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We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input
replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric
Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We
obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines
and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and
semidefinite programming techniques. We also present an alternative implementation of the asymmetric clon-
ing machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and
feedforward.
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I. INTRODUCTION

The perfect copying of unknown quantum states is forbid-
den by the linearity of quantum mechanics #1$. This obser-
vation lies at the heart of quantum communication protocols,
such as quantum key distribution !QKD" which allows the
provably secure sharing of a secret key between two distant
partners !see, e.g., #2$". Any eavesdropping on a QKD sys-
tem introduces noise into the transmission, which can be
detected by the legitimate users. The optimal individual
eavesdropping attacks on many QKD protocols consist of the
optimal !approximate" copying of the quantum states trans-
mitted in the channel, where one copy is sent to the legiti-
mate receiver while the other copy is kept by the eavesdrop-
per and measured upon at a later stage. After the seminal
paper by Bužek and Hillery #3$, where the concept of uni-
versal quantum cloning machine was introduced, the issue of
quantum copying has attracted considerable attention !see,
e.g., #4,5$". This effort culminated in the recent years with
the experimental demonstration of optimal 1→2 cloning ma-
chines for polarization states of photons based either on para-
metric amplification #6–8$ or on the symmetrization of the
multiphoton state on an array of beam splitters #9,10$. The
latter technique was also exploited lately to realize the uni-
versal symmetric cloning machine for qubits that produces
three clones #11$.

In applications such as QKD, one is often interested in
asymmetric cloning where the fidelities of the clones are dif-
ferent. This is indeed necessary to study the trade-off be-
tween the information gained by the eavesdropper and the
noise detected by the legitimate users. The optimal 1→2
asymmetric cloning of qubits and qudits has been studied in
detail #12–14$ and very recently an experimental demonstra-
tion of 1→2 asymmetric cloning of polarization states of
photons #15$ based on partial teleportation #16$ was reported.
Going beyond two copies, multipartite asymmetric cloning
machines have been introduced in #17$, which produce M
copies with different fidelities Fj !j=1, . . . ,M". Several ex-
amples of such multipartite asymmetric cloners for qubits
and qudits were presented in #18,19$.

In the context of the rapid development of quantum infor-
mation processing with continuous variables #20$, the clon-

ing of coherent states has been extensively studied over the
last years #21,22$. It was shown that the optimal N→M sym-
metric cloning of optical coherent states that preserves the
Gaussian shape of the Wigner function can be accomplished
with the help of a phase-insensitive amplifier followed by an
array of beam splitters that distributes the amplified signal
into M modes #23,24$. It is also possible to exploit the off-
resonant interaction of light beams with atomic ensembles
and perform the cloning of coherent states into an atomic
memory #25$. The cloning of a finite distribution of coherent
states was studied #26$, and a reversal of cloning by means of
local operations and classical communication was suggested
in #27$.

On the experimental side, the 1→2 optimal Gaussian
cloning of coherent states of light was recently demonstrated
in #28$. There, the phase-insensitive optical amplifier was
replaced with a clever combination of beam splitters, homo-
dyne detection, and feedforward, which effectively simulated
the amplification process #29–32$. Using homodyne detec-
tors with very low electronic noise, it was possible to achieve
a cloning fidelity of about 65%, very close to the theoretical
maximum of 2/3. In another experiment, the 1→2 teleclon-
ing of coherent states of light was also realized #33$.

In this paper, we extend the concept of multipartite asym-
metric cloning to continuous variables and present the opti-
mal multipartite asymmetric Gaussian cloning machines for
coherent states. These devices produce M approximate rep-
licas of the coherent state %"& from N input replicas, such that
the fidelity Fj of each clone is generally different, and, for a
given set of F1 , . . . ,FM−1, the fidelity of the Mth clone FM is
the maximum possible. The multicopy asymmetric 1→M
cloning of a coherent state was previously studied by Ferraro
and Paris in the context of telecloning #34$. Here, we rigor-
ously prove that their scheme is optimal, and present a ge-
neric optimal asymmetric cloning machine for any number N
of input replicas, as well as its optical implementation. We
also consider the related problem of the optimal partial state
estimation of coherent states.

The rest of the paper is structured as follows. In Sec. II,
we present an optical cloning scheme based on phase-
insensitive amplification and passive linear optics. We also
derive the trade-off between the fidelities !or, equivalently,
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added thermal noises", which fully characterizes the class of
the optimal multipartite asymmetric Gaussian cloners. In
Sec. III, we describe an alternative cloning scheme where the
amplification is replaced by measurement and feedforward.
In Sec. IV, we briefly discuss the relationship between the
optimal asymmetric cloning and optimal partial measure-
ment of coherent states. Then, the proof of the optimality of
the asymmetric cloning machine is given in Sec. V. Finally,
Sec. VI contains a brief summary and conclusions.

II. ASYMMETRIC GAUSSIAN CLONING
OF COHERENT STATES

In what follows, we restrict ourselves to Gaussian cloning
transformations. Note that it has been found in #35$ that the
optimal 1→2 cloning transformation for coherent states !i.e.,
the transformation that maximizes the single-clone fidelity"
is in fact non-Gaussian, though the gain in fidelity is tiny.
Nevertheless, it should be stressed that, while this non-
Gaussian cloner is optimal in terms of fidelity, it adds more
noise to the clones !as measured by the quadrature variances"
than the optimal Gaussian cloner. In potential applications of
cloning such as eavesdropping on QKD protocols with co-
herent states and homodyne detection #36,37$, one is often
interested in minimizing the quadrature variance. In such a
case, the Gaussian cloning turns out to be the most danger-
ous attack #38$. Finding the multipartite generalization of
asymmetric Gaussian cloning is therefore a very interesting
question.

As we will prove in Sec. V, the optimal Gaussian cloning
machine has the simple structure depicted in Fig. 1, which is
a direct generalization of the 1→2 asymmetric cloner #24$.
The signal contained in N input replicas of the coherent state
%"& is first collected into a single mode by an array of N−1
unbalanced beam splitters #23,24$. After this, a single mode
a carries all the signal, and is in a coherent state %'N"&. This
mode is sent on an unbalanced beam splitter BS with ampli-
tude transmittance t and reflectance r, which divides the sig-
nal into two modes a and b1. Mode a is then amplified in a
phase-insensitive amplifier !NOPA" with amplitude gain g.
The modes a and b1 together with M −2 auxiliary modes bj,
with j=2, . . . ,M −1, are combined in a passive linear M-port
interferometer !IF" whose output modes contain the M
clones. The interferometer is designed in such a way that the

coherent component in each output mode is equal to ". In the
Heisenberg picture, the overall input-output transformation
describing the cloner depicted in Fig. 1 reads

aj =
1

'N
a + (

k=1

M−1

# jkbk + 'njc
†, !1"

where c† is the creation operator of the idler port of the
amplifier and bk are the annihilation operators of the M −1
auxiliary modes, initially in the vacuum state. Here, nj rep-
resents the amount of noise added to the jth clone, and the
# jk coefficients are chosen in such a way that the canonical
commutation relations are preserved.

It follows from the canonical transformations !1" that each
clone is in a mixed Gaussian state with coherent amplitude "
and added thermal noise characterized by a mean number of
thermal photons nj. The Husimi Q-function of the jth clone
reads

Qj!$" =
1

%!nj + 1"
exp)−

%" − $%2

nj + 1
* . !2"

The fidelity of the jth clone is proportional to the value of the
Husimi Q-function at $=", and is therefore a monotonic
function of the added thermal noise,

Fj =
1

1 + nj
. !3"

The higher the thermal noise nj, the lower is the fidelity Fj,
and vice versa. The cloning is covariant and isotropic, i.e.,
the fidelity does not depend on the input state %"& and the
added noise is the same for each quadrature. These are natu-
ral conditions that the optimal cloning machine should sat-
isfy.

The shot-noise limited amplification is governed by the
transformation

aout = g!ta − rb1" + 'g2 − 1c† !4"

and the total mean number of thermal photons produced dur-
ing the amplification is ntot=g2−1. Since the linear interfer-
ometer does not add any noise, we have

g = '1 + ntot, !5"

where ntot=( j=1
M nj. The total intensity of the coherent signal

after amplification is N!r2+g2t2"%"%2, which should be equal
to M%"%2 if we require the coherent component of each clone
to be equal to ". From this, we can determine the transmit-
tance of BS, namely

t ='M − N

ntotN
. !6"

The multiplets of nj cannot be arbitrary. Indeed, the M-port
interferometer !IF" in Fig. 1 is described by a unitary matrix
V, such that aj =( j=1

M−1v jkbk+v jMaout. The unitarity of V im-
poses a constraint on nj which can be expressed as

FIG. 1. !Color online" Optimal Gaussian N→M fully asymmet-
ric cloning of coherent states. See text for details.
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)(
k=1

M

'nk*2

= !M − N")(
j=1

M

nj + 1* . !7"

This formula provides a simple analytical parametrization of
the set of optimal N→M asymmetric Gaussian cloning ma-
chines for coherent states.

In the special case of a 1→2 asymmetric Gaussian cloner,
Eq. !7" reduces to

n1n2 = !1/2"2, !8"

which coincides with the no-cloning uncertainty relation that
was displayed in #22,24$. !Note that 1 /2 corresponds here to
one shot-noise unit." Interestingly, if we consider a 1→3
cloner and assign to the first two clones the fidelity of the
optimal 1→2 symmetric cloner, that is, n1=n2=1/2, we ob-
tain by solving Eq. !7" that the noise of the third clone is not
infinite, n3=2. As noticed in #18$, this means that some quan-
tum information remains available beyond the one contained
in the two clones !it actually corresponds to the information
hidden in the anticlone". In the case where N=1 but M is
arbitrary, we recover the expression that was derived by Fer-
raro and Paris #34$. Finally, note that if one clone is perfect,
e.g., nM =0, then Eq. !7" is transformed into the same equa-
tion but for a !N−1"→ !M −1" cloner, which means that one
of the input replicas is simply redirected to the perfect clone
while the cloning of the N−1 remaining input replicas into
the M −1 other clones is simply governed by the same rela-
tion.

III. OPTIMAL ASYMMETRIC CLONING VIA
MEASUREMENT AND FEEDFORWARD

In the experimental demonstration of the optimal 1→2
cloning of coherent states of light carried out in #28$, the
amplification in a phase-insensitive amplifier was replaced
by a clever combination of a partial measurement and feed-
forward that effectively simulates the amplification process
#29$. Later on it was shown experimentally that an amplifier
of arbitrary gain g can be simulated in this way #30$ and it
was noted that any N→M symmetric Gaussian cloning of
coherent states can be implemented by measurement and
feedforward #31,32$. Here we show that this holds true also
for the optimal asymmetric cloning. The scheme shown in
Fig. 1 can be straightforwardly transformed into a setup
which involves only passive linear optics, balanced homo-
dyne detection, and coherent displacement of the beams pro-
portional to the measurement outcomes. The resulting con-
figuration is illustrated in Fig. 2.

We assume that all of the available signal has been col-
lected into a single mode a which is thus in the coherent state
%'N"&. The beam is divided into two parts on a beam splitter
BSg with amplitude transmittance t̃ and reflectance r̃. The
reflected part is fed into a heterodyne detector consisting of a
balanced beam splitter whose auxiliary input port c is in the
vacuum state and two balanced homodyne detectors BHD
measuring the x and p quadratures, respectively. This detec-
tor effectively measures the operator o= r̃a+ t̃b+c†. The por-
tion of the beam transmitted through BSg, characterized by

t̃a− r̃b, is divided into M modes aj by an array of M −1 beam
splitters with reflectances rk. Each mode ak is then coherently
displaced by amount gjo, where gj is the electronic gain of
the corresponding feed forward. The added thermal noise in
the output mode aj reads nj =gj

2, which immediately fixes all
electronic gains,

gj = 'nj . !9"

As shown in #30$, the optical amplification gain g is obtained
in the feedforward scheme if the beam is split on a beam
splitter with reflectance '1−1/g2, and the reflected part is
heterodyne measured. Since in the scheme of Fig. 1 only an
!amplitude" fraction t of the input beam a is actually ampli-
fied, we see that by replacing the amplifier with a beam
splitter of reflectance '1−1/g2, the fraction of the beam that
is sent to the heterodyne detector is t'1−1/g2. Thus, in Fig.
2, the reflectance of the beam splitter BSg must be r̃
= t'1−1/g2, which yields

r̃ =' M − N

!1 + ntot"N
. !10"

It remains to determine the reflectances rk of the final array
of beam splitters. They are fixed by the condition that the
coherent amplitude of each clone is ". After some algebra we
find that

rj =
'1 + ntot − '!M − N"nj

'!2 + ntot"N − M
+
k=1

j−1

!1 − rk
2"−1/2. !11"

From this formula, all rk’s can be calculated in an iterative
way, starting from r1 #which is given by Eq. !11" for j=1
with the product over k replaced by 1$.

IV. OPTIMAL CLONING AND OPTIMAL PARTIAL
ESTIMATION OF COHERENT STATES

There is a close relationship between optimal cloning and
optimal state estimation. An interesting scenario that recently
attracted a lot of attention consists in the partial estimation of
a state, which yields the classical estimate of the state as well

FIG. 2. !Color online" Setup for the multipartite asymmetric
Gaussian cloning of coherent states using homodyne detection and
feedforward.
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as the perturbed quantum state #39–44$. According to the fact
that in the limit of an infinite number of copies, the optimal
cloning becomes equivalent to optimal state estimation #45$,
this optimal partial estimation can be viewed as a limiting
case of an asymmetric cloning producing one !quantum"
copy with fidelity F and infinitely many !classical" copies
with fidelity G #17$. From the analytical formula !7", we can
thus rigorously derive the optimal trade-off between the fi-
delities F and G in the partial Gaussian estimation of coher-
ent states. We set N=1, n1=nF, n2=n3= ¯ =nM =nG and take
the limit M→&, which results in

nG =
!nF + 1"2

4nF
. !12"

In the limit of an undisturbed quantum copy !nF=0", we
have an infinitely noisy state estimation, as expected. We
also note that nF=nG=1 is a solution of Eq. !12", which
corresponds to the optimal !full" estimation of coherent
states. Equation !12" also translates in the following relation
between the fidelities:

G =
4F!1 − F"

4F!1 − F" + 1
. !13"

This agrees with the trade-off derived in #39$ which confirms
that the experimentally demonstrated partial measurement of
coherent states in that work was indeed optimal among all
Gaussian strategies. Note that using a non-Gaussian protocol
a slightly better trade-off between F and G could be achieved
#46$.

V. PROOF OF OPTIMALITY

In what follows, we will prove the optimality of the asym-
metric cloner defined in Secs. II and III. Let us first note that
the fidelities are monotonic functions of nj, so that instead of
maximizing the fidelities Fj we can equivalently minimize
the added thermal noise nj. The design of the optimal cloner
can be thus rephrased as the minimization of a cost function
#17$,

C!nj" = (
j=1

M

xjnj , !14"

which is a linear convex mixture of nj, xj '0. The ratios of
the coefficients xj control the asymmetry of the cloning ma-
chine.

The most general Gaussian operation is a trace-preserving
Gaussian completely positive !CP" map #21$, and we must
minimize !14" over all such maps. At the level of covariance
matrices (, the Gaussian CP map acts as

(out = S(inS
T + G . !15"

The covariance matrix of N modes is defined as ( jk
= ,)rj)rk+)rk)rj&, where r= !x1 , . . . ,xN , p1 . . . , pN" is the
vector of quadrature operators, #xj , pk$= i* jk. The first mo-
ments transform under the Gaussian CP map according to
,rout&=S,rin&.

The matrices S and G must satisfy the complete positivity
constraint

A - G + iK + 0, K = JMout
− SJMin

ST, !16"

where the matrix

iJM = i) 0 I

− I 0
* !17"

comprises the commutators of the quadrature operators,
while I denotes the identity matrix of dimension M, and Min
and Mout are the number of input and output modes, respec-
tively. The cloning machine of interest has effectively only a
single input mode a !as we collect the N input signals into a
single mode" and M output modes, so that Min=1 and Mout
=M. The M ,2 matrix S is fixed by the condition that the
first moments should be preserved by cloning. We obtain

ST =
1

'N
)1 1 ¯ 1 0 0 ¯ 0

0 0 ¯ 0 1 1 ¯ 1
* . !18"

We must minimize C!nj" over the set of all Gaussian com-
pletely positive maps !15" with the matrix S given by !18",
that is, we must optimize over all G’s satisfying !16".
Clearly, if G1 and G2 satisfy !16", then any convex combi-
nation pG1+ !1− p"G2 with p! #0,1$ also does. Thus, we
have a convex optimization problem. Moreover, since nj
= !Gjj +GM+j,M+j +2/N−2" /4, the cost function !14" is linear
in the matrix elements of G. Hence, the problem amounts to
minimizing,

C̃!G" = (
j=1

M

xj!Gjj + GM+j,M+j" !19"

under the constraints !16", which is an instance of a
semidefinite program #47$. We shall now prove the optimal-
ity of !1" by deriving a lower bound on C̃!G" which is satu-
rated by !1".

The specific feature of the transformation !1" is that only
a single creation operator c† is admixed to the annihilation
operators. This operator is responsible for the added noise in
cloning. Since all modes are initially in coherent states, the
normally ordered moments of the operators aj for the clones
can be easily calculated,

,)aj)ak& = ,)aj
†)ak

†& = 0,

,)aj
†)ak& = 'njnk.

The covariance matrix of the M clones is then fully deter-
mined by the added noises nj,

(out = )I + 2F 0

0 I + 2F
* , !20"

where F is a symmetric M ,M matrix with elements Fjk
='njnk. Since the matrix S is fixed and the input state of the
cloner is a coherent state with covariance matrix (in= I, the
matrix Gopt corresponding to transformation !1" can be deter-
mined from Eq. !15". This yields
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Gopt =.I + 2F −
1
N

H 0

0 I + 2F −
1
N

H/ , !21"

where H is a matrix whose elements are all equal to 1, Hjk
=1.

Since the transformation !1" can be associated with a CP
map, the matrix Gopt must satisfy the inequality !16". For the
particular S matrix !18", this gives

Aopt -.I + 2F −
1
N

H i)I −
1
N

H*
− i)I −

1
N

H* I + 2F −
1
N

H/ + 0. !22"

We can transform the matrix Aopt to a block-diagonal form
with the help of the unitary matrix

U =
1
'2

) I iI

iI I
* , !23"

which gives UAoptU†=diag!2F+2I−2H /N ,2F", so that there
remains to prove that F+ I−H /N+0 and F+0. The matrices
F and H both have rank one, and can be written in Dirac
notation as F= %f&,f %, where %f&=( j=1

M 'nj%j&, and H= %h&,h%,
where %h&=( j=1

M %j&. The condition F+0 is satisfied by defi-
nition, while solving F+ I−H /N+0 yields the nontrivial
constraint on nj’s. Actually, it is sufficient to check the latter
positivity condition in the two-dimensional subspace
spanned by the !unnormalized" vectors %f& and %h&, and one
can prove that it is indeed satisfied provided that Eq. !7"
holds.

We now derive a tight lower bound on C̃!G", which is
saturated by !1". Suppose that we find a positive semidefinite
matrix Z+0 such that it satisfies the conditions

Tr#ZG$ = C̃!G" !24"

and

ZAopt - Z!Gopt + iK" = 0, !25"

where iK= iJM − iSJ1ST. Then, the Gaussian CP map with ma-
trix Gopt is the optimal one that minimizes C̃!G". Since for
every admissible G we have G+ iK+0, it follows from
Z+0 that Tr#Z!G+ iK"$+0, which implies that C̃!G"
+−i Tr#ZK$, ∀ G. Equation !25" implies that this lower
bound is saturated by Gopt, which is therefore optimal.

The matrix Z can be determined from Eqs. !24" and !25".
We find that

Z = ) X iY

− iY X
* , !26"

where X=diag!x1 , . . . ,xM" is fixed by Eq. !24", while Y is a
real symmetric matrix that satisfies

Y!I − N−1H" + X!I + 2F − N−1H" = 0,

XF = YF , !27"

as a consequence of Eq. !25". Note that X'0 by definition
because xj '0. Since the matrix I−N−1H is invertible, we
can express the matrix Y in terms of X using the first condi-
tion of !27",

Y = − X#I + 2F!I − !M − N"−1H"$ . !28"

The second condition of !27" is then satisfied for any X pro-
vided that !7" holds.

In order to further simplify the matrix Y, we need to es-
tablish the relationship between xj and nj. Without loss of
generality, we can restrict ourselves to the cloning machines
that satisfy !7", and minimize the cost C!nj" under the con-
straint !7". Using the standard method of Lagrange multipli-
ers, we obtain the extremal equations for the optimal nj’s for
a given set of xj’s,

xj
'nj − -!M − N"'nj + -(

k=1

M

'nk = 0, !29"

with - being the Lagrange multiplier. With the help of these
formulas, we can show that

XF#I − !M − N"−1H$ =
1

-!M − N"
XFX , !30"

so that

Y = − X −
2

-!M − N"
XFX . !31"

The matrix XFX is symmetric, hence Y =YT as required.
The last step of the proof is to show that the matrix Z is

positive semidefinite. We first apply a transformation that
preserves the positive semidefiniteness, Z̃=VZV†, where V
=diag!X−1/2 ,X−1/2",

Z̃ = ) I − iI − i2.X1/2FX1/2

iI + i2.X1/2FX1/2 I
* ,

where .=1/ #-!M −N"$. We multiply Eq. !30" with X−1 and
take the trace, so we find that

. Tr!X1/2FX1/2" = − 1, !32"

where we made use of Eq. !7". Since F is proportional to
rank-one projector the normalization !32" implies that
.X1/2FX1/2=−%/&,/%-−0, where %/& is a normalized real
vector, ,/ %/&=1. We can convert Z̃ to block diagonal form

with the unitary !23", UZ̃U†=diag!20 ,2I−20", which is ob-
viously positive semidefinite. This concludes the proof of
optimality of the cloning machine !1".

VI. CONCLUSIONS

In summary, we have proposed a multipartite asymmetric
Gaussian cloning machine for coherent states. The machine
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produces M approximate copies of a coherent state from N
replicas of this state in such a way that each copy can have a
different fidelity. A simple analytical formula characterizing
the set of optimal Gaussian asymmetric cloning machines
has been derived, and it was shown that the asymmetric clon-
ing can be realized by amplifying of a part of the input signal
followed by mixing the amplified signal and the bypass sig-
nal together with auxiliary vacuum modes on an array of
beam splitters with carefully chosen transmittances. An alter-
nate implementation is also described, where the amplifier is
replaced by a passive optical circuit supplemented with feed-
forward. We hope that our study of multipartite asymmetric
cloning will trigger further investigations of optimal quan-

tum information distribution in continuous-variable quantum
communication networks.
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