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Quantum key distribution is a technique in which secret key bits are en-
coded into quantum states which are transmitted over a quantum chan-
nel, e.g. an optical link, so that the security is guaranteed by the laws of
quantum physics. Most experimental realizations to date have relied on
discrete protocols, involving ideally single-photons states (or, in practice,
strongly attenuated light pulses) as well as single-photon detectors. In
this chapter, we present an overview of the recent continuous-variable
quantum cryptosystems, which instead rely on continuously-modulated
Gaussian states (e.g. coherent states) and homodyne detection. The se-
ries of security proofs of these protocols against increasingly powerful
attacks will be reviewed. A particular emphasis will be put on the op-
timality of Gaussian attacks in this context, which holds provided that
the second-order moments of the relevant variables are monitored.

1. Introduction

Quantum key distribution (QKD) is the most mature practical application

of quantum information sciences today. It’s provable security against ar-

bitrarily powerful adversaries – even for parties exchanging a secret key

1
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using only present day’s technology – allowed it to leave the laboratory and

become already commercially available 1. Although essentially all the cur-

rently deployed QKD systems are discrete, hence based on single-photon

detectors following the original proposal by Bennett and Brassard (BB84)2,

continuous variables (CV) will probably also have a role to play because

the detectors they rely on are more technologically developed: while the

photon counters used in BB84 seem to be limited to detection rates of a

few megahertz in ideal conditions 3, the homodyne or heterodyne detectors

used in continuous-variable QKD can easily operate in the gigahertz range.

For instance, the use of homodyning allowed the very first proof-of-principle

CV-QKD experiment to distribute keys at a rate of 1.7 Mbit/s 4.

The field of CV-QKD is evolving very quickly, due to the relative sim-

plicity of the experimental setups but also certainly thanks to the theo-

retical knowledge that is inherited from photon counting-based QKD. The

security proofs have greatly improved over the last few years, going from

the security against simple beamsplitting attacks as analyzed in the early

paper by Hillery 5 to the security against very general (collective) attacks

in 6,7. This is certainly not the end of the story, and we are confident that

a complete unconditional security proofs for CV-QKD including all experi-

mental imperfection is not very far. A main simplification in this direction

may come from the work of Renner 8, indicating that the security against

collective attacks actually ensures security against more general coherent

attacks. The present chapter aims at providing a broad overview of the

various security proofs that have been developed in CV-QKD, in particular

for the so-called Gaussian protocols. 9,10,11,4,6,7.

2. Generic description of continuous-variable protocols

The objective of a QKD protocol is for two partners, traditionally named

Alice and Bob, to agree on a secret random string (the key). This secret

key has to be kept unknown to an eavesdropper (Eve) who is assumed to

have access to a much more advanced technology than Alice and Bob. If

Eve has unlimited resources and is able to do everything but violate the

laws of quantum physics (as well as entering Alice’s and Bob’s lab), one

speaks about unconditional security.

QKD protocols can be divided into two main categories, the prepare-

and-measure (P&M) and entanglement-based (E-B) schemes. A P&M pro-

tocol generally works as follows: Alice prepares quantum systems (usually

light pulses) in some states and sends them to Bob through a quantum
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channel which is supposed to be controlled by Eve. After Bob has measured

the received systems, Alice and Bob share correlated classical information,

from which they extract the secret key through classical communication

over a public authenticated channel. Of course, Eve is supposed to have

interacted as much as she wanted with the quantum systems on their way

from Alice to Bob. She also has listened to all communicated messages over

the classical channel.

In an E-B protocol, Alice and Bob initially share an entangled state

(which could even have been prepared by Eve) and perform both a mea-

surement on their part of it. Everything else is identical to a P&M scheme.

Since Alice’s measurement can be viewed as a “preparation through mea-

surement”, these protocols are indeed equivalent to P&M schemes 12. While

E-B protocols are more difficult to realize experimentally, they are easier

to study theoretically, not only because of the symmetry between Alice

and Bob, but also because the “monogamy” of entanglement allows us to

study Eve’s attack more generally. In this chapter, we will use this point of

view, and study the continuous-variable P&M protocols through their E-B

counterparts.

The classical communication between Alice and Bob allows them to dis-

till a secret key from their correlated data. It is usually divided into three

steps: (i) Channel evaluation: Alice and Bob publish a random sample of

their measurements and compare them to evaluate the characteristics of the

quantum channel (and infer Eve’s potential action from it); (ii) Reconcilia-

tion: they use error correction techniques to correct the transmission errors

and agree on a common bit string, partially known by Eve; (iii) Privacy

amplification: they use a technique based on hash functions to extract, from

this common string, a secret key unknown of Eve.

When turning to continuous variables, the above general description of

QKD remains valid. But, in addition, CV-QKD can be understood in a re-

stricted or more general manner. In a restricted P&M version of CV-QKD,

Bob is using homodyne detection, hence he measures continuous data, but

Alice is sending states selected from a finite alphabet, typically made of

just a few non-orthogonal states, see e.g. 5,13. In a fully-continuous P&M

version of CV-QKD, as first explored in 9, Alice prepares randomly chosen

Gaussian states drawn from an arbitrary continuous (e.g. Gaussian) distri-

bution. The prepared states can be either coherent or squeezed. Bob then

measures them with an homodyne or heterodyne detection. Similarly, Bob

can keep all his measurements or discard some part of it (postselection). We

will limit ourselves here to a Gaussian modulation and full measurement
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(no postselection), because the resulting family of protocols is better under-

stood and easier to study. Restricted (or discretely-modulated) protocols

with postselection such as 13 seem to be easy to implement and robust to

losses, but, to the best of our knowledge, no study has been carried out

beyond Gaussian attacks, which are obviously not the optimal attacks in

this case.

In what follows, is will be more convenient to consider the E-B version of

these fully-continuous Gaussian P&M protocols, as introduced in 14. In such

a protocol, Alice prepares her state by measuring half of a two-mode vacuum

squeezed state of parameter rA, which was initially shared with Bob (see

Fig. 1). For a coherent-state protocol, this means that Alice measures both

quadratures, XA and PA, by using a beam-splitter of transmittance TA =

1/2 (heterodyne detection). Denote by xA and pA the obtained outcome.

This effectively projects the second mode onto a coherent state centered on

x =
√

2 tanh
(rA

2

)
xA p = −

√
2 tanh

(rA
2

)
pA, (1)

and modulated according to a Gaussian distribution centered on the origin

and of variance 〈x2〉 = 〈p2〉 = [cosh(rA) − 1]/2. In contrast, if TA = 1

(homodyne detection) and Alice chooses randomly the measured quadra-

ture, she is effectively preparing squeezed states of squeezing parameter

cosh(rA) which are modulated with a Gaussian distribution of variance

〈x2〉 = 〈p2〉 = sinh(r)2/[2 cosh(r)].
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Fig. 1. Entanglement-based protocol under consideration. After Alice’s effective prepa-
ration by measuring her part of an entangled state, the resulting Gaussian-modulated
coherent or squeezed state of light is measured by Bob. Eve replaces the channel of
transmittance T and excess noise ε by an entangling cloner of parameters rE and TE .
The excess noise is defined as the noise that goes beyond the loss-induced noise.
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Now, since Alice can arbitrarily delay her measurement, we can interpret

this protocol as if Alice was sending half of a two-mode squeezed state to

Bob through an insecure channel before performing her measurement. As a

result, Alice and Bob would share a noisy entangled state that is mapped

into correlated classical data by Gaussian measurements. Both protocols are

of course equivalent from Eve’s point of view, but the theoretical analysis

turns out to be simpler for this E-B scheme. However, the obtained security

bounds automatically apply to the corresponding P&M scheme.

3. Structure of the security proofs

3.1. Eve’s physical attack

In the E-B scheme, Alice and Bob share a mixed entangled state ρAB . The

best situation for Eve is when she can “purify” this state: the global state

between Alice, Bob, and Eve is then pure |Ψ〉ABE , with trE |Ψ〉〈Ψ| = ρAB .

If Alice and Bob could perform a full tomography of their state, they could

know ρAB and deduce Eve’s state up to an irrelevant transformation. How-

ever, this strategy, which is standard in discrete-variable QKD, is not real-

istic with continuous variables because of the infinite dimensionality of the

Hilbert space. Therefore, tomography must be limited to a few parameters,

usually the coefficients of the covariance matrix γAB of the state ρAB . For-

tunately, if it is Gaussian, the state ρAB – and Eve’s attack – becomes fully

characterized by γAB . Of course, this is not true in the general case, so it

will be crucial, in the security analysis, to show that the Gaussian attack

is optimal for a given covariance matrix γAB .

It is convenient at this point to introduce Eve’s Gaussian attack for

a given symmetric Gaussian channel, characterized by its transmission T

and excess noise ε, called the “entangling cloner” (see Fig. 1). As proven

in 15, Eve can simulate the channel (T, ε) by combining at a beam-splitter

of transmittance TE = 1 − T the intercepted state together with half of a

two-mode squeezed vacuum state. The squeezing parameter rE has to be

chosen such that (1 − T ) cosh rE = 1 − T + εT . If the initial covariance

matrix between Alice and Bob (before transmission) is γ0, it becomes after

transmission γAB = MTγ0M +N , with M = diag(1, 1,
√
T ,
√
T ) and N =

diag(0, 0, 1− T + εT, 1− T + εT ).

3.2. Eve’s measurement

As we have seen, Eve’s physical attack allows her to hold a (Gaussian or

non-Gaussian) purification of ρAB . This is not enough per se to give her
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information about the secret key. She necessarily needs to perform some

measurement in order to extract this information. This measurement can

be divided into 3 categories of increasing power, namely (1) individual, (2)

collective, and (3) coherent attacks.

In individual attacks, Eve makes one ancilla interact with each pulse,

individually, and performs a measurement on it. This measurement cannot

depend on Alice and Bob’s classical communication (except for the possibly

disclosed basis choice). Since this measurement outcome is classical, Eve’s

information is then measured by Shannon (classical) mutual information.

A variation of this attack is the “finite-size attack”, where the interaction

encompasses several pulses. The size of the block, however, has to be much

smaller than the length of the codewords used in the key extraction stage,

and, even more importantly, the joint measurement of the ancillas cannot

depend on the exchanged messages during this key extraction stage.

For collective attacks, the interaction with the ancillas stays individual

(or, at least, of a finite size), but the ancillas are stored in a quantum mem-

ory and measured only after Alice and Bob have communicated to perform

the key extraction stage. At this point, a complex collective measurement

is performed on the quantum memory. The information gained by Eve us-

ing this strategy is computed using the Von Neumann entropies instead of

Shannon entropies, which leads to the Holevo information. This strategy

potentially gives Eve more information than an individual attack.

Coherent attacks are, by definition, the most powerful attacks allowed

by quantum mechanics: Eve interacts globally with all pulses and then

performs a delayed global measurement. This global interaction renders

any statistical assumption difficult, since Alice, Bob, and Eve now share a

single high-dimensional quantum system. However, the collective attacks,

which are currently known to be optimal within a restricted class of explicit

attacks, are likely to be fully optimal even against coherent attacks (see 8)

although there is no rigorous proof of it yet for continuous variables.

3.3. Eve’s knowledge

To extract the secret key from their correlated data, Alice and Bob use

privacy amplification, which, roughly speaking, allows them to filter out the

bits known to Eve. All they need to know to apply privacy amplification

is an upper bound IE on Eve’s information. Once this bound is known,

they can extract a secret key whose length is at least I(A : B)− IE , where

I(A : B) is the mutual information between Alice’s and Bob’s data.
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The expression of IE of course depends on Eve’s strategy, but also on

the direction of the classical information flow: if the classical communica-

tion is one-way and flows from Alice to Bob in order for him to error correct

his data, it means that Alice’s data form the secret key so that IE is the

amount of information Eve has gained on Alice’s data. This is known as

Direct Reconciliation (DR). For obvious symmetry reasons, such a strategy

cannot succeed when the physical channel is a lossy channel with more than

50% losses. The symmetry between Bob and Eve has to be broken, which

can only be done with a feedback, that is, with some classical communica-

tion flowing from Bob to Alice. This can be done using one-way backward

classical communication (and no forward communication): this is the Re-

verse Reconciliation (RR) scenario, where the secret key is based on Bob’s

data. In this case IE represents the amount of information gained by Eve

on Bob’s data. It is also possible to use two-way classical communication

(e.g., in postselection-based protocols 13,16) but this strategy will not be

discussed here.

4. Individual attacks

4.1. Preliminaries

For individual attacks, Eve is assumed (i) to interact individually and in

the same way with each quantum state sent over the channel, and (ii) to

measure before the error correction and privacy amplification procedures

have taken place. These two assumptions are realistic within the present-

day technology, even though more general attacks may be imagined. The

results shown in this subsection were published (with more details) in 9,10,4

for individual attacks and in 11 for finite-size attacks.

If Eve interacts individually and in the same way with the states, this

corresponds, in the entanglement picture, to a situation where Alice, Bob,

and Eve share many copies of the state |Ψ〉ABE , resulting from Eve’s inter-

action on half of a two-mode squeezed state, |ψ(rA)〉, and a reference state

|R〉E , that is,

|Ψ〉ABE = (11A ⊗ UBE)|ψ(rA)〉AB |R〉E . (2)

After their measurements, Alice and Bob map their shared state into cor-

related random variables, A and B. Eve is also assumed to measure at

this point, so she has a random variable E correlated with Alice and Bob’s

outputs. Therefore, the three parties share correlated Classical-Classical-

Classical information (CCC correlations). This results in the diagonal den-
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sity operator

ρABE =
∑

A,B,E

p (A,B,E)|A〉〈A| ⊗ |B〉〈B| ⊗ |E〉〈E|. (3)

The process of distilling a secret key out of CCC correlations using one-

way communication protocols was studied in 17. There, it was shown that

given a CCC correlation with distribution p (A,B,E), the direct one-way

secret-key rate satisfies

K→ ≥ I(A : B)− I(A : E) = K̄D. (4)

In this formula, it is assumed that the flow of information in the error

correction and privacy amplification stages goes from Alice to Bob. Also, I

stands for Shannon’s mutual between the classical random variables,

I(X : Y ) = H(X)−H(X |Y ), (5)

where H(X) denotes a Shannon entropy while H(X |Y ) is a Shannon con-

ditional entropy 18.

The maximal information Bob can extract about Alice’s variable A from

his variable B is equal to the mutual information I(A : B). The same holds

for Eve, so her accessible information on Alice’s data is given by I(A : E).

Therefore, the bound (4) compares the information on Alice’s preparation

accessible to Bob and Eve. The Csiszár-Körner bound (4), is thus quite

intuitive as it reflects Bob’s advantage over Eve, but its proof is rather

involved!

Very naturally, in the case of reverse reconciliation, the previous bound

becomes

K← ≥ I(A : B)− I(B : E) = K̄R, (6)

as it is the advantage of Alice over Eve which is relevant. We are now ready

to analyze the rate of key extraction against individual attacks using these

simple bounds. In particular, it will analyzed how it depends on the channel

parameters, T and ε, for different protocols.

4.2. Secure key rates against individual attacks

Let us show how to compute the bounds of Eqs. (4) and (6) for the CV-QKD

protocols using squeezed or coherent states, and homodyne or heterodyne

measurements (a more detailed calculation can be found in 14). We restrict

our considerations to Gaussian attacks, as in Fig. 1. It will be proven in
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Section 7 that these attacks minimize all the bounds, so they are maximally

pessimistic (i.e., optimal for Eve).

As explained above, the state preparation by Alice can be done by means

of a two-mode squeezed vacuum state of squeezing parameter rA and a

beam-splitter of transmittance TA. After propagating through the insecure

channel, Alice, Bob, and Eve share a tripartite state, |Ψ〉ABE. This state

depends on Alice’s preparation, the channel properties (T, ε), and Bob’s

measurement, either homodyne (TB = 1) or heterodyne (TB = 1/2). Since

Eve’s attack is Gaussian, the state is completely specified by its covariance

matrix γABE , while the displacement vector is zero. It is relatively simple

to calculate (4) and (6) from γABE . Alice and Bob’s mutual information

can be found through the Wigner function of their reduced state ρAB . The

Wigner function indeed defines the Gaussian probability distribution of the

quadrature measurements of Alice and Bob, from which I(A : B) can be

obtained. The same reasoning gives I(A : E) (or I(B : E)).

Using this formalism, one can compute the key rates that are secure

against any Gaussian individual attack for a given protocol (Alice’s prepa-

ration and Bob’s measurement) and channel parameters (T, ε). Not sur-

prisingly, the obtained key rate turns out to be an increasing function of

the modulation in the state preparation, that is, of rA. Moreover, in some

particular cases, one obtains relatively simple formulas. For instance, con-

sider the situation where the excess noise ε in the channel is zero while rA
is large. Then, for the protocols analyzed in 10,4,

K̄D ≈
1

2
log

(
T

1− T

)
K̄R ≈

1

2
log

(
1

1− T

)
, (7)

for the coherent-state protocol, while for the squeezed-state protocol 9,

K̄D ≈ log

(
T

1− T

)
K̄R ≈ log

(
1

1− T

)
, (8)

that is, they are twice as large as with coherent states. In the case of the

protocol where both Alice and Bob perform heterodyne measurements 19,

i.e., TA = TB = 1/2, one has

K̄D ≈ log

(
T

1 + T

)
K̄R ≈ log

(
1

1− T

)
. (9)

All these bounds on the secret key rate define security conditions for lossy

but noiseless channels, which guarantee provable security against individual

attacks. For all direct protocols, we always have the constraint T > 1/2,

which correspond to 3 dB of losses. In contrast, for all reverse protocol,
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arbitrary high losses are tolerable, in principle, since the rate is positive for

any non-zero value of T .

These bounds can also be computed for noisy channels, that is for a

non-zero excess noise ε. Direct protocols (with coherent or squeezed states)

are secure provided that the total equivalent input noise is smaller than

the shot noise. This corresponds to a maximal excess noise ε < 2 − 1/T ,

which can only be positive for T < 1/2. The maximal tolerable excess

noise for reverse protocols depends on the allowed squeezing: if Alice can

send arbitrarily squeezed states, one has ε < 2, while if she can only send

coherent states, ε < 1
2 − 1

T +
√

1
T 2 + 1

4 , which varies between 1
2 (for T →

0) and (
√

5 − 1)/2 ' 0.61 (for T = 1). Thus, in the important case of

coherent-state protocols, reverse reconciliation is more appropriate for lossy

channels with little noise while direct reconciliation has an advantage for

noisy channels with few losses.

5. Collective attacks

5.1. Preliminaries

Even though the two restrictions that we have put on Eve in the analy-

sis of individual attacks [(i) interaction with each pulse individually, and

(ii) measurement before the classical key distillation procedure] are very

realistic, taking into account the present-day technology, they are unsatis-

factory from a theoretical point of view. What we want to achieve in quan-

tum cryptography is provable security without imposing any limitation on

Eve’s technological power. For instance, the second assumption seems to

be particularly strong. After having interacted with the states, Eve holds

a quantum system that is correlated with Alice’s preparation and Bob’s

measurement results. During the reconciliation process, the honest parties

exchange information through the classical public channel in order to in-

crease their correlations. This information is also available to Eve, so it

appears quite reasonable that her correlations with Alice’s and Bob’s data

may also increase. Therefore, she can adapt and improve the measurement

on her quantum state according to the exchanged messages. The aim of the

next two sections is to extend the previous security analysis to such general

attacks. We first get rid of assumption (ii) and allow Eve to delay her mea-

surement until the end of the reconciliation process. This corresponds to the

case of collective attacks, treated in this section (more details can be found

in 6,7,20). In the next section, we also get rid of assumption (i), providing

key rates secure against any attack consistent with quantum mechanics.
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In collective attacks, Eve’s interaction remains the same as with indi-

vidual attacks, so that Eq. (2) stays valid. After their measurements, Alice

and Bob map again their shared state ρAB into correlated random variables,

A and B. But, in contrast with individual attacks, Eve is not assumed to

measure at this point, so she keeps a quantum state that is correlated

with Alice and Bob’s outputs, ρABE . Here, the three parties share correlated

Classical-Classical-Quantum information (CCQ correlations). This can be

summarized by means of the quantum state

ρABE =
∑

A,B

p (A,B)|A〉〈A| ⊗ |B〉〈B| ⊗ ρABE . (10)

where the fact that Eve has not performed a measurement translates into

the fact that the density operator is not diagonal in E.

The process of distilling a secret key out of CCQ correlations (and, even

more generally, out of CQQ correlations) using one-way communication

protocols has been studied in 21 (see also 22). There, it was shown that

given a CQQ state

ρABE =
∑

A

p (A)|A〉〈A| ⊗ ρABE , (11)

the one-way secret key rate satisfies

K→ ≥ χ(A : B)− χ(A : E). (12)

Here, χ stands for the Holevo bound 23, which gives the accessible classical

information encoded into an ensemble of quantum states {p (x), ρx},
χ = S(ρ)−

∑

x

p (x)S(ρx), (13)

where ρ =
∑
x p (x)ρx and S(ρ) = −tr(ρ log ρ) denotes the von Neumann

entropy. Equation (12) looks is a very intuitive extension of Eq. (4); how-

ever, its proof is again rather involved!

Tracing out Eve, Bob is effectively receiving quantum states encoding

Alice’s classical data, ρAB = trEρ
A
BE , with probability p (A). The maximal

information he can extract is equal to the Holevo bound χ(A : B), computed

for the ensemble {p (A), ρAB}. The Holevo bound can indeed be interpreted

very naturally as the quantum mutual information between the internal

state of the preparer (Alice) and the state arriving at the receiver (Bob) 24.

The same holds for Eve, her accessible information on Alice’s data being

given by χ(A : E). Therefore, the bound (12) compares the information

on Alice’s preparation accessible to Bob and Eve, generalizing to the CQQ

case the well-known Csiszár-Körner bound (4) for CCC correlations.
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In any P&M protocol, Bob also holds classical data since he measures

his quantum state upon receiving it, as described by Eq. (10). This simply

represents a special subset of the more general scenario analyzed in 21, so

that the same reasoning holds for CCQ correlations. The Holevo quantity

χ(A : B) then simply coincides with the standard mutual information be-

tween Alice and Bob, I(A : B) 24. Thus, the extractable secret key rate in

direct reconciliation satisfies

K→ ≥ I(A : B)− χ(A : E) = K̂D. (14)

In the case of reverse reconciliation, this bound reads,

K← ≥ I(A : B)− χ(B : E) = K̂R. (15)

5.2. Secure key rates against collective attacks

Let us analyze how the bounds (14) or (15) depend on the channel pa-

rameters, T and ε, for different QKD protocols (using squeezed or coherent

states, and heterodyne or homodyne measurements). A more detailed calcu-

lation can be found in 20. We again restrict our considerations to Gaussian

attacks, as in Fig. 1, knowing that these attacks minimize all the bounds

considered here (see section 7).

The information I(A : B) is calculated exactly as for individual attacks,

while the calculation of χ(A : E) is slightly more involved. After tracing out

Bob, one has the Gaussian state ρAE of covariance matrix γAE and zero

displacement vector, completely specifying the correlations between Alice

and Eve. This covariance matrix has the form

γAE =

(
γA CAE
CTAE γE

)
, (16)

where γA (γE) is the covariance matrix of Alice’s (Eve’s) local state, and

CAE characterizes their correlations. Alice’s measurement projects her state

into a Gaussian state of covariance matrix γmAA and displacement vector
~dmAA , depending on the obtained outcome mA, and on the type of mea-

surement. For instance, γmAA = 11 for a coherent state protocol. This mea-

surement is also effectively preparing a Gaussian state on Eve’s side, with

covariance matrix γmAE and displacement vector ~dmAE . These two quantities

can be calculated using the Gaussian formalism developed in 25,26, namely

γmAE = γE − CTAE(γA + γmAA )−1CAE

~dmAE = CTAE(γA + γmAA )−1dmAA . (17)
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In all the considered protocols, with squeezed or coherent states, γmAA does

not depend on the measurement outcome mA, so γmAE is also independent

of mA, γmAE ≡ γAE . Therefore, χ(A : E) is simply equal to

χ(A : E) = S(γE)− S(γAE ), (18)

where we explicitly use the fact that the von Neumann entropy of a Gaus-

sian state only depends on its covariance matrix. The same reasoning can

be applied to the calculation of χ(B : E) for reverse reconciliation.

Using this formalism, one can compute secure key rates against any

collective attack, for a given protocol (Alice’s preparation and Bob’s mea-

surement) and channel parameters. The calculation of the bounds is lengthy

but straightforward. In the case where the excess noise ε in the channel is

zero and rA is large, one obtains simple results. Then, for the coherent-state

protocols analyzed in 10,4, one has

K̂D ≈
1

2
log

(
T

1− T

)
K̂R ≈

1

2
log

(
1

1− T

)
, (19)

while, for squeezed-state protocols 9, one has

K̂D ≈ log

(
T

1− T

)
K̂R ≈ log

(
1

1− T

)
, (20)

In the case of the protocol of 19, where TA = TB = 1/2, one has

K̂D ≈ log

(
T

1 + T

)
− log e K̂R ≈

1

T
log

(
1

1− T

)
− log e. (21)

All these bounds on the extractable secret key rate define security con-

ditions for provable security against collective attacks, as summarized in

Fig. 2.

Protocol Direct Reverse

Coherent states 3 dB no limit

Squeezed states 3 dB no limit

Heterodyne measurements 1.4 dB no limit

Fig. 2. Critical values of the channel transmission for provable security against collective
attacks in the case of zero excess noise and large modulation variance. The coherent-state
protocol, squeezed-state protocol, and the protocol with heterodyne measurements are
compared.

The previous formalism is also useful to establish the critical value of

the excess noise in the line, above which no key distribution is possible,
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independently of Alice’s modulation, see 7. These values have to be un-

derstood as simply testable sufficient conditions for secure key distribution.

For squeezed-state protocols, it is always more convenient to employ reverse

reconciliation. In contrast, for coherent-state protocols, direct reconciliation

turns out to be more resistant against excess noise down to a channel trans-

mission of ≈ 0.65. Note also that there exist limiting values of the excess

noise, εc, for which the considered secret key rates are zero, independently

of the modulation and the losses. These values can be computed analyti-

cally. For coherent states and direct reconciliation, one has that εc is the

solution to the equation

1

1 + ε

(√
1 + ε+ 1√
1 + ε− 1

)√1+ε

= e2, (22)

that gives εc ≈ 0.8, while for reverse reconciliation

εc =
1

2

(√
1 +

16

e2
− 1

)
≈ 0.39. (23)

In the case of squeezed states, the critical excess noise is equal to 2/e ≈ 0.7

for both reconciliation protocols. A similar picture can be obtained for the

heterodyne measurement-based protocol of 19.

6. Coherent attacks

A first approach to analyze the resistance of CV-QKD against the most

general (coherent) attacks consists in exploiting the equivalence between

quantum error correcting codes and one-way entanglement purification pro-

tocols, exactly as for discrete-variable QKD. This approach was followed

in 28 in order to prove that Gaussian-modulated squeezed-state protocols

can be made unconditionally secure provided that the squeezing exceeds

some threshold r ≈ 0.3. It was extended in 29 to the case of coherent-state

protocols, although the tolerable loss is only of 0.4 dB in this case. These

results can be viewed as proofs of principle that unconditional security is

achievable with continuous-variable protocols, but unfortunately they do

not yield useful secret key rates.

Recently, however, powerful techniques for the analysis of general se-

curity proofs of QKD have been presented in 27, which can predict secret

key rates. In any QKD scheme, there is a tomographic process that partly

characterizes the insecure channel connecting Alice and Bob. It allows the

honest parties to evaluate their mutual information, I(A : B). Moreover,
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it puts a bound on Eve’s knowledge: it was shown in 27 that, using the

information collected during this process, one can construct a secure rec-

onciliation protocol that allows one to extract

K̃ = I(A : B)− max
ρAB∈R

S(ρAB), (24)

secret bits, where R is the set of quantum states consistent with the mea-

sured probabilities (see 27 for more details). Thus, this quantity represents

a lower bound to the achievable key rate, K ≥ K̃. For all the QKD schemes

analyzed here, the attack minimizing K̃ for fixed first and second moments

of ρAB is Gaussian (see section 7). Unfortunately, this bound does not make

any distinction between direct and reverse reconciliation, a relevant issue

in continuous-variable QKD protocols.

The calculation of K̃ proceeds along the same lines as above for K̂D or

K̂R. Consider first the coherent-state or squeezed-state protocol. For the

case of a lossy but noiseless line, ε = 0, one can numerically see that there

exists an optimal squeezing roptA which is the same for coherent-state and

squeezed-state protocols 7. A reason for this counter-intuitive result may

be that K̃ is known to be a non-tight bound to the optimal key rate 27.

This optimal squeezing, roptA ≈ 1.5, defines a critical value for the tolerable

losses of approximately 1.7 and 0.83 dB for squeezed-state and coherent-

state protocols, respectively.

As discussed in 27 it is possible to improve the bound (24) by condi-

tioning the privacy amplification process on a classical random variable W

(see 27 for more details), decreasing Eve’s entropy. For the case of coherent

states, Alice and Bob can make public the value of the second measured

quadrature, instead of discarding it. This process does not modify Alice and

Bob’s mutual information but changes Eve’s entropy. The obtained critical

transmission, Tc, is now a decreasing function of the squeezing, as expected.

One can see that in the limit of high modulation, rA →∞,

Tc =
e2

e2 + 4
. (25)

That is, the protocol using coherent states and homodyne measurements is

secure up to 1.9 dB of losses.

Finally, let us consider the heterodyne measurement-based protocol of
19 in the case of a lossy line. Recall that the two quadratures measured by

Alice contribute to the key. These two homodyne measurements effectively

prepare a coherent state that propagates through the insecure channel, and

Eve keeps a fraction 1 − T of it. Therefore, Eve receives pure coherent
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attacks !
Gaussian

states, depending on xA and pA. This implies that S(ρE) is actually equal

to χ(A : E), which means that K̃ = K̂D. Thus, a secure key distribution

against general attacks is possible up to 1.4 dB of losses (see Fig 2).

7. Optimality of Gaussian attacks

7.1. Preliminaries

The derivation of all the previous bounds on the extractable secret key rates

has been done assuming that Eve’s optimal attack was Gaussian. The goal

of this section is to prove this optimality, that is, to show that for given

first and second moments of the measured quadratures by Alice and Bob,

the attack minimizing K̄D, K̄R, K̂D, K̂R, and K̃ is Gaussian. A proof of

this result has first been given in 11 for finite-size attacks (but assuming

that Eve’s measurement takes place before the key distillation procedure),

and will be presented in 20 for collective and coherent attacks (when Eve’s

measurement is allowed to depend on the exchanged messages during the

key distillation procedure).

The details of the proof are different for finite-size and collective at-

tacks, but the generic idea is the same: Gaussian attacks are the one which

induced the less structured (i.e., more entropic) noise on Bob’s measure-

ment outcomes for a given covariance matrix. Roughly speaking, since Eve

is constrained by quantum mechanics, the more structure she induces on

Bob’s noise, the less freedom she has on her attack. More rigorously, the

amount of information IE she gains can be upper bounded by an entropic

quantity that is calculated from the (experimentally accessible) covariance

matrix of the state ρAB shared by Alice and Bob, and this maximum is

attained for a Gaussian attack.

Note that, for all practical purposes, one only needs to bound IE , since

I(A : B) will in reality depend on the practical error-correcting codes used

by Alice and Bob in the reconciliation stage. Even if these codes would

yield a rate that is close to Shannon’s limit for a Gaussian channel, the

evolution of this rate for an arbitrary non-Gaussian attack would be difficult

to predict. Nevertheless, this is not a problem in practical CV-QKD because

Alice and Bob can always measure I(A : B) by comparing a sample of their

reconciliated keys, so there is no need to predict it.

7.2. Entropy of Gaussian states ρ̃ – general attacks

Let ρ ∈ B(H2) denote an arbitrary density operator, and ρ̃ the density

operator corresponding to a Gaussian state characterized by the same co-



December 31, 2005 14:57 WSPC/Trim Size: 9in x 6in for Review Volume grosshans

Continuous-Variable Quantum Key Distribution 17

entropy !
relative

entropy !
conditional

variance matrix (or second-order moments) and displacement vector (or

first-order moments) as ρ. Similarly, if p (x) is a probability distribution

for a random variable X , then p̃ (x) denotes the Gaussian probability dis-

tribution with the same first- and second-order moments as p (x). Finally,

if F (x) represents any function of a random variable x, whose probability

distribution is p (x), then F (x̃) has to be understood as the same function

F applied to the distribution p̃ (x). It can be shown that, for any state ρ,

one has

S(ρ̃)−S(ρ) = tr(ρ log ρ)−tr(ρ log ρ̃)+tr(ρ log ρ̃)−tr(ρ̃ log ρ̃) = S(ρ||ρ̃) (26)

where the first two terms in the r.h.s. of Eq. (26) sum to the quantum rela-

tive entropy S(ρ||ρ̃). The sum of the last two term in the r.h.s. of Eq. (26)

vanishes because log ρ̃ is a polynomial of second order in the field operators,

so that ρ and ρ̃ have, by definition, to the same expectation values.

As a consequence, since the quantum relative entropy is positive semi-

definite 30, the state of maximal entropy for fixed first- and second-order

moments is indeed Gaussian. In particular, if Alice and Bob share a state

ρAB , they can bound its entropy from its covariance matrix, that is,

S(ρAB) ≤ S(ρ̃AB). Using similar arguments, it can be seen that the same

property holds for classical probability distributions

H(x̃)−H(x) = H(x||x̃) ≥ 0, (27)

where H(x||x̃) =
∑

x p (x) log[p (x)/p̃ (x)] is the classical relative entropy.

The fact than the states with a maximal entropy are Gaussian combined

with the bound (24) gives us immediately the optimal general attack (for

this bound): it is a Gaussian attack.

7.3. Conditional entropy of ρ̃ – individual attacks

The von Neumann conditional entropy 31 is

S(A|B) = S(ρAB)− S(ρB) = S(Ã|B̃)− S(ρAB ||ρ̃AB) + S(ρB ||ρ̃B) (28)

The relative entropy is a discrimination measure between two states and

can only decrease under a physical (i.e. trace preserving) map. That is, for

any such map, denoted by T , and any two states, ρ1 and ρ2,

S(ρ1||ρ2) ≥ S(T (ρ1)||T (ρ2)). (29)

Tracing out A is a particular instance of such a trace-preserving map, with

T (ρAB) = ρB and T (ρ̃AB) = ρ̃B . Therefore S(ρB ||ρ̃B) ≤ S(ρAB ||ρ̃AB),
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entropic
uncertainty
principle

which implies that quantum conditional entropy is also maximized for a

Gaussian state

S(A|B) ≤ S(Ã|B̃). (30)

Naturally, the same reasoning applies to classical probability distribution,

substituting von Neumann conditional entropies with Shannon conditional

entropies, and replacing trace-preserving maps by stochastic maps:

H(x|y) ≤ H(x̃|ỹ). (31)

In order to find the optimal individual attacks, one needs to combine

this inequality with the entropic uncertainty principle 32, which states that

H(pA|pB) + H(xA|xE) ≥ 0 where xA and pA are the two quadratures of

Alice’s state, inferred from Bob’s (pB) or Eve’s (xE) measurements. Note

that xA and pA are expressed her in the appropriate units so that the r.h.s.

term is 0 (in other units, it would simply be a constant). Thus, Alice and

Eve’s mutual information can been rewritten as

I(A : E) = H(xA)−H(xA|xE) ≤ H(xA) +H(pA|pB) (32)

which is optimal (maximum) for a Gaussian attack as a consequence of

Eqs. (27) and (31). Of course, the same reasoning applies to I(B : E)

in the case of reverse reconciliation. This confirms that the attack which

minimizes the bounds K̄D and K̄R for individual (finite-size) attacks is

Gaussian.

7.4. Effect of Alice’s measurement – collective attacks

Let ρ ∈ B(H2) be any physical state and ρ′ the result of a measurement on

a part of it by projection onto a given basis, say X ,

ρ′ =
∑

x

|x〉〈x|ρ|x〉〈x| =
∑

x

p (x)|x〉〈x| ⊗ ρx. (33)

For example, ρ can be thought of as the joint state of the system under

investigation and an ancilla, which, after measurement, contains the mea-

surement outcome. It is straightforward to check that 24

S(ρ′) = H(x) +
∑

x

p (x)S(ρx), (34)

whereH denotes the usual Shannon entropy. Now, Eve’s gained information

on Alice’s measurement outcome (after Alice’s measurement) that is needed

to calculate the bound (14) can be written

χ(A : E) = S(ρE)−
∑

xA

p (xA)S(ρxAE ), (35)
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see Eq. (13). Since the state of Alice, Bob, and Eve before Alice’s measure-

ment |Ψ〉ABE is pure, S(ρE) = S(ρAB). Similarly, since the state of Bob

and Eve conditioned on Alice’s measurement outcome xA, i.e. 〈xA|Ψ〉ABE ,

is pure, S(ρxAE ) = S(ρxAB ). Thus

χ(A : E) = S(ρAB)−
∑

xA

p (xA)S(ρxAB ) = S(ρAB)− S(ρ′B) +H(xA)

≤ S(ρAB)− S(ρB) +H(xA) = S(A|B) +H(xA). (36)

where we have used Eq. (34) as well as the fact that the transformation

ρB → ρ′B can only increase the von Neumann entropy 30. Once again,

we see that the above expression is optimal (maximum) for a Gaussian

attack as a result of Eqs. (27) and (30). The same reasoning also applies

to χ(B : E) in reverse reconciliation. Note that if the states of Bob and

Eve conditional on Alice’s measurement are not pure (if Alice sends mixed

states in the corresponding P&M protocol), the strong subadditivity of the

entropies ensures that χ(A : E) is upper bounded by the same quantity,

which maintains this optimality result. This confirms that the attack which

minimizes the bounds K̂D and K̂R for collective attacks is Gaussian.

More generally, if Eve’s attack is not identical from pulse to pulse,

the above reasoning still holds, with multimode Gaussian states instead of

single-mode ones. However Alice and Bob will not measure the full covari-

ance matrix, but an averaged one, so they will overlook the pulse-to-pulse

correlations. Fortunately, it is straightforward to show that this averaging

will make them overestimate Eve’s information, so they remain on the safe

side. In other words, the optimal attack for a given estimated “single-pulse”

covariance matrix remains the Gaussian attack described in Fig. 1.

8. Conclusion

We have outlined the main security proofs obtained today for assessing

the security of continuous-variable quantum key distribution based on

Gaussian-modulated Gaussian states and Gaussian measurements. We have

discussed the increasingly difficult analyses of individual, collective, and

coherent attacks. We have shown that, for a given estimated covariance

matrix of Alice and Bob’s quadrature components, the Gaussian attacks

are optimal; hence, they provide a tight bound on the attainable secure

key rates. We hope that these theoretical progresses will further encourage

bringing CV-QKD closer to practice. An interesting recent step in this di-

rection is the all-fibered coherent-state setup working at telecom wavelength

(1550 nm) at a rate exceeding 1 Mbit/s that was reported in 33.
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