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We present a protocol to simulate the quantum correlations of an arbitrary bipartite state, when the parties
perform a measurement according to two traceless binary observables. We show that log2!d" bits of classical
communication is enough on average, where d is the dimension of both systems. To obtain this result, we use
the sampling approach for simulating the quantum correlations.
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I. INTRODUCTION

In 1964 John Bell showed that the correlations exhibited
by the EPR gendanken experiment #1,2$ could not be repro-
duced by a so-called local hidden variable model, that is, a
model where the parties share an infinite amount of locally
created hidden variables. This nonlocal aspect is one of the
strangest properties of quantum physics, and understanding
this notion remains an important problem. Recently, quantum
information processing has provided a new point of view to
understand quantum nonlocality. In particular, the framework
of communication complexity has provided tools to study
nonlocality. For example, two parties, whom we call Alice
and Bob, cannot reproduce quantum correlations if they
share only hidden random variables !shared randomness",
but in some cases, if they are allowed to use some additional
resources, it becomes possible for them to reproduce the
quantum correlations. It is precisely this amount of addi-
tional resources which we consider here; they allow us to
quantify quantum nonlocality.

The problem of reproducing the statistics of projective
measurements on the singlet has been widely studied, with
communication as the additional resource. Maudlin #3$ pre-
sented a protocol in the case of measurements in the real
plane and proved an average-case communication upper
bound of 1.17 bits, and Brassard, Cleve, and Tapp gave a
protocol with a worst-case communication upper bound of
8 bits, for arbitrary projective measurements #4$. Steiner, in-
dependently of Maudlin, gave a protocol for projective mea-
surements in the real plane with an average-case upper
bound on communication of 1.48 bits, and Cerf, Gisin, and
Massar #5$ proved that for an arbitrary projective measure-
ments, 1.19 bits of communication sufficed on average. Re-
cently, Toner and Bacon have shown that one bit of commu-
nication is always enough to reproduce the quantum
correlations for arbitrary projective measurements on the sin-
glet state #6$.

Some other resources have been used to simulate quantum
correlations resulting from projective measurements on the
singlet state. These include post-selection #7$ and nonlocal
boxes #8$. In 2005, we have shown that simulating these
quantum correlations could be reduced to a sampling prob-
lem, from which we derived many of the above mentioned
protocols, in a unified framework #9$.

Nevertheless, these results address the simplest scenario,
that is, simulating the correlations resulting from measure-
ments on the singlet state !mostly for projective measure-
ments, with a few extensions to POVMs". There are few
results about nonmaximally entangled pairs, multiparty
states, higher dimensional states, or more general measure-
ments. One significant result in this direction is a protocol
from Massar et al. able to reproduce the correlations of ar-
bitrary measurements on any entangled pair of d-dimensional
states !qudits" using O!d log2 d" bits of communication but
no local hidden variables #10$.

In this paper, we use the sampling approach developed in
Ref. #9$ and generalize it to the case of a bipartite pair of
arbitrary-dimension states !qudits". We study the case where
the parties make a restricted type of measurement with only
two opposite outcomes %1,−1&, that we call traceless binary
observable, or TBO.

Furthermore we impose no constraint on the bipartite
!pure" state whose correlations the parties wish to simulate; it
could be maximally entangled or non-maximally entangled.
For an arbitrary bipartite qudit pair, we show that log2!d" bits
of communication on average are enough to simulate the
joint correlations of the outcomes !where the joint correla-
tion is defined as the expectation value of the product of
Alice’s and Bob’s outcome". In the special case of maximally
entangled qudit pairs, our protocol also reproduces the mar-
ginal probabilities, and therefore the full probability distribu-
tion.

We will begin by describing the quantum correlations in
arbitrary dimensions that we want to simulate classically.
Then, using the sampling approach, we will present a gener-
alization of the local biased random variable model for arbi-
trary dimensions, and present a classical protocol which uses
log2!d" bits of communication to simulate the joint quantum
correlations of an arbitrary bipartite qudit pair.

II. THE QUANTUM CORRELATIONS

In this section we describe the system that we want to
simulate classically using some communication. Two parties,
Alice and Bob, share an arbitrary bipartite qudit pair. They
each perform a measurement on their part, where the mea-
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surements are restricted to what we call traceless binary ob-
servables, described below.

We describe the measurements using observables instead
of measurement operators. We restrict the measurements to
be such that only two outcomes are possible, and these out-
comes are equally likely when the measurement is applied to
a maximally mixed state.

Definition 1 (traceless binary observable). An observable
Â is called a traceless binary observable !TBO" if the observ-
able is traceless #i.e., Tr!Â"=0$ and the outputs of the mea-
surement are two opposite values, more precisely Â2=1.

We describe the bipartite quantum correlations on qudits
obtained when a TBO is applied to each part of the state.

Definition 2 (qudits TBO experiment). Two parties, Alice
and Bob, share an arbitrary bipartite qudit pair, '!(!Hd

! Hd. Alice and Bob measure their part of the state accord-
ing to their input, describing a TBO pair Â, B̂. They then
obtain measurement outcomes A! %1,−1& and B! %1,−1&,
respectively.

We will use the following notation throughout the paper.
Let Od denote the space of TBOs over Hd. We use Sn to
denote the unit hypersphere in Rn+1. !For example, S2 is the
unit sphere in R3." We will also use Sn to denote the surface
area of Sn.

Tsirelson showed that there is a function that maps TBOs
over the Hilbert space !matrix operators" to points on the
surface of a hypersphere, as follows #11$. We use the follow-
ing formulation of Tsirelson’s theorem #12$.

Theorem 3 (Tsirelson). For any d"0, and '!(!Hd ! Hd,
there is a function # :Od→S2d2−1 such that the following
holds. If Â and B̂ is a TBO pair over Hd, and A, B are the
outcomes of measuring '!( according to Â and B̂, then

E!AB'Â ! B̂" = #!Â" · #!B̂" .

In the remainder of the paper, we use this theorem
implicitly, and use the notation a" =#!Â" and b" =#!B̂", to de-
note Alice’s and Bob’s inputs !or measurement", respectively.
Furthermore, we call E!AB ' Â ! B̂" the joint quantum corre-
lations.

III. THE CLASSICAL PROTOCOL

We present a protocol to simulate bipartite qudit joint
quantum correlations as defined in the previous section,
where the state '!( is an arbitrary state in Hd ! Hd. First, we
generalize the sampling method introduced in Ref. #9$.

A. Local biased random variable model

As in Ref. #9$, we consider a model where Alice and Bob
share random variables that can depend on Alice’s and/or
Bob’s input, which we call a local biased random variable
model. We generalize the sampling theorem in Ref. #9$ to
arbitrary bipartite qudit states, with TBO measurements. We
start with a technical lemma to compute the normalization
factor of the biased distribution.

Lemma 4. )Sn
'b" ·$" s'd$" s= 2

nSn−1.

Proof. Since d$" s=d%n sin!%n−1"d%n−1 sin2!%n−2"
&d%n−2 . . . sinn−1!%2"d%2 sinn−1!%1"d%1,

*
Sn

'b" · $" s'd$" s = *
0

2'

d%n*
0

'

sin!%n−1"d%n−1*
0

'

sin2!%n−2"

&d%n−2 ¯ *
0

'

sinn−2!%2"d%2*
0

'

sinn−1!%1"

&'cos!%1"'d%1 = Sn−12*
0

'/2

sinn−1!%1"cos!%1"

&d%1 = 2Sn−1#sinn!%1"/n$0
'/2 =

2
n
Sn−1.

"
We will write Rn= 2

nSn−1 to simplify the notation.
Theorem 5 (generalized sampling theorem). Let a" and b"

!Sn be Alice’s and Bob’s inputs. If Alice and Bob share a
random variable $" s!Sn distributed according to a biased dis-
tribution with probability density

(!$" s'a" ,b"" = (a"!$" s" =
'a" · $" s'

Rn
,

then they can simulate the joint correlations

E!AB'a" ,b"" = a" · b" ,

with marginal expectations

E!A'a" ,b"" = E!B'a" ,b"" = 0.

This says that in this model, Alice and Bob can simulate
these correlations without any further resource, that is, simu-
lating the bipartite two output joint quantum correlations re-
duces to distributed sampling from the distribution (a".

Proof. Consider the protocol where Alice and Bob set
their respective outputs to A!a" ,$" s"=sgn!a" ·$" s" and B!b" ,$" s"
=sgn!b" ·$" s", where sgn!x"=1 for x)0 and sgn!x"=−1 for
x*0 !x!R". Then the joint expectation E!AB 'a" ,b"" is given
by

E!AB'a" ,b"" = *
Sn

(a"!$" s"A!a" ,$" s"B!b" ,$" s"d$" s

=
1
Rn
*
Sn

'a" · $" s'sgn!a" · $" s"sgn!b" · $" s"d$" s

=
1
Rn
*
Sn

!a" · $" s"sgn!b" · $" s"d$" s

=
1
Rn

a" · +*
Sn

$" s sgn!b" · $" s"d$" s, .

Observe that the final integral is invariant by rotation around
b" , so it must be the case that
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*
Sn

$" s sgn!b" · $" s"d$" s = cb" , !1"

with c a real constant.
Taking the inner product of Equation !1" with b" on either

side to compute the constant, we obtain

*
Sn

b" · $" s sgn!b" · $" s"d$" s = c!b" · b"" = c .

By Lemma 4, c=Rn, therefore,

E!AB'a" ,b"" =
Rn

Rn
a" · b" = a" · b" .

Finally, we compute the marginal distributions. Using the
variable substitution $" s!=−$" s, we have

E!A'a" ,b"" = *
Sn

(a"!$" s"A!a" ,$" s"d$" s = *
Sn

(a"!− $" s!"A!a" ,− $" s!"d$" s!

= − *
Sn

(a"!$" s!"A!a" ,$" s!"d$" s!,

where we have used the facts that (a"!−$" s"=(a"!$" s" and A!a" ,
−$" s"=−A!a" ,$" s". Therefore, we have E!A 'a" ,b""=−E!A 'a" ,b"",
that is, E!A 'a" ,b""=0. The same reasoning holds for the other
marginal, so that E!B 'a" ,b""=0 as well. "

Note that we obtain E!A 'a" ,b""=E!B 'a" ,b""=0. In the case
of measurements on maximally entangled states, it is also the
case that the marginal expectations are zero. This is because
the reduced states of Alice and Bob are maximally mixed
and, for traceless binary observables, the marginal distribu-
tions are uniform, so that E!A 'a" ,b""=E!B 'a" ,b""=0. However,
for arbitrary states, our method will reproduce the joint quan-
tum correlations E!AB 'a" ,b"", but not necessarily the marginal
distributions.

B. Sampling the biased distribution: The rejection method

It now remains to show how Alice and Bob can obtain a
shared sample $" s!Sn distributed according to the biased dis-
tribution (a"!$" s"= 'a" ·$" s' /Rn, with help of shared $" uniformly
distributed on Sn, and with the additional help of communi-
cation. Using the same idea as in Refs. #9,13,14$, Alice uses
the rejection method to perform the sampling.

Theorem 6. There is a local hidden variable protocol that
simulates the joint correlations of TBO measurements on a
bipartite pair of d-dimensional states using log2!d"
+O!1" bits of communication on average.

As noted above, for arbitrary states, we reproduce the
joint correlations E!AB 'a" ,b"", and in the special case of
maximally entangled states, we reproduce the full joint dis-
tribution exactly.

Proof. By theorem 5, it suffices to give a protocol to
sample the distribution (a" on Sn for n=2d2−1 in a distributed
fashion. We show that this can be achieved with log2!d"

communication on average. We obtain a sample by applying
the rejection method #15$, using unbiased !uniform" shared
random variables.

Let U!$" " be the uniform probability density function on
Sn, that is, U!$" "=1/Sn. The protocol is as follows.

!1" Alice obtains a uniform sample $" -U
!2" She computes 'a" ·$" ', and accepts $" with the corre-

sponding probability. If she accepts, she sends Bob the itera-
tion at which this occurred.

!3" If she rejects, she starts over with a new sample $" .

We compute the probability that Alice accepts at a given
iteration !let us call this event “ok”", on average over the
choice of $" :

p!ok" = *
Sn

p!ok'$" "(!$" "d$" .

Since $" is uniformly distributed on Sn, we have (!$" "=U!$" "
=1/Sn. Moreover, we accept a given $" with probability
p!ok '$" "= 'a" ·$" ', so that

p!ok" =
1
Sn
*
Sn

'a" · $" 'd$" =
Rn

Sn
, !2"

where we have used lemma 4.
We may now compute the distribution of accepted $" ’s as

follows:

(!$" 'ok" =
(!$" "p!ok'$" "

p!ok"
=

'a" · $" '
Rn

,

which corresponds to (a" as required. This proves that the
protocol achieves its goal. It remains to show that it requires
at most O!log2!d"" bits of communication on average.

The message sent in the protocol is the iteration i at which
Alice accepts the current uniform sample. The distribution of
the messages behaves according to a Poisson distribution Pp,
that is, i is sent with probability

Pp!i" = !1 − p"i−1p ,

where p= p!ok" in our case. To compute the number of bits
sent on average, it suffices to compute the entropy of this
distribution, which we do below. From Eq. !2" and lemma 4,
we have

p!ok" =
2Sn−1

nSn
.

The surface area Sn of the hypersphere Sn is given by

Sn =
2'!n+1"/2

++n + 1
2

, ,

where + is the well known gamma function, defined as
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+!x" = *
0

,

tx−1e−tdt .

The acceptance probability is

p!ok" =
2

n.'

++n + 1
2

,
++n

2
, .

Using the fact that #16$ !Ex. 9.44"

++n + 1
2

,
++n

2
, =.n

2
+ O+ 1

.n
,

and in particular for any n)1,

1
2
.n

2
-

++n + 1
2

,
++n

2
, -.n

2
.

Therefore

. 1
2'n

- p!ok" -. 2
'n

.

The entropy of the messages is given by

H!Pp" = /
i

Pp!i"log2+ 1
Pp!i", = log2+1

p
,

+
1 − p

p
log2+ 1

1 − p
, .

So in our case, we get

H!Pp" - log2!.2'n" +
1 −. 1

2'n

. 1
2'n

log20 1

1 −. 2
'n

1
-

1
2

log2!n" + O!1" .

So, with n=2d2−1, log2!d"+O!1" bits of communication are
sufficient on average to simulate the joint quantum correla-
tions of an arbitrary bipartite qudit pair, measured according
to a TBO. "

IV. DISCUSSION AND CONCLUSION

We have shown that in the general case of bipartite qudit
pairs, we can apply the sampling approach of Ref. #9$ to
simulate the joint quantum correlations, using log2!d" bits of
communication on average. There are very few results in the
literature concerning settings that are more general than pro-
jective measurements on maximally entangled qubit pairs. In
the case of qudits, Bacon and Toner have shown how to
simulate joint quantum correlations arising from TBO mea-
surements with constant communication on average, but the
correlations are simulated approximately #17$, whereas here
we simulate the correlations exactly. Massar et al. #10$ gave
a protocol that simulates the correlations of any local mea-
surement on an arbitrary bipartite state exactly, but within a
different model, which uses communication only and no lo-
cal hidden variables.

In Ref. #9$, we considered two resources other than com-
munication: post-selection, and nonlocal boxes. In the case
of a maximally entangled qubit pair, instead of iterating the
rejection method until a suitable sample was selected, it
could be proven that if the first sample failed the selection,
then the second sample could be used. In this case, one bit of
communication sufficed for Alice to communicate to Bob
which sample to use, and the method could also be adapted
to obtain a protocol that makes a single use of a nonlocal
box.

It turns out that this so-called “choice method” does not
extend directly to higher dimensions. Therefore, we do not
obtain a worst case analysis in this more general setting, nor
do we get a protocol using nonlocal boxes.

On the other hand, our analysis immediately applies to
protocols using post-selection, that is, where the protocol is
allowed to abort with some probability. Here, the protocol
succeeds with probability at least .1/2'n, where n=2d2−1,
that is, O! 1

d
". In the qubit case, Gisin and Gisin gave a pro-

tocol that simulates projective measurements on the singlet
with a probability of success of 0.5 #7$. Using ideas from
Ref. #6$, we may also build a protocol that simulates projec-
tive measurements on any !possibly nonmaximally en-
tangled" qubit pair, with a probability of success of 0.25. Our
method not only gives an increased probability of success of
approximately 0.29 in this case, but it also has the advantage
that it may be generalized to higher dimensions.
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