numbers for example, are not

truely random because computers are deterministic systems1. This implies that the

adversary could predict the output of a generated sequence by optimizing a search

strategy based on a biased probability distribution provided by such a deterministic

system. In order to be sure that the generating process is really random, one should

exploit the only true random process in Nature: quantum randomness. Examples of

such natural phenomena include:

- elapsed time between emission of particles during radioactive decay;

- a single photon impinging on a beamsplitter;

The second fundamental concept lies at the heart of quantum theory. The quan-

tum evolution of a closed quantum system is described by a unitary transformation.

For a given system, such a transformation is generated by the Schrodinger equation

i~∂ψ
∂t

= Hψ, a linear partial differential equation where H corresponds to the Hamil-

tonian of the system. The linearity of the Schrodinger equation forbids certain tasks

of being perfectly fulfilled. In particular, it prohibits the perfect duplication of an

unknown quantum state. At first glance, this impossibility can discourage the more

pessimistic but with a little insight can be transformed into a most powerful tool. We

now demonstrate this impossibility which happens to be the second ingredient for a

secure realization of QKD.

2.2.1 The no-cloning theorem

The no-cloning theorem states that for any quantum state |ψ〉 there does not exist a

unitary transformation U which will yield two perfect copies of |ψ〉. More specifically,

given an unknown, pure input state |ψ〉 ∈ H of which we would like to make two perfect

copies, a ”blank” state |0〉 ∈ H (which will serve as one of the copies) and an ancillary

system |Mini〉 ∈ HQCM in some initial state, we show that the transformation

|ψ〉|0〉|Mini〉
U−→ |ψ〉|ψ〉|Mfin(ψ)〉, ∀ ψ (2.1)

where |Mfin(ψ)〉 is the final state of the ancillary system does not satisfy the lin-

ear constraint imposed by quantum mechanical evolution and therefore cannot exist.

Indeed, suppose that the unitary operation U allowed the following transformations:

|0〉|0〉|Mini〉
U−→ |0〉|0〉|Mfin(0)〉

|1〉|0〉|Mini〉
U−→ |1〉|1〉|Mfin(1)〉.

1Except maybe when using Windows.
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Then the transformation U[|0〉 + |1〉]|0〉|Mini〉 (neglecting the normalization factor)

which by linearity of U can be rewritten as

U|0〉|0〉|Mini〉+ U|1〉|0〉|Mini〉 =
[|0〉|0〉+ |1〉|1〉]|Mfin〉

clearly does not lead to the desired result

[|0〉+ |1〉]⊗2 |Mfin〉 =
[|0〉|0〉+ |0〉|1〉+ |1〉|0〉+ |1〉|1〉]|Mfin〉. (2.2)

We therefore conclude that given a unitary transformation U , no perfect cloning of an

unknown, arbitrary quantum state is possible 2.

The no-cloning theorem is intricatelly related to the Heisenberg uncertainty principle.

If one could perfectly clone an arbitrary quantum state then one could, in principle,

make as many copies as one wished. These copies could then be measured such that

every dynamical variable of the state could be known with arbitrary precision and

therefore violate the uncertainty principle. Furthermore, the no-cloning theorem pre-

vents absurdities such as superluminal signalling, and therefore reinforces the peaceful

coexistence between quantum mechanics and special relativity [Gis98]. Finally, note

that this conclusion can be easilly extended to higher dimensional systems and mixed

states [BCF+96]. Now that the necessary ingredients have been laid out, we move on

to the main section of this chapter where we describe the first and most studied QKD

protocol.

2.3 The BB84 protocol

The BB84 protocol was devised by Charles Bennett of IBM and Gilles Brassard of

the University of Montreal in 1984 [BB84]. The idea is the following. Suppose Alice

and Bob, two widely separated parties2, would like to generate a secret key known

only to them with no or little prior common information. To accomplish this task,

they must be absolutely certain of the identity of the other party. Also, they must be

certain that they share an authenticated classical communication channel (a link that

guarantees you’re communicating with the intended party). These two requirements,

alone, form a basis of extensive study. We shall not leap into details of how these two

requirements are fulfilled but rather only mention that adequate techniques exist that

satisfy them.

2We assume from now on that both parties are isolated from the outside world in their respective
laboratory.
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Once Alice and Bob have been convinced that the above requirements are satisfied,

they can move on to the distribution of the quantum states which will eventually gen-

erate the secret key. This first phase of the protocol generates the so-called ”raw”

key, which contains N bits, and as we shall see, will eventually shrink to half its size

to form the ”sifted” key. It begins by Alice preparing strings −→s and
−→
t of N truly

random classical bits. With these two strings, she goes on to prepare quantum states

in 2-dimensional Hilbert space chosen among two mutually-unbiased (MU) bases. Two

bases A and B for a d-dimensional system are said to be MU [LBZ02] if a state pre-

pared in any element of A (such as |A,α〉) has a uniform probability distribution of

being found in any element of B, namely

|〈A,α|B, β〉| = 1√
d
. (2.3)

In our description, we introduce a reference (computational) basis, which we label

basis BZ = {|0〉, |1〉} from which we construct a second basis BX (often referred as the

”dual” basis), MU to BZ :

BX =
{|+〉, |−〉}

where |±〉 = 1√
2
[|0〉 ± |1〉]. We associate a classical bit value to each of these four

states:

|0〉 = ”0” |+〉 = ”0”

|1〉 = ”1” |−〉 = ”1”.
(2.4)

We stress that the quantum states and most importantly the reference frame in which

Alice and Bob are working in are assumed to be publicly known. This assumption

also applies to the above bit association. To select the ith state she will prepare and

send to Bob, Alice randomly picks a basis using si (the two possible bit values ”0” and

”1” are associated with BZ and BX , respectively) and then ramdomly picks a state

contained in the chosen basis using ti (again, the two possible bit values are associated

with a state contained in the chosen basis). Bob, who also has in his possession

a truly random bit-string −→r will use string element ri to select in which basis he

will measure the incoming state. The measurement outcome indicates Bob with a

possible bit value. Note that, with probability 1
2
, Alice and Bob will use different

bases such that sometimes the outcome will contain no information. After performing

his measurement and storing the value of the bit, call it bi, he awaits the ith + 1

state that Alice has prepared in the meantime and proceeds to measure it with the
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basis associated to ri+1. This process is repeated until all N states have been sent.

Afterwards, Alice and Bob begin a public discussion which aims at eliminating the

incompatible measurements. This public discussion, accessible to an eavesdropper is

called sifting. In the sifting phase, only information about the bases is revealed. That

is, Bob informs Alice on the basis he has measured in for a given state, while Alice

informs Bob on the basis in which she has encoded the corresponding state. This

procedure generates the sifted key which, in the absence of an eavesdropper, should

be the same for both parties. Note that all we have shown so far is that Alice and Bob

can arrive at a shared secret key without publicly announcing any of the bits. Also

note that neither Alice nor Bob chooses the outcome of the key; it is the conjunction

of both their random strings −→r , −→s and
−→
t that produces the secret key. However, the

presence of an eavedropper complicates the protocol. Indeed, because the information

carriers are governed by the laws of quantum mechanics, an eavesdropper trying to

tap the channel will gain information about the incoming states and inadvertantly

introduce noise in Alice and Bob’s sifted keys. Luckily, their exists methods that can

counter the actions of the eavesdropper and still let Alice and Bob generate a secret

key. We introduce the subject by describing the simplest attack an eavesdropper -

call her Eve - can perpetrate. But before we do so, we quickly summarize important

results in information theory which will help us quantify and interpret the information

transfer between Alice, Bob and Eve.

2.3.1 Entropy and Information

The central result of classical information theory is the notion of Shannon entropy.

Given a single binary random variable A with probability distribution {pa, 1−pa}, the

entropy of A measures the amount of uncertainty about A before we learn its value (or

equivalently how much we gain on average when learning the value of A). The binary

Shannon entropy for random variable A is defined as:

H(A) ≡ −pa log pa − (1− pa) log(1− pa) (2.5)

where the logarithms are assumed to be in base 2 (this assumption is extended to the

rest of this thesis unless stated otherwise). We can extend our definition of entropy to

a pair of binary random variables, (A,B), which measures the joint uncertainty about

the pair (A,B):

H(A,B) = −
1∑

a,b=0

p(a, b) log p(a, b). (2.6)



2.3. The BB84 protocol 15

Furthermore, upon knowing one of the variables (say A), we can define the entropy of

B conditional on knowing A:

H(B|A) = −
1∑

a,b=0

p(b, a) log p(b|a). (2.7)

Finally, let us introduce the notion of mutual information which measures how much

information A and B have in common:

I(A : B) = H(A) +H(B)−H(A,B). (2.8)

This is the measure that we will use in order to quantify and compare the information

shared between Alice and Bob, Alice and Eve, and Bob and Eve. Shannon entropy

enjoys the following properties - amongst others - which we state without proof:

(1) H(A), H(B) ≥ 0

(2) I(A : B) = I(B : A)

(3) H(A) ≤ H(A,B)

(4) H(A,B) ≤ H(A) +H(B).

We emphasize that Shannon entropy measures the uncertainty related with a classical

probability distribution. In the concerned chapters of this thesis, we focus on classical

entropic characteristics, that is, the entropy of classical probability distributions arising

from measurement outcomes of quantum mechanical systems. There exists an analogue

measure of uncertainty related to quantum systems with density operators replacing

probability distributions called the Von Neumann entropy.

2.3.2 Quantum-bit-error-rate and fidelity

The quantum-bit-error-rate (QBER) and the fidelity (F ) are two other important

measures which help quantify the communication between Alice, Bob and Eve. The

QBER is the quantum analog of the bit-error-rate (BER) in classical information

theory. The QBER - sometimes called the disturbance (D) - is defined as the ratio of

the number of erroneous bits in the sifted key to the total number of sifted bits. This

measure is useful in the context of eavesdropping because it easily quantifies the effects

of a given eavesdropping strategy. For example, by perturbing a quantum state, Eve

re-emits a mixed state which has a non-zero probability of being detected incorrectly

by Bob. Equivalently, Bob can measure how close his received state is to the original

one sent by Alice. Generally, he receives a density operator ρ =
∑

i pi|i〉〈i| which
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overlaps with the original pure state sent by Alice, |ψ〉. We define the fidelity as the

distance separating ρ from |ψ〉:

F (ψ, ρ) = 〈ψ|ρ|ψ〉 (2.9)

where F ∈ [0, 1]. As we can see, F = 1 occurs only when ρ = |ψ〉〈ψ| while F = 0

occurs only when ρ = |ψ⊥〉〈ψ⊥|. In between, the fidelity depends on the purity of ρ

and/or the overlap with |ψ〉. Trace preservation imposes a simple relationship between

the disturbance and the fidelity:

E(|ψ〉) = ρ = F |ψ〉〈ψ|+D|ψ⊥〉〈ψ⊥| (2.10)

for any CP-map E and where F +D = 1.

2.3.3 Intercept-resend attack

The simplest attack Eve could attempt is quite simple and intuitive but not very

effective. The intercept resend attack consists in intercepting each incoming qubit

individually and measuring it in a random basis. Each measurement outcome pro-

vides Eve with a possible bit value. Just as Bob, she is unaware of which basis a

given state has been encoded with. In order to remain unnoticed, Eve prepares a

quantum state corresponding to the outcome of her measurement and sends it on to

Bob. At the end of the distribution, Eve, like Alice and Bob, is in possession of a

raw key containing N bits. Alice and Bob then perform the sifting thus generating

Bob’s, Alice’s, and Eve’s respective sifted keys. Alice and Bob’s sifted keys should,

in principle, be perfectly corrolated. However, the fact that Eve has tampered with

the states introduces errors thus inducing a non-zero QBER. Altogether, if Eve uses

this strategy, she gets approximately 50% of the information, while Alice and Bob end

up with a QBER of approximately 25%. In other words, once they have eliminated

the cases in which Alice and Bob used incompatible bases, there are still about 25%

errors. A more subtle strategy could have Eve intercept and resend only a fraction,

say p, of the states travelling from Alice to Bob thus minimizing her presence. As we

shall see, the information gained by Eve is then directly proportional to p.

An additional and necessary step of the BB84 protocol is for Alice and Bob to compare

a small fraction of the sifted key which Alice and Bob choose to publicly reveal. If

they indeed notice a 25% difference in their small fractions, they can quickly conclude

that Eve has done her work. However, if no discripancies are detected, they can safely

conclude that Eve was not present. They go on to discard the small revealed sequence
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and keep the rest of the sifted key which they can eventually use in a classical crypto-

graphic task such as the one-time-pad.

Let us calculate the information curves I(A,B) and I(A,E) for a given probability p

that Eve will intercept, prepare and resend a given state or otherwise, with probability

1− p, leave the state undisturbed. We begin with I(A,E) and suppose that the sifted

key has been created. Also, assume that Alice has sent a state chosen from basis BZ

(the converse yields the same result). The uncertainty surounding Alice is thus related

to the bit value of the sent state which is uniformly distributed: H(A) = 1. The un-

certainty surrounding Eve is twofold. Firstly, there is the uniform probability that she

chooses to measure in either bases (BZ or BX) and secondly, the uniform probability

concerning the outcome of her measurement. Therefore, H(E) = 2. The joint and

conditional probability distributions of Alice sending state A = |0〉 and Eve measur-

ing one of the four possible outcomes are summarized in table 2.11. (The necessary

extension to Alice sending state |1〉 is omitted but trivial.)

Eve P(E|A) P(A,E))

|0〉 1
4
(1 + p) 1

8
(1 + p)

|1〉 1
4
(1− p) 1

8
(1− p)

|+〉 1
4

1
8

|−〉 1
4

1
8

(2.11)

The information between Alice and Eve is therefore

I(A,E) =
3

2
+

1

4
(1 + p) log(

1

8
(1 + p)) +

1

4
(1− p) log(

1

8
(1− p)). (2.12)

A similar analysis can be performed for I(A,B). Again, H(A) = 1. Now, because the

reconciliation has been performed, Bob has no uncertainty surrounding the basis of

his measurement. The value of the bit (i.e. the quantum state) is the only source of

uncertainty and therefore H(B) = 1. The joint and conditional probability distribu-

tions when Alice sends state |0〉 are summarized in table 2.13. (Again, the extension

to state |1〉 is trivial.)

Bob P(B|A) P(A,B))

|0〉 (1− p
4
) (1

2
− p

8
)

|1〉 p
4

p
8

(2.13)

The information between Alice and Eve is thus expressed as:

I(A,B) = 2 + (1− p

4
) log(

1

2
− p

8
) +

p

4
log(

p

8
). (2.14)
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Figure 2.1: Information curves I(A,B) and I(A,E) for a given probability p that Eve

will apply the intercept-resend strategy. Note that the QBER induced on Bob’s sifted

key is related to p as QBER = p
4
.

Figure (2.1) plots the two information curves I(A,B) and I(A,E) for a given value

of p. As expected, for low values of p, Bob’s information is larger. But, more errors

provide Eve with more information, while Bob’s information gets lower. The fact that

Eve can gain partial information about a given bit does not necessarily imply that

Alice and Bob cannot extract a secret key. Indeed, once Alice has completed sending

her states and that the reconciliation has been performed, Alice and Bob can use

standard error correction techniques to get a shorter key without errors. Afterwards,

Alice and Bob have identical copies of a key, but Eve may still have some information

about it. Alice and Bob thus need to lower Eve’s information down to an arbitrarily

low value using some privacy amplification protocols. Using adequate protocols, it

is possible for Alice and Bob to extract a secret key up to a QBER of 25% that is,

the QBER corresponding to Eve’s maximal information gain in the intercept-resend

attack. In fact, for any cryptographic protocol, Csiszár and Körner have shown [CK78]

that it is possible to extract a secret key as long as

R ≥ max
[
I(A,B)− I(A,E), I(A,B)− I(B,E)

]
(2.15)

Although this 25% bound is the absolute upper limit, it is not quite realistic because

the privacy amplification protocols that achieve security in this case are difficult to

implement since they rely on the interaction of many quantum mechanical systems.

This bound is usually not considered in the literature. Such a situation where the

legitimate parties share classical information, with high but not 100% correlation and
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with possibly some correlation to a third party is common to all quantum cryptosys-

tems.

With the simplest error correction protocol, Alice randomly chooses pairs of bits and

announces their XOR value (i.e. their sum modulo 2). Bob replies either ”accept” if

he has the same XOR value for his corresponding bits, or ”reject” if not. In the first

case, Alice and Bob keep the first bit of the pair and eliminate the second one, while

in the second case they eliminate both bits. In reality, more complex and efficient

algorithms are used. To lower the information between I(A,E) Alice and Bob, Alice

again randomly choses pairs of bits and computes their XOR value. But, contrary to

error correction she does not announce this XOR value. She only announces which

bits she chose (e.g. bit number 103 and 537). Alice and Bob then replace the two bits

by their XOR value. In this way they shorten their key while keeping it error free, but

if Eve has only partial information on the two bits, her information on the XOR value

is even lower. Consider for example that Eve knows only the value of the first bit, and

nothing about the second one. Then she has no information at all on the XOR value.

Apart from performing naive measurements, Eve can be more subtle in her quest

to gain information about the secret key. In fact, the only limits imposed on her are

the ones imposed by the laws of quantum mechanics. The next section is to be a brief

overview of the general eavesdropping strategies that Eve can take advantage of.

2.4 Eavesdropping

In order to be practical and secure, a QKD scheme must be based on existing tech-

nology, but its security must be guaranteed against an eavedropper with unlimited

computing power whose technology is limited only by the laws of quantum mechanics.

Although based on simple principles, the task of proving unconditional security in

QKD is a very difficult one. Mayers was first to provide a version [May01] of the proof

for the BB84 protocol and was quickly followed by Lo and Chau [LC99] and eventually

by Shor and Preskill [SP00]. Although it is not the aim of this chapter to rederive

the results of these proofs, we nevertheless dedicate a few paragraphs to illustrate the

importance of security in QKD without any claim of mathematical rigor.

As we shall see, different techniques can be exploited by Eve in order to gain informa-

tion on the true value of the qubits travelling from Alice to Bob. These techniques all

have the same definite goal that is to estimate as accurately as possible the sequence
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of bits generated by the two protagonists without them being aware of her. Obviously,

these techniques must be quantum mechanical in nature because they must interact,

at some point, with the aforementionned quantum states. Furthermore, in order to

extract a maximum amount of information, Eve must also exploit the classical infor-

mation exchanged by Alice and Bob. She can also exploit the imperfections arising

from the source, the quantum channel and the detection apparatus. These several

degrees of freedom can lead to many eavedropping problems which depend on both

the given QKD protocol and the assumed fidelity of Alice and Bob’s equipment.

The most studied classes of eavesropping fall into two categories: incoherent and

coherent attacks. The idea of incoherent eavesdropping is for Eve to address each

qubit individually. Furthermore, she can attach a probe of her choice (a quantum me-

chanical system in a dimension and initial state chosen by herself) to each individual

qubit sent by Alice. She is free to choose the interaction between her probe and the

qubit as long as it obeys the laws of quantum mechanics i.e. as long as the interac-

tion is unitary. After the interaction is completed, she sends the state to Bob who

performs his measurement. Once Alice and Bob have publicly declared their bases,

she performs the measurment of her choice on the individual probes thus extracting

some information concerning the values of the qubits. A coherent attack assumes that

Eve collects a given fraction of the qubits sent by Alice and attaches a probe of her

choice which interacts with the sequence of qubits. Again, after Alice and Bob’s public

discussion, Eve performs the measurement of her choice on the different probes she

has accumulated.

It is possible to quantify and place bounds on the information that can be gained

by Eve about the value of the qubits sent by Alice for a given eavesdropping strategy.

However, we stress that it is still not known which of these two strategies is the most

efficient one. Regardless, it still remains possible for Alice and Bob to extract a se-

cret key with the appropriate privacy amplification protocols. We will now explore in

further detail the implication of incoherent eavesdropping which is the simplest and

most intuitive strategy and conclude by commenting on the other strategy.

2.4.1 Generalized incoherent attacks

We describe a general theory of incoherent eavesdropping attacks for the BB84 pro-

tocol. The idea is that Eve can attach individual probes to each qubit travelling from

Alice to Bob. We suppose that the four possible states encountered by Eve are those
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belonging to the BZ and BX bases. When intercepting a state, Eve attaches a probe

|φE〉 ∈ H⊗d for which she is free to choose the dimension and the initial state. She

then applies a unitary operation on the composite system consisting in the qubit and

her probe:

ρB,E(ψ) = U|ψ〉|φE〉. (2.16)

Finally, she sends the modified qubit state ρB(ψ) to Bob while keeping the modified

probe ρE(ψ). Once the information concerning the basis has been made public, Eve

will perhaps discard the state because it has been rejected by the protagonists and will

therefore no longer be used. Otherwise she measures ρE(ψ) in a basis which should

yield the maximum information about |ψ〉. Her task is thus to optimize her choice of

|φE〉 and U . Because she is unaware of the state of the qubit upon its receipt, Eve

should require that its interaction with the probe be independent of its state3. By

tracing off Eve’s or Bob’s respective subspaces, whe can examine in more detail what

the other remains with. The density operator received by Bob can be expressed as:

ρB = TrE ρB,E(ψ)

=
1
2

+
ηB
2

(|ψ〉〈ψ| − |ψ⊥〉〈ψ⊥|)
= FB |ψ〉〈ψ|+DB |ψ⊥〉〈ψ⊥| (2.17)

where ηB ∈ [0, 1] is the so-called ”shrinking” factor. As we can see, the unitary operator

U maps |ψ〉 onto a mixture of |ψ〉 and |ψ⊥〉 such that with probability FB = 1+ηB

2
Bob

will measure outcome |ψ〉 and with probability DB = 1−ηB

2
he will measure outcome

|ψ⊥〉. The shrinking factor is a constant and implies that all four states are shrunk the

same amount. Conversely, after the interaction, Eve’s probe |φE〉 will be described in

a similar way:

ρE = TrB ρB,E(ψ)

=
1
d

+
ηE
d

[|φ(ψ)〉〈φ(ψ)| −
d−1∑
i=1

Di|φ⊥i (ψ)〉〈φ⊥i (ψ)|]

= FE θ(ψ) +DE Γ(ψ). (2.18)

Note that Eve’s and Bob’s density operators are completely characterized by their

shrinking factor. Furthermore, it can be easily shown that the two shrinking factors

ηB and ηE can be expressed as a function of the other but submitted to certain con-

straints imposed by the unitarity of U . This relationship is intricately related to the

3This is a natural requirement given that all four states of the BB84 protocol are sent with equal
probability.
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no-cloning theorem which imposes a tradeoff between the values of ηB and ηE. In

particular, both shrinking factors cannot simultaneously equal to 1 because Eve would

gain all information concerning |ψ〉 (i.e. FE = 1) while keeping Bob’s QBER nul (i.e.

DB = 0).

Since Eve knows the basis in which |ψ〉 belongs to (assume it is BX), she consequently

knows her probe is in one of the following two mixed states:

ρE(+) = FE θ(+) +DE Γ(+) (2.19)

ρE(−) = FE θ(−) +DE Γ(−). (2.20)

It can be shown [GRTZ02] that the θ’s generate a subspace orthogonal to the Γ’s. Eve’s

optimum measurement in order to distinguish ρE(+) from ρE(−) thus consists in first

distinguishing whether her state is in the subspace generated by θE(+) and θE(−) or

the one generated by ΓE(+) and ΓE(−). This is possible since the two subspaces are

mutually orthogonal. The former occurs with probability FE while the latter with

probability DE. Once this discripancy has been made, Eve must then distinguish

between the pure states θE(+) and θE(−) or ΓE(+) and ΓE(−) characterized by the

following overlaps:

θ†E(+) θE(−) = cosx (2.21)

Γ†E(+) ΓE(−) = cos y. (2.22)

The optimal measurement distinguishing two states with a given overlap cos x pro-

vides Eve with the correct guess with probability 1+sinx
2

. We can now compute the

mutual information between Alice and Eve knowing that the only a priori uncertainty

surrounding |ψ〉 is its value, H(E) = 1. Therefore

I(A,E) = FE[1−H
(1 + sin x

2

)
] +DE[1−H

(1 + sin y

2

)
]. (2.23)

Equation (2.23) is maximal when x = y. For a fixed QBER DE(ηE), the maximal

information that can be gained is thus:

Imax(A,E) = 1−H
(1 + sin x

2

)
. (2.24)

Bob’s information depends only on the QBER induced by Eve’s probing:

I(A,B) = 1−H(DB)

= 1 + FB logFB +DB logDB (2.25)
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Figure 2.2: Incoherent eavesdropping for the BB84 protocol as function of Bob’s BER.

Bob’s and Eve’s information curve are plotted on Fig. (2.2) as a function of Bob’s error

rate DB. As expected, for low error rates, Bob’s information is larger whereas more

errors will provide Eve with more information at the expense of Bob’s information.

The information curves cross at the specific point D0 = 1
2
(1−√2) ' 15%. This bound

is considered the critical limit at which Alice and Bob can extract a secret key because

the necessary privacy amplification protocols are easy to implement. Furthermore, this

bound happens to be the limit achievable by quantum cloning. That is, if Eve chooses

to produce two clones of the incoming state (knowing the possible values it can take)

with the highest achievable fidelity, it happens that the QBER she introduces is D0

such that Bob receives:

|ψ〉 cloning−→ ρB = F0 |ψ〉〈ψ|+D0 |ψ⊥〉〈ψ⊥|. (2.26)

Furthermore, the optimal information Eve gains for a QBER of D0 is extracted from

the probe (the second clone) which is described by exactly the same density opera-

tor, ρB. Such a cloning transformation where both clones have the same fidelity is

called symmetric. It has been shown that such approximate cloning yields the security

bounds for many QKD protocols. The concluding section of this chapter describes a

simple cloning formalism that yields these optimal fidelities. This formalism will be

used in other chapters of this thesis.

Another bound achieved through coherent attacks can be derived which is compatible

with incoherent eavesdropping. This bound, DC = 11%, is precisely that obtained in

the proof of Mayers and others. However, it is only valid if the key is much longer than
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the number of qubits that Eve attacks coherently. The D0 bound is a necessary one

since, as we have seen, an explicit eavesdropping strategy exists contrary to coherent

attacks. It is not known what happens in the intermediate range 11% < D0.

2.4.2 Photon number splitting attacks

The implementation of a QKD protocol relies on technology available at present day.

Consequently, this gives rise to imperfections which cannot be ignored when consid-

ering unconditional security. Every component exploited by Alice and Bob in order

to perform secure QKD must be thouroughly examined and studied in order to avoid

undetected eavesdropping.

As will become clearer in the next chapter, today’s practical QKD relies on pho-

ton encoded qubits. In accordance with the theory described above, a qubit should

be encoded in two-dimensional Hilbert space. There exist several photon degrees of

freedom which support two-dimensional Hilbert space such as the polarization of the

electric field. However, single photon sources are at present day not available commer-

cially although quasi-deterministic sources exist in many laboratories [SFV+02]. As a

temporary solution a photonic qubit is produced from an attenuated laser pulse. The

problem with this solution is that the light-beam produced by a laser actually consists

in a mixture of photon number states called Fock states. Such a quantum system is

referred to as a coherent state and is expressed as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (2.27)

where |α|2 is the average photon number and |n〉 is a n-photon energy eigenstate . A

direct consequence of this state is the impossibility to prepare a light pulse containing

exactly one photon. Indeed, if the average photon number |α|2 = 1, we readily see

that the probability of the state containing more than one photon is non-zero. In fact,

the probability distribution is Poissonian:

P (n) = e−<n>
< n >n

n
. (2.28)

Therefore if Alice encodes a qubit using an attenuated coherent state (which itself is

just a weaker coherent state), mimicking a single photon, she will have a non-zero

probability of sending two or more replicas of the same qubit. More importantly, Eve

can exploit this flaw by performing a so-called non-demolition measurement (possible

with linear optics and ancillary photons) which descriminates the number of photons
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contained within the pulse without destroying the photons. If she concludes that the

state contains more than one photon, she keeps one and sends the others on to Bob

otherwise she does nothing. One can easily conclude that if the average photon num-

ber is too high, Eve can gain complete information on the secret key without having

Alice nor Bob notice.

Without getting further into details, we state that this attack poses no threat as

long as the average photon number is low , that is, as long as the probability of having

more than one photon per pulse is negligible and that the distance seperating Alice and

Bob is short. Specifically, if the average photon number is of the order of 0, 1 photon,

one can prove that Alice and Bob can still generate a secret key. Note however that

this low average reduces the generation rate since it increases the probability that the

pulse contains no photon at all.

2.4.3 Beyond the BB84 paradigm: the six-state protocol

There exist many other QKD protocols. For example, an obvious extension of the

BB84 protocol can be constructed once it has been understood that two-dimensional

Hilbert space contains three M.U. bases [BM02]. Indeed, recall that the security of

the BB84 protocol relies partly on the incompatibility of two M.U. bases. That is,

the linearity of quantum mechanics does not allow one to distinguish between states

belonging to two M.U. bases. This linearity also applies to three M.U. bases. In fact,

it is an even harder task for Eve to distinguish three M.U. bases from two. Therefore

Alice choosing to communicate with Bob using states belonging to the following three

M.U. bases: BZ , BX and BY = { 1√
2

(|0〉 ± i|1〉)} (to which we also associate binary

values) will render Eve substantially more visible because she will introduce a higher

QBER [BPG99]. Indeed, a similar analysis as the one performed for the BB84 pro-

tocol in the case of incoherent eavesdropping yields a lower fidelity of F6 = 5
6
< F4.

However, the a priori probability distribution that Alice and Bob use the same basis is

reduced to 1/3, which means that they have to discard 2/3 of the transmitted qubits

before they can extract a cryptographic key thus slowing the rate at which it is created.

Although the six-state protocol is the only other QKD protocol that will be con-

sidered in this thesis, we nevertheless mention that other interesting and practical

variants exist. The B92 [Ben92] is arguably the simplest QKD protocol because it
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requires only two non-orthogonal (and therefore partly indistinguishable) states. The

Ekert protocol [Eke91] exploits the non-local correlations that exist within so-called

entangled quantum states. Finally, let us also mention the continuous variable pro-

tocol [] which exploits the incompatibility of two continuous observables such as the

quadratures of the electromagnetic field.

2.5 Pauli Cloning Machines

A direct consequence of the seminal papers by Wooters, Zurek and Dieks was the in-

troduction to the notion of approximate quantum cloning. By proving the no-cloning

theorem, they opened a whole new facet as to how quantum information can be trans-

fered and manipulated. Indeed, more than 10 years after the discovery of the no-cloning

theorem, Buzek and Hillary became the first to ask the simple but very relevant ques-

tion: ”If quantum mechanics prohibits perfect quantum cloning then how close does it

allow us to get?” They answered their question by showing the existence of a ”univer-

sal quantum cloning machine” (UQCM) -i.e., a transformation which approximately

copies arbitrary quantum states such that the fidelity of the output clones does not

depend on the input state. It was in fact later shown to be optimal by Bruss et al in

[] and Gisin and Massar in [GM97].

Approximate quantum cloning machines have since been thouroughly studied espe-

cially in the context of QKD. A typical feature of quantum cloning is that the optimal

cloning transformation depend on the considered set of input states. The greater

the set, the lower the fidelity. This is reflected in the performance of different QKD

schemes. For example, the six-state protocol allows a much higher BER than the BB84

protocol. The reason is that the optimal quantum cloning machine (QCM) Eve could

use for the latter is in fact less performing than the optimal QCM for the former since

the set of states for the six-state protocol is bigger.

In this thesis we will study different aspects of quantum cloning thus relating the

subject to QKD, entanglement and information transfer . More specifically, in Chap-

ter 5 we will be interested in modified versions of the BB84 and six-state protocols

which reduce the need for random numbers. As we shall see, this will be done by

encoding successive states chosen in the same basis. We will show that the optimal

cloning strategy for Eve still remains the cloning strategies of the standard BB84 and

six-state protocols and conclude that Eve can not gain more information than in these

standard counterparts. Chapter 10 will be devoted to the cloning of entanglement.



2.5. Pauli Cloning Machines 27

We will raise the question of whether quantum entanglement itself can be cloned or

not. More specifically, we will show that it is possible to clone part of the original

entanglement, much in the same way that quantum states can be cloned imperfectly.

Finally, in Chapter 11, we will analyze QCMs that duplicate with an equal fidelity all

uniform d-dimensional superposition states with arbitrary phases. We will apply our

results to asymmetric cloners and analyze the balance between the fidelity of the two

clones.

Although many methods exist in order to derive the optimal cloners, they are of-

ten quite complicated and not very intuitive. However, in chapters 5, 10 and 11 we

will use a convenient cloning formalism (derived in [Cer98, Cer00] and summarized

below) such that after aplying the cloning transformation, the clones are left in a

mixture of the input state itself and states resulting from applying operators of the

discrete Weyl group (also called ”error” operators) on an input state. This formalism

is designed for the special case of 1 → 2 quantum cloning. Specifically, if we consider

a 2-dimensional4 input state |ψ〉 = α0|0〉+α1|1〉 then after the cloning transformation

the two output clones A and B are given in a mixture of the states |ψm,n〉 = Um,n|ψ〉:

ρA =
1∑

m,n=0

|am,n|2 |ψm,n〉〈ψm,n|

ρB =
1∑

m,n=0

|bm,n|2 |ψm,n〉〈ψm,n|. (2.29)

The unitary Um,n operator can be viewed as an error operator that alters state |ψ〉 as:

Um,n =
1∑

k=0

e2πi(
kn
2

)|k +m mod 2〉〈k|. (2.30)

In other words, Um,n shifts |ψ〉 by m units modulo 2 in the computational basis, and

multiplies it by a phase so as to shift its Fourier transform by n units modulo 2. In 2-

dimensional Hilbert space the error operators corespond to the identity and the Pauli

matrices: three Pauli matrices:

σZ =

(
1 0

0 −1

)
σX =

(
0 1

1 0

)
σY =

(
0 −i
i 0

)
. (2.31)

U0,0 = 1 U0,1 = σZ

U1,0 = σX U1,1 = σZσX = −iσY .
(2.32)

4Note that, this formalism can easily be extended to d > 2 dimensional Hilbert space.
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Figure 2.3: A Pauli channel processing subsystem X of the ME pair |φ+〉.

In other words, this class of transformation will map a qubit onto two clones each

in a mixture of the unchanged qubit, the qubit having underwent a phase flip, the

qubit having underwent a bit flip, or a combination of both. Since the no-cloning

theorem prohibits perfect cloning, it implies that the weights |a0,0|2 and |b0,0|2 cannot

simultaneously equal 1 because in that would imply perfect cloning. To understand

the duality that exists between the am,n and bm,n amplitude functions at the limit of

what the no-cloning theorem allows and to measure the optimal fidelities that can be

achieved, we now describe the class of cloning transformations which actually produce

the clones characterized by Eq. (2.29)

We start off by considering a normalized arbitrary qubit |ψ〉 = α0|0〉 + α1|1〉 with

complex coefficients which we process through a Pauli channel. A Pauli channel has

the particularity that at its output A, |ψ〉 will be described by a mixture of the

four error operators {1, σZ , σX ,−iσY } acting on |ψ〉 to which we associate weights

{(1− p), pZ , pX , pY } respectively and where p = 1− pZ − pX − pY :

|ψ〉 → ρA = (1− p)|ψ〉〈ψ|+ pZσZ |ψ〉〈ψ|σZ + pXσX |ψ〉〈ψ|σX + pY σY |ψ〉〈ψ|σY . (2.33)

Another way to describe the transformation of state |ψ〉 after its passing through the

Pauli channel is to suppose that an input qubit X, ME with a reference qubit R, is

processed through the channel while |R〉 remains unchanged, see Fig. 2.3. Let X and

R together form the ME Bell state |φ+〉 = 2−1/2(|0〉R|0〉X + |1〉R|1〉X). A remarkable

feature of entanglement is that any local operation on a subsystem of a ME state

(e.g. the pauli channel operating locally on X) will map it onto another ME state.

Furthermore, if this local operation turns out to be one of the three Pauli matrices,
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|φ+〉 is mapped onto one of its three ME orthogonal Bell states:

1R ⊗ σXZ |φ+〉 = |φ−〉RA (2.34)

1R ⊗ σXX |φ+〉 = |ψ+〉RA (2.35)

1R ⊗−iσXY |φ+〉 = |ψ−〉RA. (2.36)

Consequently, once the Pauli channel has operated on X, |φ+〉 ends up in a mixture

of the four Bell states:

ρRA =
[
(1− p)|φ+〉〈φ+|+ pZ |φ−〉〈φ−|+ pX |ψ+〉〈ψ+|+ pZ |ψ−〉〈ψ−|

]
RA
. (2.37)

Note that this mixture uniquely characterizes the Pauli channel since the four weights

are simply those associated to the four error operators. Therefore, in order to describe

the action of the Pauli channel on the arbitrary qubit |ψ〉, one must simply project

the reference system |R〉 onto |ψ∗〉 = α∗0|0〉+ α∗1|1〉:
|ψ〉 → ρA = (〈ψ∗R| ⊗ 1A)ρRA(1A ⊗ |ψ∗R〉)

= (1− p)|ψ〉〈ψ|+
3∑
i=1

piσi|ψ〉〈ψ|σi (2.38)

where σi represents the three pauli operators with their associated weights pi. A special

case arises when pZ = pX = pY = p/3 which describes a depolarizing channel:

|ψ〉 → ρA = (1− 4p/3)|ψ〉〈ψ|+ 4p/3
1
2
. (2.39)

The fidelity of |ψ〉 which has been acted by such a channel is

f = 〈ψ|ρA|ψ〉
= 1− 2p

3
. (2.40)

Note how this particular channel is state independent: the fidelity of the output density

matrix is constant for all values of α0 and α1. Take another channel, this time state

dependent where pZ = p and pX = pY = 0. In this case, |ψ〉 is mapped onto

|ψ〉 → ρA = (1− p)|ψ〉〈ψ|+ pσZ |ψ〉〈ψ|σZ . (2.41)

We label this channel a dephasing channel because with probability p the state is

rotated along the z axis and with probability (1 − p) it remains unchanged. In com-

paraison to the previous, depolarizing channel, this channel is state dependent which

implies that different states will exit with different fidelities:

f = 〈ψ|ρA|ψ〉
= |α0|2. (2.42)
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For example, we see that states |0〉 and |1〉 are left unchanged while states 2−1/2(|0〉±
|1〉) exit completely mixed. As we shall see, the main concept behind Pauli cloning is

to use Pauli channels with weights pi adapted for the set of states we would like to

clone. The universal cloner - the cloner that optimally clones all states on the Bloch

sphere - for example will be implemented with depolarizing Pauli channels because all

states are affected the same way.

The idea is the following. We begin with the ME state |φ+〉 again consisting of sub-

systems R and X. We define our Pauli cloner as a cloner which outputs three density

matrices, ρRA, ρRB and, ρRC where output subsystems A, B and, C are entangled with

reference subsystem R. More specifically, we will construct the cloner in such a way

that all three outputs ρRA, ρRB and, ρRC be mixtures of Bell states each with their

own respective set of weights. Systems A and B will consist in the two clones whilst

qubit C will consist in an extra ancillary system which, as we shall see, is necessary

in the construction of the cloner but is discarded in the end.

To achieve such a cloner we first remark that in order to purify the 4-dimensional

systems ρRA or ρRB it is necessary to attach a system which has the same state

space as these two density matrices, that is, a system spanning 4-dimensional Hilbert

space. We can define a 16-dimensional pure state for the combined system |ψRABC〉
such that tracing over subsystems B and C, A and C or A and B reduces to either

ρRA, ρRB or ρRC , respectively. Indeed, suppose ρRA has orthonormal decomposition

ρRA =
∑3

i=0 pi|iRA〉〈iRA|. To purify ρRA we introduce a system ρBC which has the

same dimension as system RA, with orthonormal basis states |iBC〉, and define a pure

state for the combined system

|ψ〉RABC =
3∑
i=0

√
pi|i〉RA|i〉BC . (2.43)

We can now calculate the density operator for system RA corresponding to the state

|ψ〉RABC :

TrBC |ψ〉RABC〈ψ| =
3∑

i,j=0

√
pipj|iRA〉〈jRA|Tr

(|iBC〉〈jBC |
)

=
3∑

i,j=0

√
pipj|iRA〉〈jRA|δi,j

= ρRA. (2.44)
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Figure 2.4: A Pauli cloner with output subsystems RA, RB and RC. Outputs A

and B consist in the two clones whilst C consists of an ancillary system that can be

discarded.

Thus, |ψ〉RABC is a purification of ρRA [NC00]. A similar procedure can be done for ρRB
by introducing the 4-dimensional system ρAC . As we can see, subsystem C is solely

needed in order to purify ρRA and ρRB. Now, instead of specifying a Pauli cloning

machine by a particular unitary transformation acting on input state |ψ〉 (the state

we would like to clone) we rather characterize the Pauli cloner by the wave function

|ψRABC〉 underlying the entanglement of the outputs A and B with R. To do so, we

introduce the 16-dimensional input system |φ+〉RX |0〉B|0〉C of which subsystems X,

|0〉B and |0〉C are processed in a Pauli cloner which in fact consists of three distinct

Pauli channels (see Fig. 2.4). Therefore |φ+〉RX |0〉B|0〉C is mapped to |ψRABC〉 where

|ψ〉RABC =

1√
2
|0〉R

3∑

i,j,k=0

Ωijkσi|0〉Aσj|0〉Bσk|0〉C +
1√
2
|1〉R

3∑

i,j,k=0

Ωijkσi|1〉Aσj|0〉Bσk|0〉C

which can conveniently be rewritten in the form of equation Eq. (2.43) by using the

Schmidt decomposition [Sch06]:

|ψRABC〉 = {a0,0|φ+〉|φ+〉+ a0,1|φ−〉|φ−〉+ a1,0|ψ+〉|ψ+〉+ a1,1|ψ−〉|ψ−〉}RA;BC . (2.45)

The requirement that the qubit pairs RA and BC are Bell mixtures is thus satisfied,

that is, ρRA = ρBC is of the form of Eq. (2.37) with pZ = |α0,1|2, pX = |α1,0|2,
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pY = |α1,1|2 and, (1 − p) = |α0,0|2. A remarkable feature of these double Bell states

is that they transform into superpositions of double Bell states for the two remaining

partitions of the four qubits RABC into two pairs (RB vs. AC, RC vs. AB). This

implies that |ψ〉RABC is also a superposition of double Bell states (albeit with different

amplitudes) for these two partitions, which, threfore, also yield mixtures of Bell states

when tracing over half of the system. Specifically, for the partition RB vs. AC, we

obtain

|ψRABC〉 = {b0,0|φ+〉|φ+〉+ b0,1|φ−〉|φ−〉+ b1,0|ψ+〉|ψ+〉+ b1,1|ψ−〉|ψ−〉}RB;AC (2.46)

where

b0,0 = 1
2
(a0,0 + a0,1 + a1,0 + a1,1)

b0,1 = 1
2
(a0,0 + a0,1 − a1,0 − a1,1)

b1,0 = 1
2
(a0,0 − a0,1 + a1,0 − a1,1)

b1,1 = 1
2
(a0,0 − a0,1 − a1,0 + a1,1).

(2.47)

Similarly, the third output C is described by considering partitions RC vs. AB,

|ψRABC〉 = {c0,0|φ+〉|φ+〉+ c0,1|φ−〉|φ−〉+ c1,0|ψ+〉|ψ+〉+ c1,1|ψ−〉|ψ−〉}RC;AB (2.48)

where

c0,0 = 1
2
(a0,0 + a0,1 + a1,0 − a1,1)

c0,1 = 1
2
(a0,0 + a0,1 − a1,0 + a1,1)

c1,0 = 1
2
(a0,0 − a0,1 + a1,0 + a1,1)

c1,1 = 1
2
(a0,0 − a0,1 − a1,0 − a1,1).

(2.49)

Thus Eqs. (2.47) and (2.49) relate the amplitudes of the double Bell states for the

three possible partitions of the four qubits into two pairs, and thereby specify the entire

set of asymmetric Pauli cloners considered here. Of particular interest, is the relation

that exists between the amplitude coefficients of output clones A and B. A closer look

at Eq. (2.48) enables one to conclude that the amplitudes are simply related by a

2-dimensional Fourier transform:

bm,n =
1

2

1∑
x,y=0

(−1)nx+myax,y. (2.50)

It is clear from Eq. (2.50) that when output A is perfect (a0,0 = 1) output B becomes

completely mixed (bm,n = 1
2
) and vice versa. Consequently, the probability distribu-

tions characterizing the channels leading to outputs A and B cannot have a variance
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simultaneously tending to zero, giving rise to an uncertainty principle governing the

trade-off between the quality of the copies.

The construction we have developed is very useful because one can easily express the

output state resulting from cloning an arbitrary input state |ψ〉 simply by projecting

the reference system R onto an appropriate state. Indeed, before cloning, projecting R

onto state |ψ∗〉 amounts to project the input system onto |ψ〉 since these two systems

are in state |φ+〉. Therefore, as this projection of R onto |ψ∗〉 can as well be performed

after cloning, it is easy to write the restulting joint state of the two clones and the

ancillary system C when the input state is |ψ〉:

|φ+〉RX |0〉B|0〉C → 〈ψ∗R||ψRABC〉

=
1∑

m,n=0

am,nUm,n|ψ〉A|Bm,n〉BC

=
1∑

m,n=0

bm,nUm,n|ψ〉A|Bm,n〉AC (2.51)

It is easy to check that tracing over systems B and C or A and C yields the expected

final states of clone A or B, in accordance with Eq. (2.29). Thus, the four amplitudes

am,n completely define the state after cloning, Eq. (9.4), so they completely charac-

terize the class of cloning transformations of interest here.

The cloning fidelity can be calculated based on the amplitude coefficients am,n (and

bm,n). The fidelity of the clone A when copying state |ψ〉 can be written, in general,

as

FA = 〈ψ|ρA|ψ〉

=
1∑

m,n=0

|am,n|2|〈ψ|ψm,n〉|2 (2.52)

and similarly for the second clone B. In order to find the optimal fidelity for a given

set of input states, one simply needs to calculate the value of the fidelity for each input

state of the set and maximize under the constraint of normalization and, if symmetry is

imposed, the constraint that both output clones yield the same fidelity. As mentionned

above, this double-Bell state ansatz has been shown to yield the optimal fidelity in

many cases [CDPC05]. However, only recently has a general proof been provided thus

sheding light on the appearance of the double-Bell states in the optimal 1 → 2 cloning

machines [].
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2.6 Conclusion

This concludes our introduction to the BB84 protocol and the necessary tools which

will be needed in the rest of this thesis. Because this thesis is just as much oriented

towards experimental quantum cryptographic protocols, we will now introduce a con-

venient method to implement certain quantum information tasks such as QKD. The

idea is to encode quantum information in a single photon using linear optical compo-

nents. We will convince the reader that this method is robust and stable by illustrating

the original implementation of a quantum algorithm.



Chapter 3

Experimental Quantum Information

Processing

3.1 Introduction

Now that the concept of QKD has been introduced and that its building blocks have

been laid out, we can proceed to describe the more practical aspects of QKD. There

exist numerous methods that implement QKD protocols and quantum algorithms. In

principle, one is limited only by the notion that quantum information carriers should

obey the laws of quantum mechanics. In practise however, the choice should meet

certain criterions that limit the number of possible alternatives. In particular, the car-

riers should be implemented by robust physical systems that can retain their quantum

properties over long distances. The system should also be chosen for its capability to

prepare a specified set of states and to perform a specified unitary transformations.

This requirement is much more difficult to fulfill when one wants to carry out quantum

computational tasks because a universal set of states and a universal familly of unitary

transformations are required. In contrast, only the preparation of a small set of states

is necesseray in order to perform QKD. Finally, measuring the output result should

be easy and efficient.

Many physical systems partially meet the above requirements but it seems that optical

photons be a natural choice for QKD. The main motivations being that photons can

propagate over (relatively) long distances, interact very ligthly with their environment,

and that today’s telecommunications community provides a wide range of inexpensive

devices that can address all photon degrees of freedom.

35
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Once the medium is fixed, there remain the questions of the source and detectors.

Since they have to be compatible, the crucial choice is the wavelength. Two alterna-

tives are possible. The first implies using a source around 800 nm for which there exist

very efficient detectors (∼ 80% quantum efficiency1). The second alternative implies

using a source at 1,55 µm for which less efficient detectors exist (∼ 10% quantum

efficiency) but compatible with today’s telecommunication optical fibers. The reason

why today’s telecommunication technology relies on infrared sources is because the

attenuation in optical fibers is lowest at this wavelength. At 800 nm, the best fibers

attenuate about 2 dB/km. This implies that in 1.5 km a photon travelling in such

a fiber will have 50% chances of being lost. Conversely, at 1,55 µm, the best fibers

attenuate on the order of 0.2 dB/km meaning that a photon can travel 15 km before

having 50% chances of being lost. These losses are nearly entirely due to Rayleigh

scattering such that the above bounds are imposed by the laws of physics, not tech-

nological limitations.

The next consideration concerns the degree of freedom in which the quantum infor-

mation should be encoded. A photon contains a few candidates such as polarization,

phase, position and momentum. In this chapter, we introduce an encoding method in

time. The method is dubbed ”plug and play” [GHM+97]. This method is, at present

day, an excellent method for encoding quantum information for cryptographic pur-

poses because it requires very little alignment - it relies on guided optics components

- and can remain stable for days. We first explain this method and then illustrate its

potential by describing an original implementation of a simple quantum algorithm.

3.2 The plug and play method

3.2.1 Time bin encoding

One of the central ideas behind plug and play quantum processing is to encode infor-

mation in time bins by splitting a single photon in an unbalanced Mach-Zehnder (MZ)

interferometer. Such a device consists in a semi-transparent mirror (i.e. beam-splitter

or, in terms of optical fibers, a coupler) of transmittivity |t|2 = 1
2

connected to both

input arms (A0 and A1) of the interferometer of path length difference d = t0 − t1.

Typically this length is of the order of a few meters in accordance with the temporal

1By quantum efficiency, we mean the fraction of photons hitting the photoreactive surface of the
detector and subsequently being recognized by it.
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Figure 3.1: An unbalanced MZ interferometer that prepares a time bin encoded quan-

tum state. The single photon impinges on the first beam-splitter and propagates with

equal amplitudes 1√
2

through the two arms A0 and A1. The wave packets then exit

through the same output port of the PBS by turning the respective polarization. Fi-

nally, the qubit is encoded by addressing the phase of the second wave packet |t1〉V
with the phase modulator PM.

resolution of the optical apparatus (note that 20 cm ' 1 ns in silica2). The single pho-

ton is thus divided in two wave packets each travelling down its own respective path.

The two arms eventually recombine at a second beam-splitter where the two wave

packets arrive seperated by d nanoseconds (i.e. they impinge on the beam-splitter at

different times and therefore do not interfere). Either by using a polarization sensitive

beam-splitter (PBS) or an optical switch, it is possible to deterministically direct both

wave packets in the same output port of the beam-splitter. The first solution is easy

to implement. One must simply tune the polarization of each wave packet in the two

arms of the interferometer such that when impinging on the PBS, the wavepackets

exit through the same output port, see Fig. 3.1. The second alternative is not pos-

sible because present day technology delivers only high insertion loss optical switches

not suitable for the single photon regime. One could also use a simple beam-splitter

exactly like the one at the entrance of the MZ interferometer. However, this method

induces a systematic loss of 1
2
. For the sake of completeness, we will assume that the

second beam-splitter is in fact a PBS whose eigenstates are horizontal (H) and verti-

cal (V ) polarization. In order to exit through the same output port the wavepacket

travelling through A0 should impinge on the PBS with H polarization and the wave

packet travelling through A1 sould impinge with V polarization.

2Here and throughout this thesis we express distance in terms of time units rather than length
units for its correspondance with optical apparatus. The two quantities are simply related by the
speed of light, cs, in optical fibers.
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Thus, at the output of the MZ interferometer we have two orthogonal wavepackets

which we label |t0〉H and |t1〉V for their association to the two arms of the interferom-

eter and their respective polarization. The output state, which we label |−〉, can be

seen as an eigenstate of the interferometer and expresses the uniform superposition of

the photon having taken both paths:

|−〉 =
1√
2

[|t0〉H − |t1〉V
]
. (3.1)

The minus sign results from the two reflections that |t1〉V has been subjected to. Each

reflection is responsible for the accumulation of an ei
π
2 = i phase. A closer inspection

of beam-splitter dynamics shows that this convention is necessary to satisfy energy

conservation3. The plug-and-play method enables one to encode quantum information

through the relative phase contained between the two time bins. The phase difference

that appears at the output of the interferometer fixes the reference frame and should be

taken into consideration for all successive operations and measurements. To encode

information it is necessary to introduce a parameter, φ ∈ [0, 2π], which defines the

dephasing between |t0〉H and |t1〉V with respect to the reference frame:

|ψ〉 = Uφ|−〉
=

1√
2

[|t0〉H − eiφ|t1〉V
]

(3.2)

where the unitary operator Uφ is expressed as:

Uφ =

(
1 0

0 eiφ

)
.

The set of states prepared by this encoding method is limited because of the fixed value

of the beam-splitter transmittance. Only those with a uniform amplitude distribution

but with arbitrary phase can be implemented. Using a variable transmittance beam-

splitter however, one could in principle prepare all states in 2-dimensional Hilbert

space. Nevertheless, we shall see that this limited set of states is sufficient for per-

forming many quantum information tasks including QKD.

In order to achieve the state described by Eq. (3.2) all that is needed is an optical

retarder that addresses only one of the two wave packets. Physically, such a retarder,

3In fact, Fresnel’s law of reflection predicts this phase shift if the dielectric constant nM of the
reflecting medium is higher than the dielectric constant of optical fiber ns.
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commonly called a phase modulator (PM), is any device that can retard a photon on

the order of its wavelength. In the experiments described in the subsequent chapters

the phase modulator we use is a simple crystal (of length ∼ 5 cm) to which is applied

a potential typically of the order of a few Volts. The crystal is placed on the fiber

optic line and the potential can be switched on and off rapidly enough to address only

one wave packet. The applied potential modifies the index of refraction of the crystal

and thus retards the wave packet subjected to it. The dephasing is proportional to the

crystal length and the crystal’s index of refraction which itself is proportional to the

applied potential. Because both time bins travel through the crystal, the dephasing

occurs only when the potential is applied to the subjected wave packet. This last

procedure completes the time bin encoding. It can then be sent for further processing

depending on the task it must fulfill.

Measuring a time-encoded quantum state is made by using a MZ interferometer which

has the exact same properties as the one described above. The idea is the following.

We suppose that the first beam-splitter of the interferometer is in fact a PBS which is

configured such that it deterministically directs time bin |t0〉H into arm A1 while the

late time bin, |t1〉V , into arm A0 (we show below that this is done automatically with

the help of a Faraday mirror). By doing so, each time bin travels a distance that even-

tually compensates the delay, d, between them. At exactly that moment both time

bins impinge together on the second beam-splitter and interfere. The phase difference

eiφ determines which output of the beam-splitter the photon will take. Each output

is connected to a single photon detector (M0 and M1) thus completing the measure-

ment (see Fig. 3.2). We can compute the probability that the photon exits through

either output ports. Because both interferometers have exactly the same properties,

the basis in which the photon is measured is the same as the one preparing the state,

that is, {|∓〉}. The probabilities are given by:

P (M0) = 1
2

+ 1
2
cosφ P (M1) = 1

2
− 1

2
cosφ. (3.3)

We illustrate this useful result in Fig. (3.3). Note that when measuring eigenstates of

σY (φ = π
2
):

|+i〉 = 1√
2
[|t0〉H + i|t1〉V ] |−i〉 = 1√

2
[|t0〉H − i|t1〉V ],

the probability of detecting the photon is uniform: P (M0) = P (M1) = 1
2
. In other

words, these two states are MU to the measurement basis. However, by rotating the

measurement basis we can achieve the inverse situation. Indeed, applying the trans-

formation Uφ=π
2

to the incoming state |ψ〉 before the measurement (e.g. using another
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Figure 3.2: Measuring a time bin encoded qubit. The two wave packets impinge on

the PBS with polarization turned such that |t0〉 goes through A1 and vice-versa. The

wave packets then interfere on the beal-splitter. The photon exists towards detector

M0 or M1 depending on the phase φ.

πππφπ

Figure 3.3: Probability of detecting the photon in either detectorsM0 orM1 as function

of the relative phase φ.
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PM) rotates the state by 45◦ around the Z axis. In fact, it is more convenient to

interpret this rotation as a change of measurement basis by 45◦. This interpretation

will be quite useful for QKD where Bob must randomly measure the incoming state

in one of either two bases. If the measurement basis is now an eigenstate of σY , the

probability distribution becomes for states |±i〉 deterministic again at the expense of

completely mixing the probability distributions of states |∓〉.

The time bin encoding offers a convenient way of preparing and measuring states

expressed as |ψ〉 = 1√
2
[|t0〉 + eiφ|t1〉]. However, two weaknesses should be addressed

before labelling this method practical. The first implies that the two unbalanced in-

terferometers must be kept stable within a fraction of the wavelength of the photon

to maintain the correct phase relation. In other words, both interferometers must

have exactly the same delay, d. The second issue lies in the vectorial nature of the

photon which obliges that the two wave packets have the same polarization in order to

manifest interference effects. Asymmetries in the geometry of optical fibers induce the

effect of birefringence - the presence of two different phase velocities for two orthogonal

polarization states. This effect can be seen as an arbitrary combination of two wave

plates, that is, a unitary transformation. If this transformation is constant then it is

possible to compensate for it by applying the inverse transformation (e.g. with po-

larization controllers). However, for long distances in an unpredictable environment,

birefringence becomes uncontrolable thus constantly modifying the properties of the

fiber therefore randomizing the polarization of the propagating photon. This weakness

is particularly unforgiving when sending out qubits on the same channel over a long

period of time.

3.2.2 The Faraday mirror

Luckily, a single and simple solution to both of the above problems is available. The

idea is to add a Faraday mirror (FM) in replacement of the second (measuring) MZ

interferometer. The FM will reflect the photon such that it will travel back to the first

MZ interferometer who will now not only serve to encode the state but to measure

it as well (in other words the PM will serve to both encode the state and select the

measurement basis). All subsequent operations on the qubit after its encoding will be

done on the optical fiber before the FM. Since it is the same interferometer that is

used to both prepare and measure the state renders the problem of stability obsolete4.

4We assume that the photon round-trip is much faster than any fluctuation in the properties of
the fiber, including the interferometer.
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Moreover, we will show that the random polarization fluctuations that can limit the

visibility of the interference will now be auto-compensated by the FM and thus guar-

antee that both wave packets interfere with the same polarization.

The FM is a simple, somewhat exotic device consisting of an optical mirror placed

behind a Faraday Rotator (FR). A FR is a passive optical device that rotates the

polarization (π) of a photon due to the Faraday effect, which in turn is based on a

magneto-optical effect. A feature of the FM is its capibility in keeping the π character

of a given photon: a linear π is transformed into a linear π′ whereas a circular (π) is

transformed into a circular π′. Furthermore, for specific values of the FR, it is possible

to realize exact orthogonality between π and π′. Without pursueing any physical jus-

tification of this phenomena, we briefly describe, the effect of the FM on an arbitrary

π state.

The first consideration we must take concerns the spatial reference frame in which

the photon π will be examined. We therefore introduce the spatial reference frame

(x, y, z) where z is the direction of propagation of the photon while x and y belong to

the plane of the FM orthogonal to the z. We will assume that the photon’s π state

is identified according to the right-handed coordinate convention. This implies that

after reflection, the π state will be identified on the basis of a new coordinate system

(x′ = x, y′ = −y, z′ = −z) obtained by rotating the original frame by 180◦ around the
−→x axis.

Suppose now that the π state of the photon after being encoded is expressed as

|χ〉 = a|H〉+ b|V 〉 where |a|2 + |b|2 = 1 and H and V form a basis for two-dimensional

Hilbert space. This is the Hilbert space of the photon polarization where H cor-

responds to horizontal polarization and V to vertical polarization. We define three

orthogonal axes within this Hilbert space which we label σi, i = {1, 2, 3}. Each is

associated to the following eigenstates:

σ1 ↔ {|H〉, |V 〉}
σ2 ↔ { 1√

2
[|H〉 ± |V 〉]}

σ3 ↔ { 1√
2
[|H〉 ± i|V 〉]}.

The eigenstates of σ2 are linear polarization states whereas the eigenstates of σ3 are

circular polarization states. Upon reaching the FM, the photon is first subjected to

the FR which acts as a rotation of 90◦ around the σ3 axis. The state is then reflected
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Figure 3.4: FM rotation in state space. A pure state P lying on the surface of the

Bloch sphere undergoes a global rotation of 180◦ around the σ2 axis to end up in state

P ′.

by the mirror which induces a 180◦ rotation around the σ1 axis. Finally, before leaving

the FM, the photon is again subjected to the FR this time in the rotated reference

frame. The final state of the photon after leaving the mirror is thus [DMSS04]:

UFM |χ〉 = U−3 iσ1U
+
3 |χ〉

= e−i
π
4
σ3iσ1e

iπ
4
σ3

= iσ2|χ〉. (3.4)

As we can see, the photon’s π state is rotated by 180◦ around the σ2 axis regardless

of its initial state (the global phase i is a consequence of the reflection), see Fig. (3.4).

Let us now show how it is possible to counter the effects of the fluctuating bire-

fringence using the FM. Let the fluctuations affecting the travelling photon from the

encoding site to the FM be expressed as the general unitary operator

U = ei
θ
2
(−→n ·−→σ ). (3.5)

where −→σ represents the three Pauli matrices and −→n = {n1, n2, n3} is a unit vector

such that U represents a rotation through θ about the −→n ·−→σ axis in the π state space.

After leaving the FM, the photon is affected by the inverse operator (in the rotated
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Figure 3.5: A possible plug and play setup. The wave packets propagate to the FM

affected by the environment U and come back orthogonally polarized. After interfering

the circulator ”C” is used to redirect the photon away from the source and towards

the detector M1 if it indeed ended up in that output port.

reference frame) U ′ = e−i
θ
2
(
−→
n′ ·−→σ ) where {n′1, n′2, n′3} = {n1,−n2,−n3}. The overall

process can be expressed by a round trip through the whole device:

U ′UFMU |χ〉 = iσ3|χ〉 (3.6)

A possible setup is described in Fig. (3.5) As we can see, the effect of any round

trip unitary process is exactly cancelled by the FM. Furthermore, note that a pho-

ton described by the initial π state |H〉 or |V 〉 and subjected to the above oper-

ations will come back orthogonally polarized. Therefore a time bin encoded qubit

leaving the MZ interferometer in state |ψ〉 = 1√
2

[|t0〉H − eiφ|t1〉V
]

will return as

|ψ′〉 = 1√
2

[|t0〉V − ei(φ+ϕ)|t1〉H
]

such that upon impinging on the PBS the two time

bins will systematically choose their opposite paths and interfere with the same π

state at the second beam-splitter. Note that this final automatic directing can only

be achieved with one encoding and one measuring PBS. Any other operation on the

qubit requiring an interferometer must systematically use a standard beam-splitter or

an (hypothetical) optical switch.

With the added Farday mirror, we are now in possesion of a robust and stable tech-

nique to prepare, process and measure qubits. Although much more can be said on

the plug and play method, the above description will be sufficient to justify the up-

coming implementations of quantum processings. We begin by describing an original

implementation of the first quantum algorithm ever discovered.
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3.3 The Deutsch-Jozsa algorithm

Another appealing field of quantum information is quantum computation, i.e. using

quantum mechanical systems to solve mathematical problems. Here, we will be in-

terested in Deutsch’s algorithm [Deu85], which was later generalized by Deutsch and

Jozsa [DJ92] (DJ). The DJ algorithm discriminates between a constant or a balanced

N -point binary function using one single quantum query, while a classical algorithm

requires O(N) classical queries.

3.3.1 The algorithm

Let us start by recalling the principle of the DJ algorithm. At the core of the algorithm

is the oracle which computes a function f(α), where α ∈ {0, 1}N is an N bit string, and

f ∈ {0, 1} is a single bit. The DJ problem is to discriminate whether f is a constant

or balanced function, while querying the oracle as few times as possible. A balanced

function is such that the number of α’s on which f(α) = 0 is equal to the number of

α’s on which f(α) = 1. Classically, 2N−1 + 1 queries are necessary in the worst case,

whereas the DJ algorithm requires a single query as we shall see. In this algorithm,

N qubits are used, and the basis of the Hilbert space is chosen as |α〉 = |α1α2 . . . αN〉
where αi ∈ {0, 1}. The quantum oracle carries out the transformation

|α〉|β〉 oracle−→ |α〉|β ⊕ f(α)〉 , (3.7)

where |β〉 is an ancillary qubit. By choosing |β〉 = 1√
2
[|0〉 − |1〉], the action of the

oracle simplifies into

|α〉 oracle−→ (−1)f(α)|α〉 . (3.8)

since |β〉 then remains unchanged. The DJ algorithm starts with the system in the

state |0〉 = |00 . . . 0〉. Next, a Hadamard transform H is applied independently on each

of the N qubit. Using the definition

H|α〉 =
1

2N/2

2N−1∑
γ=0

(−1)α·γ|γ〉, (3.9)

where α · γ =
∑

i αiγi mod 2 is the inner product of two N -bit strings, we see that the

Hadamard transform acting on the initial state simply yields a uniform superposition

of all states:

|ψ〉 = H|0〉

= 2−N/2
2N−1∑
α=0

|α〉. (3.10)
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Figure 3.6: Fiber optics setup implementing the 8-dimensional Deutsch-Jozsa.

This state is then sent through the oracle whereupon it becomes

|ψ〉 oracle−→ 1

2N/2

2N−1∑
α=0

(−1)f(α)|α〉 . (3.11)

The superposition principle allows the oracle to be queried on all input values in

parallel. A second Hadamard transform is then carried out to obtain the state

|ψ′〉 =
1

2N

2N−1∑
α,γ=0

(−1)α·γ+f(α)|γ〉 (3.12)

which is finally measured in the γ basis. One easily deduces from Eq. (3.12) that when

f is constant, the probability of measuring |0〉 is one. In contrast, when f is balanced,

ie. when the number of inputs on which f = 0 is equal to the number of inputs on

which f = 1, this probability is always zero, so the DJ algorithm can distinguish with

certainty between these two classes of functions by querying the oracle a single time

(whereas classically 2N−1 + 1 queries would be necessary in the worst case).

3.3.2 Experimental setup

Our all optical fiber (standard SMF-28) setup is illustrated in Fig. (??) Initially, a 3 ns

light pulse is produced by a laser diode at 1, 55 µm, attenuated by an optical attenuator

(Agilent 8156A), and then is processed through three unbalanced MZ interferometers

with path length differences dj (j = 1, 2, 3) obeying d3 = 2d2 = 4d1 = 15 ns. Each MZ

interferometer doubles the number of pulses so that, at the coupler C6, we get eight

equally spaced pulses. This corresponds to the action of the Hadamard transform on

the three input qubits in state |0〉. The pulses are then reflected by a Faraday mirror

and, on their way back, are modulated by a phase modulator (Trilink) commanded

by a pattern generator (Agilent 81110A) which selectively puts a phase shift of 0 or

π on each pulse according to the 8-point function [see Eq. (3.11)]. This implements
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the oracle. The pulses then pass back through the three MZ interferometers, thereby

realizing a second triple Hadamard transform, and are sent via a circulator to a single-

photon detector (id Quantique id200), which completes the DJ algorithm.

The additional delay lines L1, L2, and L3, which obey L3 > 2L2 > 4L1 > 8d3, ensure

that the different outputs of the DJ algorithm all reach the detector at different times.

The delay lines L2 and L3 also contain an isolator so that the pulses passing thru L1, L2

and L3 are not transmitted on their way to the mirror. The photodetector was gated

during 5 ns around the arrival time of each pulse by the pattern generator. The output

of the detector was registered using a time to digital delay converter (ACAM-GP1)

connected to a computer. All delays dj and Lj were chosen to be integer multiples

of d1 within 0,2 ns. All electronic components were triggered by a pulse generator

(Standford Research Inc. DG535). In order to maximize the visibility, polarization

controllers were introduced in the long arm of each MZ interferometer and in front of

the polarization-sensitive phase modulator. Once optimized, the setup was stable for

days.

Note that the small number of optical elements in our setup implies that it is rel-

atively easy to increase the number of qubits N while keeping the optical setup stable.

As we shall see, a disadvantage of our setup is that the Hadamard transform can only

be implemented with a probability of success of 1/2. Since 2N Hadamard transforms

are needed for the DJ algorithm with N qubits, the resulting attenuation is 2−2N .

3.3.3 Theoretical correspondance

Let us now prove that our optical setup indeed realizes the DJ algorithm. The quantum

state describing the eight pulses at coupler C6 can be written as

|ψ〉 ∝
111∑

α=000

exp

[
i

3∑
j=1

(kαjdj + παj)

]
|

3∑
j=1

αjdj〉 (3.13)

where α stands for (α1, α2, α3) and |p〉 denotes a pulse located at position p. The

three bits α1, α2, α3 = 0, 1 label whether the pulse took the short (α = 0) or the long

(α = 1) path through each interferometer. The factor exp[ik
∑

j αjdj] with k being

the wave number takes into account the phase difference between a pulse traveling

along the short or long paths of the interferometers. The factor exp[i
∑

j παj] takes

into account the phase accumulated at the couplers: if the pulse takes the short path,

it is transmitted at two couplers, whereas, if it takes the long path it is reflected twice.
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After reflection at the Faraday mirror and phase modulation, the pulses cross again

the three MZ interferometers and reach the photodetector in the state

|ψ〉 ∝
111∑

α,β,γ=000

(−1)f(α) exp

[
i

3∑
j=1

(
k(αj + βj)dj + π(αj + βj − βj(γj + γj+1) +

γj + γj+1

2
)

)]

∣∣∣
3∑
j=1

((αj + βj)dj + γjLj)
〉

(3.14)

where the bits β1, β2, β3 equal 0 or 1 according to whether the pulse passed through

the short or the long path of each of the interferometers on its way back, and the

bits γ1, γ2, γ3 equal 0 or 1 according to whether or not the pulse exited each of the

interferometer in the path containing the delay lines L1, L2 or L3. Note that we put

γ4 = 0. We have again taken into account the phases induced by transmission or

reflexion at the couplers C1-C6. The final state contains 120 pulses, but we are only

interested in the eight pulses such that α1 + β1 = α2 + β2 = α3 + β3 = 1, which are

those that exhibit 8-path interference. The other pulses are filtered out in the computer

analysis (they correspond to different time bins). The final state then becomes

|ψ〉 ∝
111∑

γ=000

(−i)γ1(−1)γ2+γ3
∑
α

(−1)f(α1,α2,α3)+α1(γ1+γ2)+α2(γ2+γ3)+α3γ3

∣∣∣d1 + d2 + d3 + γ1L1 + γ2L2 + γ3L3

〉
(3.15)

By relabeling the time bins according to the substitution γ1 → γ1 + γ2 + γ3 mod 2,

γ2 → γ2 + γ3 mod 2, and γ3 → γ3, this equation coincides (up to irrelevant phases

and an overall normalization factor) with Eq. (3.12) with the 8 logical states |γ〉 iden-

tified as specific time bins. The prefactor 2−3 takes into account that at the output of

each interferometer (couplers C2, C4, and C6) the pulses have a probability amplitude

1/
√

2 of exiting by the wrong path and being absorbed.

The setup thus realizes the DJ algorithm, the main difference with an ideal algo-

rithm being an extra attenuation by a factor of 2−7. A factor 2−3 originates from the

couplers C2, C4, and C6 because each time a pulse passes through these couplers it

only has a probability 1/2 of exiting by the right path. Otherwise, it is absorbed by the

isolators I1 and I2 or by the unconnected fiber pigtail at coupler C6. Another factor

2−3 is due to the filtering out of the 112 pulses produced on the way back that do not

correspond to 8-path interferences. The remaining factor 2−1 is due to the coupler C7.

This overall loss of 21 dB could be remedied by replacing the couplers C2, C4, C6,

and C7 by optical switches which would direct the light pulses along the appropriate
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path. However, as mentionned above, high speed, low loss optical switches are not

available commercially at present, so we had to use couplers in the present experiment.

In order to characterize the performances of our setup, we considered the 2N ora-

cles of the form fk(α) = α · k and fk(α) = α · k + 1 mod 2 (i.e., the oracles in the BV

algorithm and their complements). For each oracle fk (or fk), we ran the algorithm

500,000 times and registered the number of counts in time bin γ, denoted as nk(γ) (or

nk(γ)). The algorithm gives constructive interference in the time bin γ = k for the

oracle fk or fk, and destructive interference elsewhere. We then computed

Vj(γ) =
1

2

(
nγ(γ)− nk(γ)

nγ(γ) + nk(γ)
+
nγ(γ)− nk(γ)

nγ(γ) + nj(γ)

)
(3.16)

for each pair of oracles with k 6= γ, and calculated the visibility V (γ) in time bin γ

by taking the average of Vk(γ) over all values of k. The measured visibilities V (γ) for

2 and 3 qubits are shown in Table I. Remarkably, they remain relatively high when

going from 2 to 3 qubits in spite of the fact that 8 path interferences are involved.

This is because the path differences are automatically compensated and only N + 1

polarizations must be adjusted. It should therefore be relatively easy to go beyond

N = 3 without significantly decreasing the visibilities.

Because of the attenuation in our setup along with the quantum efficiency (' 10.5 %)

and the dark count probability (' 10−4 ns−1) of our detector, the signal-to-noise ratio

was not high enough to perform these visibility measurements in the single-photon

regime. For this reason, in our experiment, approximatively 20 photons per pulse

entered the phase modulator (oracle) in 4 dimensions, and approximatively 50 in 8

dimensions. However, minimal modifications should allow us to decrease the number

of photons while keeping the signal-to-noise ratio constant. In particular, by reducing

the pulse length or using two detectors instead of the coupler C7, it should be possible

to operate in the single-photon regime in 4 (and possibly 8) dimensions. Moreover,

as already mentioned, the Hadamard transform could be rendered deterministic by

using fast low-loss optical switches instead of couplers, which would strongly reduce

the losses.

3.4 Conclusion

In this chapter, we have introduced a convenient method to prepare and manipulate

qubits. We have illustrated this method in the context of quantum computation where
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γ 1 2 3 4 5 6 7 8

V (γ)N=2 98.4 97.4 98.5 98.6

V (γ)N=3 96.78 97.99 97.68 97.32 97.33 97.56 97.37 97.28

Table 3.1: Measured average visibility V (γ) in the γth time bin for the DJ algorithm

with N = 2 and N = 3 qubits.

we have shown that it is possible to implement the DJ algorithm for 3 qubits. Note

that the DJ algorithm has already been implemented using table-top optics [Tak00],

NMR [JM98] and ion traps [GRL+03]. However, our setup differs from this realiza-

tion in several major aspects. First, it based on the plug and play method, which

makes it unnecessary to perform a precise alignment. Second, although it relies on

linear optics, our realization is relatively efficient in terms of used optical resources

compared to [Rec94, CAK98]. The central idea of such implementations consists in

representing the basis states of a N -dimensional Hilbert space by N optical paths so

that unitary transformations are obtained by chaining linear optics components that

make these paths interfere. Such implementations seem, however, to be inherently

inefficient since the space requirement (the number of optical components) and the

time requirement both grow exponentially with the number N of qubits. In contrast,

in our setup, the number of components is kept linear in N , while the time needed

still grows exponentially. Note that any implementation of an algorithm involving an

arbitrary 2N -point function does in any case require exponential resources to simulate

this function. Therefore, the linear optical implementation of quantum algorithms in-

volving oracles can reasonably be made as efficient as any other implementation in this

respect. For all these reasons, our experimental demonstration works with a 8-point

(3-qubit) function and might probably be extended even further without fundamental

difficulty, while the realisation [Tak00] used a 4-point (2 qubit) function[Tak00].

We now proceed to demonstrate how it is possible to implement QKD with the plug

and play technique. Furthermore, we will exploit this method not only to encode the

qubits necessary to perform the key distribution but also in order to filter errors than

can occur during the exchange of qubits.



Chapter 4

Error Filtration

4.1 Introduction

As introduced in the previous chapter, the plug and play method is, at present, an

excellent solution to many problems in quantum information. Unfortunately, this

method suffers from a fundamental drawback that is the limiting distance at which

sending photons is possible. This leads to two important consequences which result in

the breakdown of QKD. The first is the exponential decrease in bit rate which quickly

tends to zero, while the second is the violation of the security of QKD because of a

constant noise level which eventually overtakes the decreasing signal.

The longest fibre over which any key has been exchanged is currently just over a

100 km [?]. In order to circumvent the above problems and to considerably increase

the distance at which QKD is feasible, the idea of quantum repeaters has been put

forward. This device would tackle the problem of signal loss by temporarily storing

the state of each photon. It would allow new photons with the same state to be gener-

ated at each repeater, thus transforming the exponential decay into a polynomial one

which would be achieved by a number of short steps. To date a variety of schemes

have been suggested for photon-atom quantum communication using either trapped

atoms in cavity quantum electrodynamics (cavity-QED) setups or atomic ensemble,

and very promising experimental progress has been made toward realizing quantum

repeaters [DLCZ01, PSBZ01].

However, once high-fidelity quantum repeaters will be available, the main limiting

factor will no longer be distance but rather errors due to the accumulation of noise

in long distance plug and play QKD. This noise originates from the interaction of

51
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the photon with acoustic phonons caused by thermal excitations of the optical fiber

in which it is propagating. This results in a modification of the characteristics of

the photon such as phase and polarization. Because plug-and-play QKD is based on

phase encoded qubits, acoustic phonons bias the value of qubits propagating through

the optical fiber. Since these phonons have frequencies on the order of a few 100 MHz

and that time bins for a given qubit are seperated by a few 100 ns, the accumulation

is only significant at distances much longer than 100 km. Phase noise accumulated in

present day short distance QKD is not a significant problem because the BER remains

lower than 11% (the BER at which the BB84 protocol is no longer secure). Beyond

the distances achievable today, phase noise will become a significant problem to such

an extent that it may render QKD insecure.

Luckily, one of the central results in quantum information is that errors can, in princi-

ple, be corrected [Sho97, BBP+96]. Practical realizations of quantum error correcting

codes are, however, extremely difficult because they require multiphoton interactions.

A first experimental demonstration of quantum error correction has recently been re-

alized [PGU+03], but it is still very far from being usable in practical applications.

An alternative method, called error filtration, allows errors to be filtered out during

quantum communication, and can in contrast be easily implemented using present day

technology [GLMP05]. The main idea of error filtration is to encode one qubit in a

single photon within a Hilbert space of dimension greater than 2. It is then possible to

detect, with high probability, whether a phase error has occurred, and, if so, to discard

the state. This quantum error detection scheme is less powerful than full error correc-

tion, but, for many applications such as QKD, discarding the state affected by noise is

sufficient. The advantage of this method is that the encoding and decoding operations

do not require multiphoton interactions, hence they are relatively easy to implement

by interferometric techniques. Note that it was previously realized that the use of

higher dimensional systems can increase the resistance of QKD to noise [CBKG02].

We will discuss the advantages of error filtration over these previous methods in the

concluding remarks of this chapter.

4.2 Basic Principle

The main idea behind error filtration is multiplexing, i.e. using more transmission

channels than the minimum required to send a given information. To illustrate this

concept, suppose Alice would like to send an arbitrary quantum state to Bob via a noisy

quantum communication channel such as time bins propagating through an optical
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Figure 4.1: After prepraring the state, Alice encodes it for filtration by sending it on

a beam-splitter. The state is split in 2T independent channels (in this case T = 1).

fiber. To remain as simple as possible and faithful to the experimental demonstration,

we will assume that the information she would like to send is encoded in a single

photon in 2-dimensional Hilbert space: |ψ〉 = α0|t0〉 + α1|t1〉 where |α0|2 + |α1|2 = 1

and 〈t0|t1〉 = 0. In other words, |ψ〉 is a normalized superposition of the computational

basis states |t0〉 and |t1〉 with complex coefficients. Before sending the state to Bob,

Alice divides the communication channel (e.g. with beam-splitters) in a series of

parallel channels such that the quantum state is uniformally distributed among them.

This could be achieved by having Alice send her photon on the input port of an

interferometer where the total number of possible paths would be chosen by the number

of divisions applied by Alice on the original channel and is illustrated in Fig. (4.1)

for the case of a qubit impinging on two parallel channels. As we shall see, this

encoding will allow Alice and Bob to discriminate, with high probability, whether

the state has been affected by noise during its propagation towards Bob. Thus |ψ〉
becomes embedded in a 2T+1 Hilbert space where T refers to the number of divisions

the channel has underwent. Formally, transfering the state to 2T parallel channels

(described by some unitary operation Ue) transforms it as:

Ue|ψ〉 =
2T−1∑

k=0

(−1)m√
2T

|k〉[α0|t0〉+ α1|t1〉
]

(4.1)

where the channel is labeled k ⇔ {kT · · · k1}, ki ∈ {0, 1} and, m =
∑T

i=0 ki mod 2. The

additional (−1)m phase affects the wave packets which are reflected either by beam-

splitters or mirrors and, as mentionned in the previous chapter, is a consequence of

energy conservation. This encoding transformation has been shown to be optimal
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Figure 4.2: The propagation of the four pulses towards Bob. Each pulse is associated

to independent phase noise.

[GLMP05] and, as we shall see, is chosen for its correspondance with our experimental

setup. State |ψ〉 propagates to Bob in a superposition of the 2T parallel channels which

we assume to be affected by independent phase noise1. Indeed to remain as close as

possible to the context of our experiment, we consider that the noise affecting the

different wave packets is phase noise. That is, we suppose unlikely the event of a flip

error where wave packet |t0〉 → |t1〉 and vice versa. The phase noise however implies

that an additional 2T+1 independent random variables e
iϕktj with ϕktj ∈ [0, 2π] be

associated to each channel and each wave packet |tj〉 propagating in one of the given

channels, see Fig. (4.2):

Ue|ψ〉 → |ψ′〉 =
2T−1∑

k=0

(−1)m√
2T

|k〉[α0e
iϕk0|t0〉+ α1e

iϕk1|t1〉
]

where ϕktj is drawn from a gaussian probability distribution

P (ϕkj) =
1√

2πσ2
exp

(
−ϕ2

kj
/(2σ2)

)
(4.2)

of average zero. Upon recieving |ψ′〉, Bob completes the filtration before processing it

any further. To decode it, he performs the inverse operation carried out by Alice. More

precisely, he combines the channels such that each wave packet eiϕkj |kj〉 interferes with

its neighbour and gradually recombines to one channel thus projecting |ψ′〉 back onto

the original two-dimensional Hilbert space. Each interference can be interpreted as a

1This experimental constraint could easilly be fulfilled by spatially separating the channels far
away from each other.
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Figure 4.3: Error filtration for a given wavepacket |tj〉. The figure illustrates the

first recombination of the last two channels. The signal is either discarted (|k′R〉) or

interferes again at the next level of filtration (|k′Q〉). This process is repeated until

reaching Bob.

filtration. Consider, as an example, state |tj〉 having travelled through neighbouring

channels 2T = k and 2T − 1 = k − 1: eiϕkj |ktj〉 and eiϕ(k−1)j |(k − 1)tj〉. (Note that

|tj〉 has also travelled through 2T − 2 other channels which recombine in pairs and

interfere.) As a result, the recombination of these two states induces the following

superposition (up to a normalization factor):

αj
[
eiϕkj |k〉+ eiϕ(k+1)j |k + 1〉]|tj〉 →

αje
iϕkj

2

[
(1 + ei(ϕ(k+1)−ϕkj))|k′Qtj〉+ (1− ei(ϕ(k+1)−ϕkj))|k′Rtj〉

]
(4.3)

where k′Q = 2T−1 labels the output channel of the interferometer which carries on

to the next interference and eventually to Bob while k′R labels the output channel

of the interferometer which leads to an output bin, see Fig. (4.3). If the photon

emerges in channel k′Q it will again interfere, this time with neighbouring channel

k′Q = 2T−1 − 1. This process will repeat until only two channels k′Q = 0 and k′Q = 1

remain and that the photon interferes one last time. The interferometers are tuned

in such a way that when no error occurs, the state emerges with certainty in channel
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Figure 4.4: The propagation of the four pulses towards Bob. Each pulse is associated

to independent phase noise.

|k′Qtj〉. That is, we arrange the interferometers so that, in the absence of errors,

there is complete constructive interference in the output channels |k′Qtj〉 and complete

destructive interference in the other output channels |k′Rtj〉. The probability of either

outcome depends on the phase difference ϕkj −ϕ(k+1)j. The bigger this difference, the

higher the probability that state |tj〉 will be directed to the output bin. In that case

we know that an error has occurred - otherwise the state would not have ended up

there - so we discard it. Therefore, a noisy channel and a disturbed state will have a

higher probability of being identified with error filtration. The higher the degree of

multiplexing, the higher the probability. The wave packet that exits the last beam

splitter and travels to Bob is written as

|ψ′′〉 =
(−1)T

2T

2T−1∑

k=0

[
α0e

iϕk0 |t0〉+ α1e
iϕk1 |t1〉

]
. (4.4)

Bob then completes the protocol by measuring the state of the photon. Although

there is a probability that the photon will be affected by noise and discarded by error

filtration, there is still the probability that it will reach Bob who will measure in the

{|ψ〉, |ψ⊥〉} basis. Therefore, the probability for Bob to measure the photon in output
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|ψ〉 is obtained by projecting |ψ′′〉 onto |ψ〉:

P(ψ) = |〈ψ|ψ′′〉|2 =
1

22T

[
|α0|4

(
2T + 2

2T−1∑

k,k
′
=0

cos (φk0 − φ
k
′
0
)δk,k′

)

+ 2|α0α1|2
2T−1∑

k,k
′
=0

cos (φk1 − φ
k
′
0
)

+ |α1|4
(
2T + 2

2T−1∑

k,k
′
=0

cos (φk1 − φ
k
′
1
)δk,k′

)]
. (4.5)

Similarly, the probability that he measures the photon in output |ψ⊥〉 is given by:

P(ψ⊥) = |〈ψ⊥|ψ′′〉|2 =
|α0α1|2

22T

[
2T + 2

2T−1∑

k,k
′
=0

cos (φk0 − φ
k
′
0
)δk,k′

− 2
2T−1∑

k,k
′
=0

cos (φk1 − φ
k
′
0
)

+ (2T + 2
2T−1∑

k,k
′
=0

cos (φk1 − φ
k
′
1
)δk,k′)

]
. (4.6)

In order to characterize the performance of error filtration as a function of T , the level

of multiplexing, we can calculate the visibility of the setup (by averaging over the

noise) which describes the quality of the interference fringes as measured by Bob:

VT =
< Iψ > − < Iψ⊥ >

< Iψ > + < Iψ⊥ >

=
T

T − 1 + eσ2

= 1− 2 BER. (4.7)

< Iψ > is the average number of correct detections (Bob measures outcome |ψ〉) and

< Iψ⊥ > is the average number of incorrect detections (Bob measures outcome |ψ⊥〉).
They are defined as

< Iψ >=< 1
N

∑N
i=1 |〈ψ|ψ′i〉|2 > and < Iψ⊥ >=< 1

N

∑N
i=1 |〈ψ⊥|ψ′i〉|2 > .

The visibility enables us to calculate the density matrix as measured by Bob:

ρ = VT |ψ〉〈ψ|+ (1− VT )1/2, (4.8)
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Figure 4.5: Fiber optics QKD setup with error filtration. A Attenuator, C Circulator,

D Single Photon Detector.

where we conclude that phase noise amounts to the admixture of isotropic noise. It is

clear from Eq. (4.7) that in the limit where the degree of multiplexing is infinite the

visibility attains 1. That is, all states affected by noise are discarded by error filtration

such that the BER reaches zero at the expense of having a lower bit rate.

4.3 Experiment

This section is devoted to the experimental demonstration of error filtration based on

plug and play quantum cryptosystem. We motivate the interest for error filtration by

performing the optical part of a QKD scheme over a noisy quantum communication

channel with so much noise that a secure BB84 protocol cannot be realized. As ex-

plained in Chapter 1, if the BER exceeds 14.6%, then a simple cloning attack makes

the BB84 protocol insecure. On the other hand, if the BER is lower than 11.0%, then

the BB84 protocol is provably secure. Between the two boundaries lies a gray zone

where the security of BB84 is unknown2. In our experiment, we consider an error

prone QKD scheme with a BER = 15.3% ± 0.1%, which is therefore insecure. Using

error filtration, the BER is brought down to 10.6% ± 0.1% so that QKD is rendered

secure.

Before discussing error filtration let us first introduce a setup which realizes the

optical part of a plug and play BB84 protocol. This setup works with attenuated

coherent states traveling in localized time bins in standard SMF-28 optical fibers, see

Fig. 4.5. In plug and play QKD, Bob initiates the protocol by preparing a classical

light pulse. In our experiment, he uses a laser diode at 1.55 µm to produce a 3-ns

2These bounds refer to BB84 with one way classical post-processing.
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light pulse. The pulse is attenuated by an optical attenuator (Agilent 8156A), and

then split by a first 50/50 coupler (C1) to produce two pulses. These pulses impinge

on the input ports of a polarization beamsplitter (PBS) with a time delay ∆ = 60 ns.

Their polarizations are rotated, using polarization controllers, so that the two pulses

exit by the same port of the PBS. This produces two emerging pulses traveling down

a 900-ns delay line (representing the noisy communication channel). Then, at Alice’s

site, the pulses are reflected back by a Faraday mirror. Recall that the use of a Faraday

mirror makes the setup insensitive to birefringence in the delay line. Alice may modify

the phases of the two pulses using a phase modulator (φA) (Trilink) controlled by a

pattern generator (Agilent 81110A). Upon reaching Bob’s site, the two pulses travel

through Bob’s phase modulator (φB) (Trilink) and the PBS to the coupler C1, where

they interfere and are sent to a single-photon detector (id Quantique id200) via a cir-

culator. The detector was gated by a pattern generator during a 5-ns window around

the arrival time of the central pulse. Its output was registered by a time-to-digital

delay converter (ACAM-GP1) connected to a computer. All electronic components

were triggered by a pulse generator (Standford Research Inc. DG355). In order to

maximize the interference visibilities, polarization controllers were introduced in the

long arm of the MZ interferometer and in front of the polarization-sensitive phase

modulators. Once optimized, the setup was stable for days.

The classical pulse emerging from the laser is attenuated in such a way that upon

leaving Alice’s site, the combination of the two pulses contains, on average, less than

one photon. Therefore, after Alice encodes her phase φA the wavefunction describing

the two pulses (making the approximation that a single photon fock state is contained

in the 2 pulses) can be written as 1√
2
(|t0〉H − eiφA|t1〉V ), where the subscripts H and

V represent the polarization states while the subscripts 0 and 1 represent the relative

delay of time bin i, i.e. ti = i ·∆. The (−1) phase in front of |t1〉V takes into account

the conventional relative phase of π/2 between the reflected and transmitted light at

coupler C1 and at the PBS. In the BB84 protocol, Alice must randomly choose among

two maximally unbiased bases and again randomly choose among the states contained

therein. In the plug and play version, these two bases are:

1√
2
(|t0〉H + |t1〉V ) 1√

2
(|t0〉H + i|t1〉V )

1√
2
(|t0〉H − |t1〉V ) 1√

2
(|t0〉H − i|t1〉V ).

That is, the phase φA must be chosen randomly in {0, π
2
, π, 3π

2
}. The state leaving

Alice’s site thus reads

|ψ〉 =
1√
2

[|t0〉V − eiφA|t1〉H
]

(4.9)
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where the polarizations have been interchanged because of the Faraday mirror.

Due to the short distance over which the time bins traveled, intrinsic noise in our

plug-and-play QKD scheme was actually very low so that in our experiment we had

to simulate the noisy channel by making Alice’s phase modulator imperfect. This was

achieved by electronically combining the signal from the pattern generator with the

output of a function generator (Agilent 33250A) producing gaussian electronic noise

with an adjustable amplitude and a 50-MHz 3dB-bandwidth. Since the time bins are

separated by 60 ns, the phase noise in the successive time bins can be considered as

independent. The state which is sent to Bob is thus

|ψ′〉 =
1√
2

[
eiϕ0|t0〉V − ei(φA+ϕ1)|t1〉H

]
(4.10)

where the ϕi’s are independent random phases drawn from a gaussian probability

distribution defined in Eq. (4.2) with tunable variance σ2. In terms of BER, this noise

level corresponds to

BER =
(1− e−σ

2
)

2
.

The two pulses travel back to Bob, who performs a measurement in the 1√
2
(|t0〉V ∓

e−iφB |t1〉H) basis by applying the phase φB ∈ {0, π2}. Bob’s detector is connected to

either output port P1 or P2. The probability for Bob to detect a count (assuming a

perfect detector) is 1
2
± 1

2
cos(ϕ1−ϕ0 +φA+φB) where the sign depends on which out-

put port is used. The measured values of V0 for various levels of σ2 (after subtracting

dark counts) agree well with this prediction, see lower curve in Fig. 9.2.

In order to carry out error filtration, an additional unbalanced MZ interferometer

is placed after the PBS (T=1) identified by couplers C2 and C3 with path length

difference equivalent to 2∆, see Fig 4.5. This second interferometer produces four

emerging pulses which travel down the 900-ns delay line and, as we shall show, real-

izes error filtration. Formally, each pulse exiting from the PBS is split into two pulses

by the MZ interferometer according to

|t0〉H → 1
2
(|0〉|t0〉H − |1〉|t0〉H) |t1〉V → 1

2
(|0〉|t1〉V − |1〉|t1〉V ).

The factor 1/2 takes into account that half of the intensity is lost at coupler C3. After

Alice has encoded her phase φA and the pulses have been reflected by the Faraday

mirror, the state becomes

|ψ〉 =
1

2
√

2

[|0〉|t0〉V − |1〉|t0〉V − eiφA(|0〉|t1〉H − |1〉|t1〉H)
]
. (4.11)
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This is formally identical to the BB84 protocol since Alice effectively uses the 2-

dimensional space spanned by (|0〉|t0〉V − |1〉|t0〉V ) and (|0〉|t1〉H − |1〉|t1〉H). Then,

because of the noise, the four pulses get random phases ϕ00, ϕ10, ϕ01 and ϕ11, respec-

tively. The state that Alice sends back to Bob is thus

|ψ′〉 =
1

2
√

2

[
eiϕ00|0〉|t0〉V − eiϕ10|1〉|t0〉V − eiφA(eiϕ01|0〉|t1〉H − eiϕ11|1〉|t1〉H)

]
. (4.12)

It now belongs to the full space spanned by |0〉|t0〉V , |0〉|t1〉V , |1〉|t0〉H and |1〉|t1〉H ,

since the phase noise has taken it out of the 2-dimensional Hilbert space. With error

filtration Bob projects the state back onto the 2-dimensional Hilbert space in order to

selectively enhance the visibility. This projection is realized by the MZ interferometer.

At coupler C3 each time bin has amplitude 1/
√

2 of following the long path and

amplitude 1/
√

2 to follow the short path. This gives rise to eight new time bins of

which four can be considered as parasites because they do not interfere at coupler

C1 where Bob performs his measurement. In the theoretical analysis above, these

additional time bins were not considered. As we discuss later their appearance is due

to the specific implementation we use and gives rise to a loss which is not intrinsic

to the method. These four time bins, which we label |ss〉0, |ss〉1, |ll〉0 and, |ll〉1 arise

from state |j〉 having travelled twice through the short arm or the long arm of the MZ

interferometer. The resulting state after C2 (ignoring the parasite wave packets) is

|ψ′′〉 =
1

4
√

2

[−(eiϕ00 + eiϕ10)|0〉V + eiφA(eiϕ01 + eiϕ11)|1〉H
]
. (4.13)

Bob now realises his measurement by putting his phase φB on time bin 1: |t1〉 →
eiφB |t1〉. At the PBS wave packet |0〉V takes the long path whereas wave packet |1〉H
takes the short path and interfere at coupler C1. The probability to detect the photon

is

1

16

[
(1 + cos (ϕ00 − ϕ10)) + (1 + cos (ϕ00 − ϕ10))(1 + cos (ϕA − ϕB))

± (
1∑

k,k′=0

cos (ϕk0 − ϕk1 − φA) + cos (ϕk0 − ϕk1 − φB))
]

where the ± sign depends on which output port (P1 or P2) the state exits. When the

photon emerges in the time bin corresponding to the interference of |0〉V and |1〉H the

visibility is

V1 = 2/(1 + eσ
2

). (4.14)

Comparing with Eq. (4.11) we see that filtration effects an increase of visibility.
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There are two sources of loss in the above implementation. The first is not intrin-

sic to the method and is due to the photons ending up in time bins |ss〉 and |ll〉 after

Bob’s measurement which do not have improved visibility and are therefore discarded.

In principle this could be remedied by replacing coupler C3 by a switch that determin-

istically sends pulses |s〉0 and |s〉1 along the long path and pulses |l〉1 and |l〉1 along the

short path. We did not implement this because high speed, low loss switches do not

exist commercially at present. The second source of loss is intrinsic to the method of

error filtration: visibility is enhanced by separating the signal into two components, a

noisy one which is discarded and a good one which is kept. This intrinsic loss occurs in

our experiment at coupler C2 where |0〉|t0〉 and |1〉|t0〉 interfere and similarly for |0〉|t1〉
and |1〉|t1〉. The light which emerges from the unused output port (P4) is completely

noisy and is simply discarded.

The measured average visibilities (after substracting detector dark counts) are plot-

ted in Fig. 9.2 as a function of the phase noise standard deviation in the case where

Alice applies φA = 0 and Bob measures the output port P1. In this case, without

noise, the maximal visibilities exceeded 99%. With unfiltered noise (lower curve), the

visibility decreases exponentially with the amount of noise in accordance with Eq.

(4.11). The filtration achieved by our setup (upper curve) is also very close to the

theoretical prediction of Eq. (4.14). Visibilities in the range from 65% to 78% are

enhanced, by filtration, to the range from 78% to 85%, see inset of Fig. 9.2. Not-

ing that the security threshold BER < 11.0% translates into V > 78.0% while the

insecurity threshold BER ≥ 14.6% corresponds to V ≤ 70.7%, we conclude that our

setup transforms a BB84 protocol which is insecure (or of unknown security) into a

provably secure one. Note that the visibilities were also tested for the other possible

values of φA = π/2, π, 3π/2 used in the BB84 protocol and for both ports P1 and P2.

The visibilities all exceeded 97.2% in the case where no noise is added. The lowest

visibilities are associated with the cases where Alice and Bob choose the {π
2
, 3π

2
} basis

since then both parties must apply a potential to their polarization-sensitive phase

modulator which makes the setup noisier.

In Figure 9.2, the visibilities were measured in a regime where the overall number

of photons in all time bins when they leave Alice’s site is approximately 120 photons.

In this way, the dark counts of the detector are negligible. To consider a realistic QKD

implementation, we also ran the experiment in the single-photon regime, where the

quantum state sent by Alice back to Bob contains approximately 0.8 photons in total.

The difficulty in this case is that dark counts become very important (they give a raw
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error rate of about 30%) because we use 3-ns pulses 3. Nevertheless, we were able to

show in this regime that a visibility of 69.4% ±0.2% in the absence of filtration can be

turned into 78.8% ±0.2% by filtration (where the statistical error due to subtracting

the dark counts was calculated for a 95% confidence level), see open circles in Fig. 9.2.

These visibilities are averaged over all four choices of φA and for the two output ports

P1 and P2, so they are the relevant quantities for characterizing a QKD scheme. This

averaging explains why these points lie slightly off the curves in Fig. 9.2. Note that

in QKD the errors due to the dark counts can in principle be removed using error

correction codes without altering the security, although in practice this is probably

impossible for the high level of dark counts we have here.

We conclude by comparing this method with other QKD schemes that use higher

dimensional systems [CBKG02]. The noise model in both cases is the same: a d-

dimensional state |ψ〉 entering the communication channel exits as ρ = e−σ
2|ψ〉〈ψ| +

(1 − e−σ
2
)I/d. This makes the comparison meaningful. The QKD schemes based on

sets of mutually unbiased bases considered in [CBKG02] can only tolerate a noise level

up to e−σ
2
< 1/2. This is because when e−σ

2
= 1/2, there is a simple attack in which

the eavesdropper (Eve) does not modify the state with probability 1/2, while, with

probability 1/2, she keeps the state and sends a random one instead. In contrast,

error filtration can tolerate arbitrarily high levels of noise if the dimensionality d of

the Hilbert space is sufficiently large since the visibility Vd tends to 1 for large d and

fixed e−σ
2
. The reason why the above attack no longer works in the case of error

filtration is that when Eve replaces the quantum state by a random one, the filtration

preferentially removes the corresponding noisy term. In other words, the noise is re-

placed by a higher effective loss. Nevertheless, this also means that a QKD scheme

using error filtration can be vulnerable to attacks which exploit loss. For instance,

if Alice sends attenuated coherent states, Eve could use a photon-number splitting

attack, see [GRTZ02] and references therein. In fact, our setup would probably be in-

secure against such attacks since we used attenuated coherent states with 0.8 photons

on average and were very close to the limit of provably secure QKD. This is not a

fundamental problem and could be remedied by further attenuating the states or by

using better approximations of single-photon sources.

3By using shorter laser pulses, we should be able to decrease the dark count rate by at least a
factor of 10.
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4.4 Conclusion

The present experiment demonstrates the optical part of a quantum key distribution

scheme which can operate with a phase-noise level that is too high for a standard

implementation of the BB84 to be secure. This demonstrates the power and simplicity

of error filtration as a practical method for circumventing phase noise in quantum

communication. In the next chapter, we will tackle yet another problem in QKD

which is more of a technological inconvience rather than a fundamental drawback but

is nevertheless very important for practical QKD. This is the problem of generating

random numbers which, with present day technology, is responsible for the slow rate

at which a secret key is created. We present a solution that greatly reduces the need

for random numbers which implies encoding successive qubits drawn from the same

basis. We show that Eve cannot gain more information than what is possible with

traditional QKD protocols.
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Figure 4.6: Visibility (detector dark counts subtracted) as a function of the standard

deviation of the noise signal produced by the function generator. The proportionality

factor between the x-axis and σ was determined by fitting the experimental data

without filtration with Eq. (4.11). The squares (full circles) represent the measured

visibilities without (with) filtration, while the curves are the theoretical predictions of

Eqs. (4.11) and (4.14). The open circles show filtration in the single-photon regime.

The inset magnifies the data in the region where one passes from an insecure (V ≤
70.7%) to a secure (V > 78.0%) QKD protocol. The criss-crossed area shows that a

visibility that is either insecure or of unknown security can be increased to a provably

secure one. By making the statistics over 200,000 runs, the error bars were made

smaller than the plotting points.





Chapter 5

Reduced Randomness in Quantum

Key Distribution

5.1 Introduction

As we have seen in the introductory chaper, the security of QKD is based on two main

ingredients. The first refers to the impossibility of perfectly cloning some unknown

quantum state selected from a nonorthogonal set. As a result, Eve cannot clone the

quantum state transmitted by Alice and re-transmit it undisturbed to the receiver

Bob. The second ingredient, although often mentioned only implicitly in the littera-

ture, is also an absolute requirement: truly random numbers must be available on both

Alice’s and Bob’s sides. Indeed, with pseudo-random number generators, the sequence

of choices made by Alice and Bob could in principle be predicted by Eve if the seed

is known to her. Clearly, quantum cryptography should use quantum randomness.

But, in practice, this is a severe constraint because a complete protocol requires a

huge amount of random numbers, from Alice’s state choices to Bob’s basis choices, as

well as for the random choices and random permutations needed in error correction

and privacy amplification. Making high-speed quantum random-number generators

is a big technological challenge, so that most realizations of quantum cryptography

today rely on an active 1 choice that uses a standard random-number generator. It is

therefore of a great importance to investigate whether this requirement of high-rate

1Note that if the choice is passive, based on quantum effects (e.g. the photon being detected at one
or the other output port of a beam splitter at Bob’s station), then it is still not completely equivalent
to using a quantum random-number generator. Indeed, in the latter case, the photon involved in
the random-number generation is generated locally, and has not been transmitted over the line and
potentially tapped by Eve.

67
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random number generation can be relaxed, at least in part.

In this chapter, we consider a variant of the BB84 or six-state protocols in which

the basis chosen for encoding is kept unchanged over long sequences of qubits instead

of being drawn at random for each qubit. Quite surprisingly, we show that, if the se-

quences are much shorter than the key, the security is unaffected by this modification

of the protocol although the random number generation rate is significantly reduced.

The BB84 and six-state protocols are amongst the cryptographic schemes for which

the security has exhaustively been studied. Since it has been shown that the opti-

mal eavesdropping strategy for these two protocols coincide with approximate cloning

[CBKG02], we restrict our analysis to cloning-based attacks.

We consider the cloning of sequences of N qubits. In each sequence the qubits are

prepared in the same basis, but the state is chosen at random among the basis states.

This is viewed as the optimal avesdropping attack against a quantum cryptographic

protocol in which we do not restrict Alice and Bob to make random choices of bases for

every qubit, but allow them to use the same basis for the entire length-N sequence (N

is assumed to be publicly known and much smaller than the size of the key). That is,

for each sequence, Alice and Bob make new and independent random choices of bases.

At first sight, one could imagine that this encoding would increase Eve’s knowledge

about the secret key, but we shall see that for the class of cloning transformations

we have studied, this is not the case: Eve’s optimal cloning attack provides her with

no more Shannon information, for a given quantum bit error rate, than in the usual

case where Alice and Bob make random basis-choices for each qubit and Eve applies

a cloning attack on each qubit. Under the assumption that this class of approximate

cloning transformations corresponds to the optimal eavesdropping strategy, we have

thus proven that the requirement for random number generation can be reduced with-

out impairing on the security against finite-size attacks.

5.2 General quantum cloning formalism

We refer to the double-Bell state ansatz as defined in Chapter 1 which we adapt

here for this new scenario. Considering an arbitrary state |ψ〉 in a 2N -dimensional

Hilbert space (the Hilbert space of N consecutive qubits), we wish to produce two

(approximate) clones. The class of cloning transformations we will analyze implies
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that if the input state is |ψ〉 (in what follows this state will be the composite state of

N qubits), then the resulting joint state of the two output clones (noted E for Eve

and B for Bob) and the ancillary system (noted C) is:

|ψ〉 →
2N−1∑
m,n=0

am,nUm,n|ψ〉E|Bm,n〉B,C

=
2N−1∑
m,n=0

bm,nUm,n|ψ〉B|Bm,n〉E,C (5.1)

where the couple {m,n} ⇔ {m1 . . .mN , n1 . . . nN} and mi, ni ∈ {0, 1}. Here, E, B

and C are 2N -dimensional systems and Um,n is defined as

Um,n =
N⊗
i=1

XmiZni , (5.2)

where XmiZni represents the identity and the three Pauli matrices

X0Z0 = I

X1Z0 = σX

X0Z1 = σZ

X1Z1 = − iσY .

Here, |Bm,n〉 is defined as

|Bm,n〉 =
2N−1∑

k=0

(−1)(k·n)|k〉|k +m〉 (5.3)

where k ·n represents the bitwise scalar product, i.e. k ·n =
∑

i kini. Thus, Um,n is the

tensor product of N Pauli matrices each acting on a two-dimensional subsystem. An

error operator Umi,ni
is associated to each subsystem. Such an operator shifts the state

by mi units (modulo 2) in the computational basis, and multiplies it by a phase so as to

shift its Fourier transform by ni units (modulo 2). Eq. (9.3) defines the d2 generalized

Bell states for a pair of 2N -dimensional systems with |Bm,n〉 =
(
Um,n ⊗ 1

) |B0,0〉.
Tracing over systems B and C (or E and C) yields the final states of clone E (or

clone B): if the input state is |ψ〉, the clones E and B are in a mixture of the states

|ψm,n〉 = Um,n|ψ〉 with respective weights pm,n and qm,n:

ρE =
2N−1∑
m,n=0

pm,n|ψm,n〉〈ψm,n|

ρB =
2N−1∑
m,n=0

qm,n|ψm,n〉〈ψm,n| (5.4)



70 5. Reduced Randomness in Quantum Key Distribution

In addition, the weight functions of the two clones (pm,n and qm,n) are related by

pm,n = |am,n|2, qm,n = |bm,n|2, (5.5)

where am,n and bm,n are two (complex) amplitude functions that are dual under N

two-dimensional Fourier transforms:

bm,n =
1

2N

2N−1∑
x,y=0

(−1)n·x−m·yax,y. (5.6)

The fidelity of a clone, say E, is given by

FE = 〈ψ|ρE|ψ〉 =
2N−1∑
m,n=0

|am,n|2|〈ψ|Um,n|ψ〉|2 (5.7)

and similarly for the B clone (replace the |am,n|2 term by |bm,n|2).

5.3 BB84 protocol with 2-qubit correlated bases

In this section we compare the amount of information that can be gained by Eve

when performing a cloning attack on individual qubits (two-dimensional) and on pairs

of qubits (four-dimensional) which may have been chosen from correlated bases. We

study here how this affects the BB84 protocol and in the next section we move on to

the six-state protocol.

Recall that in the BB84 protocol, Alice chooses from states belonging to two mu-

tually unbiased bases. Alice and Bob choose the first basis as the computational basis

(eigenstates of σZ) {|0〉, |1〉} and the second as the dual basis (eigenstates of σX)

{ 1√
2
(|0〉 ± |1〉)}.

5.3.1 BB84 - single qubit attack - no basis correlation

If Eve chooses to clone the qubits individually, she must use a cloning strategy which

is optimal for this set of states. When using the double-Bell ansatz described in

Sec. 5.2, one can easily verify that the expression of the fidelity for all states of a

given basis is the same. Here and throughout the rest of this chapter, we consider

fidelities as expressed by Eq. (9.6). Particularly for Eve’s clone one finds that the

fidelity for the computational basis is FE = |a0,0|2 + |a0,1|2 and the dual basis is

FE = |a0,0|2 + |a1,0|2. A cloning machine that acts equally well for this set of states
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implies |a0,0|2 + |a0,1|2 = |a0,0|2 + |a1,0|2. Since there is a priori no reason why the

optimal values of these elements be different from each other, we make the hypothesis

that they should all be equal and real. Furthermore, we extend our hypothesis to the

remaining element, |a1,1|2 such that the form of the amplitude matrix reduces to:

am,n =

(
v x

x y

)
. (5.8)

Eve’s fidelity is now expressed as FE = v2+x2 and normalization requires v2+2x2+y2 =

1. Bob’s clone can be characterized by a similar amplitude matrix by making the same

hypotheses:

bm,n =

(
v′ x′

x′ y′

)
, (5.9)

where the different matrix elements are related to the am,n coefficients by Eq. (9.5).

Thus, Bob’s fidelity is FB = v′2 + x′2 in both bases and the corresponding mutual

information between Alice and Bob (if the latter measures his clone in the good basis)

is given by

I(A,B) = 1 + FB log2 FB + (1− FB) log2(1− FB). (5.10)

Maximizing Eve’s fidelity FE for a given value of Bob’s fidelity FB under the normal-

ization constraint yields

v =
1

2
+

√
FB(1− FB)

x = FB − 1

2

y =
1

2
−

√
FB(1− FB)

such that the corresponding optimal fidelity for Eve is

FE =
FB
2

+
1− FB

2
+

√
FB(1− FB). (5.11)

Under the assumption that Alice and Bob exchange many sequences which are short

in comparison to the size of the total key, Alice and Bob can rely on the randomness of

the sequence basis distribution to guaranty the security of their exchange. As we have

seen, Csiszár and Körner’s theorem provides a lower bound on the rate R at which

Alice and Bob can generate secret key bits using privacy amplification:

R ≥ max
[
I(A,B)− I(A,E), I(A,B)− I(B,E)

]
. (5.12)
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It is therefore a sufficient condition that I(A,B) > I(A,E) in order to establish a secret

key with non-zero rate for one way communication channels. It has been shown in

[CBKG02] that Bob and Eve’s information curves intersect exactly where the fidelities

coincide because, in this particular case, the mutual information shared between Alice

and Eve is also expressed by Eq. (5.10). This yields the optimal symmetric fidelity of

phase covariant cloning [BCdM00]

FE = FB =
1

2
+

1√
8
' 0.8536. (5.13)

Note that this result is independent of the fact that Alice may have chosen to en-

code sequences of consecutive qubits in the same basis since Eve is intercepting them

individually.

5.3.2 BB84 - two qubit attack - no correlation

Suppose now that Eve intercepts the qubits in sequences of two and clones them.

We make the same assumption as before, namely that Alice has randomly chosen

the basis she has encoded her qubit with. We would like to know if Eve can gain

more information per qubit using this cloning approach as opposed to cloning them

individually. Our first task is to determine the set of states that she will have to clone.

If Alice chooses among the computational and dual bases, the possible sequences Eve

might encounter are products of eigenstates of σ⊗2
Z : |00〉, |01〉, |10〉, |11〉, products of

eigenstates of σ⊗2
X :

1

2
(|00〉+ |01〉+ |10〉+ |11〉),

1

2
(|00〉 − |01〉+ |10〉 − |11〉),

1

2
(|00〉+ |01〉 − |10〉 − |11〉),

1

2
(|00〉 − |01〉 − |10〉+ |11〉),

and products between eigenstates of these two bases (σZ ⊗ σX and σX ⊗ σZ):

1√
2
(|00〉 ± |01〉) ,

1√
2
(|10〉 ± |11〉)

1√
2
(|00〉 ± |10〉) ,

1√
2
(|01〉 ± |11〉).
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Because we are now dealing with a four-dimensional Hilbert space (N = 2) with

tensor product structure, the Um,n operators take the following form:

Um1m2;n1n2 =

(
I Z

X Y

)
⊗

(
I Z

X Y

)

Each of these matrix elements consists in a tensor product of two Pauli operators

each acting on an associated qubit. Eve is interested in the information she can gain

from a single qubit when she clones them in sequences of two. In other words, Eve is

interested in the optimal four-dimensional cloning map where the figure of merit is

not the single-clone four-dimensional fidelity but rather the single-clone, single-qubit

two-dimensional fidelity averaged over the two qubits. To obtain this fidelity, we must

trace over the second qubit subsystem and compute the fidelity of the first qubit,

repeat this operation for the second qubit by tracing out the first qubit subsystem and

finally average over the two fidelities. For example, the reduced density matrix of the

first qubit for Eve’s clone is expressed as:

ρ1
E = Tr2

[ ∑
m,n

|am,n|2Xm1Zn1|φ1〉〈φ1|Zn1Xm1

⊗ Xm2Zn2|φ2〉〈φ2|Zn2Xm2
]

=
∑
m,n

|am,n|2Xm1Zn1|φ1〉〈φ1|Zn1Xm1

where |φi〉 is a two-dimensional system. For sequences of qubits both drawn from

eigenstates of σZ the fidelity is

F 1
E,zz =

2N−1∑
m=0,n=0

|am,n|2|〈φ1|Xm1Zn1|φ1〉|2

=
2N−1∑

m=0,n=0

|am,n|2δm1,0 (5.14)

for the first qubit and

F 2
E,zz =

2N−1∑
m=0,n=0

|am,n|2|〈φ2|Xm2Zn2|φ2〉|2

=
2N−1∑

m=0,n=0

|am,n|2δm2,0 (5.15)
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for the second qubit. For clusters of qubits both drawn from eigenstates of σX the

fidelity is

F 1
E,xx =

2N−1∑
m=0,n=0

|am,n|2δn1,0 (5.16)

for the first qubit and

F 2
E,xx =

2N−1∑
m=0,n=0

|am,n|2δn2,0 (5.17)

for the second qubit. To be complete, we must also compute the fidelity for clusters

expressed as tensor products drawn from eigenstates of σZ ⊗ σX and σX ⊗ σZ . The

former yields F 1
E,zx = F 1

E,zz for the first qubit and F 2
E,zx = F 2

E,xx for the second qubit.

The latter yields a fidelity of F 1
E,xz = F 1

E,xx for the first qubit and F 2
E,xz = F 2

E,zz for

the second qubit. The expressions for these fidelities F i
E can easily be interpreted as

follows. Every single-qubit fidelity consists in a sum of eight terms for which the first

four express the fidelity of the four-dimensional system in question (in other words the

contribution from the am,n coefficients where no errors occur on either qubits) while

the remaining four terms correspond to the am,n coefficients for which the ith qubit

is not affected by an error but the remaining one is. Generally, the fidelity of the ith

qubit is expressed as

F i
E = F4E +Di

E (5.18)

where F4E is the fidelity of the four-dimensional system and Di
E is the disturbance of

the ith qubit and is expressed as

Di
E =

2N−1∑
m=0,n=0

|am,n|2δmi,1 δm¬i,0 (5.19)

for qubits drawn from the computational basis and

Di
E =

2N−1∑
m=0,n=0

|am,n|2δni,1 δn¬i,0 (5.20)

for qubits drawn from the dual basis. Here, the qubit of the pair which is not the ith

qubit is given the index ¬i. The average qubit fidelity of Eve’s clone is therefore:

FE = F4E +
1

2
(D1

E +D2
E). (5.21)
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A similar analysis can be made for Bob’s clone from which we obtain a single-qubit

fidelity

FB = F4B +
1

2
(D1

B +D2
B) (5.22)

which is function of the bm,n coefficients. We are again interested in the mutual

information shared between Alice and Bob and Alice and Eve. To do this, let us

first compute Eve’s optimal fidelity FE for a fixed value of Bob’s fidelity FB under the

normalization constraint

3∑
m=0,n=0

|am,n|2 = 1 (5.23)

and the constraint that the single-qubit fidelity be the same for all 16 considered input

states. The optimization yields the following am,n matrix:

am,n =

(
v1 x1

x1 y1

)
⊗

(
v2 x2

x2 y2

)
(5.24)

where

v1 = v2 =
1

2
+

√
FB(1− FB)

x1 = x2 = FB − 1

2

y1 = y2 =
1

2
−

√
FB(1− FB)

such that

FE =
FB
2

+
1− FB

2
+

√
FB(1− FB). (5.25)

From the previous subsection we know that Bob and Eve’s information curves intersect

exactly where the fidelities coincide. This implies that Alice and Bob can share secret

bits via privacy amplification as long as FB > FE, that is

FB >
1

2
+

1√
8
. (5.26)

This optimal symmetric fidelity turns out to be the same as the optimal fidelity ob-

tained when the cloner is designed for two-dimensional systems meaning that the

optimal four-dimensional cloning map for single-qubit single-clone fidelity boils down

to the tensor product of the two-dimensional optimal cloners.
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5.3.3 BB84 - two qubit attack - correlated bases

Now consider the situation where Alice is limited by her random number generator

and must therefore send two consecutive states drawn from the same basis in order

to keep a decent cadence [qua]. Of course if Eve intercepts every qubit individually,

the fidelity she obtains after cloning is just the same as before, namely F = 1
2

+ 1√
8
.

If she intercepts them in sequences of two qubits she will necessarily find that they

are correlated: either she expects to find two qubits drawn from the computational

basis σZ (equivalently, a four dimensional state drawn from the eigenstates of σZ⊗σZ)

or two qubits drawn from the dual basis σX (equivalently, a four dimensional state

drawn from the eigenstates of σX⊗σX). Compared to the previous situation where no

correlation was present, the set of input states Eve has to consider has now decreased.

Intuitively we should expect that the optimal single-qubit cloner would give rise to a

higher fidelity. We shall see that this is not the case.

The cloner we consider is again characterized by the double-Bell ansatz (5.1) such

that the single-qubit fidelity for this set of input states is defined exactly like Eqs.

(5.14) and (5.15) for eigenstates of σZ and like Eqs. (5.16) and (5.17) for eigenstates

of σX . These are the four expressions of the fidelity for which the am,n (and conse-

quently the bm,n) coefficients must be optimized for. The constraints we must consider

here are the normalization constraint and the constraint that these four expressions be

equal. Of course, these fidelities are again characterized by Eq. (5.21). Interestingly,

the constrained optimization yields am,n coefficients which have exactly the same form

as Eq. (5.24) and therefore the same expressions for Eve’s fidelity as a function of

Bob’s. Once again, the lower bound on the mutual information Alice and Bob must

share in order to generate a secret key is given by

F >
1

2
+

1√
8
. (5.27)

We conclude that even if Alice chooses to encode two consecutive states in the same

basis, Eve’s optimal cloning strategy does not permit her to gain more information

than complete random choices. In Section V we will generalize this idea for sequences

of N qubits, but first let us examine how these cloning strategies apply to the six-state

protocol.
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5.4 Six-state protocol with 2-qubit correlated bases

The six-state protocol is very similar to the BB84 protocol, the only difference being

that Alice now has the choice to pick up states from a third basis MU to the other

two. Again, let us choose the first two bases as the computational basis and the dual

basis and let the third basis be the eigenstates of σY : { 1√
2
(|0〉 ± i|1〉)}.

5.4.1 six-state - single qubit attack - no correlation

The cloner that must be used for the six-state protocol is an asymmetric two-dimensional

universal cloner [CBKG02] characterized by the same amplitude matrix as Eq. (5.8)

except that we make the change y = x:

am,n =

(
v x

x x

)
.

Eve’s fidelity is expressed as FE = v2 + x2 and normalization requires v2 + 3x2 = 1.

Maximizing her fidelity for a fixed value of Bob’s fidelity yields the optimal cloner:

v =

√
3FB − 1

2

x =

√
1− FB

2
.

Bob’s clone is characterized by a similar amplitude matrix:

bm,n =

(
v′ x′

x′ x′

)
, (5.28)

where as before, v′ and x′ are given by Eq. (9.5) while the mutual information he

shares with Alice by Eq. (5.10). It has been shown in [CBKG02] that the mutual

information shared between Alice and Eve for the six-state protocol is given by

I(A,E) = 1 + (FB + FE − 1) log2(
FB + FE − 1

FB
)

+ (1− FE) log2(
1− FE
FB

) (5.29)

such that for a given FB, I(A,E) is lower than for the BB84 protocol which is consistent

with the stronger requirement we put on that cloner. This implies that the fidelity FB
for which I(A,E) = I(A,B) is slightly lower, and equal to FB ' 0, 8436.
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5.4.2 six-state - two qubit attack - no basis correlation

If Eve chooses to clone the incoming states in sequences of two, the set of four-

dimensional states she has to clone consists of tensor products of states belonging

to the three maximally unbiased bases above. The single-qubit fidelity is computed

as above, with the exception that there are extra constraints, namely that the fidelity

should also clone equally well eigenstates of σY :

F 1
E,yy =

2N−1∑
m=0,n=0

|am,n|2δm1,n1

for the first qubit and

F 2
E,yy =

2N−1∑
m=0,n=0

|am,n|2δm2,n2

for the second qubit. The other constraints come from tensor products of σY ⊗ σZ ,

σY ⊗σX and vice-versa. The expression for the fidelity of the ith qubit can be expressed

as:

F i
E = F4E +Di

E (5.30)

where, for eigenstates of σY ,

Di
E =

2N−1∑
m=0,n=0

|am,n|2δmi,ni+1 δm¬i,n¬i
. (5.31)

The average qubit fidelity is again:

FE = F4E +
1

2
(D1

E +D2
E). (5.32)

As before a similar analysis can be made for Bob’s clone from which we obtain a

single-qubit fidelity

FB = F4B +
1

2
(D1

B +D2
B). (5.33)

We are again interested in the mutual information shared between Alice and Bob, and

Alice and Eve. We compute Eve’s optimal fidelity FE for a fixed value of Bob’s fidelity

FB under the normalization constraint Eq.(9.18) and the constraint that the single-

qubit fidelity be the same for all input states. The optimization yields the following

am,n matrix:

am,n =

(
v1 x1

x1 x1

)
⊗

(
v2 x2

x2 x2

)
(5.34)
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where

v1 = v2 =

√
3FB − 1

2

x1 = x2 =

√
1− FB

2

such that

FE = 1− FB
2

+
1

4

√
6FB − 2

√
2− 2FB. (5.35)

In the previous subsection, we have seen how to express I(A,B) and I(A,E). Again

in this case the lower bound on Bob’s fidelity needed for I(A,B) > I(A,E) is given by

FB > 0.8436 which is the same fidelity for individual attacks. Thus, so far, we arrive

to the same conclusions as for the BB84 protocol.

5.4.3 six-state - two qubit attack - correlated bases

If Alice is again limited by her random number generator and must encode two consec-

utive qubits in the same basis, Eve can clone the incoming states by sequences of two

expecting to find four-dimensional states expressed as eigenstates of σZ⊗σZ , σX ⊗σX
or σY ⊗ σY . By making a similar reasoning as in the previous subsection we arrive

to the same conclusions as before, namely that the information Eve can gain when

cloning a four-dimensional system boils down to the optimal single qubit information.

5.5 Cloning of N-qubit sequences

We now proceed to generalize the cloning strategies considered in the previous sections.

We suppose that Alice encodes her qubits using the same basis for sequences of N

qubits. We also suppose that N is much smaller than the total size of the raw key

she will be exchanging with Bob. We also suppose that Eve is aware of when a new

sequence begins and ends. Generally, for a sequence of N qubits, the reduced density

matrix of the ith qubit for a given clone (say E) is written as

ρiE = Trj 6=i
∑
m,n

|am,n|2
N⊗
j=1

XmjZnj |φj〉〈φj|ZnjXmj

=
∑
m,n

|am,n|2XmiZni|φi〉〈φi|ZniXmi , (5.36)

such that fidelity of the jth qubit is written as

F j
E = FE2N +Dj

E (5.37)
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and similarly for qubits of Bob’s clone. The average qubit fidelity is therefore expressed

as:

FE = FE2N +
1

N

N∑
i=1

Di
E. (5.38)

If we assume that the optimal am,n amplitude matrices are expressed as

am,n =

(
v x

x y

)⊗N

(5.39)

for the BB84 protocol and

am,n =

(
v x

x x

)⊗N

(5.40)

for the six-state protocol, we can check that they indeed satisfy a constrained opti-

mization. Since the information curves are both monotonically increasing functions of

the fidelities, we use the Lagrange multiplier method to optimize Eve’s fidelity for a

fixed value of Bob’s.

The constraint that the fidelity for different qubits in the sequence be the same is

already satisfied by the hypothesized am,n matrix. The function is:

L = FE + λ1FB + λ2(
2N−1∑
m,n=0

|am,n|2 − 1)

=
1

N

N∑
m=0

(N −
N∑
i=1

mi)
N∏
i=1

(v2 + x2)mi⊕1(x2 + y2)mi

+ λ1

[ 1

N

N∑
m=0

(N −
N∑
i=1

mi)
N∏
i=1

(
1

2
+ vx+ xy)mi⊕1(

1

2
− vx− xy)mi

]

+ λ2

[
(v2 + 2x2 + y2)N − 1

]
(5.41)

where the modular sum is in base 2. The equivalent expression of Eq. (5.41) for the

six-state protocol is very similar except that one should exchange y2 for x2.

We have checked, using a symbolic calculator, that the hypothesized amplitude ma-

trices satisfy the constrained optimization and yield the optimal fidelities (Eqs. (5.25)

and (5.35)) for N = 2 and N = 3.
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5.6 Conclusion

We have considered the cloning of sequences of N qubits, where all the qubits in each

sequence are prepared in the same basis while each state is chosen at random. This

situation is very different from the usual scenario of cloning multiple copies, where all

the copies are prepared in the same state. Our investigation was motivated by the

situation in quantum cryptography where the legitimate users are required to make

truly random choices for each single qubit. From a practical point of view, this require-

ment on high-rate random-number generation is a severe constraint. Indeed, high-rate

quantum random number generators on the market today produce much lower rates

than the anticipated high-rate (e.g. 100Mb/s) quantum key distribution of the future.

However, under the assumption that the class of cloning transformations we con-

sidered here provides the optimal eavesdropping strategy, we have shown that this

requirement can be relaxed, so that Alice can prepare long sequences of qubits in the

same basis without compromising the security. Surprisingly, Eve cannot exploit her

knowledge that the used basis is fixed for the entire sequence, regardless of its length

provided it is much shorter that the total key size. The constraint on the sequence

size is necessary because even though we assume Alice and Bob to exchange qubits

encoded by a single photon source (i.e. Eve cannot exploit photon number splitting

attacks), Eve could still make a naive attack where she randomly guesses the value of

the basis for each sequence. For example in the extreme case where the sequence is

the same size as the key, i.e. when the variance of the information gain is high, Eve

would, with probability 1
2
, completely guess the secret key. Conversely, when N = 1

(i.e. the standard BB84 or six-state protocol) the variance will be lower and implies

that the optimal eavesdropping strategy is achieved through cloning. In order to avoid

this security threat, Alice and Bob should choose N in such a way that the variance

of the information gain implies that the optimal strategy Eve should use remains the

single-qubit cloning strategies utilized in the original BB84 and six-state protocols.

We leave as an open question as to which bounds can be achieved. Nevertheless, even

with reasonably low values of the sequence size, such as N = 10, the saving of the

random bits is already significant (in this case, 45%). This result is quite important

for practical applications of quantum cryptography as it implies that higher secret-key

rates may be obtained using the same random number generator but with this new

modified protocol.





Chapter 6

Experimental quantum bit string

generation

6.1 Introduction

Let us now turn to another kind of cryptographic task which has recently gained much

attention in the field of quantum communication. In contrast to key distribution where

two parties wish to generate a secret key without having a third party intrude, there

exist another branch of cryptography which arise when mistrutful parties need to

generate, process or exchange information within a given degree of security. This is

an especially difficult task to fulfill when the two parties are seperated because of the

lack of confidence they have in the actions of their adversary. In this chapter, we solve

this problem by introducing the concept of quantum coin tossing or, more specifically,

quantum bit-string generation and describe an original experimental implementation

of the latter which is greatly inspired from the plug and play method.

Coin tossing was introduced by Manuel Blum in 1981 [Blu81]. The aim is for two

parties who do not trust each other to generate a common random bit. Coin tossing is

an important primitive with many applications in more complicated tasks. In partic-

ular, it is important in the design of other two-party protocols such as mental poker

(i.e. performing a set of cryptographic problems over distance without the need for a

trusted third party) and remote user authentication. Classically, coin tossing is impos-

sible without computational assumptions: at least one of the parties can in principle

always cheat and fix the outcome. Nevertheless, using quantum communication, non-

trivial coin tossing is possible [SR02a, SR02b, Amb02]. In many applications however,

the parties do not want to generate a single coin, but many. This is called bit-string

83
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generation [Ken03, BM04a, BM04b]. Here we introduce a bit-string generation proto-

col and report on an experimental implementation based on the plug and play scheme.

Using the theoretical analysis of [BM04b] we are able to show that the bit strings

generated in our experiment achieve a high level of randomness. This demonstrates

a fundamental new concept: namely the possibility of generating a string of random

coins with an adversary who is limited only by the laws of physics.

Because losses is the principal type of noise in long distance quantum communica-

tion, it seems to preclude tossing of a single coin with a high level of randomness.

That is, a malicious party can always bias the outcome of a single coin toss with the

help of simple cheating strategies. For this reason this work focuses on bit string gen-

eration rather than the tossing of a single coin. This difficulty is illustrated by another

experiment [?] which was simultaneously realized with our implementation for which

incomplete and hand waving arguments were provided with regards to the generated

randomness. This implementation used very different experimental techniques based

on entanglement swapping.

6.2 The protocol

We begin by reviewing security conditions for the generation of n random bits. The

outcome of the protocol is either a string of bits ~x ∈ {0, 1}n or one of the parties

aborts, in which case we write ~x =⊥. The protocol is correct if when both parties are

honest, the probability of aborting is small and all the coins are fair. Mathematically

we express this as

∀~c ∈ {0, 1}n P(~x = ~c) = (1− δn)/2
n,

P(~x =⊥) = δn. (6.1)

It is necessary to include the parameter δn because of experimental imperfections

which induce a non-zero probability of the protocol aborting even if both parties are

honest. In the protocol we use, δn decreases to zero exponentially fast with n and can

be neglected.

We shall use two security conditions. The first, called the ”average bias”, describes

the degree of randomness of individual bits of the string. Formally we define the upper

bound εA(B) on the average bias when Alice (Bob) is dishonest and the other party is
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honest as:

∀SA∀~c ∈ {0, 1}n 1

n

n∑
i=1

PSAHB(xi = ci) ≤ 1

2
+ εA,

∀SB∀~c ∈ {0, 1}n 1

n

n∑
i=1

PHASB(xi = ci) ≤ 1

2
+ εB, (6.2)

where we denote a general strategy of Alice (Bob) by SA (SB), and the honest strategy

defined by the protocol as HA (HB). The average bias is a simple measure of security

but it is not very satisfactory. Consider, for example, the case in which Alice can cheat

so that Bob’s output is either the string composed of all zeros or the string composed

of all ones, with equal probabilities: P(~c = 0n) = P(~c = 1n) = 1/2. The average bias

εA(B) is zero, although the security is clearly very bad.

For this reason we introduce another security condition based on the Shannon en-

tropy of the string which measures the degree of randomness of the string taken as a

whole. We define HA(B) as the entropy1 of the string if Alice (Bob) is dishonest and

the other party is honest. We define

HA = H
(
PSA,HB(~c)

)
, (6.3)

HB = H
(
PHA,SB(~c)

)
, (6.4)

where H is the usual Shannon entropy of a probability distribution as defined in

chapter 2. Now we say that a bit-string generation protocol is arbitrarily secure if

(n − HA)/n → 0 and (n − HB)/n → 0 as n → ∞. Roughly speaking, this means

that a cheater may be able to fix the values of some of the coins, but that the frac-

tion of coins thus affected must become small as n increases. It is partially secure if

HA, HB > 0. We refer to [BM04b] for a more detailed discussion of security conditions

where it is shown that our quantum protocol is relatively secure in the absence of noise

and partially secure in the presence of noise, with security depending quantitatively

on the amount of noise.

The protocol we shall use, inspired by that of [BM04a, BM04b] is as follows. Choose

a security parameter 0 < κ < 1.

1. For i = 1 to n.

1The symbols HA and HB defined here are identical to those used to denote Alice’s and Bob’s
honest strategies. However, it will always be clear which is meant.
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2. Alice chooses a random bit ai. If ai = 0, she prepares a coherent state of the

electromagnetic field with amplitude α: ψ0 = |α〉. If ai = 1, she prepares a

coherent state with amplitude −α: ψ1 = |−α〉. She sends the coherent state ψai

to Bob. After receiving the quantum state from Alice, Bob chooses a random

bit bi. Bob tells Alice the value of bi.

3. After learning the value of bi, Alice reveals the value of ai to Bob.

4. Bob now verifies whether the state Alice sent him is indeed the coherent state

|(−1)aiα〉. He does this by using a Local Oscillator (LO) to carry out the dis-

placement D(−(−1)aiα). If Alice was honest, the displaced state should be the

vacuum state |vac〉. Bob checks that this is the case by sending the state onto

a single photon detector. If the detector clicks, Bob sets ki = 1. If the detector

does not click, Bob sets ki = 0.

5. Next i.

6. If 1
n

∑
i ki > κ, Bob aborts. Otherwise the output of the protocol is the bit string

xi = (ai + bi) mod 2.

6.2.1 Bob’s cheating strategy

When Bob is dishonest his best strategy is to measure the state sent to him by Alice

as soon as he receives it (i.e., before carrying out step 3 above). One easily shows, see

[BM04b], that

εB ≤ sin θ

2
, where cos θ = |〈ψ0|ψ1〉| = e−2|α|2 . (6.5)

In other words, the bigger the overlap between the two states, the higher the probability

that Bob can bias the outcome due to his improved ability to discriminate between

the two states.

6.2.2 Alice’s cheating strategy

If Alice is dishonest she may not send Bob the state ψai
but an arbitrary state ρ. In

general she may prepare an entangled state, keeping half of it and sending the other

half to Bob. Furthermore, she may correlate and even entangle her strategy over dif-

ferent runs. In [BM04b], however, it is shown that strategies correlated over different

runs cannot help Alice for large n. A bound on εA is proven that depends on the av-

erage value of the fidelity fi = 〈ψai
|ρ|ψai

〉, as estimated by Bob. Since the probability
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Figure 6.1: Optical setup. LD: Laser Diode, Ci (i=1,2,3): Coupler, Att: Attenuator,

Φ: phase modulator, FM: Faraday Mirror, Dcl: classical detector.

that Bob’s detector clicks (assuming his detector is perfect) is related to the fidelity

by P (ki = 1) ≥ 1 − fi, the result of [BM04b] then implies that, assuming large n,

the bias if Alice is dishonest is bounded by εA ≤ F(κ), where F(x) =
√
x√

2 sin2 θ
+ x

sin2 θ
.

Below we show how this relation must be modified to take into account imperfections

in Bob’s measuring apparatus.

Note that due to such imperfections, Bob’s detector may click even if Alice is honest.

Alice and Bob should choose κ such that it is larger than the expected number of clicks

if both parties are honest. When this is the case, the probability δn that the protocol

aborts if both parties are honest decreases exponentially fast to zero and the protocol

is correct.

6.3 Experimental implementation

Our experimental setup, depicted in Fig. 9.1, is based on the plug and play method

introduced in the previous chapters. However the plug and play method has a number

of specific features which must be carefully taken into account in order that neither

Alice nor Bob have the possibility to completely bias the outcome. Each round of

the protocol begins with Bob producing a short (20ns) intense (25mW) laser pulse at

λ = 1.55µm. The pulse is split in two by the 50/50 coupler C1. The two pulses acquire

a relative time delay of 100ns and then impinge with orthogonal polarization on a PBS

whereupon they are sent to Alice. Between C1 and the PBS, along the long path, are

an attenuator, a 99/1 coupler C2 and a phase modulator. The role of these elements

will be explained later. The relative attenuation of the two pulses is A ' 45dB. The

first pulse to reach Alice is intense and contains N0 ' 109 photons. This pulse will

play the role of LO. The second pulse to reach Alice is attenuated and contains AN0
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photons. The second pulse will play the role of signal.

Upon receiving the pulses, Alice measures the intensity of the signal pulse (using

the 80/20 coupler C3 and a classical detector Dcl) and attenuates both pulses. The

two pulses are reflected by the Faraday mirror and travel back to Bob. The total

attenuation at Alice’s site is A′ ' 50dB. Thus the two pulses now contain A′N0 and

AA′N0 photons respectively. In particular the signal pulse now contains only a few

photons (AA′N0 = |α|2 = O(1)). Alice also adds a phase φA = aiπ to the signal pulse,

thereby encoding the value of her bit ai.

6.3.1 Bob’s cheating strategy revisited

The fact that Bob provides Alice with the signal state seems to provide him with some

simple cheating strategies. For instance he could provide Alice with a signal state that

is squeezed in phase in order to decrease the overlap between |ψ0〉 and |ψ1〉. This

apparently allows him to discriminate much better |ψ0〉 from |ψ1〉 and hence the value

of ai. The role of the attenuation is to prevent this kind of cheating. Indeed under

strong attenuation any quantum state tends towards a mixture of coherent states. For

a proof, please refer to the original article [LBA+05].

Another simple cheating strategy is for Bob to increase the intensity of the signal

state since it is then much easier for him to estimate the phase φA. The role of the

classical intensity measurement is to ensure that the signal state Alice sends back is

not too intense. In fact it is impossible for Bob to exploit the fact that he provides

Alice with the light pulse which will become the signal state, since by measuring the

intensity of the pulse Bob sends her and then attenuating it, Alice ensures that she

sends back to Bob a coherent state of known intensity.

Note that the classical intensity measurement of Alice will be affected by noise be-

cause AN0 is close to the sensitivity limit of Alice’s detector. We circumvent this

technical problem by letting Alice carry out statistical tests on the n intensity mea-

surements (one for each round of the protocol). More precisely she checks whether the

distribution of measured intensities is consistent with the Gaussian distribution she

expects from instrumental noise. If it is she has a precise estimate of |α|2, and hence

of PSBHA(~c) through eq. (6.5). If it is not she aborts.
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Figure 6.2: Optical setup equivalent to Bob’s measurement, including its imperfec-

tions.

6.3.2 Alice’s cheating strategy revisited

Upon receiving the two pulses from Alice, Bob uses coupler C2 to measure the inten-

sity of the LO, attenuates it by A, and adds a phase eiφB , with φB = aiπ. Note that

by measuring the intensity of the LO state provided by Alice and then attenuating it,

Bob ensures that the LO he uses is a coherent state (or a mixture of coherent states)

of known intensity |β|2. (The argument is exactly the same as that given above in the

case of Alice).

Let us consider the two states that interfere at coupler C1. On the one hand there

is the LO which as we have just argued is a coherent state of known intensity |β|2.
On the other hand there is the signal state. The signal state travels through the PBS

where it gets attenuated by A0. It then interferes with the LO at coupler C1. This cou-

pler has transmission and reflection coefficients |t|2 and |r|2 (both are approximately

50%). Finally one of the outputs of the coupler is sent to a single photon detector

(id Quantique) with efficiency η. In our experiment A0T = 4.3dB and η = 10.5%.

We can therefore model the whole of Bob’s detection system by the scheme depicted

in Fig. 9.2. It is composed of the LO (a coherent state of amplitude β), the signal

state Ψ, the attenuator A0, a beam splitter with transmission and reflection coeffi-

cients T and R. The imperfect detector is modeled by an attenuation of η followed

by a perfect detector. Let us denote by α the amplitude of the coherent state that

would give rise to destructive interference at the single photon detector. It satisfies

α
√
A0T + iβ

√
R = 0. When ai = 0, the state Alice should send if she is honest is the

coherent state |α〉. (If ai = 1 she should send the state |−α〉. By using the phase mod-

ulator Bob can cancel this phase). But if Alice is dishonest she will send another state

|Ψ〉. We expand |Ψ〉 in the basis of displaced Fock states |Ψ〉 = Da(α)
∑

n cn|n〉 where
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Da(α) is the displacement operator acting on mode a, i.e. Da(α)aDa(α)† = a − α,

and |n〉 = (a†)n/
√
n!|vac〉 are the Fock states. The fidelity of the state sent by Alice

is thus f = |〈α|Ψ〉|2 = |c0|2.

We model the effect of the attenuation by the transformation a→ √
A0a

′+
√

1− A0e1
where e1 is a mode of the environment; the effect of the BS by the transformations

a′ → √
Td′ − i

√
Rc, b → √

Tc − i
√
Rd′; and the effect of the detector inefficiency

by d′ → √
ηd +

√
1− ηe2 where e2 is another mode of the environment (the modes

a, a′, b, c, d′, d are all described in the figure). One then finds that the state just before

entering the single photon detector is

Dc(γ)
∑
n

cn√
n!

[
√
A0Tηd

† + i
√
A0Rc

† +
√

1− A0e
†
1 +

√
(1− η)TA0e

†
2]
n|vac〉

where γ = β
√
T + iα

√
A0R. From this one easily computes that the probability that

the detector does not register a single click is

P (no click) =
∞∑
n=0

|cn|2(1− A0Tη)
n. (6.6)

The probability of registering a click is thus bounded by P (click) ≥ (1 − |c0|2)A0Tη.

Thus the number of clicks on Bob’s detector divided by A0Tη gives a bound on the

fidelity |c0|2.

A final inefficiency that must be taken into account is that Bob’s detector will have

a non-zero dark count rate κdark = 9× 10−4. Putting all this together we deduce the

bound on the average bias if Alice is dishonest:

εA ≤ F(
κ− κdark
A0Tη

) (6.7)

Note that this bound on εA is given entirely by parameters which can be measured

by Bob. Using this protocol, and taking into account experimental imperfections as

described below, a typical run of our experiment generates 107 coins. Some results for

different values of |α|2 are presented in Fig. 9.3.

6.4 Conclusion

The main goal of this work was to provide a bit-string generation protocol where

an adversary is limited only by the laws of physics. Furthermore, it was originally
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Figure 6.3: Measured bounds on average bias and on entropy of bit strings for different

values of the average photon number α2. Open squares: bounds on εB obtained using

eq. (6.5); open circles: bounds on εA obtained using eq. (6.7): filled squares: bounds

on εA + εB. The same expressions which give bounds on εA, εB also give lower bounds

on the entropiesHA(B) of the bit string if Alice (Bob) is dishonest (see [BM04b]). Filled

triangles: bounds on the entropy per bit (HA + HB)/n. The error bars for εA + εB
and (HA + HB)/n describe systematic errors arising from incorrect callibration of

detector efficiency η and incorrect estimation of α2. The plotted curves are theoretical

predictions based on the observed optical visibility of 96.5%. For εB the curve is given

by eq. (6.5) and for εA it is given by eq. (6.7) using the fact that for small α2,

(κ− κdark)/A0Tη ' (1− V )α2/2.
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our intention to show that the bit-strings generated in our experiment achieve a level

of randomness impossible classicaly. However, after our work was published, it was

realized that classical protocols exist which produce strings with high randomness.

The question of whether our experiment produced strings more random than what

is achievable classicaly is still an open one. Using another security criteria however

might answer this question affirmatively.

The two security criteria used to describe how random the strings our in our experiment

were the average bias and the entropy. For both these criteria classical protocols can

also produce strings with high randomness. Unpublished work by Barrett and Massar

introduces a new security criteria, the ”min-entropy” condition H∞
A(B) which measures

the maximal probability of occurrence of a specific string. They show that if a cheater

wants to keep the probability of being caught small, then the min-entropy must be

larger than the classical bound. It is conjectured that in the presence of noise, this cri-

teria is still valid such that our experiment produces coins more random than possible

classicaly. Figure (6.4) plots our experimental data for the ”min-entropy” condition.

The classical bound is shown to be 1 and is clearly exceeded by our quantum protocol.

An important property of our protocol and of its experimental implementation is

that we do not have to make any hypothesis about the Hilbert space Alice or Bob use

if they are dishonest - for instance it is not necessary to restrict them to the single

photon subspace -, nor do we have to make any hypothesis about the kind of technol-

ogy they can use if they are dishonest. Thus the randomness of the bit string when

one of the parties is dishonest is guaranteed by the laws of physics.

Let us now move on to report the last experiment described in this dissertation. The

protocol we implement is that of short-distance identification. As we shall see, the

experimental implementation will exploit another photon degree of freedom in order

to encode quantum information and therefore exit the realm of plug and play.
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α

Figure 6.4: Conjectured values of the min-entropy, if a cheater want to keep the

probability that she/he is caught small, for our experimental data. The graph plots

the value of the min entropy H∞
A if Alice keeps the probability that she is caught small

and uses the same cheating strategy at each round (The values of the min-entropy H∞
B

if Bob is dishonest do not depend on any hypothesis). The sum H∞
A +H∞

B is clearly

above the value of 1, which is the maximum attainable for classical strategies.





Chapter 7

Beyond the plug and play paradigm:

quantum identification

7.1 Introduction

The previous chapters have described how it is possible to implement quantum cryp-

tographic protocols using the plug and play technique. However, this technique limits

the quantum tasks that can be performed because it does not allow the preparation

of a universal set of states. As we have seen, this is due to the fixed transimittivity of

the beam-splitter. In this chapter, we will be interested in the cryptographic task of

short distance identification and propose a solution that requires the preparation of a

set of states larger than what is achievable with plug and play. We emphasize at this

point that the work contained in this chapter is still in progress and not yet published

at the time of writting.

The security of QKD relies on the physical principle that it is impossible to perfe-

cly clone an arbitrary quantum state. This is a direct consequence of the unitarity of

the quantum evolution operator. This unitarity also prevents other quantum mechan-

ical tasks from being perfectly carried out. One such example is the so-called universal

inverser or UNOT gate. The UNOT gate (if it indeed existed) would take some ar-

bitrary quantum state and transform it to an orthogonal state. In two-dimensional

Hilbert space, this would take qubit |ψ〉 = α0|0〉 + α1|1〉 and send it to its antipode

|ψ〉⊥ = α∗0|0〉 − α∗1|1〉 where 〈ψ⊥|ψ〉 = 0. The UNOT gate is an anti-unitary opera-

tion which by definition is not completely positive and therefore cannot exist in Na-

ture [BP99]. Anti-unitary operations can be expressed by the so-called time-reversal

map T = iσYK times any unitary operation where K is the conjugation operation,

95
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K|ψ〉 = |ψ∗〉. For qubits the time-reversal map is equivalent to the UNOT gate.

Since quantum mechanics does not allow antiunitary operations and therefore the

UNOT gate, one can ask the following question: ”What is the largest set of quantum

states which can be perfectly flipped by using the laws of quantum mechanics?” For

two-dimensional Hilbert space, this subset happens to be a great circle on the Bloch

sphere. More precisely, for any unitary operator described by a 90◦ rotation around a

given axis Q = −→n · −→σ on the Bloch sphere:

UR = ei
π
2
(−→n ·−→σ )

it is possible to define a set of states who will be mapped to their antipode upon

applying this operator. This set of states lies on the great circle orthogonal to Q. The

Pauli matrices are well known examples of such operators.

Interestingly so far, no quantum cryptographic task has emerged which relies on the

impossibility to perform a time reversal map. Although, in comparaison to standard

quantum cryptography based on the no-cloning principle, we expect a malicious party

intending to bypass a protocol based on the impossibility to perform a UNOT gate

would have much more difficulty. This is because the optimal fidelity of the trans-

formation which best approximates the UNOT gate is much lower than the fidelity

achieved by the optimal cloning transformation. Thus, a direct consequence of this

lower fidelity is that it can be exploited to design protocols with a higher noise toler-

ance.

In this chapter we report on a proof of principle experimental demonstration of a novel

quantum cryptographic protocol that exploits this impossibility. The cryptographic

task to be fulfilled is the task of short distance identification where a claimant, Al-

ice, must prove her identity to a verifier, CPU by demonstrating knowledge of a secret

known to be shared between the two parties. This is done by providing a response

to a time-variant challenge, where the response depends on both the secret and the

challenge. In today’s modern society, short distance identification has become a daily

task which people are confronted to, thereby making it as important as QKD or coin-

tossing. Whether it’s to withdraw money from a cash machine, cross into a secure

area or log onto a computer, identification is omnipresent in our everyday life.
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7.2 Preliminaries

The theory behind approximating unphysical transformations has been extensively

studied, in particular in the case of the UNOT [?, BHW99]. The best achievable

transformation allowed by quantum mechanics for an arbitrary qubit was shown to

yield a fidelity of 2
3

[BP99]. This means that when measured in the {|ψ〉 , |ψ⊥〉} basis

one should expect to see |ψ⊥〉 two times out of three. A well known example of a trans-

formation which reaches this upper bound is given by the universal cloning machine

which produces, in addition to the clones, an anti-clone (which can be interpreted as

the final state of the cloning machine itself) having this fidelity. From a physical point

of view, this corresponds intuitively to assuming a ”conservation law” in the cloning

process, where the ancilla undergoes a time-reversed transformation in order to bal-

ance the corresponding transformation of the clones.

In what follows, we illustrate a quantum cryptographic protocol which exploits the

impossibility of time reversal. More specifically, in this protocol, the two parties ex-

change a set of six quantum states spanning a two-dimensional Hilbert space. These

six states form three maximally unbiased bases and can be seen as eigenstates of the

three Pauli operators σZ , σX and σY ,:

|0〉 |+〉 = 1√
2
[|0〉+ |1〉] |+i〉 = 1√

2
[|0〉+ i|1〉]

|1〉 |−〉 = 1√
2
[|0〉 − |1〉] |−i〉 = 1√

2
[|0〉 − i|1〉]

respectively. The six states are extremal (or cardinal) points on the surface of the

Bloch sphere. Indeed, they have conveniently been chosen in such a way that two

out of three of the Pauli matrices invert a given state while the third matrix leaves

it unchanged. In other words each Pauli operator flips perfectly 4 out of the 6 states

while leaving the remaining two states unchanged. The optimal fidelity that can be

achieved when considering these six states is the same as when considering all states in

two-dimensional Hilbert space, that is1 F = 2
3
. A simple method to achieve this upper

bound is in fact a classical one: by randomly choosing one of the three Pauli operators,

we are sure to map any of the six states with probability 2/3, hence achieving

|ψ〉 U−→ 1

3

[|1+ |ψ⊥〉〈ψ⊥|]. (7.1)

Another method achieving the same fidelity consists in cloning the state. Indeed, by

duplicating the state (say with the optimal pauli cloning machine) the output of the

1This is analoguous to optimal universal quantum cloning; the optimal fidelity when considering
only the six cardinal states is the same as when considering the whole Bloch sphere [CDPC05].
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transformation yields the following entangled state:

|Ψ〉 =
1√
3

[|ψ〉A|ψ−〉BC + |ψ〉B|ψ−〉AC
]

(7.2)

where A,B and C refer to the two clones and the ancilla, respectively and |ψ−〉 =
1√
2
[|01〉 − |10〉] is the anti-symmetric Bell state. The ancillary system can be seen as

an ”anti-clone” described exactly by Eq. (7.1). This transformation not only yields

the optimal fidelity for universal cloning but as well for the approximate universal

inverser. We now go on to describe our identification protocol.

7.3 Identification protocol

Our simple identification protocol is described in the following way: Alice and the

CPU share a secret string of ”trits” −→s (call it a password) represented by one of the

three great circles crossing the six states (assumed to be publicly known):

{|0〉, |1〉, |+〉, |−〉} = ”0”

{|0〉, |1〉, |+i〉, |−i〉} = ”1”

{|+〉, |−〉, |+i〉, |−i〉} = ”2”

(7.3)

Each trit is associated to one of the Pauli operators which correctly flips its four states.

The idea is that for every trit of the string, the CPU sends one of its 4 states to Alice.

Her non-trivial task is to flip the state and send it back to the CPU who can then

verify that the operation has been performed successfully. Note that this task can only

be perfectly achieved if Alice knows the value of each trit, i.e. which Pauli operator

she should use for every state sent to her. Also note that the CPU answers ”YES”

or ”NO” only after the exchange of qubits has been completed thus indicating Alice

whether the CPU acknowledges or denies her claim of identity. Because we only take

into account short-distance identification, we do not consider man in the middle type

of attacks where a malicious adversary could eavesdrop in between the two parties to

try and gain information on the password. That is, we suppose that the adversary, call

him Percy, has only the capacity to perform personification type of attacks where he

tries to convince the CPU that he is Alice.

One can easily conclude that the above protocol is indeed a valid one because in

the absence of the correct password Percy has a non-zero probability of introducing

errors as he flips the incoming states. This is a consequence of the absence of a UNOT

transformation. Thus for a given threshold acknowledged by both Alice and the CPU,
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the latter can abort if the BER exceeds this limit2. However, in order to gain more

insight on the performance of our protocol, we must compare it to a classical analog.

We choose to compare our protocol to a very well known classical analog, namely

the password. In this classical counterpart a claimant is challenged in entering a series

of classical trits3: a password which she/he suposedly shares with the CPU. Demon-

strating knowledge of this password convinces the CPU on the identity of the claimant.

For a password consisting in N successive trits, there exists 3N different possibilities.

Therefore a malicious claimant who aims in personifying someonelse (e.g. Alice) has

probability

P (YES|NO⊗M) =
1

3N −M
(7.4)

of being answered ”YES” by the CPU afterM consecutive ”NO”s and take a maximum

of 3N successive tries in order to convince the CPU. Once she is in possession of the

password Percy can log in and out of the CPU as long as neither Alice nor the CPU

have knowledge of her intervention. In our quantum analog, Alice and the CPU share

an N trit string −→s . Each trit is represented by four states as defined above. For each

trit in the string the CPU will send a state belonging to the corresonping great circle.

The challenge in order to identify herself is for Alice to flip the state and send it back

to the CPU. Formally, for each trit Alice needs to perform the following operation:

σi|ψ〉 = |ψ⊥〉 (7.5)

where i corresponds to the Pauli matrix which correctly flips any of the four corre-

sponding states.

We have performed a series of preliminary calculations (which are not exposed here)

aimed at characterizing the performance of our protocol and compare them to the

classical analog. Our results are unfortunately not very interesting because the proba-

bility of entering the CPU, for both protocols, scales exponentially, even giving a slight

edge to the classical analog. The probability to succeed after M tries is given by

P (YES|NO⊗M) =
2N

3N −M
(7.6)

2Even though the password is encoded in terms of a ternary alphabet, the CPU concludes the
protocol by measuring binary obervables indicating whether Alice has correctly flipped the states.
This is the reason why the threshold is expressed in terms on bit error rate rather than trit error
rate.

3we choose a terneray alphabet for an easier comparaison to the quantum protocol.
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for the quantum protocol (for large N). Nevertheless, we can show that the probability

of re-entering the CPU after a successful try is unity for the classical protocol and is

exponentially low in the string length for the quantum protocol.

To reach these conclusions, we have studied two personification scenarios. The first,

which we call random basis attack consists in Percy randomly choosing a Pauli op-

erator and applying it to the incoming state and repeats for all N states. One can

see that this strategy is in fact similar to the classical one. Percy’s second strategy

is slightly more complicated. It involves performing a cloning transformation to each

incoming state as described in the previous section. For each cloning operation, Percy

will keep the clones A and B and send the anti-clone (the ancilla) C back to the

CPU. Both of the above strategies yield the same probability of success because all N

states sent back to the CPU have a probability 2
3

of being correctly flipped. However,

the information that Percy can gain following the CPU’s answer differs for the two

strategies. For example, in the cloning attack, Percy can measure his clones once the

CPU has given an answer. For large N however, Percy should choose the random

basis attack. The reason being that cloning provides (asymptotically) no information

on the value of the given candidate string that Percy has tested in contrast to the

random basis attack which provides some (but not all) information. Finally, note that

if Percy uses the random basis attack, he has a non-zero probability of entering the

CPU even if he applies the wrong sequence of operations (although quite improbable

for large N). However, contrary to the classical protocol, the probability that Percy

personifies Alice following a successive entry is small.

7.4 Experimental quantum identification

Because our protocol relies on six MU qubits, it cannot be implemented with the plug

and play technique. We have nevertheless chosen to encode our quantum information

in infrared photons therefore exploiting the technological baggage available. However,

instead of encoding information in time bins we encode information in the polarization

(π) of a single photon expressed in the horizontal and vertical basis, {|H〉, |V 〉} also

spaning two-dimensional Hilbert space. We associate the three Pauli matrices to the
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three MU bases formed from the {|H〉, |V 〉} basis:

σZ ↔ {|H〉, |V 〉}
σX ↔ { 1√

2
[|H〉 ± |V 〉]}

σY ↔ { 1√
2
[|H〉 ± i|V 〉]}.

Our experimental identification setup works with attenuated coherent states traveling

in localized time bins partly in optical fibers and partly on a table-top; see Fig. 7.1.

The CPU uses a laser diode at 1,55 µm to produce a 10 ns light pulse. The pulse is

attenuated by an optical attenuator (Agilent 8156A) and then impinges on a 50/50

polarizing beam-splitter (PBS). The π of the pulse is rotated, using π controllers such

that it exits port H (horizontal π port) rather than the orthogonal V port of the PBS.

Immediately afterwards, the pulse exits the optical fiber and is focused on a quarter

waveplate and a half waveplate which are used by the CPU in order to prepare one of

the 6 possible states which will be sent down to Alice. The pulse then travels down

a 2 ns line towards Alice. At Alice’s site, the pulse crosses a quarter-wave plate, is

reflected by a mirror, crosses again the wave plate and is sent back to the CPU. The

pulse is then reinjected in the optical fiber. Depending on whether Alice has per-

formed the correct operation or not, the pulse will either exit through the H port

(which consequently leads to a circulator and a single photon detector - id Quantique

id200) or the V port (which leads to a single photon detector - id Quantique id200).

The detector was gated during a 20 ns window around the arrival time of the pulse.

Its output was registered using a time-to-digital delay converter (ACAM-GP1) con-

nected to a computer. All electronic components were triggered by a pulse generator

(Standford Research Inc). Note that the requirement that a single photon be sent is

primordial because as the photon number increases a better estimation of the qubit

value is achieved thus leading to the realization of a higher fidelity flipping transfor-

mation [?, BHW99]. The fact that the CPU is limited to sending attenuated coherent

states should be taken into account in the tolerated BER.

Let us now prove that our setup indeed performs the quantum identification pro-

tocol described in the previous section. The first consideration we must take concerns

the spatial reference frame in which the photon π evolves. We therefore introduce the

spatial reference frame (x, y, z) where z is the direction of propagation of the photon

while x and y belong to the plane of the mirror orthogonal to z. (These coordinates

should not be confused with the capital characters associated to the Pauli matrices

defined above.) We will assume that the photon’s π state is identified according to
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Figure 7.1: Optical setup. The CPU prepares an attenuated coherent state with the

source and the attenuator ”A”. Afterwards, the photon is polarized in the |H〉 state

(selected by the PBS) and exits the optical fiber through the dejection. The CPU then

encodes the state with UCPU and sends it on to Alice who leaves the state unchanged

with the help of UA and the mirror ”M”. The photon then travels back to the CPU

where it is reinjected in the optical fiber and impinges on the PBS. The two outputs

are connected to detectors ”FLIP” and, via a circulator ”C”, ”NO FLIP”.

the right-handed coordinate convention. This implies that after reflection, the π state

will be identified on the basis of a new coordinate system (x′ = x, y′ = −y, z′ = −z)
obtained by rotating the original frame by 180◦ around the −→x axis.

The experiment we have performed is designed up to a unitary transformation; rather

than asking Alice to send back the flipped state |ψ⊥〉 the CPU can equivalently ask her

to return the state U |ψ⊥〉, where U is an arbitrary unitary operation, and measure the

returned state in the {U |ψ〉, U |ψ⊥〉} basis. The reason is the following. After reflect-

ing on the mirror, linear π states will remain unchanged whereas circular π states will

become orthogonal (in the new reference frame): |H〉 → |H〉, |V 〉 → |V 〉, |±〉 → |±〉,
|±i〉 → |∓i〉. Because we use waveplates in our experiment, it was impossible to flip

all states corresponding to trit ”0” because waveplates cannot flip states around the

Y axis (i.e. waveplates cannot perform the σY operation). For this reason, we redefine

the protocol up to the unitary operation U = σY . Therefore, the operation that Alice

will apply on the incoming states will be the following:

”0” → σY σY = 1

”1” → σY σX = σZ

”2” → σY σZ = σX .
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As we can see, the corresponding challenge is thus for Alice to return the state un-

changed.

To create the six states, the CPU begins by preparing state |H〉 with the PBS oriented

in the σZ basis. After exiting the optical fiber, the CPU completes the preparation by

turning the π state with the appropriate series of waveplates (UCPU):

|H〉 = 1|H〉 |D〉 = U(λX

4
) U(λZ

4
) |H〉 |R〉 = U(−λX

4
) |H〉

|V 〉 = U(λX

2
) |H〉 |A〉 = U(λX

4
) U(−λZ

4
) |H〉 |L〉 = U(λX

4
) |H〉

where

U(λX

2
) = σX , U(λX

4
) = 1√

2

(
1 i

i 1

)
and U(λZ

4
) = 1√

2

(
i 1

i −1

)
.

Having prepared the necessary state, the CPU sends it to Alice who’s task is to return

it unchanged. To do so, she uses a waveplate UA and a silver mirror. The action of the

mirror on the π state can be seen as a rotation around the Z axis and an additional

180◦ phase shift: iσZ .

After the CPU prepares the state (UCPU |H〉) it travels twice through Alice’s wave-

plate. Thus for a given state sent by the CPU, Alice must use a waveplate designed in

such a way that it will perform the correct operation after two passes through it. For

trit ”0” the correct operation in order to leave any of the four states representing this

trit unchanged is the identity 1, for trit ”1” the correct operation is σZ = U(λZ

4
) U(λZ

4
)

and for trit ”2” the correct operation is σX = U(λX

4
) U(λX

4
). Note that in the rotated

reference frame the UCPU and UA are changed into the transposition of their original

counterpart. Furtermore, note that U(λZ

4
) = U(λZ

4
)T and U(λX

4
) = U(λX

4
)T such that

passing twice through the waveplate indeed performs the desired operation. Upon

reaching the CPU’s site, the state travels again through the waveplate UCPU which

was used to prepare the initial state. As a consequence, one can easily verify that the

state

UT
CPU UT

A UA UCPU |H〉 (7.7)

left unchanged by Alice will end up in state |H〉 and be detected at the NO FLIP

detector. Conversely a state which has been flipped by Alice (or a malicious party)

will end up in the vertical state and be detected by the FLIP detector. Thus, the CPU

can discriminate between Alice performing the correct or the wrong operation.



104 7. Beyond the plug and play paradigm: quantum identification

Trit CPU BERA (%) BERE (%)

0 H,V,L,R 0.31 32.42

1 H,V,A,D 0.3 32.4

2 A,D,L,R 0.36 32.45

Table 7.1: Table 1: Experimental BER for Alice and Percy. Note

In order to characterize our setup, we have measured a series of visitibilities corre-

sponding to different states prepared by the CPU and different actions performed by

Alice. For each of the six states prepared by the CPU we have calculated the BER

associated with the two possible outcomes BERN (NO FLIP) and BERF (FLIP). Re-

call that the BER is related to the visibility V by BER = 1−V
2

. From these we have

extracted the expected BERs for all three trits in the case of an honest Alice and a

malicious Percy. More precisely, in the case of Alice, the expected BER for trit i is

given by

BERA(i) =
1

4

∑

|ψ〉∈i
BERN(|ψ〉) = 0 (7.8)

and

BERP(i) =
1

4

∑

|ψ〉∈i

1

3

[
2 BERN(|ψ〉) + (1− BERF(|ψ〉))] =

1

3
(7.9)

for Percy. Table 1 summarizes our results. As we can see the values are closely related

to the theoretical predictions. This is not surprising since the potential noise (i.e.

birefringence) which could affect the photon |π〉 is minimal the reason being that it

travels through air.

7.5 Conclusion

In this chapter we have implemented the optimal approximate flipping transforma-

tion for a set of three maximally unbiased bases in two-dimensional Hilbert space.

We have shown that approximate flipping can be exploited to perform secure short

distance identification and implemented an experimental demonstration with photon

polarization. We ran the experiment in the single photon regime where the quantum

state, when it left the CPU, contained less than 1 photon. As we have seen above,

the BERA in the case where Alice is the one identifying herself is theoretically zero.

Because of experimental imperfections, errors occured but the BERA remained below

0.5%. In the case of Percy, we expected a BERE of 1
3

and measured a value above

32%. As we can see, even in the presence of high levels of noise, the CPU can easily
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discriminate between an honest claim or a false one. Note that because nearly all

optical components are located in the CPU part of the circuit, losses can be solely

attributed to it. Fortunately, because the CPU can control this characteristic, it can-

not be exploited by a malicious party to gain information and cheat the CPU, and

therefore only contributes to a reduction in the identification rate.

Finally, let us mention that although our identification protocol does not have any

significant advantages over its classical counterpart it still shows for the first time that

other quantum impossibilities such as the UNOT can be used to accomplish quantum

cryptographic tasks. Hopefully this will open the door towards novel quantum proto-

cols that clearly outperform their classical analogs and take full advantage of the low

fidelity of the optimal approximate UNOT gate.





Chapter 8

Entanglement cloning

8.1 Introduction

We conclude this dissertation by discussing in further detail some interesting problems

in quantum cloning. We begin by studying the cloning of entanglement and finish with

the cloning of d-dimensional phase-covariant states. Although we present analytical

solutions for both problems (symetric and asymetric) we verify our results with a nu-

merical technique based on semidefinite programming.

Quantum entanglement is known to be a resource that is central to many quan-

tum information processes such as quantum teleportation, quantum cryptography,

or quantum computing [NC00]. In view of this, much work has been devoted to defin-

ing measures of entanglement or to investigating the best information-theoretical use

of entanglement. Despite the fact that entanglement is a very fragile resource, ex-

tremely sensitive to decoherence, several techniques have been developed in order to

overcome decoherence, namely quantum error correction or entanglement purification

(see [BDSW96]). Out of these many studies of entanglement, none has so far addressed

the issue of whether (and how well) entanglement can be cloned.

In this chapter, we raise the question of whether quantum entanglement itself can

be cloned or not. In order to simplify our analysis, we restrict ourselves to qubit pairs

(dimension 2×2). We show that the requirement of perfectly cloning the entanglement

carried by a qubit pair in an arbitrary (ME) state is incompatible with the requirement

that separable qubit pairs remain unentangled via cloning. Of course, if we restrict

ourselves to four orthogonal ME states such as the Bell states

|Φ±〉 = (|00〉 ± |11〉)/
√

2, |Ψ±〉 = (|01〉 ± |10〉)/
√

2, (8.1)

107
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then we can very well make a Bell measurement of the original pair and subsequently

prepare an arbitrary number of clones in the measured ME state. However, this proce-

dure does not work properly on the linear combinations of Bell states that are separable

states. Even if the clones are not required to be close to the original ME 2-qubit state

but solely to be entangled, it remains impossible to fully preserve entanglement.

Here we show that it is nevertheless possible to clone part of the original entangle-

ment, much in the same way quantum states can be cloned imperfectly. We define

the optimal entanglement cloner as a machine that preserves separability while, for

maximally-entangled input states, it produces two qubit pairs with the same and

highest amount of entanglement regardless of their actual state. We construct a QCM

that is universal over the set of ME 2-qubit states and argue that it effects an optimal

cloning of entanglement. For this purpose, we exploit the property that the set of

ME 2-qubit states is isomorphic to the set of real states in 4 dimensions [BDSW96],

from which we construct an optimal symmetric cloner that is covariant under local

unitaries. Finally, we consider asymmetric QCMs and investigate how entanglement

is distributed among the clones by these transformations.

8.2 Entanglement no-cloning principle

Entanglement cannot be cloned perfectly, that is, if a quantum operation can be found

that perfectly duplicates the entanglement of all ME states, then it necessarily does

not preserve separability (some separable states become entangled after cloning).

Proof: We restrict ourselves to 2 qubits and consider two orthogonal ME states, e.g.,

|Φ±〉. Assume that the entanglement of these states is perfectly cloned, i.e., the output

states of the clones remain ME even though they may differ from the input state. The

most general cloning transformation U preserving the entanglement of these two states

can be written as

|Φ±〉|A〉 U→ |e±a 〉|e±b 〉|A±〉 , (8.2)

where |A〉 denotes the initial state of the ancilla and the blank copy, while |A±〉 is

the ancilla state after cloning. Thus, the states of the two clones |e±a 〉 and |e±b 〉 are

some ME states. Now, the linear combination |Φ̃〉 = (|Φ+〉+ i|Φ−〉)/√2 = (eiπ/4|00〉+
e−iπ/4|11〉)/√2 is still a ME state. By linearity, the above transformation yields the

following output state

|Φ̃〉|A〉 U→ (|e+a 〉|e+
b 〉|A+〉+ i|e−a 〉|e−b 〉|A−〉)/

√
2 . (8.3)
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In order to preserve the full entanglement within each clone, a necessary condition is

that either |e+a 〉 = |e−a 〉 or |e+
b 〉 = |e−b 〉. However, in each of these two cases, at least

one of the clones is left in a ME state that is independent of the input state (within

the space spanned by |Φ±〉) regardless of it being separable or not. For example, in

the first case, if the input is the separable state obtained as the linear combination

|s〉 = (|Φ+〉+ |Φ−〉)/√2 = |00〉, then the transformation gives

|s〉|A〉 U→ |ea〉(|e+
b 〉|A+〉+ |e−b 〉|A−〉)/

√
2 . (8.4)

Clearly, the separability is not preserved here since the first clone is maximally entan-

gled. We therefore conclude that no perfect cloning of entanglement is possible. 2

As a consequence, only imperfect QCMs that approximately reproduce the entan-

glement while preserving separability can be implemented. In the rest of this chapter,

we will be interested in separability-preserving QCMs that yield clones with the high-

est achievable entanglement for all ME input states. As shown later on, finding these

QCMs is strongly related to finding transformations that clone optimally and equally

well the set of 2-qubit ME states.

8.3 Cloning formalism

Consider an arbitrary 2-qubit pure state

|Φ〉 =
3∑
i=0

ni|ei〉 (8.5)

written in the orthonormal basis made of the Bell states with particular phases (some-

times referred to as the magic basis [BDSW96]):

|e0〉 = |Φ+〉, |e1〉 = i|Φ−〉, |e2〉 = i|Ψ+〉, |e3〉 = |Ψ−〉, (8.6)

where the amplitudes ni are normalized as
∑3

i=0 |ni|2 = 1. In this basis, the entangle-

ment of formation E of the state |Φ〉 can be expressed in a very simple way as

E(C(Φ)) = H

(
1

2
+

1

2

√
1− C(Φ)2

)
, (8.7)

where H is the binary entropy function (as introduced in chapter 2) and

C(Φ) = |
∑
i

n2
i | (8.8)
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is called the concurrence [BDSW96, HW97]. Clearly, any real linear combination (up

to an irrelevant global phase) of the magic basis elements is a ME state since C (and

therefore E) is then equal to one. Furthermore, every ME state can be expressed as

a real linear combination of the magic basis elements. For this reason, the problem of

cloning the set of ME 2-qubit states boils down to constructing a transformation that

optimally clones all real 4-dimensional states in the magic basis.

This particular transformation we will use is based on the Pauli cloning introduced in

chapter 2: the qubit pair to be cloned is itself maximally entangled with a reference

qubit pair. The most general joint state describing the reference R, the output clones

A and B, and an ancilla C after the cloning transformation reads

|S〉R,A,B,C =
3∑

i,j,k,l=0

sijkl |l〉R|i〉A|j〉B|k〉C . (8.9)

(The reference, the two clones, and the ancilla are all 4-dimensional systems here.)

This state serves to completely define the cloning transformation: the result of cloning

the ME state |Φ〉 =
∑

i ni|ei〉 (with real ni’s) is obtained by projecting R onto the

complex conjugate |Φ∗〉 (which is equal to |Φ〉 here). Thus, the most general cloning

transformation is defined as

|Φ〉 →
3∑

i,j,k,l=0

sijkl nl |i〉A|j〉B|k〉C . (8.10)

At this point, we impose the additional condition that the QCM is covariant under

SU(2)×SU(2) in the computational basis (or, equivalently, under SO(4) in the magic

basis). This means that the QCM acts similarly in all bases connected by local unitaries

to the computational basis. This restriction is natural since it guarantees that all

states equivalent up to local unitaries (thereby having the same entanglement) result

in equally entangled clones. A sufficient condition for covariance is [NC03]

|S〉R,A,B,C = R⊗4 |S〉R,A,B,C , (8.11)

where R is any real rotation matrix in SO(4). This requirement implies that sijkl
is an invariant tensor of rank four, that is, sijkl = Rii′Rjj′Rkk′Rll′ si′j′k′l′ . A main

simplification here results from the fact that the generic form of such a tensor is

sijkl = a δilδjk + b δjlδik + c δklδij , (8.12)

with the normalization condition on (8.10) imposing that

4(|a|2 + |b|2 + |c|2) + 2 Re(ab∗ + ac∗ + bc∗) = 1 . (8.13)
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For a symmetric cloner, the permutation symmetry between the two clones imposes

furthermore that a = b, so that we are left with a transformation depending on two

parameters, a and c. If we use the cloning fidelity as a figure of merit, Eqs. (8.10) and

(8.12) result in

F = 〈Φ|ρA,B|Φ〉 = 7|a|2 + |c|2 + 4 Re(ac∗) , (8.14)

where ρA(B) denotes the reduced density matrix of clone A(B). This expression can

be maximized under the normalization constraint Eq. (8.13), giving

a =
1

3

(
1

2
+

1√
13

)1/2

, c =
A

2
(
√

13− 3) , (8.15)

with the corresponding fidelity

F =
5 +

√
13

12
' 0.7171 . (8.16)

Interestingly, this maximization procedure yields a fidelity that saturates the upper

bound derived from the no-signaling condition in [NC03]. We therefore conclude that

the optimal covariant cloner of ME 2-qubit states is characterized by Eq. (8.15) and

yields the fidelity (9.6). This is slightly higher than the fidelity of the universal 4-

dimensional cloner, namely F = 7/10 [Wer98, Cer98], as expected since the ME states

form a subset of the 2-qubit states.

We now generalize Eq. (8.14) to asymmetric cloning transformations (A 6= B). The

cloning fidelities become

Fa = 4|a|2 + |b|2 + |c|2 + 2 Re(ab∗ + ac∗ + bc∗) ,

Fb = 4|b|2 + |a|2 + |c|2 + 2 Re(ab∗ + ac∗ + bc∗) .

(8.17)

Assuming a, b, and c to be real, we eliminate a and c from Eqs. (8.13) and (8.17), to

get

FA(b, FB) = −3b2 +
FB + 1

2
+

√−3b2 + FB − b

2

×
√

18b2 + 18b
√
−3b2 + FB − 15FB + 6 . (8.18)
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Figure 8.1: Fidelity (dotted line) of clone A as a function of that of clone B for

the optimal 2-qubit entanglement cloner. The two fidelities coincide at FA = FB =

(5 +
√

13)/12. Entanglement of formation of clones A and B (solid line) and their

sum (dashed line) as a function of the fidelity of clone B. The two curves intersect at

EA = EB = 0.2847.

We then maximize FA over b as a function of FB. Figure 9.1 displays the resulting

FA as a function of FB. The mid-point value of this curve lies at FA = FB = F , as

expected. We also confirm that the fidelity of a clone is equal to one when the other

one is in a completely mixed state, i.e., when its fidelity equals 1/4.

8.4 Semidefinite programming

We have numerically confirmed the optimality of this class of asymmetric cloners with

the use of a technique based on semidefinite programming [Fiu01, Fiu03]. This tech-

nique enables one to obtain the maximal (mean) fidelity that can be attained by the

optimal CP-map which most closely approximates a given transformation between

pure states. Before applying this method to entanglement cloning, we briefly describe

its foundation.

Suppose we would like to implement a transformation between pure states |ψin〉 ∈ H
and |ψout〉 ∈ K

|ψin(~x)〉 → |ψout(~x)〉. (8.19)

Here ~x denotes a set of numbers parametrizing all pure states in Hilbert space of input

states H. Note that the dimensions of input and output Hilbert spaces may differ in



8.4. Semidefinite programming 113

general, dimH 6= dimK. It may happen that the desired transformation (8.19) cannot

be implemented exactly because (8.19) is not a linear CP-map (e.g. perfect cloning

of non-orthogonal states) and we thus want to find a CP-map which most closely ap-

proximates the transformation (8.19).

Let us begin by introducing a convenient representation of the CP-maps. We say

that map ρ→ E(ρ) is positive if it preserves the positivity of operators ρ. The map E
is completely positive if and only if the extension EH ⊗ IH′ is a positive map for any

Hilbert space H′, where I is an identity map. Any CP-map can be represented by a

positive operator [?]. Consider the maximally entangled state on H⊗2,

|ϕ〉 =
dimH∑
j=1

|j〉1|j〉2 (8.20)

and define the operator

χ = EH ⊗ IH(|ϕ〉〈ϕ|). (8.21)

Note that χ acts on a Hilbert space H ⊗ K. It is easy to show that the CP-map

ρout = E(ρin) can be written as

ρout = TrH[χρT
in ⊗ 1̂K], (8.22)

where T stands for the transposition and 1̂K denotes the identity operator on K.

The requirement that the CP-map E should preserve the trace imposes the following

constraint on χ,

TrK[χ] = 1̂H. (8.23)

We would like to quantify how well the CP-map χ approximates the desired transfor-

mation (8.19). To this end we define the mean fidelity as

F =

∫
d~x〈ψout(~x)|E (|ψin(~x)〉〈ψin(~x)|) |ψout(~x)〉, (8.24)

where d~x denotes the proper measure on space of pure states |ψin(~x)〉. With the help

of Eq. (8.22) we may rewrite the expression (8.24) as

F = Tr[χR], (8.25)

where the positive operator R acting on H⊗K is given by

R =

∫
d~x (|ψin(~x)〉〈ψin(~x)|)T ⊗ |ψout(~x)〉〈ψout(~x)|. (8.26)
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Our task is to find a trace-preserving CP-map χ which maximizes the fidelity (9.6). We

take into account the constraint (8.23) by introducing an operator Lagrange multiplier

Λ = λ̂⊗ 1̂K and we look for the maximum of the functional

F̃ [χ] = Tr[χR]− Tr[χΛ]. (8.27)

We expand χ in eigenstate basis

χ =
∑
j

rj|πj〉〈πj|, (8.28)

and rewrite the functional (8.27) as

F̃ [χ] =
∑
j

rj〈πj|R− Λ|πj〉.

A variation of F̃ [χ] with respect to 〈πj| yields the extremal equations,

(R− Λ)rj|πj〉 = 0. (8.29)

We multiply Eq. (8.29) by 〈πj| and sum over j. After some manipulations we obtain

χ = Λ−1Rχ. (8.30)

Further we take Hermitian conjugate of this formula, χ = χRΛ−1, and insert it back to

the right-hand side of Eq. (8.30). Thus we arrive at a symmetrized extremal equation

χ = Λ−1RχRΛ−1. (8.31)

The Lagrange multiplier Λ = λ̂ ⊗ 1̂K can be determined from the constraint (8.23)

which provides expression for λ̂,

λ̂ = (TrK[RχR])1/2 . (8.32)

We fix the square root by postulating that λ̂ is positive Hermitian operator. The

system of coupled nonlinear extremal equations (8.31) and (8.32) can be conveniently

solved by means of repeated iterations, starting from some initial ‘unbiased’ CP-map,

for example a map which transforms every input density matrix to the maximally

mixed state on K, ρin → 1̂K/dimK. Note that the iterations preserve the positivity of

χ and the constraint (8.23) is exactly satisfied at each iteration step.

From the formula (9.6) we can obtain an upper bound on the optimal fidelity F ,

F ≤ Tr[χ]Rmax = dimHRmax, (8.33)
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where Rmax is the largest eigenvalue of the operator R. If we find a CP-map which

reaches the upper bound on fidelity (8.33) then such transformation is, by definition,

optimal one. (8.18)

In our case, the cloning transformation is a linear trace-preserving CP-map that can be

represented by the positive semidefinite operator Ω on the tensor-product space of the

input and output states. The cloning fidelities can be expressed as FA(B) = Tr[ΩSA(B)],

where

SA(B) = TrB(A)

∫
d~x (|Φin(~x)〉〈Φin(~x)|)T ⊗ (|Φout(~x)〉〈Φout(~x)|) (8.34)

and

|Φout(~x)〉〈Φout(~x)| = |Φin(~x)〉A〈Φin(~x)| ⊗ |Φin(~x)〉B〈Φin(~x)|.

The optimal asymmetric cloner can be obtained by maximizing F = pFA + (1− p)FB,

where p ∈ [0, 1] is the asymmetry parameter. The resulting fidelities coincide with

those obtained from Eq. (8.18) up to the machine precision.

8.5 Discussion

Let us now investigate the entanglement properties of this cloning transformation

and show that it is also optimal with respect to our original goal, namely cloning the

amount of entanglement. Let us start by checking that it preserves separability. For the

ansatz (8.9), we have Ω = TrC(|S〉〈S|), and the CP-map that describes the relationship

between the input and the clone A (B) can be characterized by ΩA(B) = TrB(A)[Ω] ≥ 0.

Since the positive partial transpose (PPT) criterion is a necessary and sufficient sepa-

rability condition for a qubit pair, a sufficient condition for these two maps to preserve

separability is that ΩA and ΩB represent PPT operations [Rai01]. The map ΩA(B) is

PPT if Ω
T1,1′
A(B) ≥ 0, where T1,1′ denotes partial transposition with respect to the first

qubit of the original and the clone A(B). An explicit analytical calculation shows that

if sijkl is an invariant rank-4 tensor (8.12), then Ω
T1,1′
A(B) = ΩA(B) ≥ 0, hence a covariant

cloner necessarily preserves separability.

It is therefore natural to maximize the output entanglement for the other extreme

case, namely when the original qubit pair is maximally entangled. The amount of en-

tanglement left in the clones will be measured here by the entanglement of formation

E, which can be evaluated by using the extended definition of the concurrence C for

mixtures [HW97]. The entanglement of formation of an arbitrary 2-qubit state ρ is
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given by E(ρ) = E(C(ρ)), where C(ρ) = max(0, λ1 − λ2 − λ3 − λ4) and the λi’s are

the eigenvalues, in decreasing order, of the Hermitian matrix ρ̃ ≡ √√
ρρ∗

√
ρ. Here ρ∗

denotes the complex conjugate of ρ when expressed in the magic basis [HW97]. For a

generic covariant cloner, Eq. (8.12), the reduced density matrices of the clones of an

input ME state |ei〉 can always be written as

ρA,B = FA,B |ei〉〈ei|+ 1− FA,B
3

∑

j 6=i
|ej〉〈ej| , (8.35)

so the clones are left in a mixture of (generalized) Bell states. This is consistent with

the fact that ρA,B are real density matrices in the magic basis because the input state

is real [HW97]. Hence, ρ̃A,B = ρA,B so the concurrence of the clones simply reduces

to CA,B = max(0, 2FA,B − 1). Therefore, for a covariant cloner, maximizing E re-

duces to maximizing F . Consequently, the cloner characterized by Eq. (8.15) is the

entanglement cloner we were looking for, provided that covariance is taken for granted.

The corresponding entanglement of formation of the clones, EA and EB, is shown

in Fig. 9.1 for different values of FA. As expected, the entanglement of formation of

clone B vanishes for FB ≤ 1/2. Conversely, the entanglement of formation of clone A

vanishes when FB ≥ 0.8984 (that is, when FA ≤ 1/2). Note that the entanglement of

formation of a clone is equal to one only when its fidelity is one, thus confirming that

a fully asymmetric cloner (a trivial cloner which outputs the original and a random

clone) is the only solution if we want to fully conserve the original entanglement of 1

ebit. Finally, note that the sum of the entanglement of formation of the two clones

(also shown in Fig. 9.1) never exceeds one, meaning that the entanglement cloner does

not create more entanglement than that contained in the original ME state.

For the symmetric cloner, the entanglement of formation of both clones is equal to

EA = EB = 0.2847 bits. The optimality of this result has been verified using numer-

ical optimization where the structure of the cloning transformation was based on the

Pauli cloning formalism and the maximized quantity was the concurrence instead of

the fidelity. The optimization was carried out without imposing the covariance of the

cloning machine. Up to irrelevant local unitaries (which decrease F while keeping C
and E constant), we recovered the same cloning transformation. This strongly sug-

gests that restricting ourselves to covariant QCMs is justified, so the cloner of ME

states also optimally clones the amount of entanglement.

Finally, the properties of our entanglement cloner can be analyzed in the intermediate
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Figure 8.2: Entanglement of the clones versus the entanglement of the input state for

the symmetric cloner.

case of non-maximally entangled input states. In Figure 9.2, we plot the entanglement

of formation of the clones as a function of that of the original state α|00〉+√1− α2|11〉
(0 ≤ α ≤ 1) for the symmetric cloner. No entanglement is cloned below a critical value

Ein = 0.161 bits. Then, the output entanglement increases monotonically to reach its

maximum Eout = 0.2847 bits at Ein = 1 bit.

8.6 Conclusion

In conclusion, we have shown that the quantum entanglement of an unknown ME

qubit pair cannot be perfectly cloned if, at the same time, product states are required

to be cloned into unentangled qubit pairs. In other words, a separability-preserving

QCM cannot perfectly duplicate the entanglement of the set of ME states. Only

imperfect QCMs do exist. As a first step, we have constructed an optimal symmetric

entanglement cloner which is universal over the set of ME states, and whose fidelity

saturates the no-signaling upper bound [NC03]. This cloner yields imperfect clones

with 0.285 ebits if the original qubit pair contains 1 ebit, while unentangled pairs are

cloned into separable states. The distribution of entanglement among the clones has

also been investigated using an asymmetric cloner. Similarly to the situation that

prevails when cloning quantum states, this no-go theorem for entanglement cloning

might be exploited in order to imagine new quantum key distribution schemes. For

example, one could imagine a protocol where the eavesdropper is only able to apply a

local cloning on a ME state instead of the above global cloning. One can check that
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applying the optimal universal qubit cloner [HW97] locally on each qubit of a ME

state reduces the fidelity of the clones to 7/12. We obtain C = 1/6 leading to only

about 0.060 ebits per clone. Thus, the fact that independent local operations on each

qubit are less efficient than joint operations could be used to give an advantage to the

authorized parties.



Chapter 9

Asymmetric phase-covariant

d-dimensional cloning

9.1 Introduction

A typical feature of quantum cloning is that the optimal cloning transformation de-

pends on the considered set of input states. The greater the set, the lower the fidelity.

More precisely, if the set of input states is the orbit of a given state under the action

of a group of unitary transformations the smaller is the group, the higher is the fidelity.

In this chapter, we analyze quantum cloning machines that duplicate with an equal

fidelity all uniform d-dimensional superposition states with arbitrary phases. These

so-called phase-covariant cloners have been found initially for qubits (d = 2) [BBP+96,

CDG02] (and considered in chapter 5 in the context of the BB84 protocol) and qutrits

(d = 3) [dP01, CDG02, dM03], and we shall investigate their d-dimensional extension

here. We will use the Pauli cloning formalism introduced in chapter 2 which we general-

ize here. As we shall see, our approach will automatically lead to the optimal covariant

cloning under the Abelian group U(1)⊗(d−1) of phase rotations – the phase-covariant

d-dimensional cloning. Although we give no analytical proof that our transformation

is optimal, it has been shown very recently to be the case for symmetric cloners by

Fan et al. in [FIMW03]. In their paper, Fan et al. calculate the optimal 1 → 2 cloning

map for the set of d-dimensional input states eiφ0|0〉 + eiφ1|1〉 + ... + eiφd−1|d − 1〉 by

considering the most general cloning transformation where the only assumption made

is that the cloner is symmetric, i.e., one has identical cloning maps for both clones.

The drawback is that the calculation of the reduced density matrices of the clones and

maximization of the fidelity is somewhat tedious. The Pauli cloning method allows to

119
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recover the same result in a much simpler way, as well as extending it very naturally

to the asymmetric case. In the latter case, we have checked the optimality of our

construction by numerically computing (with the help of semidefinite programming)

the best asymmetric cloning transformation (for several asymmetry parameters), and

verifying that the results coincide up to the machine precision. We conclude this

chapter by comparing of the performance of the optimal d-dimensional phase covari-

ant cloner with the other known cloners in d dimensions, namely the universal cloner

[Wer98, Cer98, BH98], the cloner of real states [NC03], and the cloner of two mutually

unbiased bases [CBKG02].

9.2 Optimal phase-covariant cloning

We begin by briefly generalizing the Pauli cloning formalism. The state we consider

lies in d-dimensional Hilbert space and is expressed as |ψ〉 = 1√
d

∑d−1
k=0 e

iφk |k〉. The

output of the cloning machine is such that if the input state is |ψ〉, then the resulting

joint state of the two output clones (noted A and B) and the cloning machine (noted

C) is:

|ψ〉 →
d−1∑
m,n=0

am,nUm,n|ψ〉A|Bm,−n〉B,C

=
d−1∑
m,n=0

bm,nUm,n|ψ〉B|Bm,−n〉A,C (9.1)

where

Um,n =
d−1∑

k=0

e2iπ(kn/d)|k +m〉〈k| (9.2)

and

|Bm,n〉 =
1√
d

d−1∑

k=0

e2iπ(kn/d)|k〉|k +m〉 (9.3)

with 0 ≤ m,n ≤ d − 1. Here, Um,n is a generalized error operator that acts on a

d-dimensional system (in contrast to chapter 5 where we considered an error operator

as log2 d tensor products of the Pauli matrices each acting on a 2-dimensional system).

More precisely, the error operator Um,n acting on state |ψ〉 shifts the state by m units

(modulo d) in the computational basis, and multiplies it by a phase so as to shift its

Fourier transform by n units (modulo d). Equation (9.3) defines the d2 generalized

Bell states for a pair of d-dimensional systems. Tracing over systems B and C (or A

and C) yields the final state of clone A (or clone B): if the input state is |ψ〉, then the
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clones A and B are left in a mixture of the states |ψm,n〉 = Um,n|ψ〉 with respective

weights |am,n|2 and |bm,n|2:

ρA =
d−1∑
m,n=0

|am,n|2 |ψm,n〉〈ψm,n|

ρB =
d−1∑
m,n=0

|bm,n|2 |ψm,n〉〈ψm,n|. (9.4)

In addition, the weights of the two clones are related through the fact that the ampli-

tude functions am,n and bm,n are dual under a Fourier transform [Cer98, Cer00]:

bm,n =
1

d

d−1∑
x,y=0

e2iπ(nx−my)/dax,y. (9.5)

The fidelity of a clone, say A, is given by

FA = 〈ψ|ρA|ψ〉 =
d−1∑
m,n=0

|am,n|2|〈ψ|ψm,n〉|2 (9.6)

and similarly for the clone B (replace the |am,n|2 term by |bm,n|2). Inserting this state

|ψ〉 in Eq. (9.6) yields the expression for the fidelity FA with

〈ψ|ψm,n〉 =
1

d

d−1∑

k=0

ei(φk−φk+m) e2iπ(nk)/d. (9.7)

Note that if m = 0, then the identity
∑d−1

k=0 e
2iπ(nk)/d = d δn,0 implies that 〈ψ|ψm,n〉 =

δn,0, so that all the elements of the am,n matrix with m = 0 and n 6= 0 do not contribute

to the fidelity FA. We are interested in a cloning machine that yields the same fidelity

for all possible values of the φj’s. This imposes strong contraints on the amplitudes

am,n characterizing the cloner. A form which does satisfy these constraints is expressed

by the following amplitude matrix

am,n =




v y · · · y

x x · · · x

...
...

x x · · · x




(9.8)

where v, x, and y are arbitrary constants satisfying the normalization constraint

v2 + (d− 1)y2 + d(d− 1)x2 = 1. (9.9)
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Replacing these am,n values in Eq. (9.7) yields for the fidelity

FA = v2 + (d− 1)x2 (9.10)

which is indeed independent of y. Note that for a universal cloner (a cloning machine

which optimally clones all states in d-dimensional Hilbert space with the same fidelity),

one has x = y [Cer98, Cer00]. The main idea here is that we can have x > y, implying

that the cloning fidelity for the states (??) can be higher than that of the universal

cloner, at the expense of a lower fidelity for the states of the computational basis {|k〉}.

The second clone is characterized by a similar amplitude matrix

bm,n =




v′ y′ · · · y′

x′ x′ · · · x′

...
...

x′ x′ · · · x′



. (9.11)

where the different matrix elements are related to the am,n coefficients by Eq. (9.5):

v′ =
1

d
[v + (d− 1)y + d(d− 1)x] (9.12)

y′ =
1

d
[v + (d− 1)y − dx] (9.13)

x′ =
1

d
(v − y). (9.14)

Since we seek a symmetric cloner, the amplitude coefficients for the two clones must

be equal, that is

v = v′ =
V + (d− 1)X√

d
(9.15)

y = y′ =
V −X√

d
(9.16)

x = x′ =
X√
d
. (9.17)

where we have introduced two new parameters V and X (the third parameter has been

eliminated by the symmetry constraint). In addition, as a result of the normalization

condition

V 2 + 2(d− 1)X2 = 1, (9.18)
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only one free parameter remains. In this new parametrization, the expression of the

fidelity (for both clones) reduces to

F =
1 + (d− 1)(d− 2)X2 + 2(d− 1)V X

d
. (9.19)

We are interested in finding the values of V and X that maximize Eq. (9.19) under the

normalization constraint (9.18). A simple maximization by use of Lagrange multipliers

yields

Fopt =
1

d

[
1 +

d− 2 +
√

(d− 2)2 + 8(d− 1)

4

]
, (9.20)

which coincides with the fidelity of the optimal 1 → 2 phase-covariant QCM for any

dimension as found in [FIMW03]. The corresponding solutions of V and X are

V 2 =
d− 1

d

1

1 + (d− 2)Fopt
(9.21)

X2 =
1

2(d− 1)
− 1

2d

1

1 + (d− 2)Fopt
. (9.22)

In Figure 1, we plot the fidelity of the clones as a function of the dimension. Note

that the cloning fidelity Fopt tends to 1/2 + O(1/d) in the high-dimensional limit.

Indeed, in this limit, the cloner operates simply by moving the input state into one

of the clones, chosen at random, while preparing the other clone in the fully mixed

state. As the latter has a vanishing contribution to the fidelity in the high-dimensional

limit, we get a fidelity of 1
2
. In the special case where d = 2, we recover the optimal

phase-covariant qubit cloner of fidelity [BCdM00, CDG02]

Fd=2 =
1

2
(1 + 1/

√
2) ' 0.854 (9.23)

while, when d = 3, we recover the optimal two-phase-covariant qutrit cloner [dP01,

CDG02]

Fd=3 =
5 +

√
17

12
' 0.760 (9.24)

9.3 Asymmetric cloning

We now generalize Eq. (9.20) to asymmetric cloning transformations (FA 6= FB). The

cloning fidelity of the first clone can be expressed as a function of the fidelity of the

second clone (again using the same forms of the am,n and bm,n matrices) as

FA(FB, v, y) = v2 + ∆ (9.25)
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Figure 9.1: Fidelity of the clones versus the dimension for the symmetric phase-

covariant cloner. The continuous line is there for visual purposes only.
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and the normalization as

v2 + (d− 1)y2 + ∆ = 1 (9.26)

where

∆ =

(
−2yd− 2v + 2y + 2

√
2ydv − y2d+ v2 − 2vy + y2 + FBd2 − dv2

)2

4(d− 1)d2
. (9.27)

We then maximize FA over v and y while keeping d and FB constant, yielding the

best possible balance between the fidelities FA and FB. Figure 2 displays the resulting

η

η

Figure 9.2: Shrinking factor of clone A as function of the shrinking factor of clone B

for d = 2,3,4,10 and 100.

shrinking factor ηA of the first clone as a function of the shrinking factor of the second

clone ηB. The shrinking factor η is defined here as the probability for the input state

not to be depolarized, that is, F = η + (1 − η)/d. We see that the fidelity of a clone

is equal to one (or η = 1) when the fidelity of the second clone is equal to 1/d (or

η = 0), i.e., when it is completely mixed. We also confirm that the quality of the
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clones diminishes as a function of the dimension.

We have numerically confirmed the optimality of this class of asymmetric (and there-

fore symmetric) cloners with the use of a technique based on semidefinite program-

ming introduced in the previous chapter. The cloning transformation is a linear trace-

preserving completely positive (CP) map that can be represented by a positive semidef-

inite operator Ω on the tensor-product space of the input state (|ψ〉) and output states

(|ψ〉〈ψ|⊗2). The fidelities can be expressed as FA(B) = Tr[ΩSA(B)] with an appropri-

ately defined operator SA(B) ≥ 0 (see chapter 9). The optimal asymmetric cloner can

be obtained by maximizing F = pFA + (1 − p)FB, where p ∈ [0, 1] is the asymme-

try parameter. The resulting fidelities coincide with those obtained when maximizing

Eq. (9.25) up to the machine precision.

9.4 Conclusion

We have found the class of optimal 1 → 2 phase-covariant QCMs in any dimension d

along with their corresponding fidelities, Eq. (9.20). Although it was not demonstrated

analytically but only checked numerically, this cloner has been proved to be optimal

in [FIMW03] in the symmetric case. In the special case where d = 2 and d = 3, we

recover the optimal phase-covariant qubit and qutrit cloners. Furthermore, we have

extended our investigation to the class of asymmetric QCMs, and concluded that the

relative fidelity between two clones decreases with the dimension.

In Figure 3, we have plotted, for comparaison, the fidelity as a function of the

dimension d for the universal cloner [Wer98, Cer98, BH98], the real cloner [NC03],

the optimal cloner of two mutually unbiased bases [CBKG02], and the optimal phase-

covariant cloner. As expected, the universal d-dimensional cloner has a lower fidelity

FU = (d+ 3)/(2(d+ 1)) (9.28)

than the other cloners since they span smaller sets of states. The cloner of two mutually

unbiased bases is the one which spans the smaller set and therefore has the highest

fidelity

FMU =
1

2
(1 +

1√
d
). (9.29)

In between lies the real cloner

FR =
1

2
+

√
d2 + 4d+ 20− d+ 2

4(d+ 2)
(9.30)
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Figure 9.3: Fidelity F as a function of the dimension d for the universal cloner (dash)

[Wer98, BH98], the real cloner [NC03], the phase-covariant cloner derived in this paper

and the cloner of two mutually unbiased bases (dot) [CBKG02]. The lines are there

for visual purposes.
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and phase-covariant cloner. Except when d = 2 where the fidelities of the latter two

cloners are equal to that of the cloner of two mutually unbiased bases, the fidelity

of the d-dimensional phase-covariant cloner remains close to the universal cloner and

slightly below the real cloner.



Chapter 10

Summary

It is interesting to see how, in a little over 10 years, quantum information has grown

from being an intellectual game to a mature field of physics which not only is yield-

ing important results within its own realm but also offering insight in other fields of

science as well. This has been illustrated throughout the chapters of this thesis as our

results impact not only quantum computation and communication but also quantum

optics and classical communication. It is this pluridisciplinary character that not only

renders the field exciting and interesting but also draws adepts from every branch of

science. The global attention that the field is gaining is perhaps the reason why it is

advancing so quickly.

This thesis mainly fused cryptography with quantum optics. The major goal be-

ing to exploit the linear dynammics of individual photons in order to perform serure

cryptographic tasks. In our opinion, this goal has been fulfilled as we have described

the implementation of three protocols which at the least achieve a level of security

equal to their classical analog. In chapter 4, we have shown how it is possible to

supress the effect of noise in QKD using error filtration. The plug and play tech-

nique was perfectly suited for error filtration as extending the dimension of time-bin

encoded photons was simply done with the help of passive linear optical components.

In chapter 6, we explored the level of randomness in bit-string generation that can be

achieved. Based on strong conjectures, we have shown that our experiment not only

produced randomness based only on the laws of physics but that this randomness was

higher than what is achievable by classical protocols. In chapter 7, we implemented

a secure identification protocol. Although this protocol does not seem to offer more

advantages than its classical counterpart, it is nevertheless the first time that a quan-

tum cryptographic protocol is implement which relies on a different no-go theorem.

129
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The second part of the thesis dealt on various issues of cloning but relied on com-

mon methods in order to achieve the optimal maps. The Pauli cloning formalism we

used in chapters 5, 8 and 9 all seem to yield the optimal supported by the semi-definite

programming approach as a verification.
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