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Quantum information processing with continuous variables is a paradigm that has attracted a growing inter-
est over the past years, partly as a consequence of the prospects for high-rate quantum communication systems
based on standard optical telecommunication components. In this overview article, we introduce the concept of
quantum continuous variables in optics and then turn to the fundamental impossibility of cloning continuous-
variable light states, a result that lies at the heart of quantum key distribution. Then we present state-of-the-
art quantum key distribution systems relying on continuous variables, focusing mainly on the protocols using
Gaussian-modulated coherent light states and emphasizing the current experimental demonstration of these
systems. Finally, we briefly review recent security proofs of these cryptographic protocols. © 2007 Optical So-

ciety of America
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. INTRODUCTION
ver the past years, there has been an increasing interest
bout the possibility of realizing quantum informational
nd computational tasks with so-called continuous vari-
bles (CVs).1,2 The leading idea of this approach is to use,
s quantum information carriers, physical quantities that
ave a continuous spectrum, such as the quadrature am-
litudes of the quantized light field, instead of binary
uantities, such as the polarization state of a single pho-
on. As is well known, the central concepts of quantum in-
ormation theory such as quantum teleportation, quan-
um cryptography, or quantum algorithms have initially
een developed for binary quantum carriers (quantum
its or qubits). This is indeed the most natural way to go
n order to build the quantum counterpart to classical in-
ormational processes. However, the use of CV quantum
ystems, which may involve many photons in one light
ode, has some potential advantages over single-photon

uantum systems. Such advantages lie in the prospect for
igher optical data rates and simpler processing tools,
ased upon standard telecommunication techniques.
ore specifically, one defines a CV quantum communica-

ion system as a setup whose (main) measurement system
s based on homodyne detection instead of single-photon
etection. Using homodyne instead of single-photon de-
ection comes with the advantage of producing a measure-
ent outcome for each pulse; that is, CV protocols are, by

ssence, unconditional. In contrast, single-photon detec-
ors typically have low efficiencies, resulting in a low
robability of success. Another significant strength of the
V paradigm is that light–atoms quantum interfaces
0740-3224/07/020324-11/$15.00 © 2
ave been successfully designed and realized for CV, so
hat atomic systems can be used as a support for CV
uantum information.
To illustrate the dramatic development of the field of

V quantum information processing, let us mention just
ome of the main recent achievements in this direction.
n the experimental side, an important trigger was the

uccessful demonstration of CV quantum teleportation.3

t was then possible to demonstrate the entanglement of
wo atomic ensembles4 and to realize a quantum memory
or light.5 Other implemented protocols include quantum
rasing,6 quantum cloning,7 and the demonstration of CV
oherent-state quantum key distribution8 (QKD), which
s the main topic of the present paper. Many groups have
lso been involved in theoretical developments, for ex-
mple, about the characterization of CV entanglement,9,10

V entanglement purification with non-Gaussian
perations,11 bound entanglement with Gaussian
tates,12,13 and, of direct interest for the present paper,
V quantum cloning14 as well as QKD.15,16

. OPTICAL QUANTUM CONTINUOUS
ARIABLES
et us consider the CV that naturally appear when one
escribes a light field. In classical electromagnetism, a
ight field can be written as an oscillatory function
cos��t�+p sin��t�, where � is the angular frequency
hile x and p are the quadrature components of the field.

f cos��t� is viewed as a reference field, generally called
he local oscillator (LO), then x is the amplitude of the
007 Optical Society of America



c
p
w
p
q
q
b
c

w
t
u
s
i
f
q
p
t
o
t
r

n
d
c
c
c
s
p
p
a
v
m
c
s
m
m
b
f
c
w
e
p
t
s
s
(
p
fi

3
C
C
k
�
p
a
q
p
c

a
t
f
t
m
a
m
t
v
m
i
i

c
q
t
t
t
s
t
b
s
f
a
c
m
i

c
c
g
t
t
u
G
n
w
a
i
b

F
c
i

N. J. Cerf and P. Grangier Vol. 24, No. 2 /February 2007 /J. Opt. Soc. Am. B 325
omponent of the field that is in phase with the LO, while
is the amplitude of the component that is in quadrature
ith the LO. Clearly, x and p make a pair of CV that com-
letely characterize a single-mode optical field. When the
uantum properties of light play a role, we have to turn to
uantum optics, and the quadrature components x and p
ecome noncommuting (yet continuous) observables asso-
iated with a quantum harmonic oscillator. One has then

�x,p� = 2i, �1�

here the normalization is chosen so that the variance of
he vacuum is unity. Hence, as a result of the Heisenberg
ncertainty principle �x�p�1, x and p cannot be known
imultaneously, in contrast to the situation that prevails
n classical optics: any measurement of x deletes the in-
ormation on p and conversely. In some sense, the two
uadrature components of light behave like the usual
osition–momentum pair in quantum mechanics, hence
he notation. This suggests that we can build a whole set
f quantum informational processes where the quadra-
ure pair �x ,p� carries some continuous information (i.e.,
eal-valued data).

Although CV quantum information is conceptually less
atural than the standard quantum information para-
igm where a binary variable (a bit) is encoded into a di-
hotomic degree of freedom of a single photon (a qubit), it
omes with several advantages: (i) it is sufficient to pro-
ess simple nonclassical states of the light, known as
ingle-mode squeezed states, into linear-optics circuits to
erform a large variety of CV multipartite informational
rocesses (although more sophisticated ingredients such
s cat states are needed17 for the implementation of uni-
ersal CV quantum computing); (ii) the Bell measure-
ent, a cornerstone of quantum information processing,

an be realized deterministically with a balanced beam
plitter followed by homodyne measurement; (iii) the
easurement technique, namely, homodyne detection,
ay work at a high rate. By comparison, quantum-bit-

ased quantum information processes using photons suf-
er the following problems: (i) multipartite quantum cir-
uits require two-body interaction between quantum bits,
hich either requires often unrealistic nonlinear optical
ffects, or can be achieved via linear-optics quantum com-
uting techniques18 but at the price of a strong postselec-
ion; (ii) the Bell measurement achieved with a beam
plitter is fundamentally restricted to a probabilistic mea-
urement (it succeeds with a probability of 50% at most);
iii) the measurement technique is based on avalanche
hotodiodes, which are comparatively slower and less ef-
cient than homodyne detection.

. CONTINUOUS-VARIABLE QUANTUM
LONING
onsider for a moment the case of qubits. As is well
nown, the duality between the computational basis {�0�,

1�} and the dual basis ���0�+ �1�� /�2,1/�2��0�− �1�� /�2	
rohibits the simultaneous determination of the value of
state in both bases. This duality is at the heart of the

uantum no-cloning theorem: it is impossible to duplicate
erfectly the state of a quantum bit. Coming back to the
ase of CV, one notes that the canonical variables �x ,p�
re linked by a Fourier transform, just as the Hadamard
ransform maps the computational basis to the dual basis
or qubits. The quantum no-cloning theorem then implies
hat it is not possible to clone position states �x� and mo-
entum states �p� by the same process. By measuring x

nd preparing clones as x-localized states, one would
ake a perfect �x�-states cloner, but this cloner would

hen fail at cloning p-localized states. Obviously, the con-
erse holds, too, so we must turn to approximate cloning
achines, which achieve the best possible imperfect copy-

ng of the state that is compatible with quantum mechan-
cs.

A natural candidate for the optimal CV cloning ma-
hine is a transformation that adds the same noise to both
uadrature components. By exploiting the connection be-
ween measurement and cloning theory, one can obtain a
ight bound on this cloner from the well-known fact that
he best joint measurement of x and p for a coherent state
uffers from extra noise whose variance is equal to twice
he shot-noise unit.19 Intuitively, one of these units may
e associated with the splitting process required for mea-
uring both x and p, whereas the other unit is coming
rom the measurement process itself. Cloning the state
nd then measuring x on one clone and p on the other
lone cannot beat this optimal measurement, which
akes it understandable that the cloning process comes

tself with a price of one shot-noise unit.
Actually, it is possible to build a Gaussian cloning ma-

hine that exactly saturates this bound.14 The quantum
ircuit of this cloner consists of four CV controlled-NOT

ates preceded by a preparation stage [see Fig. 1(a)]. The
wo auxiliary input modes need to be initially prepared in
he vacuum state, and each contributes half a shot-noise
nit to the cloning noise. As a result, this cloner adds a
aussian-distributed noise to both quadrature compo-
ents x and p with a variance of one shot-noise unit,
hich implies that the cloning fidelity is equal to 2/3 for
ll coherent states. It may be realized using a phase-
nsensitive amplifier of gain 2 followed by a balanced
eam splitter20,21 [see Fig. 1(b)]. A variant of this setup

ig. 1. (Color online) Quantum cloning for CV: (a) quantum cir-
uit model and (b) a simple implementation using a phase-
nsensitive optical amplifier followed by a beam splitter.
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as been experimentally implemented recently.7 Interest-
ngly, the physical origin of the cloning noise becomes

uch more evident in the case of CV than with quantum
its: it is indeed clear from Fig. 1 that the noise affecting
he clones can be traced back to (half of) the vacuum fluc-
uations that unavoidably enter via the two auxiliary
odes of the cloner.

. CONTINUOUS-VARIABLE QUANTUM
EY DISTRIBUTION
. From Squeezed to Coherent States
he investigation of quantum cloning is of a particular
ignificance given the strong connection between quan-
um cloning and quantum key distribution. Indeed, it is
he impossibility of realizing a perfect cloning transfor-
ation that makes it possible to detect any potential

avesdropper in a quantum cryptographic scheme. More
pecifically, the use of an optimal quantum cloner gener-
lly makes it possible to derive a tight upper bound on the
nformation acquired by the potential eavesdropper. This
onnection provides a strong incentive to devise QKD
chemes that are linked to the quantum cloner of Fig. 1
nd thus are specifically designed for CVs.
Let us show how to exploit this impossibility to per-

ectly clone the x and p states by turning it into a problem
or the eavesdropper (Eve). The first proposal for CV-QKD
elying on a continuous modulation of key carriers to-
ether with homodyne detection was made in Ref. 15 and
ndependently in Ref. 22 (this latter protocol was demon-
trated to be unconditionally secure). This protocol, which
an be viewed as the direct continuous analogue of BB84,
equires squeezed states of light (in Ref. 23 an earlier
B84-like protocol using homodyne detection had been
roposed, but it remained intrinsically binary). In the
rotocol of Ref. 15 the sender (Alice) chooses to encode a
aussian value into the x displacement of an x-squeezed

tate or similarly for the p quadrature. The squeezing pa-
ameter and the modulation variance are chosen in such a
ay that these two mixtures are indistinguishable and

orrespond to a thermal state. Then the receiver (Bob)
easures one of the two quadratures by homodyne detec-

ion and publicly discloses whether x or p was measured.
f the encoded and measured quadratures coincide, then
lice and Bob know that they share correlated Gaussian
ata, from which they can distill a secret key by using ap-
ropriate techniques (otherwise they simply discard their
ata). This protocol was shown to be secure against
aussian individual attacks (defined in Subsection 4.C),
rovided that the squeezing parameter is nonzero. How-
ver, it has not been implemented as such because the
eed for squeezed states makes it rather impractical. Sev-
ral other groups have proposed CV-QKD schemes based
n Einstein–Podolsky–Rosen-like correlations.24–27 Al-
hough some preliminary implementations have been car-
ied out,28,29 this approach is presently not mature
nough for practical QKD purposes.

Important progress was made in Ref. 16 in which a
oherent-state CV-QKD protocol was proposed, building
pon the above squeezed-state protocol. The break-
hrough here was to explicitly establish a secure protocol
sing states of light that can be easily generated with a
aser. In this protocol, Alice modulates both x and p
uadratures of a coherent state with a bivariate Gaussian
istribution. Thus, she sends the same thermal state as
efore, but it is now realized as a mixture of coherent
tates. Bob again measures one of the two quadratures
nd publicly discloses which one, so that the correspond-
ng quadrature is kept by Alice to make a correlated pair
the other quadrature is simply ignored). The security of
he protocol against individual Gaussian attacks (defined
n Subsection 4.C) was proven by using the concept of
quivalent noise referred to the input,8 which is common
n electronics and has been used previously in the context
f quantum nondemolition measurements in optics. The
ecurity criterion is then simple: the equivalent noise
ariance N of the transmission line, evaluated at the line
nput, cannot be larger than one shot-noise unit:

N � 1. �2�

his condition is actually equivalent to the limit on CV
uantum cloning; that is, the best attack (if the channel is
ossless) is simply the optimal Gaussian cloning machine
hat is depicted in Fig. 1.

An important observation is that the equivalent noise
ariance can be split into two different contributions:

N =
1 − T

T
+ �, �3�

here �1−T� /T corresponds to the vacuum noise (referred
o the input) due to the losses in the line of transmission
�1 and � is the so-called excess noise, which may be
ue, for instance, to spontaneous emission from an in-line
mplifier. The security criterion N�1 can then be equiva-
ently written as ��2−1/T or T�1/ �2+��. In the best
ossible case of a lossy but noiseless line, security thus re-
uires that T�1/2; that is, more than half the intensity
as to reach the receiver. This limit, known as the 3 dB

oss limit, was first thought to be generic to CV-QKD.

. Beating the 3 dB Loss Limit
t was realized, however, that this limit is protocol depen-
ent and can be beaten just like in photon-counting QKD,
here no loss limit applies because only the photons that
re received by Bob are taken into account. The technique
f reverse reconciliation30 was shown to be applicable to
Vs, so that the key distribution remains secure for any
alue of the line transmission.8 To achieve this, the secret
ey must be made out of the (noisy) data received by Bob
nstead of the data sent by Alice. Since it is harder for Eve
o infer Bob’s errors than to guess Alice’s data, this re-
erse protocol provides a definite informational advan-
age to Alice and Bob.

An alternative technique proposed at the same time to
eat the 3 dB loss limit is to carry out a postselection by
utting some threshold on Bob’s data.31–34 In this type of
rotocol, some sort of discretization of the states prepared
y the sender is involved, followed by a state discrimina-
ion and postselection procedure by the receiver. Although
hese protocols seem to be promising in terms of tolerable
osses and excess noise,35–40 their security has unfortu-
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ately not been firmly established because the best eaves-
ropping strategy is still unknown (see also Section 6).
Another fully continuous QKD protocol has been pro-

osed in Refs. 41 and 42, in which Alice sends the same
ixture of coherent states as in Ref. 16, but Bob mea-

ures both quadratures (with a beam splitter) instead of
hoosing one quadrature. This protocol has the advantage
hat Bob does not need to generate a random bit to choose

basis. An experimental implementation was presented
n Ref. 43, but the quoted key rates were based on a less
eneral security proof, restricted to beam-splitting at-
acks (�=0 in our notation). Other schemes, using coher-
nt states but related to quantum encryption rather than
KD, have also been introduced.44

. Classification of Attacks
et us start by recalling the hierarchy of attacks against
KD that is generally adopted in the literature and that
e adapt here to CV-QKD.

• Individual attacks. Eve can couple each pulse with an
ndividual ancilla and store the resulting state of the an-
illa in a quantum memory until Bob reveals his measure-
ent basis. She then measures each ancilla in the appro-

riate basis and exploits here data classically. Some
estricted classes of individual attacks are also consid-
red:

(i) Individual Gaussian attacks. Eve can perform any
ndividual Gaussian operation; that is, she can use
queezing, entanglement, amplifiers, beam-splitting, etc.

(ii) Beam-splitting attacks without added noise ��
0�. Here squeezing, entanglement, amplifiers, intercept–
esend attacks are forbidden. Though this case has been
ften considered in the literature, it is a restrictive class
f attacks, based on the so-called no-excess noise hypoth-
sis. It corresponds to Eve simulating a lossy but noise-
ess line, which is equivalent to an errorless line in
hoton-counting QKD.
• Collective attacks. Eve can again couple each pulse

ith an individual ancilla and store the state of a long
lock of ancillae in a quantum memory until Bob reveals
is measurement basis and performs error correction and
rivacy amplification for the entire block. Then she mea-
ures coherently all ancillae (with a quantum computer)
n order to optimize her information on the block.

• Coherent attacks. Eve can couple a pre-entangled
ultipulse ancilla with all pulses exchanged by Alice and
ob to make the key and store the state of the ancilla in a
igh-dimensional quantum memory until Bob reveals his
easurement basis for the entire key and performs error

orrection and privacy amplification. She then measures
oherently the ancilla (with a quantum computer) in or-
er to optimize her information on the key. This should be
he most general (and most practically infeasible) attack.
t is often conjectured that coherent attacks are not really
etter than collective ones.

Note that collective or coherent attacks can be specified
s finite size, which means that Alice and Bob are able to
classically) process blocks that are much larger than
hose Eve can process (in her quantum computer). Finite-
ize security with typical blocks with size of 105 bits for
lice and Bob is usually considered reliable, although not
nconditional.

. Secret Rates Achieved by the Gaussian-modulated
oherent-State Protocol
ere we give the secret bit rates that are obtained with

he CV-QKD protocol based on Gaussian-modulated co-
erent states and reverse reconciliation, as described in
efs. 8 and 45. Alice sends Bob a train of coherent states

x+ ip� where the quadratures �x ,p� are randomly chosen
rom a bivariate Gaussian distribution with variance VA.
ob randomly measures either x or p and publicly an-
ounces his choice. A binary secret key is then extracted
rom the correlated continuous data by reverse reconcili-
tion: Bob sends Alice some parity bits on a classical (au-
henticated) side channel, so that she can correct her data
o match Bob’s data. For consistency, this reconciliation
rotocol must be one way (from Bob to Alice).
The processing of the coherent states sent by Alice in

he transmission channel can be described in the follow-
ng way: its amplitude is multiplied by �T, where T�1 is
he channel transmission, while its noise variance (nor-
alized to the shot-noise level) is increased to �1+T�� at

he output, where � is the so-called excess noise referred
o the input as used in all formulas below. We assume
hat Bob’s homodyne detector, with limited efficiency �
1 and electronic noise vel, deteriorates Bob’s reception

ut does not contribute to Eve’s information (so-called re-
listic mode8,45). Denoting by VA the variance of Alice’s
odulation in shot-noise units, we can write the informa-

ion rates that are relevant for individual Gaussian at-
acks as

IAB =
1

2
log2
1 +

VA

1 + 	tot
� , �4�

IBE =
1

2
log2�T2�1 + 	tot + VA�
	line +

1

1 + VA
�

1 + T	hom
	line +
1

1 + VA
� 
 . �5�

he total noise 	tot (referred to the input) can be split as
tot=	line+	hom/T, where 	line= �1−T� /T+� is the noise
ue to line losses and excess noise during the transmis-
ion and 	hom= �1−�� /�+vel /� is the noise from Bob’s ho-
odyne detection. All the quantities appearing in these

ormulas are known or can be measured by Alice and Bob.
Using Eqs. (4) and (5) and the Csiszar–Körner theo-

em, we conclude that the raw secret key rate

Kraw = IAB − IBE �6�

an be attained in reverse reconciliation. This rate was
roven to be secure against Gaussian individual
ttacks8,30 and finite-size non-Gaussian attacks.46 For
ollective attacks, the value of Eve’s information, given
ere as the Shannon mutual information IBE, has to
e changed into a Holevo quantity 	BE (see details in Sec-
ion 6).
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An essential ingredient to make CV-QKD protocols
ractical lies in the ability to efficiently extract common
ecret bits on Alice’s and Bob’s sides from the correlated
trings of continuous data provided by the quantum pro-
ocol and simultaneously to correct errors without reveal-
ng too much information to Eve. A method for achieving
his goal, named sliced reconciliation, was proposed in
ef. 47. By alternating bit-extraction and error-correction
teps over successive bit slices, it is possible to extract a
umber of common bits that reaches typically 80% to 85%
f Shannon’s limit. Thus, the above value of Kraw is not
eally relevant in practice, as one must take into account
he efficiency 
 of the reconciliation algorithm with re-
pect to Shannon’s limit. The practical net secret key rate
s then

Knet = 
IAB − IBE, �7�

here the value of 
 depends on the quality of the recon-
iliation algorithm. It was recently shown that this qual-
ty can be significantly improved by using low-density
arity-check (LDPC) codes.48 A typical value obtained us-
ng LDPC codes is 
=0.87, but further optimization is cer-
ainly possible. Let us note that LDPC codes are fully one-
ay protocols (as required by reverse reconciliation) and

hat almost all the computing effort takes place at Alice’s
ite; i.e., the costs of syndrome computation and trans-
ission by Bob are negligible.
In practice, Alice and Bob must carefully evaluate T

nd � in order to infer the optimal attack Eve can perform
nd therefore to upper bound IBE. This is done by statis-
ical evaluation over a random subset of the raw data.45

his finite set size introduces statistical fluctuations that
an alter the excess noise estimate, and security margins
ave to be considered when information rates are com-
uted. Optimizing the channel evaluation without sacri-
cing too many secret bits is a generic question in QKD,
hich is not specific to CV implementations and deserves

urther attention.49

ig. 2. First experimental implementation of CV-QKD using a m
I, optical isolator; � /2, half-wave plate; AOM, acousto-optic m
ensity; EOM, electro-optic amplitude modulator; PBS, polarizer
iezoelectric transducer. Focal lengths are given in millimeters.
. EXPERIMENTAL DEMONSTRATIONS
. Proof-of-Principle Experiments
tabletop experimental demonstration of the Gaussian-
odulated coherent-state protocol with reverse reconcili-

tion was reported in Ref. 8 (see Fig. 2). A significant ad-
antage of this setup is that it does not need sophisticated
evices such as single-photon sources or counters. It uses
laser diode at 780 nm to generate pulses at a repetition

ate of 800 kHz. These coherent light pulses are modu-
ated in amplitude and phase by Alice and then measured
y Bob with homodyne detection. Finally, the resulting
ata are processed, together with Alice’s data, by an ap-
ropriate sliced (multilevel) reconciliation algorithm.47

his method was applied to the experimental data ob-
ained with a variance ranging between 25 and 40 shot-
oise units. The obtained net secret key bit rate was
.7 Mbit/s for a lossless line and 75 kbit/s for a line with
3.1 dB loss (these rates include privacy amplification

ut not the computing time as the calculations were actu-
lly carried out off-line). Given that this experiment was a
rst demonstration with off-the-shelf components and no
ptimization for speed, these rates are quite significant
hen compared with photon-counting QKD and open in-

eresting perspectives for coherent-state CV-QKD.
Let us summarize here the pros and cons of such an

mplementation of CV-QKD, by comparison with photon-
ounting-based QKD.

• Pros
—The coherent states are produced and measured

nconditionally, that is, at each repetition period. This
eature is hard to obtain for single-photon sources and de-
ectors. Of course, single-photon protocols may be run
ith weak coherent pulses instead, but in the standard

ecurity approach the number of photons per pulse must
e much smaller than 1 (note that new protocols involv-
ng, e.g., decoy states50 can increase the average photon
umber per pulse to around 1). In 1550 nm experiments,

ed coherent-state protocol.8 The operating wavelength is 780 nm.
or; MF, polarization-maintaining single-mode fiber; OD, optical
eam splitter; R and T, reflection transmission coefficients; PZT,
odulat
odulat
; BS, b
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he limited quantum efficiency of the detectors also rep-
esents an important limitation of single-photon proto-
ols. A possible solution to this may be to turn to 800 nm
xperiments, e.g., by using upconversion detectors.51,52

ut the high efficiency of homodyne detection, as used in
V-QKD, remains an advantage.

—Homodyne detection can, in principle, reach high
it rates. In contrast, single-photon detectors, which are
ased on avalanche photodiodes, are more limited in fre-
uency, largely owing to afterpulsing. Again, recent devel-
pments in photon-counting QKD have tried to fight this
ffect and succeeded in reaching clock rates in the giga-
ertz range.53,54 However, if its inherent data processing
ottleneck can be overcome, CV-QKD has the potential of
nhancing the repetition rates by orders of magnitude.

—CV-QKD requires only off-the-shelf telecom compo-
ents and well-known techniques of coherent optical tele-
ommunication, which have been extensively studied in
he 1980’s. It is then relatively simple to reach secret key
ates in the megabits per second range for low transmis-
ion losses. Specific components (mostly dedicated elec-
ronics) should allow one to reach much higher rates,
ypically in the 100 Mbits/s range.

• Cons
—Although it does not require any specific compo-

ent development, a homodyne detector is a rather so-
histicated device that must be implemented with care to
arrant the claimed security.

—The inherent presence of vacuum noise, even for a
erfect line without eavesdropping, makes it such that
owerful error-correction techniques are needed for an ef-
cient key extraction. Physically, this is because the ho-
odyne measurement of vacuum gives a Gaussian-

istributed noise (the shot noise), while, in principle,
acuum never gives rise to a click with an ideal single-
hoton detector.

—A CV-QKD system is more vulnerable to channel
osses. This is a consequence of the previous point: it is
ecessary to eliminate a larger amount of noise (intrinsic
acuum noise as well as loss-induced additional vacuum
oise), which requires more computing effort than for
hoton-counting-based QKD.

It is worthwhile discussing a bit further this last issue,
amely, that line losses create errors (due to vacuum
oise) in CV-QKD, while they do not in photon-counting-
ased QKD (because the photon is simply not detected).
irst, let us stress again that this loss-induced noise does
ot limit the range: CV-QKD is, in principle, secure re-
ardless of the line loss, just like photon-counting-based
KD in the absence of dark counts. However, this loss-

nduced noise must be actively suppressed in CV-QKD by
lassical postprocessing of the noisy data, whereas this is
one “for free” in photon-counting-based QKD by the
hysics of the avalanche photodiode. CV-QKD is therefore
ore sensitive to the line loss because it puts a stringent

onstraint on the reconciliation procedure. It is also im-
ortant to emphasize that the CV-QKD analogue of errors
n photon-counting-based QKD [i.e., of a nonzero quan-
um bit error rate (QBER)] is the excess noise � and not
he vacuum noise �1−T� /T [see Eq. (3)]. As a consequence,
ecurity studies of CV-QKD must take the excess noise �
nto account, just as security studies of photon-counting
KD must be based on the QBER.

. Experiments Using Fiber Transmission
he tabletop experiment shown in Fig. 2 can be trans-
osed to telecom wavelength by using only standard tele-
om components, which makes it possible to transmit the
ight signals in an optical fiber, making the setup ready
or field applications. This direction has been followed by
he Institut d’Optique, in collaboration with Thales, and
he first results have been presented in Ref. 45. A similar
etup has been implemented at the University of
eneva.55 The present setup of Ref. 45, depicted in Fig. 3,

s a fiber-based system working at a wavelength of
1550 nm. The local oscillator (LO) for Bob’s homodyne

etection is transmitted in the same fiber as the signal, by
sing time multiplexing. The pulse rate is �1 MHz, and
he pulse duration is 100 ns. These values are essentially
imited by the technology of the personal computer–
riven data acquisition system, for which the repetition
ates cannot exceed a few megahertz. Repetition rates in
he 100 MHz range would be compatible with the modu-
ation and detection systems but would require the use of
edicated electronics for data acquisition, processing, and
torage. The present efficiency of the homodyne detection
s around 60%, which can be decomposed into 80% for the
elected InGaAs photodiodes and 75% for the connectors
nd optical components, including a passive demulti-
lexer. The noise of the modulators is measured to be
ypically around 0.05 shot-noise units. This includes the
oise due to the three modulators (Gaussian modulation
t Alice’s station and binary modulation at Bob’s station),
hase noise, and electronic noise.
Typical secret key rates expected from this setup are

isplayed on Fig. 4. The curves are drawn for VA=12 and
or noise levels measured on the experiment (�=0.025, �
0.6, vel=0.05). The net secret key rate Knet=
IAB−IBE is
oftware dependent and is typically a few tens of kilobits
er second as shown on Fig. 4, depending on the value of
(one currently obtains 
�0.87 with LDPC codes). In the

resent implementation, the rate is further reduced down
o a few kilobits per second because of the limited speed of
he computer, which is not able to process the data as fast
s the data come. These two last points, which rely basi-
ally on classical LDPC (or turbo) codes, are presently un-
er optimization. These results clearly illustrate that CV-
KD trades off some hardware difficulty (getting good
hoton counters) against some software difficulty (getting
ast and efficient multilevel error-correcting codes).

. STATUS OF THE SECURITY PROOFS
. Individual Gaussian Attacks and Shannon Formula
he first security proof on direct15,16 and reverse8,30 rec-
nciliation protocols considered only individual Gaussian
ttacks. This certainly does not mean easy attacks be-
ause such attacks already imply that Eve must have a
ong-lived quantum memory for storing light states and
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lso must produce pairs of light beams with arbitrary en-
anglement. Nevertheless, such attacks are not the most
eneral ones, and, more recently, several new security
roofs of coherent-state CV-QKD have appeared (see Sub-
ections 6.B and 6.C).

An important first step is to realize that these protocols
re actually equivalent to entangled-based protocols,
here Alice measures simultaneously both quadratures
n her entangled beam so to prepare a Gaussian-
odulated coherent state at Bob’s side.56 This virtual en-

anglement, also known for photon-counting QKD, is use-
ul for establishing security proofs. It also implies that
here is an entanglement-breaking limit in CV
rotocols,35–40 corresponding to an intercept-and-resend
ttack, which gives ��2. This means that when the ex-
ess noise exceeds two shot-noise units (referred to the in-
ut), no secure key distribution is possible.
More restrictive security limits can actually be estab-

ished. The underlying proofs are based upon inequalities
or added noise and conditional variances, similar to the
nes introduced for QND measurements,57 which are
hen plugged into Shannon’s formula for a Gaussian
hannel. In principle, the key extraction (from the con-
inuous data) should be performed up to the Shannon
imit for a Gaussian channel, in which case the security is
nsured for arbitrary high losses. Otherwise, the secret
ey rate decreases and vanishes at some finite loss, even
f some secret bits are in principle available. The result is
hat, for an entanglement-based protocol using reverse
econciliation, the security bound becomes

� = 1. �8�

or a coherent-state protocol, the bound is

ig. 3. (Color online) CV-QKD platform (Institut d’Optique a
550 nm, and the setup uses only standard optical telecommunica
hase modulators, p-i-n photodiodes). The transmission channel
� � 2 − 1/T �9�

or direct reconciliation (as already seen in Subsection
.A) and

� � 1/2 − 1/T + �1/T2 + 1/4 �10�

or reverse reconciliation, provided that the variance of
lice’s modulation is large enough. The relation between

he excess noise � and the maximum distance for secure
KD is shown in Fig. 5, assuming fiber losses of
.2 dB/km. Curve (a) is the entanglement-breaking at-
ack ��=2�, curve (b) is obtained with the entangled-beam
everse reconciliation protocol ��=1�, while the last two
urves correspond to coherent-state protocols using either
irect (c) or reverse (d) reconciliation.

. Non-Gaussian Attacks and Entropic Heisenberg
elations
n important achievement in the quest for security proofs

s the demonstration, based on replacing the QND-type
nequalities by entropic Heisenberg relations, that the in-
ividual Gaussian attacks are actually the best possible
ttacks against reverse reconciliation protocols.46 This
roof covers all non-Gaussian attacks and even collective
ttacks, provided that their size remains smaller than the
ey size and provided that Eve does not delay her mea-
urement until after the key distillation procedure. It
eans that the above limits, which were derived for indi-

idual Gaussian attacks, are actually valid in a much
ore general framework. It is worth emphasizing that,

ccording to this proof, Alice and Bob should use a Gauss-
an modulation for exchanging data because it maximizes
he information flow (for a given modulation variance) in

ales Research and Technology). The operating wavelength is
omponents (distributed feedback laser, integrated amplitude and
ently a coil of 25 km standard optical fiber.
nd Th
tion c
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he Gaussian additive-noise channel that is effected by
ve. In that respect, using any kind of discrete modula-

ion of the signal will be less efficient, a fact that further
ustifies the Gaussian encoding scheme.

. Collective and Coherent Attacks
ore recent progress has also been made in the direction

f finding unconditional security proofs for coherent-state
rotocols. The first attempt consisted of extending the un-
onditional security proof of the squeezed-state protocol of
ef. 22, which itself is an extension of the Shor–Preskill
roof for BB84. In short, the idea is to show that squeez-
ng, which is required in the proof of Ref. 22, is used only
o evaluate the channel’s error rate and can actually be
eplaced by a channel tomography procedure using only
oherent states.58 This approach shows that the uncondi-
ional security of Gaussian-modulated coherent-state pro-
ocols is achievable, provided that the number of bits to
acrifice is specifically evaluated.59 However, this evalua-
ion requires a huge precision in the channel tomography,
hich currently makes this approach impractical. Finally,

et us note that this proof yields the same theoretical rate
s the one from the information-theoretic proofs pre-
ented below, when Eve is restricted to Gaussian collec-
ive attacks (which are actually optimal, see below).

Still another approach to the security consisted of
dapting the concept of advantage distillation to an ap-
ropriately designed CV-QKD protocol, different from the
nes considered above.60 It was shown that the security
hreshold of this protocol against individual Gaussian at-
acks is identical to the channel entanglement-breaking
imit [curve (a) on Fig. 5], and a quantitative threshold
gainst collective attacks could be derived. Let us note
hat present advantage-distillation protocols yield a posi-
ive secret rate in regions where the protocols of Refs. 15
nd 16 do not work any more, but they are only existence
roofs and do not provide an explicit value of the secret
ey rate.
A more practical approach is to use general

nformation-theoretic arguments in order to address the
ecurity with respect to collective Gaussian attacks.61,62

n short, the idea is to apply the Devetak–Winter63 secu-
ity proof (where the Shannon information is replaced by

ig. 4. (Color online) Typical secret key rates expected from the
ber CV-QKD setup, assuming a 1 MHz pulse rate. Dashed
urves show the rate Knet=
IAB−IBE (secure against arbitrary in-
ividual attacks) for 
=1 (upper), 
=0.93 (middle), 
=0.87
lower curve). Solid curves show the rate Hnet=
IAB−	BE (secure
gainst arbitrary collective attacks; see Subsection 6.C) for the
ame values of 
.
he Holevo quantity) to the CV protocols. Eve is now au-
horized to make a delayed measurement, after the key
istillation process, but she is restricted to use Gaussian
ttacks. Interestingly, up to some apparently minor re-
trictions, the previous results on individual attacks can
e generalized to collective attacks. In particular, the loss
ehavior of direct reconciliation (3 dB limit) and reverse
econciliation (no loss limit) is recovered. Interestingly, al-
hough it may look similar to other protocols,15,16 the pro-
ocol in which Bob measures both quadratures41,42 hap-
ens to be slightly less secure against collective attacks.61

The latest development in the security analysis of CV-
KD is the proof that the above-derived bounds for collec-

ive attacks61,62 are actually much more general than ex-
ected because Gaussian attacks are optimal against all
ollective attacks.64,65 This further step on the way to un-
onditional security can be summarized simply and rep-
esents the current state of the art: to warrant security
gainst collective (Gaussian or non-Gaussian) attacks, it
s enough to replace the previous Shannon secret bit rates

raw=IAB−IBE or Knet=
IAB−IBE by Holevo secret bit
ates, Hraw=IAB−	BE or Hnet=
IAB−	BE. Here, 	BE is the
olevo quantity for a Gaussian state, which can be com-
uted analytically from the von Neumann entropy of a
hermal state. In practice, the values of the Holevo rates
re only slightly smaller than the Shannon rates (see Fig.
), so that the secret key bit rates are not reduced much
hile they become secure in a much stronger sense.
For fully coherent attacks, it can be concluded that the

ecurity can most probably be warranted with some re-
trictions, e.g., on channel transmission. This is at
resent still a conjecture, but it can be made plausible
iven the recent result that, for BB84, coherent attacks do
ot outperform collective attacks.49 This work is still in
rogress, but it seems so far that the reverse-

ig. 5. (Color online) Two different views of the tolerable excess
oise as a function of the distance. In the upper panel we plot the
aximum value of the excess noise � referred to the input (as

sed in the present paper and in other publications by our
roups), and in the lower panel we plot the maximum value of
he product �T effectively measured by Bob (as used, e.g., in Refs.
5–40). The various curves refer to (a) entanglement-breaking
imit, (b) two-mode squeezed states and reverse reconciliation, (c)
oherent states and direct reconciliation, and (d) coherent states
nd reverse reconciliation.
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econciliation coherent-state protocol with Gaussian
odulation and homodyne measurement is remarkably

esistant against more and more powerful attacks.

. CONCLUSION
oherent-state CV-QKD can be implemented by using
nly standard optical telecommunication equipment,
ithout the need for dedicated photon sources or single-
hoton counters. Let us emphasize again that, in prin-
iple, secure CV-QKD can be achieved for arbitrarily high
hannel losses. The theoretical long-distance secret key
it rate of the reverse-reconciliation coherent-state
aussian-modulated protocol (with ideal error correction)

s roughly equal to that of an ideal BB84 (with a perfect
ingle-photon source and detector). A basic lesson we can
raw from reverse reconciliation is that the errors due to
ine losses can be eliminated, in principle, to the same ex-
ent as the line losses do not compromise the security of
hoton-counting protocols. In some sense, the role of er-
ors in photon-counting QKD is played by the excess noise
n CV-QKD, and both of them lead to a fundamental de-
rease in the secret bit rate. As illustrated in Fig. 5, the
aximum tolerable excess noise for coherent-state CV-
KD decreases with the distance, which is what eventu-
lly puts a limit on the achievable security over long dis-
ances.

The first experimental demonstration,8 as reported on
n this paper, was a tabletop proof-of-principle experiment
nly. Several experiments have since then been completed
or are under way) to characterize such systems in the
elecom domain. As with photon-counting QKD, several
ptions are available: the pulses may be sent one way in
n optical fiber using a time-multiplexing technique,45

ay be retroreflected using Faraday mirrors,55 or may be
ent in free space by using a polarization variant of the
asic scheme.32 These various possibilities are presently
nvestigated in several laboratories in the framework of
he European Integrated Project on the Development of a
lobal Network for Secure Communication Based on
uantum Cryptography66 (SECOQC).
Ultimately, losses will be a limitation for CV-QKD pro-

ocols for practical reasons, just as they are for photon-
ounting protocols. One may then consider building quan-
um repeaters, based on CV entanglement distillation
rocedures. A first step in this direction is to learn how to
anipulate non-Gaussian states, which are a required in-

redient for CV entanglement distillation. This was re-
ently achieved both for light fields67,68 and for atomic
ariables.69 All these recent developments, on both the
heoretical and the experimental sides, clearly indicate
hat quantum CV may play a key role in the future of
KD.
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