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The amount of classical information that is reliably transmitted over two uses of general Pauli channels with
memory, modeled as a correlated noise between a single pair of uses, is investigated. The maximum of the
mutual information between the input and the output is proven to be achieved by a class of product states that
is explicitly given in terms of the relevant channel parameters below some memory threshold, and by maxi-
mally entangled states above this threshold. In particular, this proves a conjecture on the depolarizing channel
by Macchiavello and Palma #Phys. Rev. A 65, 050301!R" !2002"$. Furthermore, it also shows that no other
scenario can occur for Pauli channels as for example the existence of an intermediate optimal degree of
entanglement reported for some Gaussian channels with memory.
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I. INTRODUCTION

The transmission of information over long distances in
devices like optical fibers, or the storage of information in
some type of memory, are tasks of quantum information pro-
cessing that can be described by quantum channels. A major
problem in quantum information theory is the evaluation of
the classical capacity of quantum communication channels,
which represents the amount of classical information that can
be reliably transmitted by quantum states in the presence of a
noisy environment. Early works in this direction were mainly
devoted to memoryless channels for which consecutive sig-
nal transmissions through the channel are not correlated
#1–4$. Recently, much attention was given to quantum chan-
nels with memory #5–14$ in the hope that, by entangling
multiple uses of the channel, a larger amount of classical
information per use could be reliably transmitted. For
bosonic continuous-variable memory channels, entangled
states are shown to enhance the channel capacity #11–13$
except in the absence of input energy constraints. Moreover,
when the memory is modeled as a correlated noise, for each
value of the noise correlation parameter, there exists an op-
timal degree of entanglement that maximizes the channel
capacity #12$. For qubit channels with memory, it was shown
that maximally entangled states enhance the two-use channel
capacity with respect to product states if the correlation is
stronger than some critical value. This was conjectured for
the depolarizing channel with memory #5$ and proven for a
particular Pauli channel #6$.

An open question is whether for some Pauli channels with
memory the information transmission can be optimized by
progressively entangling two uses of the channel, as occurs
for some Gaussian channels where no critical threshold of
correlations is present. We prove here that the states which
optimize the transmission of classical information over two
uses of any Pauli channel with memory modeled as a corre-
lated noise, are a particular class of product states below
some memory threshold, and maximally entangled states

above that threshold. The optimal product states are explic-
itly given through the introduction of parameters that char-
acterize the system in a global and more relevant way than
the individual probabilities of each random process. The
technique presented here is not specific to the problem of
information transmission. In particular, it could be used for
other optimization issues in quantum multipartite systems,
which have attracted considerable attention in various areas
of physics in recent years.

II. RELIABLY TRANSMITTED INFORMATION IN
CHANNELS WITH CORRELATED NOISE

The action of n uses of a transmission channel on an
initial state " is described by a completely positive map E
which can be represented as an operator-sum

" → E!"" = %
k

Ak"Ak
†, %

k
Ak

†Ak = id. !1"

For memoryless channels, the amount of classical informa-
tion that is reliably transmitted by quantum states through the
channel is given by the Holevo-Schumacher-Westmoreland
bound #1$

#!E" = max
&pi,"i'

(S)%
i

piE!"i"* − %
i

piS„E!"i"…+ , !2"

where S!""=−Tr!" log2 "" is the von Neumann entropy and
the maximum is taken over all ensembles of input states "i
with a priori probabilities pi. The n-shot classical capacity of
the channel is this amount of reliably transmitted information
per use,

Cn!E" =
1
n

#!E" , !3"

whereas the classical capacity is defined as C=supn Cn.
In the presence of memory, the # quantity !2" is still an

information characteristic of the channel. Here we focus on
the case of two uses of a single qubit channel with memory
as considered in Refs. #5,6$,*Electronic address: ddaems@ulb.ac.be
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E!"" = %
i,j=0

3

pij$i ! $ j"$i ! $ j , !4"

where $0 denotes the identity and &$1 ,$2 ,$3' are the Pauli
matrices. The memory is modeled as a correlated noise such
that, with probability %! #0,1$, the same random Pauli
transformation is applied to both qubits while with probabil-
ity 1−% the two rotations are uncorrelated,

pij = !1 − %"qiqj + %qi&ij, %
j=0

3

qj = 1. !5"

As the maximally mixed state gives the largest possible
entropy, S! 1

4$0 ! $0"=log2!4", the two-shot #-quantity !2" is
upper bounded by #6$

#!E" ' 2 − S„E!"!"… , !6"

where "! denotes an input state that minimizes the output
entropy when transmitted through the channel E. Equation
!6" generalizes the relation between the one-shot classical
capacity and the minimal output entropy which was proven
to hold with an equality sign for covariant channels #7$. The
upper bound !6" can be achieved in any channel whose ac-
tion consists of random tensor products of Pauli transforma-
tions such as !4". In a nutshell, the argument amounts to
constructing from "! an ensemble with input states $i
! $ j"!$i ! $ j which, as a result of the covariance, each have
the same output entropy. On the other hand, for such an
ensemble taken with equal a priori probabilities, one can
show that the output state is maximally mixed. To optimize
the transmission of information in Pauli channels with
memory all that is required is thus to identify an optimal
input state "!. Moreover, by the concavity of the von Neu-
man entropy, this search can be restricted to pure input states
"!= ,(!-.(!,/"(!

#6$.
To date, the optimality of some input states has been con-

jectured #5$ for the depolarizing channel !q0=1− p ,q1=q2
=q3= p /3" and proven #6$ only in one particular instance of a
Pauli channel with memory !q0=q3= p ,q1=q2= 1

2 − p". To
study the nature of the optimal states for arbitrary Pauli
channels, we consider the two-qubit pure state obtained from
the general superposition

,(- = c00,00- + c11e
i)11,11- + c10e

i)10,10- + c01e
i)01,01- .

!7"

The normalization implies the relation c00
2 +c11

2 +c10
2 +c01

2 =1.
This constraint is taken into account here by expressing the
pertaining parameters in terms of three angles *, +, and , as
follows:

c00 = cos
+ + ,

2
cos

*

2
,

c11 = sin
+ − ,

2
sin

*

2
,

c10 = cos
+ − ,

2
sin

*

2
,

c01 = sin
+ + ,

2
cos

*

2
. !8"

The density matrix "( can be expressed in terms of the ten-
sor products of Pauli matrices as

"( =
1
4 %

n,k=0

3

wnk$n ! $k, !9"

with the real coefficients wnk=Tr!"($n ! $k".
The interest of the decomposition !9" is that the action of

the channel on $n ! $k takes on the simple form

E!$n ! $k" = -nk$n ! $k, !10"

where -nk is a real number !#−1,1$ which will be referred to
as a channel parameter. It reads

-kk! = !1 − %"-k-k! + %-k", !11"

where k" is the index of the matrix $k" to which $k$k! is
proportional: $k$k!.$k". The channel parameter -k is
defined as

-k = %
j=0

3

qjsjk, !12"

where sjk= +1 if either j=k or j=0 or k=0, and sjk=−1 oth-
erwise. Notice that -0=-00=1, -k0=-k, and -kn=-nk.

The ordering of the channel parameters -nk and -k will
play a central role. To specify the ordering of -1, -2, and -3
we introduce the indices l, m, and s !which stand for large,
medium, and small"

,-l, / ,-m, / ,-s, . !13"

Since -kk= !1−%"-k
2+% it follows that -ll/-mm/-ss for any

%. The following properties show that the channel param-
eters -l and -ll are larger in absolute value than the nondi-
agonal channel parameters -nk for any %:

-l
2 / -nk

2 , n ! k ,

-ll
2 / -nk

2 , n,k ! 0. !14"

In contrast, the degree of correlation % modifies the positions
of the diagonal channel parameters -kk with respect to ,-l,.
When % goes from 0 to 1, each -kk increases from -k

2 to 1. As
-k

2'-l
2'1, there is a value of % where -kk crosses ,-l,. This

fact, together with the constraints imposed on the weights
wnk

2 of a pure state, is at the origin of the threshold phenom-
enon mentioned above.

In order to identify the states "(!
whose output entropy

S(E!"(!
") is minimal, the eigenvalues of E!"(" are to be

considered. In terms of the decomposition !9" and of the
mapping !10", the action of the channel !4" on a pure state
reads explicitly
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E!"(" =
1
4 %

n,k=0

3

-nkwnk$n ! $k. !15"

The roots of the pertaining characteristic equation 04−03

+a202+a101+a0=0 are given by #15$

01,2 =
1
4

!1 + 1R + 2Q1", 1,2 = ± 1, !16"

where

R = 01 − 4a2 + 3!&ai'"

and

Q1 = 02 − 4a2 + 1!4a2 − 8a1 − 1"/R − 3!&ai'" .

The function 3 is the real root of a cubic equation which
features solely the coefficients ai. Owing to the symmetric
structure of the roots in 1, 2= ±1, it can be shown that ex-
trema in the eigenvalues can be achieved if and only if the
coefficients ai are each extremal. To minimize the output
entropy, the quantities R and Q1 have to be maximized. As a2
is positive and enters both R and Q1 with a negative sign,
this coefficient has to be minimized. It reads a2= 1

8 !3−A−B
−C" with

A = %
k=1

3

-kk
2 wkk

2 ,

B = %
k=1

3

-k
2!w0k

2 + wk0
2 " ,

C = %
n!k=1

3

-nk
2 !wnk

2 + wkn
2 " . !17"

The optimal states are those that maximize A+B+C. Their
identification rests on two elements: the ordering of the chan-
nel parameters -kk and ,-l, investigated above, and the al-
lowed values of the weights wnk

2 associated with the decom-
position of a general pure state. First, note that w00
=Tr!"("=1 and, by the Schwarz inequality, ,wnk,'1. For a
pure state the purity Tr!"(

2 " is unity, which translates into the
fact that the weights wnk

2 involved in A+B+C sum to 3,

%
k=1

3

wkk
2 + %

n!k=0

3

wnk
2 = 3. !18"

In addition, the following inequality holds for any permuta-
tion of the indices 1, 2, 3:

wjj
2 + wkk

2 − wnn
2 ' 1. !19"

Summing the three versions of this inequality implies that
the sum of the weights featured in A+B+C is at most 3,

4 / w11
2 + w22

2 + w33
2 ' 3. !20"

Similarly, it can be shown from the above parametrization
that the sum of the weights entering B is at most 2,

5 / %
n=1

3

!wn0
2 + w0n

2 " ' 2. !21"

The optimization issue amounts to spreading three units
over the 15 weights wnk

2 featured in A+B+C in such a way
that the largest channel parameters contribute preferentially
and the inequalities !19"–!21" are satisfied. The tight bounds
4'3 and 5'2 imply that the three weights involved in A
can be saturated for some states, whereas at most two of the
six weights in B can be equal to unity. Recall that -l is the
largest channel parameter of B and is also larger than any of
the channel parameters of C for any degree of correlation %.
It follows that B'2-l

2. The equality sign is attained if w0l
2

=wl0
2 =1, which necessarily implies that wll

2 =1 and A+B+C
=-ll

2 +2-l
2. This is the situation that prevails for %=0 and

certainly up to the value %0 such that -mm
2 =-l

2. On the other
hand, when % is larger than the value %1 for which -ss

2 =-l
2,

then the three diagonal channel parameters -kk are larger than
,-l,, so that the optimum is wll

2 =wmm
2 =wss

2 =1 and A+B+C
=-ll

2 +-mm
2 +-ss

2 . A priori, between %0 and %1, the optimal
states could be different and feature, for instance, fractional
weights wnk

2 . A detailed analysis reveals that the above op-
tima extend, respectively, above %0 and below %1 until the
value %! such that -ss

2 +-mm
2 =2-l

2.
Before illustrating this result, we proceed with its proof.

For 0'%'%0, one has -l
2/-mm

2 , the value %0 being deter-
mined by the equality sign. Applying the inequalities !14"
and using !18" yields A+C'-ll

2!3−5" and B'-l
25 so that

A + B + C ' 3-ll
2 + 5!-l

2 − -mm
2 " ' -ll

2 + 2-l
2. !22"

The second term on the right of the first inequality sign being
positive in this interval of %, it is majorized by taking the
upper bound 5=2. The bound !22" is achieved if and only if
wll

2 =w0l
2 =wl0

2 =1. The optimal ,(!- is thus the tensor product
of eigenstates of the Pauli matrix $l corresponding to the
channel parameter -l of largest absolute value. The eigenval-
ues of E!"(!

", required to calculate #!E" from !6", are of the
form !16" with R=-ll and Q1= !1+1"-l.

Let %! be the value of % for which -ss
2 +-mm

2 =2-l
2. For

%0'%'%!, the ordering of the diagonal channel parameters
with respect to ,-l, is therefore 1

2 !-ss
2 +-mm

2 "'-l
2'-mm

2 . From
!14" we obtain B+C'-l

2!3−4", which entails that

A + B + C ' -ll
2 + 2-l

2 + wss
2 !-ss

2 + -mm
2 − 2-l

2" + !-l
2 − -mm

2 "

6!1 − wll
2 − wmm

2 + wss
2 " ' -ll

2 + 2-l
2. !23"

In this interval of %, the factors -ss
2 +-mm

2 −2-l
2 and -l

2−-mm
2

are negative while 1−wll
2 −wmm

2 +wss
2 is positive or zero by

!19". The bound !23" is thus realized if and only if w0l
2 =wl0

2

=wll
2 =1. Notice that the optimal states coincides with those

of !22" so that %0 turns out to be irrelevant.
For %!'%'1, the ordering of the largest channel param-

eters is changed to -l
2' 1

2 !-mm
2 +-ss

2 ". This yields

A + B + C ' 2-l
2 + -ll

2 + wss
2 !-mm

2 + -ss
2 − 2-l

2" ' -ll
2 + -mm

2 + -ss
2 .

!24"

The first inequality comes from the first inequality of !23",
where the last term, which is still negative or zero in the
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interval of % considered here, has been upper bounded by
taking wll

2 +wmm
2 −wss

2 =1. On the other hand, the term
wss

2 !-mm
2 +-ss

2 −2-l
2" is now positive and upper bounded by

setting wss=1, which gives the bound !24". It is achieved if
and only if wss

2 =wmm
2 =wll

2 =1. The optimal input states ,(!-
are thus the maximally entangled states !,00-± ,11-"/02 and
!,01-± ,10-"/02. The eigenvalues of E!"(!

" are given by !16",
where R=-33 and Q1=-11+1-22. The threshold %! separat-
ing the domain where the optimal states for the two-shot #
quantity are the tensor product of eigenstates of $l from the
domain where the optimal states are the Bell states reads,
with the notation &k/1−-k

2,

%! =
− &m-m

2 − &s-s
2 + 02-l

2!&m
2 + &s

2" − !&m − &s"2

&m
2 + &s

2 . !25"

III. ILLUSTRATION

Consider two uses of a Pauli channel with correlated
noise as given by !4" and !5". For the probabilities q0=0.2,
q1=0.1, q2=0.3, and q3=0.4, the channel parameters defined
in !12" are -1=−0.4, -2=0, and -3=0.2. The indices !large,
medium, and small" specifying their ordering !13" are l=1,
m=3, and s=2. From !25" the memory threshold is %!
10.39. Up to %! the optimal states are the product states
associated with the eigenstates of $1 since l=1. As a second
example, take the channel for which the values of q0 and q2
are permuted. This yields -1=−0.2, -2=0, and -3=0.4 so that
now l=3 and the optimal states below %! are associated with

the eigenstates of $3. Notice that $1 is the least likely trans-
formation in the first example, whereas $3 is the most likely
transformation in the second one. This shows that the indi-
vidual probabilities qi are not the relevant parameters, in
contrast to the channel parameters -i introduced here. Above
%!, the optimal input states for the information transmission
are the Bell states in both cases.

IV. CONCLUSIONS

The amount of classical information reliably transmitted
over two uses of arbitrary Pauli channels with memory mod-
eled as a correlated noise between a single pair of uses is
evaluated via the two-shot # quantity, which is proven here
to be 2−%1,2=±101,2 log2 01,2 with 01,2 explicitly given by
different functions of the degree of correlations % for 0'%
'%! and for %!'%'1. Below the memory threshold, the
two-shot # quantity is achieved by using the tensor product
of the single-qubit density matrices pertaining to the eigen-
states of the matrix $l whose associated channel parameter
-l, defined above, has the largest absolute value. Above the
threshold %!, the two-shot # quantity is reached by maxi-
mally entangled states. Entanglement is therefore a useful
resource to enhance the transmission of classical information
in this class of quantum channels with memory.
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