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It is shown that the ensemble fP���; j�ij��ig, where P��� is a Gaussian distribution of finite variance
and j�i is a coherent state, can be better discriminated with an entangled measurement than with any local
strategy supplemented by classical communication. Although this ensemble consists of products of
quasiclassical states without any squeezing, it thus exhibits a purely quantum feature. This remarkable
effect is demonstrated experimentally by implementing the optimal local strategy on coherent states of
light together with a global strategy that yields a higher fidelity.
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Entanglement is known to be a valuable resource, which
can be used to achieve a large variety of quantum proto-
cols, mostly through the manipulation and detection of
entangled states. Because of the nonlocal nature of entan-
glement, joint measurements are typically necessary to
properly access the information stored in the quantum
correlations of entangled states. But entanglement has
proven to be much richer than that. It can, for example,
take profit of purely classical correlations to provide a
better access to the information encoded in a product state
[1]. In particular, the optimal measurement ofN identically
prepared qubits is known to be a joint entangled measure-
ment [2]. Moreover, some classical correlations perform
better than others: a surprising result, obtained in [3], is
that more information can be extracted from a pair of
orthogonal qubits than from two identical qubits. An
even more intriguing phenomenon, named ‘‘nonlocality
without entanglement’’ [4], is the existence of ensembles
of orthogonal product states that cannot be perfectly dis-
tinguished using local operations and classical communi-
cations (LOCC) only, but can be perfectly discriminated
through a joint—yet separable—measurement.

In the recent years, much attention has been devoted to
quantum information based on continuous variables (CV).
Many results initially derived for qubits have been success-
fully adapted to infinite dimensional systems. It is thus
tempting to ask whether similar quantum effects may be
observed with CV product states. In this Letter, we answer
this question affirmatively by exhibiting an ensemble of
classically-correlated product coherent states that can be
better discriminated when the parties act globally rather
than locally. Then, we report on the experimental demon-
stration of this surprising property based on the sideband
encoding of a modulated laser beam with no need for
squeezing. The superior discrimination of product states
via entangled measurements was verified experimentally
only very recently for two qubits [5,6]. To our knowledge,

the present work achieves the first experimental evidence
of such a quantum effect with continuous variables.

Here, we consider the ensemble of bipartite product
states fP���; j�ij��ig, with P��� being a Gaussian distri-
bution and j�i a coherent state, which was introduced in
the context of the optimal phase-conjugation transforma-
tion [7]. We show that it can be better discriminated having
access to joint operations than being restricted to LOCC. In
this respect, we have an ensemble of quasiclassical states
which are neither squeezed, nor entangled, but nevertheless
exhibit some peculiar nonclassical property. This may be
viewed as a nonlocal effect without squeezing, though
nonlocality should not be understood here as the incom-
patibility with local-hidden-variable models (unlike the
case of Bell tests), but rather as the manifestation of an
inherently global property.

To estimate the quality of a particular measurement
strategy we will use the mean fidelity, i.e.,

 F � sup
My

sup
�y

X
y

Z
d�P���h�jh��jMyj�ij��ih�j�yj�i;

where My are the positive operators defining the measure-
ment,

P
yMy � 1, and �y are states prepared according to

the measurement results. This means that our goal is to
optimally measure j�ij��i and prepare a state as close as
possible to j�i. To bound the fidelity achievable by local
operations, we will first show that the optimal LOCC
strategies on j�ij��i and j�ij�i yield equal fidelities. We
next prove that the optimal measure-and-prepare strategy
on identical copies of j�i is achieved by a local strategy.
And finally, we exhibit a joint measurement on phase-
conjugate states, conjectured to be optimal, which gives a
higher fidelity than the optimal strategy on two identical
copies. We will thus prove that

 F�L � FL � F < F�;
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where F and F� (FL and F�L) denote the optimal fidelities
for global (local) measurements on j�ij�i and j�ij��i
respectively.

Let us start by proving that local strategies on j�ij��i
and j�ij�i give identical fidelities, i.e., F�L � FL. Recall
that any LOCC strategy consists of a sequence of corre-
lated measurements plus a decision strategy depending on
the observed statistics. After n rounds of measurements,
the relevant probabilities can be written as

 Pr��� � Trf�A� � B��j�ih�j � j�
�ih��jg (1)

with the positive operators A� and B� defined as

 A� � Anrn�r1; r2; . . . ; rn�1� . . .A3
r3
�r1; r2�A

1
r1

B� � Bn�1
rn�1
�r1; r2; . . . ; rn�2� . . .B2

r2
�r1�:

In this expression, ri is the outcome of the ith measure-
ment, and the upper index stands for its order in the
sequence of measurements. These operators depend on
the decision strategy, and are constrained by the measure-
ment normalization conditions. Now, suppose that a par-
ticular LOCC strategy is optimal for j�ij��i and gives the
fidelity F�L. We can easily map this optimal strategy into an
optimal LOCC strategy for j�ij�i. Indeed, replacing B� by
B��, one defines another LOCC sequence of measurements
that achieves the same fidelity for j�ij�i since the trace of
Hermitian operators is invariant under complex conjuga-
tion, hence F�L � FL. �

Next, let us prove that the optimal measure-and-prepare
strategy on j�ij�i is a local strategy, i.e., FL � F. Note
that this result is already known for a distribution of infinite
width [8], using the variances of the estimated quadratures
as a figure of merit. Here, we prove a more powerful result:
we consider the realistic case of finite-width distributions,
and do not make any assumption on the measurement nor
the reconstruction. Actually, we prove the more general
result that the optimal strategy for N copies of a coherent
state distributed according to a Gaussian of variance 1=�
yields a fidelity FN satisfying

 FN �
N � �

N � �� 1
: (2)

This upper bound is exactly the fidelity achieved by N
independent heterodyne measurements, followed by the
preparation of a coherent state centered on 1

N��

PN
i�1 �i

(with �i the result of the ith measurement).
Without loss of generality, we can restrict our optimiza-

tion to measurements consisting of projectors j�yih�yj

and preparation of pure states j�yi. For the input states
j�i�N distributed with the Gaussian distribution P��� �
�
� exp���j�j2�, the average fidelity reads

 F �
X
y

Z
d�P���jh��Nj�yij

2jh�j�yij
2: (3)

To bound this fidelity, we generalize a method used in [9]
to calculate the optimal fidelity for a measure-and-prepare

strategy on a single copy of a coherent state j�i distributed
according to P���. First, one needs to realize that we can
concentrate the N modes of j�i�N into one single mode
j
����
N
p

�i by means of beam splitters. This operation is
unitary and completely reversible; hence, it will not change
the fidelity. We can thus write

 F �
X
y

Z
d�P���jh

����
N
p

�j�yij
2jh�j�yij

2

� sup
�y;�y

X
y

h�yjA�y
j�yi � sup

�y

X
y

kA�y
k1 (4)

after introduction of the operators

 A�y
�
Z
d�P���jh

����
N
p

�j�yij
2j�ih�j: (5)

The last equality of (4) is trivial, as it is indeed best to
prepare the eigenstate of A�y

associated to the largest
eigenvalue for a given outcome y. We can now turn to
the core of the method. Following [9], we first prove that

 kA�kp �
N � �

	�N � �� 1�p � 1
1=p
kA�k1 (6)

holds for all states j�i and all p norms kAkp �
�TrfjAjpg�1=p. The limiting case p! 1, in combination
with the measurement normalization

P
yj�yih�yj � 1

(which implies
P
ykA�y

k1 � 1), is then sufficient to prove
Eq. (2). We only present here the main results of our
calculation. An interested reader should consult [9,10]
for more details.

The properties of the trace allow us to write

 kA�k
p
p � TrfAp�g � Trfj�ih�j�pBg;

kA�k
p
1 � TrfA�gp � Trfj�ih�j�pCg;

(7)

where we have defined the operators B and C as

 B �
ZZ

d�1 . . .d�pP��1� . . .P��p�

� h�1j�2i . . . h�pj�1ij
����
N
p

�1ih
����
N
p

�1j � . . .

� j
����
N
p

�pih
����
N
p

�pj;

C �
Op
i�1

Z
d�iP��i�j

����
N
p

�iih
����
N
p

�ij:

These two operators can be diagonalized in the same basis.
A unitary transformation turns them into tensor products of
unnormalized thermal states, which are diagonal in the
corresponding Fock state basis. Expressing the product
state j�i�p in this Fock state basis and remembering that
Trfj�ih�j�pBg � 0, one finds that

 Tr fj�ih�j�pBg�
�N���p

�N���1�p�1
Trfj�ih�j�pCg: (8)

The pth root of this expression gives directly relation (6)
and thus completes the proof of relation (2). �
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Now, let us prove the existence of a joint measurement
on phase-conjugate states that yields a higher fidelity than
(2) for N � 2. One such measurement was introduced in
[7] in order to show that the j�ij��i encoding outperforms
j�ij�i in the case � � 0. The strategy is the following.
First, the two modes are sent on a beam splitter (BS), which
outputs two coherent states displaced along the x and p
axis, respectively, i.e., j�ij��i!jx�;0ij0;p�i, where � �
�x� � ip��=

���
2
p

. Next, the appropriate quadratures are
measured on the two output ports, and some state jf�i is
reconstructed according to the measurement outcomes.

That this strategy outperforms the optimal measurement
on identical copies has an intuitive explanation. Suppose
we apply this BS strategy to the j�ij�i case. Then, the two
modes are concentrated on one output port, so that only
heterodyning can extract information about x and p simul-
taneously; that is, we need to combine the state with
vacuum at another BS, introducing extra noise. Never-
theless, according to the previous section, this strategy is
optimal. Applying this same strategy to the j�ij��i state,
we can directly access the entire information by homodyn-
ing each of the two output modes of the BS. Since we do
not introduce vacuum in this setup while detecting the
same mean signal, we have less noise and can therefore
expect a greater fidelity.

In order to calculate this fidelity and easily compare with
(2), suppose that we have at our disposal N coherent states
made of N=2 pairs j�ij��i, or equivalently one pair
j
���������
N=2

p
�ij

���������
N=2

p
��i. The corresponding fidelity reads

 F�NBS �
ZZ

P���P�x; pjx�; p��jhf�j�ij2dxdpd�

� 2
�

�2

Z
e�2j�j2hf�jÔ�jf�id�; (9)

where P�x; pjx�; p�� is the probability to measure (x, p) by
homodyning on j

���������
N=2

p
x�ij

���������
N=2

p
p�i, Ô� a known semi-

definite Hermitian operator, and � � �x� ip�=
���
2
p

.
Optimization of this fidelity with respect to the recon-
structed state boils down to finding the largest eigenvalue
of this operator Ô�. We can calculate this value analyti-
cally as in [11], yielding the maximum fidelity

 F�NBS �
2N � �

2N � �� 1
(10)

and the corresponding eigenvector jf�i � j
2
���
N
p

2N���i.
Clearly, (10) is larger than (2) for any N, so we conclude
that FN < F�NBS � F�N , where F�N is the optimal fidelity of
a global strategy for N=2 phase-conjugated pairs. �

Interestingly, F�NBS � F2N , that is, this global strategy on
j�ij��i is exactly as efficient as the optimal strategy on
j�i�4. Again, this has an intuitive explanation. Consider
the input state j�i�4. It can be concentrated using two BS,
namely, j�i�4 ! j

���
2
p
�i�2. Because dual homodyning on

j
���
2
p
�ij

���
2
p
�i or jx�ijp�i gives identical statistics, the cor-

responding fidelities are equal.

Now, let us proceed with the experimental demonstra-
tion of the quantum feature exhibited by fj�ij��ig. The
laser used in our experiment is a monolithic Nd:YAG laser
producing a field at 1064 nm, which is split into two parts
and subsequently directed into the coherent state prepara-
tion stage (see Fig. 1). To ensure that the information is
encoded as pure coherent states, the states are assumed to
be residing at a radio frequency sideband defined within a
certain bandwidth of the laser beam. In addition to the high
degree of purity, the sideband encoding also holds the
advantage of allowing for easy low-voltage control of the
coherent amplitudes via simple electro-optic modulators
operating at the sideband frequency [12]. Note, therefore,
that the two beams are bright although the particular side-
bands in question are vacuum states, fj0ig, before the
encoding. The production of the two phase-conjugate co-
herent states, j�i and j��i, is then performed by displacing
the vacuum sidebands using an amplitude modulator (AM)
and a phase modulator (PM) in each arm as shown in
Fig. 1. The two states are prepared by using the same
signal generator, that is by communicating classically cor-
related information between the two preparation stations.
The relative phase shift of � between the phase quadra-
tures was established by adjusting the cable lengths
appropriately.

First, we characterize the prepared states by measuring
the two copies individually, by successive use of a hetero-
dyne detector yielding information about the amplitude
and phase quadratures, simultaneously. The coherent state
is combined with a phase stabilized auxiliary beam at a
50:50 beam splitter with a �=2 relative phase shift and
balanced intensities. They interfere with a contrast of 99%
and the two output beams are detected with high quantum
efficiency (95%) photodiodes. Subsequently, the photocur-
rents are subtracted and added, which provides information
about the phase and amplitude quadratures, respectively.
Finally, the spectral densities of the quadratures are re-
corded on a spectrum analyzer. Using the fact that the
heterodyne detector projects the signal under investigation

+/-

a) Local measurements (times two)

or

b) Global measurements

Aux osc
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x

p

Classical communication

x

p

Local preparation
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FIG. 1 (color online). Schematic of the experimental setup.
The states are measured using (a) a local strategy and (b) a global
strategy.
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onto a vacuum state, we easily infer the spectral densities
of the prepared copies. Furthermore, the measurements
have also been corrected to account for the detection losses
and electronic dark noise in order to avoid an erroneous
underestimation. The inferred results for the spectral den-
sities are shown by the solid horizontal lines in Fig. 2.

These measurements for characterization of the pre-
pared copies are in fact identical to the measurements
associated with an optimal local estimation strategy.
However, in contrast to the characterization, for the esti-
mation of unknown coherent states we are not correcting
for detector losses and electronic dark noise. The individ-
ual spectral densities for local measurements of j�i and
j��i are shown in column (a) and (c) of Fig. 2. From these
measurements we find the added noise to be �x � �p �

1:12 0:04 for the amplitude and phase quadratures.
Assuming a flat distribution of coherent states, the fidelity
is given by

 F �
2�������������������������������������

�2� �x��2� �p�
q (11)

and calculated to FL � 64:0 1%. This is close to the
theoretical maximum of 2=3.

We now discuss the experimental realization of our joint
measurement of the phase-conjugate copies. As mentioned
above, this strategy is to combine the two copies at a 50:50
beam splitter and subsequently measure the amplitude
quadrature in one output and the phase quadrature in the
other output port of the beam splitter. Such a strategy mea-
sures the combinations x̂1 � x̂2 and p̂1 � p̂2, where the in-
dices refer to the two input modes. This combination can,
however, be accessed using an experimentally simpler ap-
proach since the information is encoded onto sidebands of
two equally intense bright beams (with the power 60 �W).
The two classically correlated copies are carefully mode
matched (�99%) at a 50:50 beam splitter and actively

locked to have balanced intensities at the outputs of the
beam splitter. Directly measuring the two outputs yields
the quadrature combinations î1 � �x̂1 � x̂2 � p̂1 � p̂2�=2
and î2 � �x̂1 � x̂2 � p̂1 � p̂2�=2, and by adding and sub-
tracting these two contributions we obtain the required
combinations x̂1 � x̂2 and p̂1 � p̂2. The spectral densities
of these measurements are shown in columns (b) and (d) of
Fig. 2.

The upper traces in Fig. 2 correspond to the coherent
amplitudes of the input states and of the joint estimates,
whereas the lower traces are the powers associated with the
noise levels, all of which are at the shot noise level. The
signal-to-noise ratio of the estimate is clearly larger than
that of the prepared states; the coherent amplitudes of the
amplitude and phase quadratures are increased by 3.0 and
2.9 dB, respectively, which effectively correspond to noise
equivalent power of �x � 0:51 0:02 and �p � 0:52
0:02 shot noise units. Using Eq. (11), the fidelity is calcu-
lated to be F� � 79:5 0:7%, thus clearly surpassing the
classical local fidelity of 2=3 and close to the theoretical
value 4=5.

In summary, we have predicted the existence of a quan-
tum effect exhibited by classically correlated quasiclassi-
cal states. This has been experimentally tested using a pair
of sideband-encoded coherent states produced by modulat-
ing a continuous-wave laser beam. We have unfortunately
not been able to prove the optimality of the joint measure-
ment of j�ij��i giving F� because the technique we used
to prove the optimality of F happened to be hard to adapt.
However, we conjecture that it is the case; this is a topic for
further investigation.
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FIG. 2 (color online). Spectral power densities (normalized to
the quantum noise level) of the local and global strategies. The
resolution bandwidth is 100 kHz and the video bandwidth is
30 Hz.
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