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Preface

When I started writting this dissertation I had two objectives in mind. The first and
most important was to present the results that I have obtained during my four years
of PhD at the Center for Quantum Information and Communication of the Université
Libre de Bruxelles, under the supervision of Nicolas Cerf. The second objective was to
write a detailed introduction to the subjects that I have been working on, in order to
help new PhD students starting research on these themes.

Since I have been working on two rather different subjects during my PhD, quan-
tum optics with continuous variables and quantum information theory with continuous
variables, I have written two independent introductions to fundamental concepts. This
explains why nearly half of this dissertation presents fundamental concepts.

Structure of the Dissertation

The dissertation starts with an historical introduction to quantum mechanics, its para-
doxes and the new field of quatum information theory. The Introduction situates
historically both subjects of my thesis: the Bell tests and quantum key distribution.
The rest of the thesis is divided in two parts. Part One concerns different applications
of the photon subtraction operation, such as the generation of arbitrary single-mode
quantum states of light or the generation of bipartite quantum states of light useful
for a loophole-free Bell test. Part Two is centered on the theoretical analysis of the
security of quantum key distribution with continuous variables.

Part One starts by introducing in Chapter 1 the fundamental aspects of quantum
optics, such as the usual states and operations that can be implemented on a quantum
optical table. Chapter 2 revisits quantum optics from the perspective of the phase-space
representation, which is the basis of quantum information processing with continuous
variables. Chapter 3 presents the concept of photon subtraction as a simple way to
generate non-Gaussian states, illustrated by the generation of arbitrary single-mode
quantum states of light by combining photon subtractions and displacements. Finally,
Chapter 4 presents a proposal of loophole-free Bell test using homodyne detection,
where a non-local bipartite state is obtained by a double photon subtraction operation
over a two-mode squeezed vacuum state.

Part Two starts with Chapter 5 introducing Shannon information theory in a
slightly different way as done in current literature in order to make the transition
to quantum information theory easier to the reader, which is presented on Chapter
6. The first part of Chapter 7 is an introduction to quantum key distribution, with
the second half presenting the family of continuous variable quantum key distribution
protocols based on Gaussian modulation of Gaussian states. Chapter 8 and 9 contain
a detailed analysis of the security of those Gaussian protocols: Chapter 8 is centered
on individual attacks while Chapter 9 concerns collective attacks.

i



ii PREFACE

How to read this Dissertation

An experienced researcher in quantum optics can go directly to Chapters 3 and 4,
while an experienced researcher in quantum information with continuous variables can
read directly Chapters 8 and 9. Quantum information researchers used to work with
discrete variables should read Chapter 2 in order to get acquainted to continuous
variables before reading Chapters 8 and 9. Finally a beginner on any of both subjects
of this dissertation should read Chapters 1 and 2 for an introduction to quantum optics
and phase-space representation, and Chapter 5, 6 and 7 for an introduction to quantum
information and quantum key distribution.
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Introduction

Just two dark clouds

The Industrial Revolution marked in the 19th century a major turning point in hu-
man social history. This major shift was powered by the developments in two different
branches of physics, thermodynamics and electrodynamics, combined with the old New-
tonian mechanics. Those three theories could efficiently describe most of the physical
phenomena known to date, confirmed by careful detailed experiments for many years.

The general feeling among the physics community at the time was to consider
physics as a perfectly assembled and closed structure where there was nearly no pos-
sibility for new big discoveries. The following advice by Philipp von Jolly, Planck’s
professor at Munich, expresses the mood prevalent at that time: ”theoretical physics
is a noble discipline, [...] but it is improbable that you could add something really new
of great relevance” [137]. Physicists were so absolutely certain of their ideas about the
nature of matter and radiation that any new concept which contradicted their classical
picture would be given little consideration.

Lord Kelvin spoke of only two dark clouds on the Newtonian horizon. The first
was the difficulty of conceiving the Earth as moving through ether; the second one
concerning the black-body radiation. Since then, physicists have fortunately succeeded
to clear the sky of those two dark clouds, but ironically, at the price of changing the
horizon. The first was cleared by Einstein’s theory of special relativity [66] which
changed the ”sacred” Newtonian point of view of space and time. The second opened
the way to quantum mechanics, a theory that confronts us with seemingly paradoxes
which contradict our deepest logical intuition about how nature behaves. Despite
the weirdness of the theory, it has succeeded to explain accurately a huge amount
of phenomena such as chemistry, nuclear physics and modern electronics which have
revolutionized our world.

The triumph of the Quanta

The frequency dependence of the energy emitted by a black body 1 was puzzling physi-
cist, since 1859, as they were not able to explain its behavior using the usual tools of
thermodynamics and radiation theory. In his 1901 paper, Planck succeeded in deriving
the correct shape of the spectrum emitted by a black body, using an assumption that
was going to revolutionize physics. He assumed that the energy of the constituting
elements of the black body was present in discrete units, quanta [150]. Even if Planck
thought that his hypothesis was just an artefact that did not refer to real energy ex-
changes between matter and radiation, there was no return point, quantum theory was
born.

1A black body is an object that is in equilibrium with his environment, absorbing as much radiation
as it rejects. These properties make black bodies ideal sources of thermal radiation directly related to
their temperature.

vii



viii INTRODUCTION

In 1905, Einstein took this idea one step further and assumed that the radiation
was composed of discrete units of energy, the so called ”quanta”, which allowed him to
explain the photo-electric effect [67], which gave him the 1921 Nobel Prize. This revolu-
tionary idea of quantization was applied again in 1907 by Einstein to solid state physics
in his seminal paper explaining the specific heat of solids at very low temperature [68].
The first Solvay Conference held in Brussels in the autumn of 1911 ”Radiation and
the Quanta” heralded the take-off of the new theory, which started to be recognized
among the physics community.

At the same time that the theory of radiation was living a revolution on its founda-
tions, so was the theory of matter. In 1909, Ernest Rutherford and his team working
in the new research area of radioactivity had the idea to use the massive and positively
charged alpha particles to probe the structure of the atom. He observed backward
scattering [87] and showed that the atom must have an incredible small but massive
center carrying a positive charge. This led him to propose the orbital model of the
atom [162], where the recently discovered electron (M. J. Perrin in 1896 [149] and J. J.
Thomson in 1897 [186]) orbits around a massive and positively charged nucleus, much
like a miniature solar system. However, classical electromagnetic theory predicted that
such system should be highly unstable, the electrons radiating their energy until they
collapse into the nucleus. Bohr, who had come to Manchester to work with Rutherford,
solved the problem in 1913 postulating that the electrons were confined into a discrete
set of orbits [25]. In addition, Bohr successfully explained the spectral lines that had
been measured for hydrogen and the recently discovered helium [26]. The model im-
proved by Sommerfeld and Pauli set the basis of the nowadays atomic physics, which
is at the basis of modern chemistry. The explanation of the ordering of Mendeleyev
table of elements by this new theory of the atoms [27], is a beautiful example of the
astonishing breakthrough realized by Bohr.

Particle or Wave?

By the end of the 19th century most of the physicists were convinced that the light
was a wave, as Young’s double-slit experiments clearly demonstrated. Surprisingly,
Einstein’s work on the photo-electric effect needed to assume the light being a particle.
The corpuscular behavior was again confirmed by the observation of the Compton
effect in 1923 [50], which can be explained as a collision of an electron with a photon.
Both incompatible models of light (particle and wave) seemed to be necessary at the
same time to explain different experiments, giving birth to the first paradox of quantum
physics, the wave-particle duality. At the same time de Broglie postulated that not only
light has this wave-particle duality [57], but all existing particles should have a wave
behavior, and he succeeded to explain Bohr’s model of the atom as stationary waves
of the electron. An experimental confirmation of de Broglie revolutionary idea came
four years later when the wave behavior of electrons was experimentally demonstrated
independently by Davisson [56] and G.P. Thomson 2 in 1927 3.

Despite the important successes of the new theory of quanta, the theory was just
a combination of ad hoc quantization rules combined with usual classical physics. A
coherent formalism from which one could deduce the ad hoc quantization rules was
needed. The answer came in 1925 with two independent developments. The first
proposal was Heisenberg’s matrix mechanics, which he developed with the help of Max
Born and Pascual Jordan [29]. Because Heisenberg’s theory was a purely mathematical
formalism with no visual aid, physicists of that time preferred the second proposal by

2Ironically, it was the son of J.J. Thomson who demonstrated the particle behavior of the electrons.
3Since then, similar diffractive experiment has been carried out with bigger system, where the

actual record is an interference of fullerenes, a molecule consisting of 60 carbon atoms [6].
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Schrödinger [168], using a more familiar formalism for the physicist of that time, the
wave equation.

Schrödinger developed his famous equation based on de Broglie’s concept of matter
waves, believing that his approach would reduce quantum mechanics to classical physics
by defining his wave function as a density distribution of matter. But his dream
vanished when Max Born showed in 1926 that the square of the wave function was
indeed the physical probability associated to the particle presence [28]. This new
probability was not due to ignorance as in classical thermodynamics but was an intrinsic
property of nature. This new probabilistic interpretation combined with the major
discovery by Heisenberg of the uncertainty principle in 1927 [99] was a direct attack
to the foundations of the ”sacred” concept of determinism that had ruled in physics
since its beginnings. This tremendous earthquake on the foundations of physics made
many physicists dislike this new proposal. Among the most prominent was Einstein,
who coined the famous remark ”I, at any rate, am convinced that He does not throw
dice”. This marks the divorce of Einstein with Bohr’s and Heisenberg’s interpretation
of quantum mechanics, called the Copenhagen interpretation. Einstein’s disagreement
with the ”orthodox interpretation” of quantum mechanics will last until his death in
1955.

The Interpretation Paradoxes

Although the Copenhagen interpretation provided a strikingly successful calculation
recipe, many physicists continued to think that quantum mechanics should be de-
scribed by a more fundamental and deterministic physical theory. Another of those
unhappy physicists was Schrödinger, who in 1935 proposed his famous ”cat’s thought
experiment”[169] which attempts to illustrate the incompleteness of Bohr’s interpre-
tation of quantum mechanics when going from subatomic to macroscopic systems.
Schrödinger imagined a cat placed in a box with a radiative atom and a Geiger counter
that activates a deadly poison fume killing the cat if the radiative atom decays. The
radiative atom being in a superposition of decaying and not decaying, it translates into
a macroscopic superposition of a dead and alive cat, which seems not acceptable as
a superposition of macroscopic object has never been observed. The response of the
Copenhagen interpretation to this paradox was that the act of observation collapses
the wave function in one of both states of the cat.

Even if most physicists were more concerned with practical applications of quantum
mechanics than by its interpretation problems, Einstein did not give up. After arriving
to Princeton escaping from the Nazi rise to power, he proposed together with Boris
Podolsky and Nathan Rosen another ”thought experiment” now called the EPR para-
dox [69] after its authors names. The experiment considers a very special state com-
posed of two spatially separated particles that interacted in the past, having stronger
correlations than any classical system can have. Schrödinger coined the term entangle-
ment for this property. The authors suggested in their work a contradiction between
quantum mechanics and three assumptions that they considered to be necessary in
any reasonable physical theory:(i) causality; (ii) a definition of reality of a physical
quantity; (iii) separate systems should maintain separate identities. The authors being
convinced that quantum mechanics was then an incomplete theory, they suggested that
the probabilistic structure of quantum mechanics should be described by an underlying
deterministic substructure.

Einstein and Schrödinger were not the only ones to disliked the special role of mea-
surement in Bohr’s interpretation and the resulting probabilistic structure. In 1957,
Everett proposed in his PhD dissertation a new interpretation of quantum mechanics
which eliminates the special role that measurement has in the Copenhagen interpre-
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tation [74]. The crucial idea is that he considered the measurement process as an
interaction between the object and the measurement apparatus ruled by quantum me-
chanics, governed by the same rules as any interaction between two quantum system.
But the price to pay for solving the collapse problem is extremely high, as an even
stronger interpretation problem appears. Everett’s interpretation allows every possible
outcome of each event to exist in its own ”history”, the superpostion of ”Schrödinger
cat” becoming a reality!. The apparent randomness being just a perception of the
observer inside each ”history”. Everett’s interpretation became known as the ”many
worlds”, which has been an endless source of inspiration for science fiction writers.

Rather than remain stuck by interpretation problems of the theory, most physicists
took a pragmatic approach and continued using quantum mechanics to study unsolved
problems. The reason was simple but astonishing, quantum mechanics powered by the
new mathematically rigorous formulation developed by Paul Dirac [60] 4 and John von
Neumann [192] was succeeding to explain an incredible amount of phenomena such as
the basis of chemical reactions, nuclear physics and predicting the existence of new
particles such as the positron or neutron. The success of quantum mechanics was so
important that discussing about the interpretation and paradoxes was nearly a taboo,
a domain relayed to philosophers of science.

Entanglement Becomes a Reality

The EPR argument gained a renewed attention in 1964, when John Bell, a researcher
at the European accelerator laboratory CERN, derived his famous inequalities [15].
Bell showed that any deterministic substructure model following Einstein’s conception
of Nature (also called an hidden-variable model), while it satisfies causality, it yields
predictions that significantly differ from those of quantum mechanics. The merit of
Bell inequalities lies in the possibility to test them experimentally, allowing physicists
to test whether either quantum mechanics or ”hidden-variable models” is the correct
description of Nature.

A decade later, an important technology development allowed researchers to im-
plement sources of entangled states, allowing for the first time to test the foundation
principles of quantum mechanics. The first Bell test was carried out by Freedman and
Clauser in 1972 [80], which was later improved by Aspect, Grangier, Dalibard and
Roger, who performed experiments at the beginning of the 80’s [8, 9, 10] and more
recently by Zeillinger’s team in 1998 [195]. All the performed experiments observe the
violation of Bell inequalities as predicted by quantum mechanics. But from a logi-
cal point of view, these experiments do not succeed in ruling out a “hidden-variable
model”, as an extra assumption is necessary: the pairs of photons registered by the
detectors form a fair sample of the emitted pairs.

Even if there remains some controversy about the interpretation of the results of
Bell experiments 5, most of the physicists agree that Nature does not behave as Ein-
stein’s model of ”hidden variable” predicts. The confidence in quantum mechanics is
strengthened by two other experiments, the delayed choice experiment [110, 116] and
the GHZ paradox experiment [143], which cannot be explained by any classical model.
But from a purely logical point of view ”hidden-variable models” have not been ruled
out yet, as a loophole-free Bell test has not been carried out yet. In the first part of
this dissertation, we propose an experimentally feasible setup capable of carrying such
a Bell test in the near future.

In the last two decades quantum physics has lived a ”renaissance” thanks to a

4Interestingly, Dirac proved that Heisenberg and Schrödinger interpretations were equivalent.
5For a detailed description of this controversy see the introduction of Chapter 4 of this thesis where

we present an experiment that if implemented would definitively close the debate.
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technological breakthrough that has allowed experimentalists to manipulate for the first
time individual particles and generate entangled states. Examples of such revolutionary
technologies are: the cooling down to absolute zero temperature, which has allowed
to trap individual atoms and ions; the generation of pairs of entangled photons; the
generation of Bose-Einstein condensates; or the superconducting quantum dots. This
has allowed physicists to transform the old ”thought experiments” into real experiments
which test the foundations of quantum mechanics every day in the laboratories, with
no failure of quantum theory predictions observed up to date.

The possibility of addressing atoms and photons individually has recently raised
the following question ”What happens if we encode information into microscopic par-
ticles?”. The answer is a promising new field of physics called Quantum Information.
This field results from merging quantum mechanics with two of the most important
theories of the 20th century, information theory and computer science, which developed
after the seminal works of Claude Shannon [175] and Alan Turing [187], respectively.

Information is Physical

Before continuing the presentation of quantum information let us jump back to the 40’s.
The Second World War acted as catalyzer for the research and development of new
technologies. Even if most of the developments took place in the domain of engineering
(rockets, jet propulsion or nuclear weapon research), also new branches of applied
mathematics, such as operational research, were born during the war. But probably
the two most important examples of theories born at that time are, information and
communication theory and computer science, as they are at the origin of another
technological revolution comparable to the Industrial Revolution, which has changed
our way of living in the last decades.

The landmark event that established the discipline of information theory, was the
publication of Claude E. Shannon’s classic paper ”A Mathematical Theory of Commu-
nication” in 1948 [175], kept secret during the war. Shannon information science has
become since 1948 a flourishing field, with numerous applications such as error cor-
recting codes used in digital communication and data storage. During the first years
of the development of information theory, the information was seen as an abstract
mathematical concept. This view smoothly switched to a more physical description of
information, where one can see a storing media (e.g. hard disk) as a collection of in-
formation units that can be in two different physical states, encoding logical zeros and
ones. This new physical point of view on information came along with some interesting
theoretical results such as Landauer’s principle [124] linking the erasure of information
to the dissipation of energy and the concept of reversible computation.

Let us return to the 90’s. During the last decade physicists started to study the
effects of encoding information in quantum objects, giving birth to Quantum Infor-
mation. This new field offers novel applications such as quantum computation and
quantum cryptography, which are impossible to get using classical information en-
coded in macroscopic objects, as done in current IT applications. Quantum computers
are a promising technology that would allow decreasing the calculation time of many
interesting problems such as factoring large numbers or searching an unsorted database,
which are used in numerous applications. Quantum cryptography is the most devel-
oped application of Quantum Information, enabling two distant partners linked by a
quantum channel and a usual communication line to distribute a secret key unknown
to a potential eavesdropper. In contrast to nowadays cryptographic protocols, such as
RSA [160], which are based on the difficulty of solving some mathematical problems
such as factorization of large numbers (that could be broken by a quantum computer),
the security of quantum key distribution is stronger since it is assured by the laws of
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physics. During recent years, quantum cryptography has been the object of a strong
activity and rapid progress, and is now extending its activity into commercial products
proposed by some startups.

The interest of Quantum Information not only resides in its applications, the theory
is also interesting in itself as it gives a new insight on the foundations of quantum me-
chanics, which can be experimentally tested thanks to new technological developments.
This new way of thinking about quantum mechanics is starting to influence other fields
of physics where quantum effects are present, such as solid state physics, resulting in
unexpected and interesting contributions to those fields.

Continuous Variables

As for classical information, the quantum information can be divided into two families
depending on the encoding techniques: discrete variables (quantum-bit) and continu-
ous variables. Since the experimental demonstration in 1998 of unconditional quantum
teleportation [83], continuous variable quantum information has become a flourishing
field with many practical advantages over its quantum-bit counterpart, especially for
protocols related to communication. For example, if one uses the quadratures of the
electromagnetic field to encode continuous variables, linear optical circuits, coherent
detection and feed-forward are enough to implement many interesting protocols such
as cloning and quantum key distribution. Together with the simplification of the pro-
cessing operations, the use of coherent detection reaches a much higher optical data
rate than with usual photodiodes, allowing faster, cheaper and more efficient detectors.

Entanglement being the key resource for many quantum information applications,
the generation and manipulation of continuous-variable entangled states has been a
very important field of research during the last years, both theoretically and exper-
imentally. The usual way of generating continuous-variable entanglement in experi-
ments, such as in the teleportation experiment, is based on parametric amplification
processes. Interestingly, continuous-variable experiments do not suffer from two draw-
backs present in qubit-based implementations: (i) current optical sources of entangled
qubits do not succeed generating entanglement on demand; (ii) the measurement in
the basis of entangled states is not unconditional. The easiness of the generation, ma-
nipulation and measurement of entangled states makes continuous-variable quantum
information even more interesting.

The large majority of quantum states of light that are currently accessible in quan-
tum optics labs are the so-called Gaussian states, presented in Chapters 1 and 2 of this
dissertation. The major part of the optical operations that are nowadays accessible are
called Gaussian operations, as they preserve the Gaussian property of the states. Gaus-
sian states and Gaussian operation are crucial tools for continuous-variable quantum
information which have being extensively studied during the last years.

Unfortunately it was recently discovered that not all quantum information applica-
tions are implementable using just Gaussian states and Gaussian operations. For exam-
ple, universal quantum computation and entanglement distillation need more sophis-
ticated non-Gaussian operations, which has increased the interest over non-Gaussian
operations in the last years. One of the simplest non-Gaussian operations being acces-
sible today is the photon subtraction operation [139], which is the core element of the
first part of this PhD dissertation. In Chapter 3 we propose a technique to generate
highly non-Gaussian single-mode states of light based on this novel operation, Chapter
4 proposes an experimental setup capable of realizing a loophole-free Bell test using
the photon subtraction operation.

In the second part of this PhD dissertation, we study a continuous-variable version
of quantum key distribution. Chapter 8 and Chapter 9 treat a complete security
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analysis of a family of protocols based on Gaussian modulation of Gaussian states.
Those protocols are very interesting due to the practical advantages of continuous
variables described above.
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Bell Tests with Continuous
Variables
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Chapter 1

Quantum Optics

1.1 Quantization of the Electromagnetic Field

In this section we introduce the quantization of the electromagnetic field and different
state representations such as the Fock state and quadrature basis.

Classical Description of Free Electromagnetic Field

The Maxwell equations of the electromagnetic field in the vacuum relate the electric
E to the magnetic field H. Since there is no current or electric charge present in the
vacuum, the equations have the form:

∇× E = −ǫ0
∂H

∂t
, (1.1)

∇× H = µ0
∂E

∂t
, (1.2)

∇ ·E = 0, (1.3)

∇ ·H = 0, (1.4)

where ǫ0 and µ0 are the free space permittivity and permeability, respectively, satisfying
µ0ǫ0 = c2 where c is the speed of light in vacuum. It follows that E(r, t) satisfies the
wave equation

∇2E− ∂2E

∂t2
= 0. (1.5)

This equation has a solution in terms of forward (backward) propagating plane waves,
traveling at the speed of light c,

E(r, t) =
∑

k

Eke
(λ)
k

[

αk,λe
i(kr−ωkt) + α∗

k,λe
−i(kr−ωkt)

]

, (1.6)

where k is the index of the mode, λ the polarization, ωk the angular frequency of

the mode k, e
(λ)
k

the unit polarization vector, αk and α∗
k

are dimensionless complex
constants and

Ek =

(

~ωk

2ǫ0

)1/2

, (1.7)

contains all the dimensional prefactors. The magnetic field reads,

H(r, t) =
1

µ0

∑

k

Ek

k × e
(λ)
k

ωk

[

αk,λe
i(kr−ωkt) + α∗

k,λe
−i(kr−ωkt)

]

, (1.8)

3
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with the electric and magnetic field in phase and with directions orthogonal to one
another and to the propagation direction.

Quantization

The radiation field is quantized by identifying αk,λ and α∗
k,λ with the harmonic os-

cillator annihilation âk,λ and creation â†
k,λ operators, which satisfy the commutation

relation of bosons,

[âk,λ, â
†
k′,λ′ ] = δkk’δλλ′ ,

[âk,λ, âk′,λ′ ] = 0,

[â†
k,λ, â

†
k′,λ′ ] = 0. (1.9)

The quantized electric and magnetic field take the form

E(r, t) =
∑

k

Eke
(λ)
k

[

âk,λe
i(kr−ωkt) + â†

k,λe
−i(kr−ωkt)

]

, (1.10)

H(r, t) =
1

µ0

∑

k

Ek

k× e
(λ)
k

ωk

[

âk,λe
i(kr−ωkt) + â†

k,λe
−i(kr−ωkt)

]

. (1.11)

Fock States Representation

Single mode For a single mode of the field of frequency ω we define the creation
and annihilation operators â† and â, respectively. The eigenstates |n〉 of the number
operator N̂ = â†â with eigenvalue n,

â†â|n〉 = n|n〉, (1.12)

are called Fock states or photon number states and are usually interpreted as corre-
sponding to the presence of n quanta of light in the corresponding mode. The states
|n〉 are also eigenvectors of the Hamiltonian

H |n〉 = ~ω
(
â†â+

1

2

)
= En|n〉, (1.13)

with energy eigenvalue En = ~ω(n+ 1/2).

Photon States The state containing no photons (|0〉) is called the vacuum state.
Using the commutation relations (1.9) and the definition of the number operator (N̂ =
â†â) one can derive the relations

â|n〉 =
√
n|n− 1〉, (1.14)

â†|n〉 =
√
n+ 1|n+ 1〉, (1.15)

which, applying â† successively on |0〉, give

|n〉 =
1√
n!

(â†)n|0〉. (1.16)

The Fock states (|n〉) being eigenstates of the number operator, they obviously form
a complete basis of orthogonal states,

〈n|m〉 = δn,m (Orthogonality), (1.17)
∞∑

n

|n〉〈n| = I (Completeness relation). (1.18)
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In general an arbitrary superposition of energy eigenstates reads,

|ψ〉 =
∑

n

cn|n〉. (1.19)

More generally any state of one mode of light can be described by the density operator,

ρ =

∞∑

n,m=0

ρn,m|n〉〈m|, (1.20)

where Tr[ρ] = 1 and ρ is a Hermitian (real eigenvalues λi) positive operator (λi ≥ 0).

Multi-modes So far we have considered a single-mode field and have found that,
the photon number states {|n〉} form a basis of the Hilbert space. This formalism can
be extended to multi-mode fields by defining the basis |nk〉,

|nk〉 = |n1〉 ⊗ |n2〉 ⊗ ...⊗ |nk〉. (1.21)

with n1 photons in the first mode, n2 in the second, and so forth.

Quadratures Operators

The definition of the electric field using the annihilation and creation operators (â, â†)
given in (1.10) can be rewritten for a single mode as

E(r, t) = E0e
[

x̂ cos(kr− ωkt) + p̂ sin(kr − ωkt)
]

(1.22)

where the dimensionless operators x̂ and p̂ are the so-called quadratures of the electro-
magnetic field,

x̂ =
1√
2
(â† + â) (1.23)

p̂ =
i√
2
(â† − â), (1.24)

formally equivalent to the position and momentum of an harmonic oscillator. The
operators x̂ and p̂ being Hermitian they can be measured as opposed to (â, â†). They
satisfy the commutation relation

[x̂, p̂] = i, (1.25)

which gives the well-known Heisenberg uncertainty relation

∆x̂∆p̂ ≥ 1

2
|〈[x, p]〉| =

1

2
. (1.26)

with ∆A = (〈A2〉 − 〈A〉2)1/2. The operators x̂ and p̂ being formally equivalent to
the position and momentum, one can define, by analogy with classical mechanics, a
phase-space representation of the quantum state of light.

Quadrature Eigenstates

The eigenstates of the quadratures,

x̂|x〉 = x|x〉, (1.27)

p̂|p〉 = p|p〉, (1.28)
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form two sets of orthonormal states,

〈x|x′〉 = δ(x− x′), (1.29)

〈p|p′〉 = δ(p− p′), (1.30)

such as the position and momentum eigenstates. Both ensembles are a resolution of
the identity,

∫ +∞

−∞
|x〉〈x| = I, (1.31)

∫ +∞

−∞
|p〉〈p| = I, (1.32)

which shows that they are both complete orthogonal bases. Both bases are related by
a Fourier transformation,

|p〉 =
1√
2π

∫ +∞

−∞
dpeixp|x〉, (1.33)

|x〉 =
1√
2π

∫ +∞

−∞
dxe−ixp|p〉. (1.34)

The wave function and its Fourier transform of a given quantum state ψ read,

ψ(x) = 〈x|ψ〉, (1.35)

ψ(p) = 〈p|ψ〉. (1.36)

Coordinate Representation of Fock States

The coordinate representation of |n〉 is given by

φn(x) = 〈x|n〉. (1.37)

It follows from the definition (1.24) that

â|0〉 =
1√
2
(x̂+ ip̂)|0〉 =

1√
2

(

x+
∂

∂x

)

φ0(x) = 0. (1.38)

After solving the differential equation we obtain

φ0(x) =
1

π1/4
e−x

2/2. (1.39)

The probability distribution of the x quadrature is a Gaussian of variance σ2 = 1/2,

|φ0(x)|2 =
1

π1/2
e−x

2

=
1

(2πσ2)1/2
e−x

2/2σ2

. (1.40)

For higher photon numbers n we obtain the eigenstates of the harmonic oscillator

φn(x) =
1√
2nn!

Hn(x)φ0(x), (1.41)

where Hn(x) are the Hermite polynomials [2].
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Moments of x̂ (same for p̂) The mean value of an operator A on a quantum state
of light ρ reads,

〈A〉 = Tr(ρA). (1.42)

In the particular case of Fock states the mean value of x̂ is null,

〈x̂〉 = 〈n|x̂|n〉 ∝ 〈n|â† + â|n〉 = 〈n|n+ 1〉 + 〈n|n− 1〉 = 0. (1.43)

The second moment can be calculated in a similar way,

〈x̂2〉 = 〈n|x̂2|n〉 =
1

2
〈n|(â† + â)2|n〉 =

1

2
〈n|(â†2 + [â, â†] + 2â†â+ â2)|n〉, (1.44)

which gives, using (1.15),

〈x̂2〉 =
1

2

(

〈n|n+ 2〉 + 1 + 2n〈n− 1|n− 1〉 + 〈n|n− 2〉
)

= n+
1

2
. (1.45)

Notice that the same results are obtained for the p quadrature, which gives the uncer-
tainty product,

∆x̂∆p̂ = n+
1

2
, (1.46)

which is minimum only for the vacuum state (saturating equation (1.26)).

1.2 Coherent States and Displacements

The number states form a useful representation of states with a small number of quanta.
Unfortunately perfect number states are extremely difficult to generate experimentally
for n > 2. On the other hand, lasers are very common sources of light, which generate
the so-called coherent states.

Definitions A coherent state, denoted |α〉, is an eigenstate of the annihilation oper-
ator,

â|α〉 = α|α〉, (1.47)

where α is a complex number (note that â is a non-Hermitian operator). Alternatively,
if one solves the Schrödinger equation for the light field emitted by a monochromatic
dipole whose current oscillation is of frequency ω, one gets a coherent state [172]. We
observe that a coherent state can be seen as a displaced vacuum state, where D(α) is
the displacement operator,

|α〉 = eαâ
†−α∗â|0〉 = D(α)|0〉. (1.48)

The displacement operator being a unitary operator we obtain

D†(α) = D−1(α) = D(−α). (1.49)

Properties Using the Baker-Campbell-Hausdorff formula provided that
[A, [A,B]] = 0 and [B, [A,B]] = 0 we have

eA+B = eAeBe−[A,B]/2. (1.50)

We can then rewrite the displacement operator in the normal and antinormal forms,

D(α) = e−|α|2/2eαâ
†

e−α
∗â (normal form), (1.51)

D(α) = e|α|
2/2e−α

∗âeαâ
†

(antinormal form). (1.52)
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Using the normal and antinormal forms and the Baker-Campbell-Hausdorff lemma

e−αABeαA = B − α[A,B] +
α2

2!
[A, [A,B]] + ... (1.53)

we obtain the action of the displacement operator on the annihilation and creation
operators,

D†(α)âD(α) = â+ α (1.54)

D†(α)â†D(α) = â† + α∗, (1.55)

where we see that D(α) displaces the operators â (â†) by an amount α (α∗). It is easy
to prove that the definition of the coherent state as a displacement of the vacuum is
equivalent to the definition as an eigenstate of â:

â|α〉 = D(α)D†(α)âD(α)
︸ ︷︷ ︸

â+α

|0〉 = αD(α)|0〉 = α|α〉 (1.56)

as â|0〉 = 0.
Similarly (combining Eq. (1.55)) one can find the action of the displacement oper-

ator on the quadratures of the field,

D†(α)x̂D(α) = x̂+
√

2ℜα (1.57)

D†(α)p̂D(α) = p̂+
√

2ℑα, (1.58)

where ℜ (ℑ) is the real (imaginary) part.. We see that a coherent state (|α〉) results
from the displacement of the vacuum state (|0〉) in the phase space by an amount
dx =

√
2ℜα along the quadrature x̂ and dp =

√
2ℑα along p̂.

Expansion in terms of number states Using the normal form of the displacement
operator we obtain

|α〉 = e−|α|2/2eαâ
†

e−α
∗â|0〉 = e−|α|2/2

∞∑

n=0

αn(â†)n

n!
|0〉, (1.59)

which finally gives,

|α〉 = e−|α|2/2
∞∑

n=0

αn√
n!
|n〉. (1.60)

We see that coherent states have an undefined number of photons, which allows them
to have a better defined phase than number states (which have totally random phase).
The probability of finding n photons in |α〉 is given by a Poisson distribution,

p(n) = |〈n|α〉|2 = e−|α|2 |α|2n
n!

, (1.61)

with mean value and variance such that 〈n〉 = ∆2n = |α|2.

Quasi-Classical States Coherent states are often called quasi-classical states as
the product of uncertainties in amplitude and phase is the minimum allowed by the
uncertainty principle (1.26), with

∆2x̂ = ∆2p̂ =
1

2
, (1.62)

being the closest to a classical state where one knows exactly both the amplitude and
phase. The proof is similar to the calculation of the second order moment in (1.1),

〈x̂2〉 = 〈α|(â†2 + [â, â†] + 2â†â+ â2)|α〉 =
1

2

(
1 + (α+ α∗)2

)
=

1

2
+ 〈x̂〉2, (1.63)

which combined with ∆2x̂ = 〈x̂2〉 − 〈x̂〉2 gives the desired result.
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Overcomplete Basis Using the definition (1.48) and property (1.49) we obtain,

〈β|α〉 = 〈0|D†(β)D(α)|0〉 = 〈0|D(α− β)|0〉 = 〈0|α− β〉 = e−|(α−β)|2/2, (1.64)

giving finally,

|〈β|α〉|2 = e−|α−β|2. (1.65)

Thus coherent states are not orthogonal, but become approximately orthogonal in the
limit where α is far from β. The set of coherent states satisfy the completeness relation,

1

π

∫

|α〉〈α|d2α = I. (1.66)

This can be proved by using the expansion of coherent states in terms of number states
(1.60), the polar coordinates α = reiθ and the integrals,

∫ 2π

0

ei(n−m)θdθ = 2πδn,m, (1.67)

and ∫ ∞

0

dxe−xxn = n!, (1.68)

as shown in [172].

1.3 Linear Optical Operations

In the following we are going to detail the ensemble of linear operations that can
be applied to a multimode optical field. In most of the cases we will introduce the
Hamiltonian of the interaction using the creation and annihilation operators, as their
derivation is more intuitive. In some cases we will derive the transformation just for
the quadratures (x̂, p̂), as they are physical quantities that can be measured in contrast
to creation and annihilation operators.

Heisenberg Equation of Motion

For an operator A which does not depends explicitely on time, the Heisenberg’s equa-
tion of motion reads

dA

dt
=

1

i~
[A,H ], (1.69)

where H is the Hamiltonian describing the system in the Heisenberg picture.

Phase Shift

The phase is the crucial element of the wave behavior of the electromagnetic field. The
phase of a single beam has no physical meaning, as it cannot be measured since we have
only access to the phase difference between different beams. A usual way of applying
a phase shift on a optical beam is to increase the path length of the beam compared
to the others. Adding some transparent material with refractive index higher than
vacuum on the path of the beam has a similar effect.

In both situations the beam accumulates an additional phase θ proportional to the
path difference or the interaction time (θ = ω∆t) respectively. The corresponding
Hamiltonian (Hθ) is simply the Hamiltonian of the free electromagnetic field,

Hθ = ~ωâ†â. (1.70)
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Using the Heisenberg equation of motion (1.69) we obtain

dâ

dt
= −iω[â, â†â] = iωâ, (1.71)

which is a first order differential equation, that combined with the initial condition
â(0) = âin gives

âout = e−iω∆tâin = e−iθâin, (1.72)

and similarly, â†out = eiθâ†in. Using the same technique with Hθ = ~ω
2 [x̂2 + p̂2 − 1]

and using the initial conditions (x̂(0) = x̂in, p̂(0) = p̂in) one obtains the quadratures
transformation,

[
x̂
p̂

]

out

=

[
cos θ sin θ
− sin θ cos θ

] [
x̂
p̂

]

in

, (1.73)

which is just a rotation of angle θ in the phase-space representation.

Beamsplitter

A beamsplitter is a semi-transparent mirror which transmits part of the incoming
signal and the rest is reflected. As shown in Fig. 1.1 when two beams are spatially
and temporally matched in a beamsplitter the outgoing modes are a coherent mixture
of both input modes. The interaction between two beams on a beamsplitter has the

1in 1out

2in

2out

Figure 1.1: Two light modes (1 and 2) are matched at the input ports of a beamsplitter
which outputs two linear combination of the input modes.

same effect as switching on the interaction described by the following Hamiltonian

Hγ = ~ω(â†2â1 + â†1â2), (1.74)

during a given time ∆t, which coherently mixes both modes while preserving the total
number of photons (N̂1 + N̂2). Using the Heisenberg equation of motion (1.69) we
obtain the system of differential equations of the annihilation operators of both modes
(â1, â2),

dâ1

dt
= −iω[â1, â

†
1â2] = −iωâ2, (1.75)

dâ2

dt
= −iω[â2, â

†
2â1] = −iωâ1, (1.76)

which reduces to the second order differential equation for â1

d2â1

dt2
= −ω2â1, (1.77)
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with a similar equation for â2. The solution of the differential equation gives us the
transformation,

[
â1

â2

]

out

=

[
cos(ω∆t) −i sin(ω∆t)

−i sin(ω∆t) cos(ω∆t)

] [
â1

â2

]

in

. (1.78)

In the case of the beamsplitter the term cos(ω∆t) (sin(ω∆t)) becomes the square root
of the transmittance (reflectance) of the beamsplitter,

[
â1

â2

]

out

=

[ √
T −i

√
R

−i
√
R

√
T

] [
â1

â2

]

in

. (1.79)

The phase i on the non-diagonal terms results from the boundary condition on a semi-
transparent mirror which implies that reflected waves get a phase i with respect to
transmitted waves. In the quantum optics literature the beamsplitter transformation
is currently written

[
â1

â2

]

out

=

[ √
T

√
R√

R −
√
T

] [
â1

â2

]

in

, (1.80)

which can be derived from the previous equation by applying the change of variable
â2 → iâ2. The minus sign can be chosen arbitrarily in front of the

√
T term of the first

or second line, both being equivalent up to a local phase.
The transformation of the quadratures in vector notation r̂ = (x̂, p̂)T can be calcu-

lated in a similar way and reads,

[
r̂1
r̂2

]

out

=

[ √
T I

√
RI

−
√
RI

√
T I

] [
r̂1
r̂2

]

in

, (1.81)

where I is here the identity in C2. The minus sign can be chosen arbitrarily in front of
the

√
R term of the first or second line, both being equivalent up to a local phase.

Displacement

Previously we have defined the displacement operator D(α) without suggesting any
physical way of realizing it. The usual way of implementing the displacement operator
in the lab is shown in Fig. 1.2. The idea is to combine the optical mode we want to

T~1

X Xin out

I= α
1−T

Figure 1.2: In order to apply a displacement α to a given optical mode. We combine
the target mode x̂in with an auxiliary mode of amplitude α/

√
1 − T into a beamsplitter

with high transmittance.

displace (quadrature x̂in) with an auxiliary mode consisting on a high intensity coherent
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state of mean value d̄/
√

1 − T , where d̄ =
√

2(ℜα,ℑα) = (dx, dp) into a beamsplitter
of high transmittance (T → 1).

Using the transformation of the beamsplitter for the quadratures of the field (1.81)
the output quadrature x̂out reads (similarly for p̂out),

x̂out =
√
T x̂in +

√
1 − T x̂aux =

√
T x̂in + dx. (1.82)

On the other hand the variance of the output mode reads,

∆2x̂out = T∆2x̂out +
(1 − T )

2
, (1.83)

as the auxiliary beam being a coherent state we have ∆2x̂aux = 1/2. Equation (1.82)
shows that in the limit of very high transmittance (T → 1) the output quadrature is
exactly the input quadrature displaced by d̄. Looking at equation (1.83) we observe
that the higher the transmittance is, the less the auxiliary beam disturbs the state.
The price to pay for a highly efficient displacement is the increase in the intensity of the
auxiliary beam, as α/

√
1 − T → ∞ when T → 1. There is a clear tradeoff between the

efficiency of the displacement operation on one side and the intensity of the auxiliary
beam we can reach and the transmittance of the beamsplitter on the other side.

Measurement

In quantum mechanics one can associate a measurement to each basis that is a resolu-
tion of the identity. In quantum optics we consider two types of measurement, those
that resolve the photon number states and those who measure the quadratures of the
field, as we present below.

Single Photon Sensitive Detectors

The measurement related to the Fock basis (photon number states) is the so-called
detector with photon resolution as it is capable of discriminating among all Fock states
(|n〉〈n|). Unfortunately discriminating the photon number is so extremely challenging
that there is no actual detector capable of doing it efficiently. A more reasonable task is
the so-called detector with photon sensitivity that is capable of resolving between either
no photon (|0〉〈0|) or one or more photons (I − |0〉〈0|). Photon sensitivity is currently
achieved using avalanche photodiodes (APD) which are tuned to sense a single photon,
which is already technically very challenging.

Realistic APD

APD
η

APD
ideal

Figure 1.3: A realistic APD with efficiency ηAPD is modeled by placing a beamsplitter
of transmittance ηAPD before an ideal APD detector.

Realistic APD A real APD has two sources of error. Firstly not all the photons
arriving at the detector generate an avalanche. The rate of detected compared to
arriving photons is called the efficiency (ηAPD) of the detector. It is modeled by a
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beamsplitter of transmittance ηAPD placed before a perfect detector, as shown in Fig.
1.3. Current APD detector technology reaches around 50% of efficiency at most. The
second source of errors is the so-called dark counts, as they correspond to spontaneous
clicks not heralded by any impinging photon. Fortunately, the effect of dark counts
can be reduced to a negligible value if the detector is triggered only when a pulse is
expected.

Homodyne Detection

The way of measuring the quadratures of the electromagnetic field is the so-called
homodyne detection shown in Fig. 1.4. The target mode (x̂t, p̂t) is combined with a

X t

X 1

X 2

BS

X LO PZT
θ

Figure 1.4: The target mode x̂t is combined with the local oscillator XLO into a
balanced beamsplitter. The intensity of the outgoing modes are measured with two
photodetectors, which after subtraction give a signal proportional to the measured
quadrature x̂t. In order to measure among another quadrature x̂θ we have to apply a
phase shift θ using for example a piezoelectric transducer (PZT) to the local oscillator.

so-called local oscillator (LO) XLO into a balanced beamsplitter. The local oscillator
is the phase reference of the system, being a classical beam (∼ 109 photons), where we
wroteXLO for the quadrature of the local oscillator in order to stress its classical nature.
The local oscillator being the phase reference we can fix without loss of generality the
local oscillators quadratures to (XLO, 0), then the outgoing modes 1, 2 read

x̂1 =
(
x̂t +XLO

)
/
√

2 (1.84)

p̂1 = p̂t/
√

2 (1.85)

x̂2 =
(
x̂t −XLO

)
/
√

2 (1.86)

p̂2 = p̂t/
√

2. (1.87)

The intensities of the outgoing modes are then measured using two photodiodes,

I1,2 = kN̂1,2 =
k

2

(
x̂2

1,2 + p̂2
1,2 − 1

)
, (1.88)

where the constant k contains all the dimensional prefactors. The two photocurrents
I1,2 are subsequently subtracted and amplified with a low noise amplifier in order to
obtain an estimation of the quadrature x̂t,

I1 − I2 =
k

2

(
(x̂t +XLO)2 − (x̂t −XLO)2

)
= kXLOx̂t. (1.89)

The local oscillator being classical its intensity kX2
LO can be estimated without dis-

turbing it, allowing one to calculate x̂t from the difference of the photocurrents and
the intensity of the local oscillator. In order to measure the conjugate quadrature p̂t
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we apply a phase shift of π/2 to the local oscillator transforming the local oscillator to
(0,PLO) which after subtraction of the photocurrents gives the quadrature p̂t. In full
generality one can homodyne any quadrature x̂θ = cos θx̂+ sin θp̂ by applying a phase
shift θ to the local oscillator, using for example a piezoelectric transducer (PZT) which
changes the path length of the local oscillator compared to the target mode.

The fact that the beam impinging on the photodiodes is classical, due to the in-
tensity of the local oscillator, strikingly simplifies the setup as we only need to use pin
photodiodes. In order to successfully implement a quantum homodyne measurement
the noise added by the electronics (amplifier and subtraction step) must be far below
the shot noise in order to be able to distinguish the quantum noise. As an example, the
different homodyne detections implemented by the group of P. Grangier in Orsay reach
an electronic noise which is 20dB below the shot noise [94, 127]. Despite being techni-
cally challenging, homodyne detection can reach extremely high detection efficiencies
of 90% [94, 152, 203].

Realistic homodyne detection The efficiency (ηBHD) of an homodyne detection
is modeled by placing a beamsplitter of transmittance ηBHD before an ideal homodyne
detection, as shown in Fig. 1.5. The quadrature (x̂m) of the impinging mode reads,

X in

APD
η

Realistic Homodyne

th
2<X    >=N=1+   

1−η
APD

elN

X m

thX
ideal

Homodyne

Figure 1.5: A realistic homodyne detection with efficiency ηBHD and electronic noise
Nel is modeled by placing a beamsplitter of transmittance ηBHD and a thermal state
of variance Nel/(1 − ηBHD) + 1 added at the second port of the beamsplitter before
an ideal homodyne detector. Notice that in order to simplify the scheme we have
represented the ideal homodyning using a single detector (omitting the local oscillator)
instead of reproducing the scheme of Fig. 1.4, as done in most of theoretical works.

x̂m =
√
ηBHDx̂in +

√

1 − ηBHDx̂th. (1.90)

The attenuation can be compensated by applying a rescaling of factor 1/
√
ηBHD to

the measured quadrature x̂m, the added noise referred to the input then reads,

χD =
1 − ηBHD
ηBHD

. (1.91)

In addition to the imperfect detection efficiency ηBHD , the electronic noise of the
homodyne detector is another factor that may reduce the quality of the measurement.
We model the added noise by assuming that the effective quadrature x̂m is combined
in the beamsplitter ηBHD with a thermal state x̂th of variance N/2,

x̂m =
√
ηBHDx̂in +

√

1 − ηBHDx̂th. (1.92)
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The electronic noise Nel corresponds to thermal photons that arrive to the ideal detec-
tor. It reads,

Nel = (1 − ηBHD)(N − 1), (1.93)

where the added noise referred to the input reads,

χD =
1 +Nel
ηBHD

− 1. (1.94)

1.4 Non-linear Optical Operations

The invention of the laser, delivering high intensity monochromatic light made possible
the observation of nonlinear optical processes. In a nonlinear media the dielectric
polarization vector is written as a power series in the electrical field

P (t) ∝ χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ... (1.95)

where the χ(n) are the n-th order susceptibilities of the medium. The linear optics
transformations presented above correspond to the χ(1) term, while the high order
terms yields non-linear effects.

Second order nonlinear effects χ(2)

When the incident field enters a nonlinear medium the second order nonlinear compo-
nent of the polarization can generate four different effects (see in Fig. 1.6):

ω1

ω2

ω3

ω  = ω  +ω3 1 2

SHG
ω

2ω

NOPA 2ω

ω

ω

a) b1)

2ω

2ω ω

2ωOPA

DFG

c) b2)

ω

Figure 1.6: Second order nonlinear processes: a) Second Harmonic Generation (SHG).
b) Optical Parametric Amplification (OPA): degenerate (b1) and non-degenerate
(NOPA) (b2). c) Difference Frequency Generation (DFG).

1. Second Harmonic Generation (SHG) is a process in which pairs of incident pho-
tons of energy ~ω (”red photons”) interacting with the nonlinear material are
effectively combined to form new photons with the energy 2~ω (”blue photons”).

2. Optical Parametric Amplification (OPA) can be seen as the time reversal of
SHG, where one photon of energy 2~ω is splitted into two photons of energy ~ω.
The OPA can be degenerated if the two outgoing photons are generated on the
same mode, and non degenerated (NOPA) if the two photons are generated on
independent modes.

3. Difference Frequency Generation (DFG) is a generalization of OPA generating
photons with different energies ~ω1 and ~ω2 as shown in Fig. 1.6.

4. Sum Frequency Generation (SFG) is the symmetric counterpart of DFG.
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Practical χ(2) effects are obtained placing a special transparent crystal without inver-
sion symmetry in a laser beam under suitable angle. The no inversion symmetry is
crucial as inversion symmetry gives no second order term in the electric field. The phase
matching conditions determine which of the four different second order effects listed
previously will be generated. Phase matching conditions can be obtained by correctly
orienting a highly birefringent crystal. Other techniques such as temperature tuning
or quasi-phase-matching using periodically-poled crystals are also currently used.

Third order nonlinear effects χ(3)

The third order nonlinear processes are even weaker than the second order ones, but
can be observed in material with inversion symmetry, as in this situation the second
order is null. High intensity beams are necessary in order to observe χ(3) effects such
as the Kerr effect, self-phase modulation and optical solitons.

Optical Parametric Amplification

In the following we will concentrate our attention to χ(2) nonlinear effects, more pre-
cisely to optical parametric amplification which allows one to generate squeezed vacuum
states when working in a degenerate regime and two-mode squeezed vacuum when work-
ing in the non-degenerate regime, generating a rich family of states extremely useful
in quantum information with continuous variables.

Squeezed states

When we pump a degenerate OPA with a bright laser, some of the pump photons of
energy 2~ω are splitted into two ~ω photons. The OPA working in a degenerate regime,
the outgoing mode must then be uniquely composed of even Fock states (|2n〉) or
coherent superposition of such even photon numbers. The corresponding Hamiltonian
must then contain a â†2 term in order to generate pairs of photons and a similar term
â†2 to ensure Hermiticity,

H = i
τ

2

[
e−iφâ2 − eiφâ†2

]
, (1.96)

where τ is the squeezing factor related to the intensity of the pump laser and the
strength of the non-linear interaction and φ corresponds to a phase rotation. Using the
Heisenberg equation of motion (1.69) we obtain the action of the squeezing operation
on the annihilation and creation operators,

[
â
â†

]

out

=

[
cosh r −eiφ sinh r

−e−iφ sinh r cosh r

] [
â1

â†1

]

in

, (1.97)

where r = τ∆t.

Quadratures The effect of the squeezing operation is better understood using the
quadratures description of the electromagnetic field. The Hamiltonian (1.96), choosing
φ = 0 can also be written,

H =
i

2

[
x̂p̂+ p̂x̂

]
, (1.98)

which together with the Heisenberg equation of motion gives, after solving a simple
differential equation, the quadratures transformation,

[
x̂
p̂

]

out

=

[
e−r 0
0 er

] [
x̂
p̂

]

in

, (1.99)
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where we clearly see that the effect of the operation is to squeeze one quadrature
and anti-squeeze the conjugate quadrature. An arbitrary squeezing transformation
S(r, φ) over a given quadrature x̂φ can be implemented by first applying a first phase
shift (P(−φ)) followed by a squeezing along x̂ and a final shift (P(φ)) (S(r, φ) =
P (φ)S(r)P (−φ)).

Squeezed Vacuum When we pump a degenerate OPA with a bright laser of photons
2~ω, the initial state of the field ~ω being just the vacuum, we obtain the so-called
squeezed vacuum state S(r)|0〉. For squeezing factors r > 0 the variance of the squeezed
quadrature decreases below the shot noise unit (e−2r < 1). In order to satisfy the
Heisenberg uncertainty relation the variance of the conjugate quadrature must increase
with the squeezing (e2r > 1), as shown in Fig. 1.7. In the Fock basis the squeezed

x

p

x

p

x

p

φ

a) b) c)

Figure 1.7: Optical Parametric Amplification of the vacuum. a) The initial vacuum
state. b) Squeezed vacuum along the quadrature x̂. c) Squeezed vacuum along the
rotated quadrature x̂φ.

vacuum state reads,

S(r)|0〉 =
1√

cosh r

∞∑

n=0

√

(2n)!

2nn!
tanh rn|2n〉, (1.100)

where we observe that there is no odd Fock state, as expected. The mean number of
photons (〈N̂〉) in the squeezed states can be easily calculated using the definition of
the number operator N̂ = (x̂2 + p̂2) − 1)/2 and equation (1.99) giving,

〈N̂〉 =
1

2

[
〈(x̂2 + p̂2)〉 − 1

]

= sinh2 r. (1.101)

Squeezed Coherent State When we spatially and temporally match a bright laser
of photons 2~ω with a coherent state of the field ~ω into a degenerate OPA we obtain
the so-called squeezed coherent state S(r)|α〉. As we shown in Fig. 1.8 the squeezing
reduces the mean value of the squeezed quadrature and increases the conjugate one,

〈x̂〉out = e−r〈x̂〉in (1.102)

〈p̂〉out = er〈p̂〉in, (1.103)

where the second moments are changed in the same way as for the squeezed vacuum
state. Matching the pump beam and the signal coherent state into the OPA is a
challenging task. An equivalent and simpler way of generating squeezed coherent states
consists in applying a displacement operation (D(α)) over a squeezed vacuum state
(D(α)S(r)|0〉)).
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Figure 1.8: A squeezing operation with er = 2 applied to a coherent state displaces it
to a new mean value (e−r〈x̂〉in, er〈p̂〉in), squeezing the uncertainty ∆2x̂ and stretching
∆2p̂.

Two-modes Squeezed States

When we pump a non-degenerate OPA (NOPA) with a bright laser some of the pump
photons of energy 2~ω are splitted into two ~ω photons which are emitted on different
modes, usually called signal and idler. The number of photons on both modes must then
be the same (|n, n〉), or a superposition of such states. The corresponding Hamiltonian

must contain a term â†1â
†
2 in order to generate pairs of photons over different modes,

reads,
H = iτ

[
â1â2 − â†1â

†
2

]
, (1.104)

which can also we written using the quadratures of the fields,

H = iτ
[
x̂1p̂2 + p̂1x̂2

]
. (1.105)

Using the Heisenberg equation of motion (1.69), after solving a simple system of dif-
ferential equations, we obtain the action of the two-mode squeezing operator STMS(r)
(r = τ∆t) on the annihilation and creation operators of both fields,







x̂1

p̂1

x̂2

p̂2







out

=







cosh r 0 sinh r 0
0 cosh r 0 − sinh r

sinh r 0 cosh r 0
0 − sinh r 0 cosh r













x̂1

p̂1

x̂2

p̂2







in

. (1.106)

One can see looking at equation (1.106) that the superposition of the input quadratures
(x̂1 + x̂1) and (p̂1 − p̂1) is anti-squeezed, where (x̂1 − x̂1) and (p̂1 + p̂1) it is squeezed.

Two mode squeezed vacuum When we pump a NOPA with a bright laser of
photons 2~ω, the signal and idler input fields being just the vacuum, we obtain the so-
called two-mode squeezed vacuum state STMS(r)|0, 0〉. In the Fock basis the two-mode
squeezed vacuum state reads,

STMS(r)|0, 0〉 =
1√

cosh r

∞∑

n=0

(tanh r)n|n, n〉. (1.107)

In the limit of infinite squeezing we obtain perfect correlation among the x̂ quadratures
(x̂1 = x̂2) and perfect anti-correlation for p̂ quadrature (p̂1 = −p̂2), which is nothing
else than the well know EPR entangled state used in the seminal paper by Einstein,
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Podolsky and Rosen (EPR) [69]. In the following we will use sometimes the term
”EPR states” to mention all the two-mode squeezed states, not only those with infinite
energy.

Amplification When we pump a NOPA with a bright laser of photons 2~ω and
match it spatially and temporally with another signal (~ω), we obtain at the output an
amplification of the ~ω signal. The amplification gain can be seen to be G = cosh2 r.
The amplification is accompanied with an added noise G − 1 = sinh2 r. This optical
amplification will be studied in more detail in the next chapter.

Thermal States

If we trace out one of the two output modes of a two-mode squeezed (1.107) state, we
obtain the mixed state,

ρ = Tr|ψ〉〈ψ|EPR =
1

cosh r

∞∑

n=0

(tanh r)2n|n〉〈n|. (1.108)

This state is just a thermal state with a Bose-Einstein distribution. From the estimation
of the mean photon number,

〈n〉 = 〈N̂〉 = cosh r − 1, (1.109)

one can write tanh2 r = 〈n〉/(〈n〉 + 1), which gives,

ρTH =

∞∑

n=0

〈n〉n
(〈n〉 + 1)n+1

|n〉〈n|, (1.110)

which is exactly the equation of a thermal state.

Entanglement

The EPR state (|ψ〉EPR) being a pure state and his partial traced state being a mixed
state (thermal state (ρTH)), it is a clear signature of the presence of entanglement in
the EPR state. In this thesis we will study different properties of the EPR states as
they are a key resource for quantum information processing and a source of non-local
effects.
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Chapter 2

Phase-Space Representation

2.1 Introduction to Continuous Variables

A continuous variable (CV) system is a canonical infinite dimensional quantum system
composed of an ensemble of N modes described by a Hilbert space

H =

N⊗

i=1

Hi (2.1)

resulting from the tensor product of N infinitely-dimensional Fock spaces Hi. One
could think of N modes of the electromagnetic field, where the modes can be distin-
guished either by having different energies (ωi), polarizations or spatial modes. The
space Hi is spanned by the fock basis {|n〉k} of eigenstates of the number operator

n̂i = â†i âi. The vacuum state of the global Hilbert space reads |0〉 =
⊗

i |0〉i, where
âi|0〉i = 0, is the ground state of the interaction-free Hamiltonian of a system of N
harmonic oscillators,

H =

N∑

i=1

[

â†i âi +
1

2

]

, (2.2)

where âi and â†i are the annihilation and creation operators of mode i which satisfies
the bosonic commutation relation,

[âi, â
†
j ] = δij , [âi, âj] = [â†i , â

†
j ] = 0. (2.3)

The corresponding quadrature operators for each mode are defined as

x̂ =
1√
2
(â† + â), (2.4)

p̂ =
i√
2
(â† − â). (2.5)

The quadratures can be grouped together in a vector r̂

r̂ = (r̂1, ..., r̂2N )T = (x̂1, p̂1, x̂2, p̂2, ..., x̂N , x̂N )T , (2.6)

which enables us to write in a compact form the bosonic canonical commutation rela-
tions (CCR) between the quadratures operators,

[r̂k, r̂l] = iΩkl, (2.7)

where Ω is the symplectic form

Ω =

N⊕

i=1

[
0 1
−1 0

]

. (2.8)

21
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Weyl Operators

In order to define the phase-space representation we need to introduce the so called
Weyl operator,

Dξ = e−iξ
T Ωr̂, (2.9)

which is nothing else than the generalization to N modes of the displacement operator

D(α) = eαâ
†
i−α

⋆âi , (2.10)

redefined using the quadratures representation ((ξx, ξp) =
√

2(ℜα,ℑα)),

D(ξ) = ei(dpx̂−dxp̂). (2.11)

Phase-Space Representation

The states of a CV system are the set of positive density operators (ρ) on the Hilbert
space H . Instead of referring to states, one can refer to functions defined on the phase-
space by analogy with classical dynamics. For later purpose it is most convenient to
introduce the characteristic function which is the Fourier transform of the Wigner
function. Using the Weyl operator Dξ we define the (Wigner-)characteristic function
as

χρ(ξ) = Tr[ρDξ]. (2.12)

The vector ξ belong to the real 2N−dimensional space, called phase-space. Each char-
acteristic function is uniquely associated with a state, and they are related with each
other via a Fourier-Weyl relation. The state ρ can be obtained from its characteristic
function according to

ρ =
1

(2π)N

∫

d2N ξχρ(−ξ)Dξ. (2.13)

In turn, the quasi-probability distribution Wigner function as commonly used in quan-
tum optics is related to the characteristic function via a Fourier transform,

W (ξ) =
1

(2π)N

∫

d2Nζeiξ
T Ωζχρ(ζ). (2.14)

Wigner Function

The Wigner function can be written as follows in term of the eigenvectors of the
quadrature operators,

W (x, p) =
1

(2π)N

∫

RN

〈x − x′|ρ|x+ x′〉eix′·pdNx′, x, p ∈ R
N . (2.15)

From an operational point of view, the Wigner function admits a clear interpretation
in terms of homodyne measurement, as the marginal integral of the Wigner function
over the variables x1, ..., xN−1, p1, ..., pN

p(xN ) =

∫

R2N−1

W (x, p)dNpdx1...dxN−1, (2.16)

gives the probability of the result of homodyne detection on the remaining quadrature
xN .
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Properties

Linearity The equation (2.15) being linear in ρ we deduce that the Wigner function
Wρ of a mixture of quantum states ρ = λρ1 + (1 − λ)ρ2 is the balanced average of the
corresponding Wigner functions,

Wρ(r) = λWρ1 (r) + (1 − λ)Wρ2 (r). (2.17)

Wigner function of operators The Wigner function W (r) is deeply related to
the symmetrically ordered expressions of operators. More precisely, if the operator Â
can be expressed as Â = f(x, p) for i = 1, ..., N , where f is a symmetrically ordered
function of the quadratures operators (x, p), then one can define a Wigner function
WA(x, p) = f(x, p)/(2π)N such that,

Tr[ρÂ] = (2π)N
∫

R2N

Wρ(r)WA(r)d2N r. (2.18)

Let’s consider some examples:

1. If the operator Â is just the identity Â = IN , his Wigner function reads WIN
=

1/(2π)N giving

Trρ = 1 =

∫

R2N

Wρ(r)d
2N r. (2.19)

2. If Â = ρ, we obtain the purity

µ = Trρ2 = (2π)N
∫

R2N

W 2
ρ (x, p)dN r. (2.20)

3. If Â is a given pure state |Ψ〉 (Â = |Ψ〉〈Ψ|), we obtain the fidelity F between the
pure state |Ψ〉〈Ψ| and ρ,

F = Tr[|Ψ〉〈Ψ|ρ] = (2π)N
∫

R2N

W|Ψ〉〈Ψ|(r)Wρ(r)d
2N r. (2.21)

2.2 Gaussian States

Gaussian states are defined through their properties that the characteristic function
is a Gaussian function in phase-space. For a general density operator ρ we define the
displacement vector (d ∈ R2N )

d = 〈r̂〉 = Tr[ρr̂], (2.22)

and the positive-semidefinite symmetric 2N × 2N covariance matrix γ:

γij = Tr[ρ{(r̂i − di), (r̂j − dj)}], (2.23)

where {} denotes the anticommutator. The Gaussian states are defined by a Gaussian
characteristic function

χρ(ξ) = e−
1
4
ξT Γξ+iDT ξ, (2.24)

which are characterized by D = Ωd and covariance matrix Γ = ΩγΩ. Despite the
infinite dimension of the Hilbert space in which it lives, a complete description of a
Gaussian state of N modes requires only a polynomial number of real parameters for
its full description. The Wigner function of Gaussian states reads,

W (r) =
1

π2N
√

det γ
e−(r−d)T γ−1(r−d). (2.25)
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Clearly, not all real symmetric 2N × 2N matrix can be a legitimate covariance of a
quantum state as the states must respect the Heisenberg uncertainty relation. If one
requires the positive-semidefiniteness of the density operator ρ together with the CCR
relation we obtain the condition

γ + iΩ ≥ 0, (2.26)

which is the only necessary and sufficient constraint γ has to fulfill to be the covariance
matrix of a physical Gaussian state, more generally it is also a necessary condition (but
not sufficient) for non-Gaussian states. The constraint (2.26) generalizes the expression
of Heisenberg uncertainty principle. Notice that all the states of the electromagnetic
field presented in the previous chapter except the photon number states are indeed
Gaussian states.

One mode Gaussian States

In the following we review the previously presented states:

Vacuum and Coherent states The vacuum state is a state centered at the origin
of the phase space (d = (0, 0)) with a covariance matrix γ = I. Coherent states being
a displaced vacuum state we conclude that its covariance matrix is also the identity
with a non null displacement vector d = (dx, dp).

Squeezed State The squeezed vacuum state has null mean value as the vacuum
state. His covariance matrix reads

γ =

[
e−2r 0

0 e2r

]

, (2.27)

where we observe that the uncertainty among one quadrature is squeezed (x if r > 0
and p if r < 0) and antisqueezed among the conjugate one. Squeezed coherent states
have exactly the same covariance matrix but with a non null displacement. One can
generate squeezed states along quadrature x̂θ by applying a previous phase shift θ
before the squeezing operation.

Thermal State The thermal state has null mean value and covariance matrix

γ =

[
V 0
0 V

]

. (2.28)

The quantity V can be expressed in terms of the average number of photons n̄ contained
in the thermal state as V = 2n̄+ 1. The vacuum can be seen as member of this class
which contains no photons at all (n̄ = 0).

Noisy Coherent State One can generalize the thermal state by applying a displace-
ment d to it. One then obtain a noisy version of the coherent state.

Generalization One mode Gaussian states would be completely characterized by
the displacement operator d = (dx, dp) and a 2 × 2 covariance matrix

γ =

[
a c
c b

]

. (2.29)

One can show that an arbitrary single mode Gaussian state can be generated from a
thermal state by applying a squeezing operation and a subsequent rotation as we will
show later in this chapter.
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Figure 2.1: Phase space representation of most relevant one-mode Gaussian states.

Two modes Gaussian States

A general two mode Gaussian state is characterized by a mean d = d1 ⊗ d2 and a
covariance matrix

γ12 =

[
γ1 C
C γ2

]

. (2.30)

where γ1(2) are the covariance matrix of the first and second mode after tracing the
companion and C is the matrix that gives the correlation between the two modes,
which can be either classical or quantum (entanglement).

Tensor Product State The case where C = 0 correspond to a tensor products of
one mode Gaussian states

γ12 = γ1 ⊕ γ2. (2.31)

Two-Mode Squeezed State The two-mode squeezed vacuum state is a key resource
for practical implementation of CV quantum information protocols such as teleporta-
tion, dense coding and quantum key distribution, playing an equivalent role as Bell
pairs ((|00〉+ |11〉)/

√
2) in qubit quantum information. Its mean is null and its covari-

ance matrix reads,

γEPR =

[
cosh 2rI sinh 2rσz
sinh 2rσz cosh 2rI

]

, (2.32)

where

I =

[
1 0
0 1

]

and σz =

[
1 0
0 −1

]

. (2.33)

Notice that tracing one mode leaves the other mode in a thermal state of variance
cosh(2r) = 2n̄+ 1.

As for the one mode case one can transform any two-mode Gaussian state in a
two-mode thermal state by applying a given sequence of operations, as we will describe
later in this chapter.

Multipartite Gaussian States

One can generalize the previous definitions to systems of N modes. The situation
becomes highly no trivial if we separate the different modes among different partner
which are only allowed to apply local operations and classical communication. This
is the usual situation we encounter when we have entanglement distributed among
different locations or in quantum key distribution analysis. The problem is highly
complex and is at the moment a hot topic of research in quantum information.
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Bipartite State The simpler case consist in a bipartite Gaussian state, where N
modes are distributed to Alice and M modes to Bob. In this case the N ×M modes
covariance matrices reads,

γAB =

[
γA C
C γB

]

. (2.34)

where γA(B) are the local covariance matrix and C is the correlations matrix between
Alice and Bob states.

2.3 Gaussian Operations

The most straightforward definition of Gaussian operations states that an operation
is Gaussian if it maps every Gaussian input state onto a Gaussian output state. In
this section we will show that they exactly correspond to those operations that can be
implemented by means of optical elements such as displacements, beamsplitters, phase-
shifters, squeezers together with homodyne measurement. All Gaussian operations are
experimentally accessible with present technology.

Gaussian Unitary Operations

The unitary operations preserving the Gaussian character of the states on which they
act are generated by the set of the displacements (Weyl operators)Dξ which correspond
to Hamiltonians linear in the field operators and the quadratic Hamiltonian,

H =
2N∑

j,k=1

gjk(r̂j r̂k + r̂k r̂j)/2. (2.35)

Displacement Operator The effect of a displacement Dz operator on any Gaussian
state is to translate his mean dout = din + z leaving invariant the covariance matrix.
More generally a displacement leaves invariant the shape of the Wigner function of any

zD(  )

Figure 2.2: A displacement D(z) operation acting on a single-mode field.

quantum state of light, included the non-Gaussian states, translating his mean-value.

Symplectic Transformations

As a consequence of the Stone-von Neumann theorem, any unitary transformation US
generated from a quadratic Hamiltonian corresponds in phase-space to a symplectic
operation (matrix) S ∈ Sp(2N,R) which implements the mapping,

r̂out = Sr̂in (2.36)

and preserves the canonical commutation relation, which is the case if

SΩST = Ω. (2.37)

On the level of covariance matrix, a symplectic transformation S is reflected by a
congruence

γout = SγinS
T . (2.38)
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Properties To any symplectic transformation S also ST , S−1, −S are symplectic.
Using ΩTΩ = I (which implies ΩT = Ω−1 = −Ω) and SΩST = Ω we can prove
S−1 = −ΩSTΩ. The determinant of every symplectic matrix is detS = 1.

Passive Transformations

A particularly important set of symplectic transformations is formed by those S ∈
Sp(2N,R) that are moreover orthogonal, i.e., P (N) = Sp(2N,R) ∩O(2N). Those op-
erations correspond with the passive transformations, such as phase shifts and beam-
splitters, which preserve the number of photons.

Phase Shift A phase shift is a single-mode operation characterized by an angle (θ)
which is equivalent to a rotation of the phase-space,

[
x
p

]

out

= SPS(θ)r̄in =

[
cos θ sin θ
− sin θ cos θ

] [
x
p

]

in

. (2.39)

Beamsplitter The beamsplitters operation of transmittance T makes a coherent
combination of two modes,

[
r̄1
r̄2

]

out

= SBS(T )r̄ =

[ √
T I

√
1 − T I

−
√

1 − T I
√
T I

] [
r̄1
r̄2

]

in

. (2.40)

Any passive transformation over N modes can be decomposed in a network of
beamsplitters and phase shifts. Such transformation does not change the eigenvalues
of the covariance matrix which is equivalent to preserving the total number of photons.

Active Transformations

The set of symplectic transformations which are not passive A(N) = S ∈ {Sp(2N,R)\
P (N)} are called active transformations as they inject photons on the system, usually
achieved by pumping a nonlinear media.

Squeezing The most important active transformation is the squeezed operation pre-
sented in the previous chapter, obtained by Optical Parametric Amplification (OPA)
on a nonlinear media pumped by high intensity source. The symplectic transformation
of a squeezing operation reads,

[
x
p

]

out

= SSq(s)r̄ =

[
e−s 0
0 es

] [
x
p

]

in

, (2.41)

where s is the squeezing factor, s > 0 giving squeezing among x and s < 0 among p.
In order to squeeze among any other quadrature one has to combine a phase rotation
with a squeezing operation SSq(s)SPS(θ).

General Symplectic Transformation Combining passive operations with squeez-
ing is enough to generate any symplectic transformation (S) over N modes, as shown
in Fig. 2.3. Using the Bloch-Messiah reduction theorem one can decompose any S
symplectic transformation into a linear interferometer K, a parallel set of single-mode
squeezers S(si) and a second linear interferometer L,

S = K

N⊕

j=1

[
e−sj 0

0 esj

]

L, (2.42)

with K,L ∈ P (N) and sj ∈ R, as shown in [33].
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Interferometer

Linear

K

Interferometer

Linear

L

S(s  )2

S(s  )1

S(s  )n

Figure 2.3: An arbitrary symplectic transformation can be decomposed into a linear
interferometer K, a parallel set of single-mode squeezers S(si) and a second linear
interferometer L.

Two Important Examples

Even if all the symplectic transformations can be decomposed using a Bloch-Messiah
decomposition, we are going to present two different active two-mode operations which
are relevant from the experimental point of view, the two-mode squeezer and the QND-
measurement (Quantum Non Demolition) interaction.

signal

idler

a)

b)

S(s) BS

S(−s)

TMS

Figure 2.4: Two different ways of implementing a two-mode squeezing operation over
two modes, signal and idler: a) spatially and temporally matching the signal, idler
and pump on a NOPA . b) using two OPA to generate two squeezed states among
orthogonal directions and combining them on a balanced beamsplitter.

Two-Mode Squeezer Pumping a NOPA realize a two-mode squeezing operation
over the signal and idler modes,

[
r̄1
r̄2

]

out

= SBS(r)r̄ =

[
cosh rI sinh rσz
sinh rσz cosh rI

] [
r̄1
r̄2

]

in

. (2.43)

This operation is extremely important as it is the usual way of generating entanglement
in continuous variable quantum information experiments. The Bloch-Messiah decom-
position corresponds to two squeezing operations over orthogonal directions which are
subsequently combined into a balanced beamsplitter, as shown in Fig. 2.4.

QND-measurement The CV QND gate realizes a controlled displacement over the
x quadrature of the target mode depending on the value of the x quadrature of the
control mode. In order to be unitary the operation realizes a similar operation on the
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conjugate quadrature where the roles (target and control) are inverted and the sign of
the displacement changed,







x1

p1

x2

p2







out

= SBS(κ)r̄ =







1 0 κ 0
0 1 0 0
0 0 1 0
0 −κ 0 1













x1

p1

x2

p2







in

. (2.44)

This operation is also extremely important from the experimental point of view as it
is the interaction that takes place between polarized light and the total spin of atomic
ensembles [62] which is currently used in quantum memory experiments [114]. In the
particular case kappa = 1 we call it also the continuous-variable C-NOT gate, as it
generalizes the C-NOT gate for qubits.

Local Operation

In a multipartite scenario where the N modes are distributed among different locations
an important class of operations are the local symplectic operations Sp(2,R)⊗N as
they correspond, on the Hilbert space level, to tensor product of Gaussian unitary
operations U⊗N . Those correspond to the set of operations that are locally accessible
without using quantum communication between the partners. It is trivial to show that
the determinant of the submatrices γA(B) and C of a bipartite state, i.e. eq. (2.34), are
invariant under local symplectic operations, as S = S1 ⊗ S2 and detS1 = detS2 = 1,
showing that the correlations among the parties cannot be altered by local operations,
as expected.

Standard Form Any two-mode covariance matrix

γAB =

[
γA C
CT γB

]

(2.45)

can be transformed by local Gaussian operations into a standard form

γAB =







a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b






. (2.46)

The idea is first to apply a round of local rotations SA(θ)⊕SB(ξ) in order to diagonalize
the diagonal submatrices γA(B). Then we apply a local squeezing operations SA(sa)⊕
SB(sb) in order to transform the diagonal blocs to γA = aI and γB = bI. Finally we
apply a second round of local rotations SA(θ′)⊕SB(ξ′) that diagonalize the correlation
submatrix C′ (C′ = SA(sa)SA(θ)CSTB(ξ)STB(sb)), as shown in [63].

CP Maps

The set of unitary operations does not contain all the operations that can be applied
to a general quantum system. The unitary operation being reversible one has to add
the class of irreversible operations, the so-called Completely Positif maps (CP maps),
in order to have a complete description, see Appendix A. The Gaussian CP maps are
completely defined by two matrices X and Y such that the covariance matrix of the
final N−mode state reads,

γout = XγinX
T + Y (2.47)
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where X and Y are 2N×2N matrices and Y is symmetric [72]. The quantum positivity
of the quantum operation is reflected by the condition

Y + iΩ − iXΩXT ≥ 0. (2.48)

The mean value (d) transformation reads,

dout = Xdin. (2.49)

Partial Trace

Consider a bipartite quantum state ρAB. In the phase-space representation tracing
mode B is equivalent to integrating the Wigner function among the quadratures of
the traced mode (xB , pB), as shown in (2.18). One can show that this is equivalent to
setting ξB = 0 at the characteristic function

χA(ξA) = TrA[ρADξA
] = TrAB[ρABDξA

⊗ IB] = χA(ξA, ξB = 0). (2.50)

It is then trivial to see that for Gaussian states the partial trace (PT) of mode B gives
as output a Gaussian state of covariance matrix γA, where γA is the diagonal bloc
corresponding to mode A of the initial bipartite covariance matrix γAB .

γAB =

[
γA C
CT γB

]

PT−→ γA. (2.51)

Similarly the first moment of the output state is the part of the mean corresponding
to mode A,

dAB = (dA, dB)
PT−→ dA. (2.52)

Gaussian Channels

Lossy Channel The lossy channel of transmittance T is characterized by X =
√
T I

and Y = (1 − T )I. It can be modeled by a beamsplitter of transmittance T , as shown
in Fig. 2.5

outputinput

Figure 2.5: A lossy channel can be modeled by placing a beamsplitter of transmittance
T .

Thermal Noise Channel The thermal noise channel of transmittance T and excess
noise ǫ is characterized by X =

√
T I and Y = TχI, where χ is the added noise referred

to the input

χ =
1 − T

T
+ ǫ. (2.53)

It can be modeled by combining a thermal state of variance N = Tχ/(1− T ) with the
input signal at a beamsplitter of transmittance T , as shown in Fig. 2.6.
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EPR
N

input T output

Figure 2.6: A thermal noise channel can be modeled by combining a thermal state of
variance N = Tχ/(1 − T ) with the input signal at a beamsplitter of transmittance T .

Amplification Channel The amplification channel of amplification factor η ≥ 0 is
characterized by X =

√
ηI and Y = (η− 1)I. It can be modeled by injecting the input

signal into a two-mode squeezer (Fig. 2.4), with squeezing factor such that η = cosh2 r,
and finally tracing the idler mode.

Classical Noise Channel The classical noise channel adds noise of variance V to a
quantum state, with X = I and Y = V I. It can be modeled by applying two C-NOT
operations, with an interaction parameter κ = V , between the signal mode and two
ancillary vacuums as shown in Fig. 2.7.

C−NOT

control

target

0

0

signal
ρρin out

Figure 2.7: A classical noise channel can be modeled by applying two C-NOT opera-
tions, with an interaction parameter κ = V , over the signal mode. The first C-NOT
generates the noise over the x quadrature and the second over p.

Measurement

Homodyne Measurement

The outcome of a projective measurement M is given by Tr[ρM ] which can be calcu-
lated using equation (2.18). As explained in subsection 2.1 the probability distribution
of an homodyne measurement of the x quadrature over a quantum mode is given by
the marginal integral of the Wigner function over the p quadrature

p(x) =

∫

R

W (x, p)dp. (2.54)

Measuring over a general quadrature x̂θ = cos θp̂ + sin θp̂ the probability distribution
of the measurement can be calculated applying a virtual rotation of −θ and integrating
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over p,

p(x) =

∫

R

W (S−1(θ)(x, p))dp. (2.55)

Both equations can be trivially extended to measurement over multiple modes.

Partial Measurement

In the following we are going to consider partial measurements over a bipartite system.
Given a Gaussian bipartite state ρAB with covariance matrix

γAB =

[
γA C
CT γB

]

(2.56)

and mean dinAB = (dinA , d
in
B ). In appendix B we calculated the final state of system A

after projecting mode B into a given quantum state of covariance matrix γM and mean
m.

Homodyne measurement The case of homodyne measurement is special as it cor-
responds to the case γM = limr→∞(e2r, e−2r), then the inverse in equations (B.5) and
(B.5) is to be understood as the inverse on the range. The homodyne measurement
gives [72],

γoutA = γA − C(XγBX)MPCT , (2.57)

where X = diag(1, 0, 1, 0, ..., 1, 0) and MP denotes the inverse on the range. The mean
value reads,

doutA = C(XγBX)MP (m− dinB ) + dinA , (2.58)

where m = (X1, 0, X2, 0, ..., XN , 0), Xi being the result of the homodyne measurement
on mode Bi. A measurement over any other quadrature can be obtained by applying a
phase rotation before the homodyne measurement. Remark that the covariance matrix
γoutA does not depend on the result of the measurement m, which is a very important
property of Gaussian state.

Heterodyne measurement Heterodyne measurement can be decomposed in two
different homodyne measurements preceeded by a balanced beamsplitter, so its effect
can be determined using the previous result for homodyning and adding ancillary
systems. Equivalently it can be calculated using directly the result of appendix B and
noticing that an heterodyne detection is a projection over coherent states (γM = I).
After an heterodyne measurement on mode B the covariance matrix of mode A reads,

γoutA = γA − C(γB + I)−1CT , (2.59)

and the mean value reads,

doutA =
√

2C(γB + I)−1(m− dinB ) + dinA , (2.60)

where m = (X1, P1, X2, P2, ..., XN , P2) is the result of the heterodyne measurement on
B.

Projection on Vacuum The vacuum being just a coherent state of null mean value,
projecting over the vacuum on mode B corresponds to the heterodyne measurement
of output m = 0. The difference with heterodyning is that the projection on vacuum
is a probabilistic operation. The projection can be made deterministic by applying an
heterodyne measurement over B and then applying a displacement (d = −

√
2C(γB +

I)−1(m− dinB )) over A in order to restore the null mean.
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2.4 Normal Modes Decomposition

Thanks to Williamson theorem [183] we know that for any N−mode covariance matrix
γ there is a symplectic transformation S that performs a symplectic diagonalization

SγST = ν, (2.61)

where ν is a tensor product of thermal states, called the Williamson normal form,

ν =

N⊕

k=1

[
νk 0
0 νk

]

. (2.62)

The symplectic eigenvalues νk being the eigenvalues of the matrix |iΩγ|, where |A|
stands for

√
A†A.

States with null mean value For a null mean value state the Williamson decom-
position gives a way of transform the Gaussian state into a product of thermal states.
This symplectic diagonalization over the phase-space plays a similar role as the diago-
nalization of the density operator on the Hilbert space.

States with no null mean value Gaussian states of covariance matrix γ and mean
d have also a Williamson decomposition, which is based on tensor product of displaced
thermal states of covariance matrix νk and mean lk. We first decompose the covari-
ance matrix γ into a product of tensor thermal states

⊗

k νk by selecting the proper
symplectic transformation S, as before. Finally, once S is known, the displacement
vector l = (l1, ..., lN) of the thermal states is calculated by solving the following linear
system,

l = S−1d. (2.63)

Uncertainty Relation The uncertainty relation γ+iΩ ≥ 0 is equivalent to ν+iΩ ≥ 0
which in term of symplectic eigenvalues read

νi ≥ 1 ∀i = 1, ..., n. (2.64)

Purity The symplectic transformations being an unitary operation it is trivial to see
that a state is pure if and only if ν = I. More precisely, the purity µ of a Gaussian
state ρ of covariance matrix γ reads,

µ = Trρ2 =
1√

det γ
. (2.65)

The determinant is then a symplectic invariant, as detS = 1, which gives,

det γ = det ν =

N∏

i=1

ν2
i . (2.66)

One-Mode Normal Decomposition

The determinant of the covariance matrix γ1 being an invariant over symplectic trans-
formations, as pointed previously, it is easy to derive the normal decomposition of one
mode as ν2

1 = det γ1.
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Two-Mode Normal Decomposition

In order to find the symplectic eigenvalues ν1,2 of the two-mode covariance matrix

γ12 =

[
γ1 C1−2

CT1−2 γ2

]

, (2.67)

we need to define a second symplectic invariant,

∆ = ν2
1 + ν2

2 = det γ1 + det γ2 + 2 detC1−2, (2.68)

where the first reads,

det γ12 = ν2
1ν

2
2 . (2.69)

It is easy to see that the symplectic eigenvalues are solutions of the second order
polynomial

z2 − ∆z + det γ12 = 0, (2.70)

which gives the solution,

ν2
1,2 =

1

2

[

∆ ±
√

∆2 − 4 det γ12

]

. (2.71)

Three Modes and Generalization

In order to find the symplectic eigenvalues ν1,2,3 of the three-mode covariance matrix

γ123 =





γ1 C1−2 C1−2

CT1−2 γ2 C2−3

CT1−3 CT2−3 γ3



 , (2.72)

we need to define a three symplectic invariants,

∆3
1 = ν2

1 + ν2
2 + ν2

3 , (2.73)

∆3
2 = ν2

1ν
2
2 + ν2

2ν
2
3 + ν2

1ν
2
3 , (2.74)

∆3
3 = ν2

1ν
2
2ν

2
3 , (2.75)

which can be calculated from the covariance matrix with,

∆3
1 = det γ1 + det γ2 + det γ3 + 2 detC1−2 + 2 detC1−3

+2 detC2−3,

∆3
2 = det γ12 + det γ23 + det γ13 + 2 detC12−23 + 2 detC12−13

+2 detC23−13,

∆3
3 = det γ123, (2.76)

where the matrix Cij−kl reads,

Cij−kl =

[
αik αil
αjk αjl

]

, (2.77)

where αmn is an elementary submatrice describing the correlations between a pair of
modes of the covariance matrice γ123. The symplectic eigenvalues being the solutions
of the third order polynomial

z3 − ∆3
1z

2 + ∆3
2z − ∆3

3 = 0. (2.78)
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This technique can be generalized to N modes by defining new symplectic invariants
as shown in [173, 174],

∆N
j (ν1, ..., νN ) =

∑

S k
j

∏

k∈S k
j

ν2
k, (2.79)

where the sum runs over all the possible j−subsets S k
j of the first N natural integers

(over all the possible combinations of j integers). The symplectic eigenvalues can be
calculated from the 2k×2k submatrices of γ obtained by selecting all the combinations
of 2× 2 blocks describing either one mode or the correlations between a pair of modes,
generalizing 2.76, as show in [173].

2.5 Phase-Space Schmidt Decomposition

In general any quantum state ρA can be diagonalize by choosing a proper unitary
operation UA, such that

UAρAU
†
A =

∑

i

λi|ψi〉〈ψi|, (2.80)

where |ψj〉〈ψj | are orthogonal eigenvectors of real eigenvalues λi satisfying
∑

i λ
2
i = 1.

One can then introduce another system, denoted R (reference system), and define
a bipartite pure state ΨRA such that ρA = TrR[|Ψ〉〈Ψ|AR], see Appendix A. The
procedure is to define a pure state whose Schmidt basis [166] is just the basis for which
the mixed state is diagonal, with the Schmidt coefficients being

√
λi,

|Ψ〉RA
∑

i

√

λi|i〉R|ψi〉A. (2.81)

Similarly we know that for a Gaussian state with null mean value and covariance
matrix γA there is a symplectic transformation S that transforms the covariance matrix
γA into a tensor product of thermal states ⊗kνkI as shown in section 2.4. Then using
the properties of symplectic operations of subsection 2.3 we can write,

γA = (ΩST )
[ N⊕

k=1

νkI
]

(ΩST )T . (2.82)

Each thermal state (νk) could be seen as resulting from tracing half of an EPR pair
(γνk

EPR) (with squeezing factor cosh 2rk = νk). Thus, applying the symplectic operation
(SΩ)A⊗(SΩ)R over the ensemble of EPR states ⊗kγνk

EPR we obtain a valid purification
of γA which reads,

γAR =

[
γA C
CT γR

]

, (2.83)

with

γR = γA and C = (ΩST )
[ N⊕

k=1

√

ν2
k − 1σz

]

(ΩST )T , (2.84)

where σz = diag(1,−1). The mean of the reference system being just equal to that of
A, dR = dA.

2.6 Teleportation and Cloning

In the following we are going to present two relevant examples of quantum information
processing with continuous variables that we will use later in this thesis, teleportation
and cloning of continuous variables.
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Generalization of Bell Basis and Measurement

In qubit based quantum information the maximally entangled states are the four Bell
states |Φ±〉 = [|00〉 ± |11〉]/

√
2 and |Ψ±〉 = [|01〉 ± |10〉]/

√
2. One can generate any of

the four Bell states by injecting [|0〉 ± |1〉]/
√

2 on the control mode of a C-NOT gate
and {|0〉, |1〉} on the target state, as shown in [136]. It is trivial to see that the Bell
measurement consists in a C-NOT operation followed by a measurement on the basis
[|0〉 ± |1〉]/

√
2 ({|0〉, |1〉}) on the outgoing control (target) modes.

One can generalize this Bell basis to continuous variable by using the following
analogy. The basis {|0〉, |1〉} translates into x-squeezed state displaced among the x
quadrature, where the basis {[|0〉 ± |1〉]/

√
2} translates into p-squeezed state displaced

along the p quadrature. Then the C-NOT gate is replaced by a beamsplitter as we
know that injecting two conjugate squeezed vacuum states into a beamsplitter outputs
an EPR state. The difference is that now the mean of the EPR is non null (d =
(dx, dp, dx,−dp)

√
2). It is trivial to see that the equivalent Bell measurement in order to

estimate d consists in mixing the two modes on a balanced beamsplitter and measuring
x on one output and p on the other using homodyne measurement.

BS

X

P

Figure 2.8: Generalized Bell measurement to continuous variables.

Teleportation

The proposal of teleportation of continuous variables [35] and its experimental demon-
stration [83] in 1998 started the field of quantum information with continuous variables.
In order to unconditionally teleport a given quantum state of the electromagnetic field
from Alice to Bob, we need first to distribute an entangled EPR pair between Alice
and Bob, as shown in Fig. 2.9. Once Alice and Bob share an EPR pair (two-mode
squeezed vacuum of variance cosh 2r) Alice applies a Bell measurement by combining
the input mode ρin and her half of the EPR pair into a balanced beamsplitter and
measures the x-quadrature on one output and p on the other. Then she communicates
the measurement result, using a classical channel, to Bob who applies a displacement
operation on half of his EPR pair proportional (gain g) to Alice’s measurement result
(x̂m, x̂m), as shown in Fig. 2.9. The advantage of the teleportation using continuous
variables is that it is unconditional as the Bell measurement can be implemented using
linear optics and homodyne detection as opposed to qubit teleportation with photons
where it is impossible to implement an unconditional C-NOT gate using linear optics.
The disadvantage is that the efficiency of the operation is upperbounded by the amount
of squeezing used. In order to achieve perfect efficiency (ρout = ρin) we need an infinite
energy EPR state which is impossible to generate in practice. In a realistic scenario
even with perfect quantum channels, the output will always be a slightly noisy version
of ρin, with the fidelity of the teleportation increasing with the squeezing parameter of
the EPR pair, as we show bellow.
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Figure 2.9: Teleportation scheme used in the experimental demonstration of uncondi-
tional teleportation [83]. Alice first generates an EPR pair by mixing a one x-squeezed
vacuum state (X2) with a p-squeezed vacuum state (X1) in a balanced beamsplitter
and send half of the EPR pair (X ′

2) to Bob. Then, Alice applies a Bell measurement
over the input mode Xin and X ′

1, that consist in an heterodyne measurement applied
to Xin where the second input mode of the measurement is not the vacuum but mode
X ′

1. Subsequently Alice communicates the measurement result (XM , PM ) to Bob via
a classical communication channel. Finally Bob depending on the measurement result
and the gain g displaces mode X ′

2 over x (Dx) and p (Dp).

Detailed Description of Teleportation

Because all the canonical transformations are symmetric on x and p quadratures we
will just detail the operation for the quadrature x. Alice starts preparing two squeezed
vacuum states, x̂2 squeezed over x and x̂1 squeezed over p.

x̂1 = erx̂
(0)
1 , (2.85)

x̂2 = e−rx̂(0)
2 . (2.86)

She subsequently mixes them on a balanced beamsplitter generating an EPR state,

x̂′1 = [e−rx̂
(0)
2 − erx̂

(0)
1 ]/

√
2, (2.87)

x̂′2 = [e−rx̂
(0)
2 + erx̂

(0)
1 ]/

√
2. (2.88)

After sending half of the EPR to Bob, Alice applies a Bell measurement by mixing x̂′1
and x̂in on a balanced beamsplitter and measuring x on one output and p on the other
(Bell measurement),

x̂M =
1√
2
[x̂in + x̂′1] =

1√
2
x̂in +

1

2
[e−rx̂(0)

2 − erx̂
(0)
1 ]. (2.89)

Bob depending on the measurement result and the gain factor g displaces mode x̂′2,

x̂out = x̂′2 + gx̂M =
g√
2
x̂in +

e−r√
2

[

1 +
g√
2

]

x̂
(0)
2 +

er√
2

[

1 − g√
2

]

x̂
(0)
1 . (2.90)

We see that by choosing g =
√

2 we obtain

x̂out = x̂in +
√

2e−rx̂
(0)
2 , (2.91)

which is a noisy version of the input quadrature as be have an added noise
√

2e−rx̂(0)
2 ,

which becomes negligible for high squeezing parameters.
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Fidelity

It is easy to show, using (2.21) and (2.14), that for Gaussian states with null mean
values the teleportation fidelity reads,

Tr[ρout|Ψ〉〈Ψ|in] =

∫

χ(ξ)inχ(−ξ)out =
1√

γin + γout
. (2.92)

Coherent States The teleportation preserving the mean of the state, the fidelity of
teleporting a coherent state will be the same as that of teleporting the vacuum which
reads,

F =
1

1 + e−2r
. (2.93)

It is easy to see that there are two limiting implementations. Firstly, when the squeezing
factor of the EPR (r) is null, the teleportation becomes a classical measurement and
state preparation scheme with fidelity F = 1/2. This bound is very important as
observing teleportation fidelities ≥ 1/2 is necessary to claim a successfull quantum
teleportation experiment. Secondly, when the squeezing factor (r) is infinity, which
needs an infinite source of energy, the teleportation succeed perfectly (F = 1).

Entanglement Swapping

1

2

3

4

BS

g

X

P

D(x,p)

TMS

TMS

Figure 2.10: One can then entangle modes 1 and 4, which have never interacted before
by applying entanglement swapping. In an intermediate station we apply a Bell mea-
surement over two modes 2 and 3, coming from two different EPR pairs, and displace
(D(x, p)) mode 1 (or 4) depending on the measurement results (x, p).

An ideal teleportation being equivalent to a quantum noiseless channel it preserves
the coherence of the input state, for example it preserves the quantum superposition
of two states. More interestingly if the input state is entangled with another system
the teleportation will preserve the entanglement. One can then entangle two particles
that have never interacted before by applying entanglement swapping, where we apply
a teleportation to one mode of an EPR state, as show in Fig. 2.10.

Cloning Machine

Since the seminal work of Wootters and Zurek [199] it is well known that a machine,
called perfect cloning machine (PCM) that outputs two perfect copies of a given quan-
tum input state,

|ψ〉in PCM→ |ψ〉 ⊗ |ψ〉, (2.94)
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is forbidden by the laws of quantum mechanics. More precisely, perfect cloning is
possible if and only if the input state (|ψ〉in) is drawn from a set of orthogonal states,
a simple von Neumann measurement will allow to identify it without disturbance and
prepare as many copies as we want. On the contrary, when the input state is drawn
from a set of non-orthogonal states perfect cloning becomes impossible.

Even if perfect cloning is forbidden, one can define approximate cloning machines,
called Quantum Cloning Machines that output imperfect copies (ρψ1(2)) of the input
state,

|ψ〉in CM→ ρψ1 ⊗ ρψ2 . (2.95)

For a given set of states one can then optimize the fidelity (F = 〈ψ|ρψi |ψ〉) of the output
copies among all the possible quantum copying machines, see [40, 165] for a review on
quantum cloning.

No-Cloning Theorem and Quantum Cryptography The proof of the no-cloning
theorem is at the core of quantum cryptography, one of the most important applications
of quantum information. Wootters and Zurek result forbids a potential eavesdropper
from copying a quantum state without disturbing it, allowing two trustfull partners
to detect the action of an eavesdropper by monitoring the noise of their quantum
communication. The study of the cloning machines is intimately related to quantum
cryptography as the usual optimal attack on a given protocol is usually an asymmetric
cloning machine which is a generalization of the previously presented machine where
we allow different fidelities of the copies.

No Cloning Theorem for Continuous Variable

One can generalize the concept of cloning machine to the continuous variable frame-
work, where an input mode (x̂in, p̂in) is cloned into two output noisy versions ((x̂1(2), x̂1(2))),
as shown in Fig. 2.11,

X X

X
0

in 1

2

Cloning 
Machine

Figure 2.11: The cloning machine generates two noisy copies ((x̂1(2), x̂1(2))) of the input
state (x̂in, x̂in).

x̂1(2) = x̂in + x̂N1(2), (2.96)

p̂1(2) = p̂in + p̂N1(2), (2.97)

where x̂N1(2) stands for the added noise on the output modes. One can then derive a

generalized uncertainty relation for the added noise (measured on shot-noise units) on
the output modes [43],

∆x̂N1 ∆p̂N2 ≥ 1, (2.98)

∆p̂N1 ∆x̂N2 ≥ 1, (2.99)
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which clearly shows that it is impossible to have two perfect copies and allows us at
the same time to lowerbound the minimal disturbance of the cloning operation.

Linear Amplifier

A key element of the cloning of continuous variables is the use of the linear amplifier
which is nothing else than the previously presented two-mode squeezer operation (2.43),
where we feed the signal input (s) with the mode we want to amplify (r̄in) and the
idler mode (i) with vacuum (r̄(0)),

[
r̄s
r̄id

]

out

=

[ √
G

√
G− 1σz√

G− 1σz
√
GI

] [
r̄in

r̄
(0)
id

]

in

, (2.100)

where the gain is proportional to the squeezing parameter (G = cosh 2r).

Cloning of Coherent states

Using the cloning uncertainty relation it is trivial to see that for symmetric noise on
both quadratures, the optimal copy of a coherent state has a unit of added shot noise.
In Fig. 2.12 we present the implementation of the cloning machine presented in in
[34, 78]. First we fix the gain of the amplifier at G = 2 obtaining at the outputs

in
X

id
X

X
vTMS(0)
(0)

Clone 1

Clone 2

Anti−Clone
Idler

Figure 2.12: The cloning machine can be implemented by injecting the input mode x̂in
in the signal input of a two-mode squeezer and dividing the signal amplified output in
two clones using a balanced beamsplitter.

x̂s =
√

2x̂in + x̂
(0)
id , (2.101)

which is a noisy version of the coherent state with twice the intensity. Then by splitting
the signal output in two modes using a beamsplitter, as shown in Fig. 2.12, we obtain

x̂s = x̂in +
1√
2
x̂

(0)
id +

1√
2
x̂(0)
v . (2.102)

This is exactly a state with the same mean as the input state with one added unit of
shot noise (γout = 2I), which was previously shown to be the optimal cloning. Using
equation (2.21) we see that the fidelity reads F = 2/3.

Classical Cloning We call classical cloning an inefficient way of making the copies
which consists in optimally measuring the state, using heterodyne detection, and then
re-preparing the copies. The fidelity that be obtain by classical cloning reads FC = 1/2
which is lower than the one achieved using quantum operations (FQ = 2/3).
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Idler output The idler output,

x̂id = x̂+
√

2x̂
(0)
id , (2.103)

p̂id = −p̂+
√

2p̂
(0)
id , (2.104)

can be seen a noisy version of the phase conjugation operation ((x̂, p̂) → (x̂,−p̂))
applied to the input state [42]. One can also show that this phase conjugation operation
being non-Hermitian (related to time-reversal) cannot be physically implemented. But
as for cloning, one can make the phase conjugation feasible by allowing a noisy version
of it. Strikingly the optimal operation can be obtained by using the output of the idler
mode, reaches a fidelity of F = 1/2 as the idler output has an added noise of two shot
noise units. Contrary to the cloning case, doing the operation quantumly does not
gives better performance than doing it classically (measurement and re-preparation)
as the optimal fidelity in both cases is F = 1/2.

Linear Optics Cloning Machine

A recent striking result was the discovery that the cloning machine can be imple-
mented using just linear optics, homodyne measurement and controlled displacements
[4], which is experimentally easier to implement than using OPA crystals and reaches a
higher amplification gain. The idea is to replace the two-mode squeezer by the scheme
presented in Fig. 2.13. A fraction of the input mode (x̂in) is reflected in a beamsplitter
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Figure 2.13: Fraction of the input mode (x̂in) is reflected in a beamsplitter (T ) and
subsequently measured with an heterodyne measurement. The transmitted mode (x̂II)
is displaced depending on the measurement result (x̂M ) and a the gain λ. By correctly
choosing we obtain the transformation of a linear amplifier on the signal mode.

(T )

x̂I =
√
T x̂in +

√
1 − T x̂

(0)
1 , (2.105)

and subsequently measured with an heterodyne measurement

x̂M =
1√
2
(x̂I + x̂

(0)
2 ) =

√

T

2
x̂in +

√

1 − T

2
x̂

(0)
1 +

1√
2
x̂

(0)
2 . (2.106)

The transmitted mode (x̂II)

x̂II =
√

1 − T x̂in −
√
T x̂

(0)
1 (2.107)

is displaced depending on the measurement result (x̂M ) and the gain λ,

x̂out = x̂II + λx̂M =
[√

1 − T +
λ
√
T√
2

]

x̂in +
[λ

√
1 − T√

2
−
√
T
]

x̂
(0)
1 +

λ√
2
. (2.108)
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If we choose the gain such that λ =
√

2T/
√

1 − T the contribution of x̂
(0)
1 is null,

obtaining

x̂out =
1√

1 − T
x̂in +

√

T

1 − T
x̂

(0)
2 , (2.109)

which by setting
√
G = 1/

√
1 − T becomes exactly the operation of a linear amplifier

on the signal mode.

Cloning and Measurement

The previous cloning machine of coherent states has as input a single copy and generates
two noisy copies, it is then called a 1 → 2 cloning machine. One can then generalize
the previous results to N →M cloning machines where we have N copies at the input
and we output M ≥ N copies. The optimal fidelity reads,

FN→M =
MN

MN +M −N
, (2.110)

as shown in [41, 42, 78]. It is interesting to point that in limit of infinite outputs
(M → ∞) the fidelity reads

FN→∞ =
N

N + 1
, (2.111)

which is the limit that can be obtained with an optimal measurement [100, 103]. This
shows that the measurement can be seen as a N → ∞ cloning process.



Chapter 3

Generation of Arbitrary
Single-Mode States

3.1 Introduction

In recent years, it has been widely recognized that nonclassical states of light repre-
sent a valuable resource for numerous applications ranging from ultra-high precision
measurements [101, 102, 200, 201] to quantum lithography [23, 30] and quantum infor-
mation processing [31]. It is often desirable to generate nonclassical states of traveling
optical modes, as opposed to the cavity QED experiments where the generated state is
confined in a cavity and can be probed only indirectly. Many ingenious schemes have
been proposed and experimentally demonstrated to generate the single-photon states
[130, 202] and various multiphoton entangled states such as the GHZ states [143, 144],
cluster states [193], and the so-called NOON states [70, 79, 88, 125, 132].

Considerable attention has been also devoted to the preparation of arbitrary single-
mode states [47, 54, 55, 191, 204] and, in particular, the Schrödinger cat-like super-
positions of coherent states [53, 129] which can be useful for quantum information
processing [111, 153]. The experimental generation of arbitrary superpositions of vac-
uum and single-photon states has been accomplished using parametric down-conversion
with the input signal mode prepared in a coherent state [159], employing the quantum
scissors scheme [12, 120, 147], or conditioning on homodyne measurements on one part
of a non-local single photon in two spatial modes [11]. It is, however, very difficult to
extend these experiments to superpositions involving two or more photons. The known
schemes for conditional generation of arbitrary superpositions of Fock states, as the
proposal of Dakna et al., require single-photon sources and/or highly efficient detectors
with single-photon resolution, which represents a formidable experimental challenge.

Dakna Proposal

Dakna et al. showed in [55] that any superposition of the first N + 1 Fock states of a
single-mode of light,

|ψ〉 =

N∑

n=0

cn|n〉 (3.1)

can be engineered starting from vacuum by applying a sequence of displacements and
single-photon additions, as shown in Fig. 3.1. Remembering that the definition of an

43
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Figure 3.1: Dakna et al. proposal for experimentally generating a superposition of Fock
states is based on a sequence of displacements interspersed with a conditional photon
subtraction. A successful state preparation is heralded by no click of the photodetectors
(APD).

arbitrary single-mode state (3.1) can we rewritten as

N∏

i=1

(â† − β⋆i )|0〉, (3.2)

where β⋆i are the N (complex) roots of the characteristic polynomial
∑N
k=0 ckâ

k/
√
n!.

Using the relation

â† − β⋆ = D(β)â†D†(β), (3.3)

we find that

|ψ〉 = D(βN )â†D†(βN )D(βN−1)â
†D†(βN−1) × ...×D(β1)â

†D†(β1)|0〉. (3.4)

Because D†(βN )D(βN−1) = D(βN−1 − βN ), we can obtain any quantum state (3.1)
from the vacuum by a succession of alternate state displacement and single-photon
addition.

The two major drawbacks of this proposal are: Firstly, the need of single-photon
sources on demand, which is experimentally very challenging, in order to implement the
photon addition step of the protocol; Secondly, because the successful state preparation
is heralded by a no click of the photodetectors, the scheme is extremely sensitive to
the inefficiency of the photodetectors.

New Proposal

In this chapter, we propose a novel state preparation scheme inspired by the proposal
of Dakna et al. [55], which does not require single-photon sources and can operate
with high fidelity even with low-efficiency detectors that only distinguish the presence
or absence of photons. Our crucial observation is that if the initial state is a squeezed
vacuum, then the single-photon addition can be replaced with single-photon subtrac-
tion [139, 49, 115], as shown in Fig. 3.2, which is much more practicable. Indeed, a
single-photon subtraction can be achieved by diverting a tiny faction of the beam with
a beam splitter towards a photodetector, so that a click means that a photon has been
subtracted from the beam (this process becomes exact for a transmittance tending to
one). In fact, the single-photon subtraction from a squeezed vacuum has already been
experimentally demonstrated [197], which provides a strong evidence for the practical
feasibility of our scheme. We note that the photon subtraction is an extremely useful
tool which allows one to generate states suitable for the tests of Bell inequality violation
with balanced homodyning [85, 135]. It can also be used to improve the performance
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Figure 3.2: Our proposal for experimentally generating a superposition of Fock states
is based on a sequence of displacements interspersed with a conditional photon sub-
traction applied to a squeezed vacuum state S(s)|0〉. A successful state preparation is
heralded by a click of all photodetectors (APD).

of dense coding [118], and forms a crucial element of the entanglement distillation
schemes for continuous variables [37]. However, the counterpart of using photon sub-
traction in our preparation scheme lies in that a final anti-squeezing operation needs
to be performed. The implementation of this operation is technically more involved
than the initial squeezed vacuum preparation, although it has already been experimen-
tally demonstrated [17, 18, 126, 151]. In addition, a new method based on homodyne
detection followed by a feed-forward displacement has been proposed recently [77].

The present chapter is organized as follows. In Section 3.2, we explain the mech-
anism of state generation on the simplest non-trivial example of a superposition of
vacuum and single-photon states. Our setup then consists of two displacements, one
conditional photon subtraction, and two squeezers (squeezing conjugate quadratures).
We present the details of the calculation of the Wigner function of the generated state
for a realistic setup involving imperfect photon subtraction (obtained with imperfect
detectors and beam splitters with a non-unity transmittance). In order to evaluate the
performance of the scheme, we investigate the achieved fidelity and the preparation
probability for various target states. We also discuss the feasibility of the final squeez-
ing operation. In Section 3.3, we extend the scheme to the generation of an arbitrary
single-mode state and show how to calculate the displacements that need to be applied
during the state preparation. As an illustration, we consider the generation of several
states which are superpositions of vacuum, single-photon, and two-photon Fock states.
In Section 3.4, we propose an iterative state generation scheme that uses a quantum
memory in order to reduce very significantly the total number of required operations.

3.2 Generation of a Superposition of |0〉 and |1〉
In this Section, we introduce our setup for the generation of an arbitrary superposition
of vacuum and single-photon state, which consists of two squeezers and two displace-
ments with a photon subtraction in between, as schematically sketched in Fig. 3.3.
This setup represents a basic building block of our universal scheme: as shown in Sec-
tion 3.3, any superposition of the first N + 1 Fock states can be generated from a
single-mode squeezed vacuum by a displacement followed by a sequence of N photon
subtractions and displacements, completed by a final anti-squeezing operation.

Pure-State Description

We first provide a simplified pure-state description of the setup, assuming perfect detec-
tors with single-photon resolution, which will give us an insight into the mechanism of
state generation. We will show that, conditionally on observing a click of the photode-
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Figure 3.3: Proposed experimental setup for generating |ψ〉 = c0|0〉+ c1|1〉. An optical
parametric amplifier generates a single-mode squeezed vacuum state (of squeezing pa-
rameter sin), which then propagates through three highly unbalanced beam splitters
(BSD, BS, and BSD) in order to realize a sequence of two displacements interspersed
with one conditional photon subtraction. Finally, an anti-squeezing S†(sout) operation
is applied, resulting in the output mode Aout. Successful state preparation is heralded
by a click of the photodetectors (APD).

tector APD, the setup produces a superposition of vacuum and single-photon states,

|ψ〉target = c0|0〉 + c1|1〉. (3.5)

Our state engineering procedure starts with a single-mode squeezed vacuum state,
which is generated in an optical parametric amplifier,

S(sin)|0〉 =
1

√

cosh(sin)

∞∑

n=0

√

(2n)!

2nn!
[tanh(sin)]

n|2n〉, (3.6)

where S(s) = exp[s(a†2 − a2)/2] denotes the squeezing operator with a (a†) being the
annihilation (creation) operator, and sin denotes the initial squeezing constant. The
single-mode squeezed vacuum passes through three highly transmitting beam splitters,
which realize a sequence consisting of a displacement followed by a single-photon sub-
traction and another displacement. The state is displaced by combining it on a highly
unbalanced beam splitter BSD with transmittance TD > 99% with a strong coherent
state |α/rD〉, where rD =

√
RD and RD = 1 − TD is the reflectance of BSD [145]. In

the limit TD → 1, the output beam is displaced by the amount α. This method has
been used, e.g., in the continuous-variable quantum teleportation experiment [83]. For
the sake of simplicity, we shall assume that TD = 1 and the displacement operation is
exact. The conditional single-photon subtraction requires a highly unbalanced beam
splitter BS with transmittance T , followed by a photodetector PD placed on the auxil-
iary output port. A successful photon subtraction is heralded by a click of the detector.
In the limit T → 1, the most probable event leading to a click of the detector is that
exactly a single photon has been reflected from the beam splitter. The probability of
removing two or more photons is smaller by a factor of 1−T and becomes totally neg-
ligible in the limit T → 1. The conditional single-photon subtraction can be described
by the non-unitary operator

X̂ = tn̂r â, (3.7)

where n̂ = â†â is the photon-number operator, while t =
√
T and r =

√
1 − T denote

the amplitude transmittance and reflectance of BS, respectively.
The input-output transformation corresponding to the sequence of operations in

Fig. 3.2 reads
|ψ〉out = S†(sout)D(α2)X̂D(α1)S(sin)|0〉, (3.8)
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where D(α) = exp(αâ†−α∗â) is the displacement operator. We will show later on how
the displacements α1 and α2 depend on the target state (3.5), as well as how the initial
squeezing value sin depends on the output squeezing sout for a given transmittance
T < 1.

In order to give an intuitive description of the technique let us assume first that
T = 1, α1 = −α2 = α, sout = sin = s, and replace X̂ by â. Then, using D(α)†âD(α) =
â+ α, the conditionally generated state can be written as

|ψ〉out = S†(s) (â+ α)S(s)|0〉. (3.9)

Taking into account that â and â† transform under the squeezing operation according
to

S†(s)âS(s) = â cosh(s) + â† sinh(s),

S†(s)â†S(s) = â† cosh(s) + â sinh(s), (3.10)

we obtain

|ψ〉out = [â cosh(s) + â† sinh(s) + α]|0〉
= sinh(s)|1〉 + α|0〉. (3.11)

We can see that by setting α = (c0/c1) sinh(s), we obtain the target state (3.5). This
simple analysis illustrates the principle of the scheme shown in Fig. 3.2.

However, the limit T = 1 is unphysical, because the probability of successful state
generation vanishes when T → 1. Let us now estimate the realistic values of the
displacements α1,2 taking into account that T < 1. In order to simplify the expression
(3.8), we first rewrite all displacement operators in a normally-ordered form, D(α) =

e−|α|2/2eαâ
†

e−α
∗â, and we obtain

|ψ〉out ∝ S†(sout)e
α2â

†

e−α
∗
2 â tn̂ â eα1â

†

e−α
∗
1 âS(sin)|0〉. (3.12)

Next, we propagate the operator tn̂ to the right by using the relations (see Appendix
C)

tn̂eα
∗â = eα

∗â/ttn̂, tn̂eαâ
†

= etαâ
†

tn̂, tn̂â = âtn̂−1. (3.13)

After these algebraic manipulations we obtain

|ψ〉out ∝ S†(sout)e
α2â

†

â etα1â
†

e−[α∗
2+α∗

1/t]a tn̂S(sin)|0〉. (3.14)

Note that we have also moved to the right the operator e−α
∗
2 â, used the fact that

eαâ
†

eβ
∗â = e−αβ

∗

eβ
∗âeαâ

†

and dropped some t and r as we are only interested in the
target state and not the success probability.

The combined action of the operators tn̂S(sin) on vacuum produces a single-mode
squeezed vacuum state just as without applying tn̂ but with a lower squeezing constant
s satisfying

tanh(s) = t2 tanh(sin), (3.15)

that is
tn̂S(sin)|0〉 ∝ S(s)|0〉. (3.16)

Finally, we move the operator eα2â
†

to the right, using the formula eα2â
†

â = (â −
α2) e

α2â
†

, which results in

|ψ〉out ∝ S†(sout)(â− α2) e
δâ†e−γ

∗âS(s)|0〉, (3.17)
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where δ = α2 + tα1 and γ = α2 + α1/t. With the help of Eq. (3.10), we can write,
using S(s)S(s)† = I,

eδâ
†

e−γ
∗âS(s)|0〉 ∝ S(s)S(s)†eδâ

†

e−γ
∗âS(s)|0〉 (3.18)

∝ S(s)e[δ(cosh(s)â†+sinh(s)â)−γ∗(cosh(s)â+sinh(s)â†)]|0〉, (3.19)

∝ S(s)e[δ cosh(s)−γ∗ sinh(s)]â† |0〉, (3.20)

which is a state with a generally non-zero coherent displacement. This displacement
can be set to zero if α1 and α2 satisfy

(α2 + tα1) cosh(s) = (α∗
2 + α∗

1/t) sinh(s), (3.21)

in which case the output state reads

|ψ〉out ∝ S†(sout) (a− α2)S(s)|0〉 (3.22)

Finally, if we choose sout = s, using Eq. (3.10) we obtain,

|ψ〉out ∝ sinh(s)|1〉 − α2|0〉. (3.23)

Thus, the desired superposition of the first two Fock states (3.5) can be obtained by
choosing

α2 = −c0
c1

sinh(s), (3.24)

α1 = t
[tanh2(s) − t2]α2 + (t2 − 1) tanh(s)α∗

2

t4 − tanh2(s)
, (3.25)

where the displacement α1 has been determined from the condition (3.21) by subtract-
ing t times (3.21) and the conjugate of (3.21) divided by t (in order to suppress the
term α⋆1), followed by some rearranging. Note that we may assume that the coefficient
c1 of the Fock state |1〉 is non-zero; otherwise, no photon subtraction is needed to
generate the target state.

Final Anti-Squeezing Operation

In order to obtain a superposition of Fock states at the output, we need to apply
the final anti-squeezing operation S†(sout), which squeezes a quadrature conjugate to
that squeezed by the first squeezer S(sin). This operation can be implemented by
injecting the signal beam into a nonlinear medium that is strongly pumped by a laser,
as demonstrated in [17, 18, 126, 151]. A difficulty of this method lies in that a good
spatio-temporal overlap between the signal and the pump beams must be achieved.
However, a recently proposed alternative method can be used to avoid this problem.
Here, an auxiliary mode that is prepared in a squeezed vacuum state is combined
with the signal beam at a beam splitter. The auxiliary mode is then measured with
a homodyne detector and the appropriate quadrature of the signal beam is displaced
proportionally to the measurement outcome [77]. The great advantage of this latter
approach is that it only requires the interference between two beams at a beam splitter,
which is much easier to achieve than the direct phase-sensitive de-amplification of the
signal in a nonlinear medium. A very similar scheme has been in fact successfully
demonstrated in the recent experiment of continuous variable quantum erasing [3].

Note that if we remove the last squeezing operation S†(sout), we obtain a simpler
optical setup which produces a squeezed superposition of Fock states S(sout)[c0|0〉 +
c1|1〉]. In many cases, however, this squeezing may not be an obstacle or may even
represent an advantage. For example, the generation of Schrödinger cat states |α〉 −
| − α〉 can, for small |α|, be very well approximated by a squeezed single-photon state
S(s)|1〉 [115, 129].
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Realistic Model

We shall now present a more realistic description of the proposed scheme taking into
account that the photodetectors exhibit only single-photon sensitivity, but cannot re-
solve the number of photons in the mode, and have a detection efficiency η < 1. Such
detectors have two outcomes, either a click or a no-click. We model this detector as
a sequence consisting of a beam splitter with transmittance η followed by an idealized
detector which performs a projection onto the vacuum or the rest of the Hilbert space,
Π0 = |0〉〈0| (no click), Π1 = I − |0〉〈0| (a click).

Similarly as in Ref. [85], it is convenient to work in the phase-space representation
and consider the transformation of Wigner functions. The setup in Fig. 1 involves two
modes, the principal mode A and an auxiliary mode B. Initially, the mode A is in a
squeezed vacuum state and the covariance matrix is diagonal, γA = diag(e−2sin , e2sin).
The Gaussian Wigner function of the initial state of mode A after the first displacement
thus reads

WG(rA; ΓA, dA) =

√
det ΓA
π

e−(rA−z1)T ΓA(rA−z1), (3.26)

where rA = (xA, pA)T is the vector of quadratures of mode A and z1 ≡
√

2(ℜα1,ℑα1)
T

is the displacement. The matrix ΓA is the inverse of the covariance matrix γA.
In a second step, the modes A and B are mixed on an unbalanced beam splitter BS

and then mode B subsequently passes through a (virtual) beam splitter of transmit-
tance η which models the imperfect detection with efficiency η. This transformation is
a Gaussian completely positive (CP) map M, and the resulting state of modes A and
B is still a Gaussian state with the Wigner function

WAB(rAB) =

√
det ΓAB
π2

e−(rAB−dAB)T ΓAB(rAB−dAB), (3.27)

where rAB = (rA, rB)T . The vector of the first moments dAB = (dA, dB)T and the
covariance matrix γAB = Γ−1

AB can be expressed in terms of the initial parameters of
mode A before the mixing on an unbalanced beam splitter (BS) (i.e., z1 and γA) as
follows:

dAB ≡
(
dA
dB

)

= S

(
z1
0

)

,

γAB = S(γA ⊕ IB)ST +G, (3.28)

where S = SηSBS , Sη = IA ⊕ √
ηIB and G = 0A ⊕ (1 − η)IB model the inefficient

photodetector, and SBS is a symplectic matrix which describes the coupling of the
modes A and B on an unbalanced beam splitter (BS),

SBS =







t 0 r 0
0 t 0 r
−r 0 t 0
0 −r 0 t






. (3.29)

After the photon subtraction, the density matrix ρA,out of mode A conditioned on
a click of the photodetector PD measuring the auxiliary mode B becomes

ρA,out = TrB[ρAB(IA ⊗ Π1,B)], (3.30)

where TrB denotes a partial trace over mode B, and ρAB is the two-mode density
matrix of the Gaussian state characterized by the Wigner function (3.27). Then, after
the second displacement of z2 ≡

√
2(ℜα2,ℑα2)

T , the Wigner function of mode A can
be written as a linear combination of two Gaussian functions (3.26), namely

W (r)P = C1WG(r; Γ1, d1) + C2WG(r; Γ2, d2), (3.31)
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where P is the probability of successful generation of the target state. The expression
(3.31) can be derived by rewriting Eq. (3.30) in the Wigner representation. One uses
the fact that the Wigner function of the POVM element Π1,B is a difference of two
Gaussian functions,

WΠ1
(r) =

1

2π
− 1

π
e−x

2−p2 , (3.32)

and that the trace of the product of two operators can be evaluated by integrating the
product of their Wigner representations over the phase space.

To define the matrices and vectors appearing in Eq. (3.31), we first divide the matrix
ΓAB = γ−1

AB into four sub-matrices with respect to the A|B splitting,

ΓAB =

[
ΥA σ
σT ΥB

]

, (3.33)

and we carry some lengthly but simple algebra, as shown in Appendix D. As detailed
in Appendix D, the correlation matrix Γ1 and the displacement d1 appearing in the
first term on the right-hand side of Eq. (3.31) are given by

Γ1 = ΥA − σΥ−1
B σT ,

d1 = dA + z2,

C1 = 1. (3.34)

Similarly, the formulas for the parameters of the second term read

Γ2 = ΥA − σΥ̃−1
B σT ,

d2 = dA + Γ−1
2 σΥ̃−1

B dB + z2,

C2 = −2

√

det(ΓAB)

det(Γ2) det(Υ̃B)
exp

[
−dTBMdB

]
, (3.35)

where Υ̃B = ΥB + I and

M = ΥBΥ̃−1
B − Υ̃−1

B σTΓ−1
2 σΥ̃−1

B . (3.36)

The final squeezing operation S†(sout), described by the symplectic matrix

Ss =

[
esout 0

0 e−sout

]

, (3.37)

is applied to mode A after the last displacement. The resulting Wigner function of the
output mode Aout can be written as

Wout(r)P = C1WG(r; Γ
′

1, d
′
1) + C2WG(r; Γ

′

2, d
′
2), (3.38)

where the inverse covariance matrix Γ′
1,2 and the displacement d1,2 appearing in the

right-hand side of Eq. (3.38) are given by

Γ′
1,2 = S−1

s Γ1,2S
−1
s ,

d′1,2 = Ssd1,2. (3.39)

Since all the Wigner functions in Eq. (3.31) or (3.38) are normalized, the probability
of a successful state generation can be calculated simply as the sum P = C1 + C2.
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Examples

In order to illustrate our method, let us consider the preparation of the following four
superpositions of the Fock states |0〉 and |1〉,

|ψ1〉 = |1〉, (3.40)

|ψ2〉 =
1√
2
(|0〉 + |1〉), (3.41)

|ψ3〉 =
1√
10

(3|0〉 + |1〉), (3.42)

|ψ4〉 =
1√
10

(|0〉 + 3|1〉). (3.43)

In the following we compare the fidelity of the state obtained by the realistic imple-
mentation (Wr(r)) to the ideal pure state (Wi(r)),

F = 2π

∫

drWr(r)Wi(r), (3.44)

where the pure state Wigner function is calculated as shown in Appendix E.
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Figure 3.4: (a) Fidelity between the generated state and the target state and (b)
probability of successful generation as a function of the squeezing sin for the four
target states (3.40) (solid line), (3.41) (dashed line), (3.42) (dot-dashed line) and (3.43)
(dotted line), with T = 0.95 and η = 0.25.

The fidelity of the generated state for the target states (3.40)–(3.43) is plotted in
Fig. 3.4(a) as a function of the initial squeezing. We can see that the conditionally
prepared states are close to the desired states and their optimum fidelities are reached
for a low initial squeezing (below 2 dB), which is experimentally accessible. Although
it is hardly visible in Fig 3.4(a), there is typically a non-zero optimal value of the
initial squeezing, giving the highest fidelity. As shown in Fig. 3.4(b) the increase of
the initial squeezing improves the probability of successful generation of the target
state. A comparison of Fig. 3.4(a) with Fig. 3.4(b) reveals a clear trade-off between
the achievable fidelity and the preparation probability.

Figure 3.5(a) shows the dependence of the fidelity on the beam splitter transmit-
tance T , considering the optimal input squeezing for each of the states. (Note that
for state (3.40), we could not find numerically the optimum squeezing, so we arbitrar-
ily chose sin = 0.50 dB as an optimal value in other to keep a reasonable generation
probability.) We see that as T approaches unity, the fidelity gets arbitrarily close to
unity, while the probability of successful state generation decreases as P ∝ (1 − T ) η,
as shown in Fig. 3.5(b). The value T = 0.95 used in Fig. 3.4 seems to be a reasonable
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Figure 3.5: (a) Fidelity between the generated state and the target state and (b)
probability of successful generation as a function of T for the four target states (3.40)–
(3.43). The curves are plotted considering the optimal squeezing sin for each state,
namely 0.50 dB for state (3.40) (solid line), 1.66 dB for state (3.41) (dashed line), 0.85
dB for state (3.42) (dot-dashed line), and 0.36 dB for state (3.43) (dotted line). The
curves are plotted for η = 0.25.

compromise between the success rate (P ≈ 10−3 or P ≈ 10−4 depending on the target
state) and the fidelity F > 0.95%.
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Figure 3.6: (a) Fidelity between the generated state and the target state and (b)
probability of successful generation as a function of η for the four target states (3.40)–
(3.43). The curves are plotted considering the optimal squeezing sin for each state,
namely 0.50 dB for state (3.40) (solid line), 1.66 dB for state (3.41) (dashed line), 0.85
dB for state (3.42) (dot-dashed line), and 0.36 dB for state (3.43) (dotted line). The
curves are plotted for T = 0.95.

We also have studied the dependence of the fidelity on the detection efficiency η.
The numerical results are shown in Fig. 3.6(a), where we can see that the scheme is very
robust in the sense that the fidelity almost does not depend on η. Fidelities above 95%
could be reached even with η of the order of a few percents if T is high enough. This is
in agreement with the findings of Ref. [85]. However, a low η reduces the preparation
probability, as shown in Fig. 3.6(b).



3.3. ARBITRARY SINGLE-MODE STATE 53

3.3 Arbitrary Single-Mode State

In the preceding section, we have demonstrated that the combination of two displace-
ments and a photon subtraction allows us to build any superposition of |0〉 and |1〉
states. In this section, we shall generalize this procedure to any superposition of the
first N + 1 Fock states,

|ψ〉target =

N∑

n=0

cn|n〉, (3.45)

and show that it can be prepared from a squeezed vacuum state by applying a sequence
of N + 1 displacements interspersed with N photon subtractions, and a final anti-
squeezing operation as shown in Fig. 3.7.
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Figure 3.7: Proposed experimental setup. An optical parametric amplifier generates a
single-mode squeezed vacuum state S(sin)|0〉, which then propagates through 2N + 1
highly unbalanced beam splitters BSD and BS, which realize a sequence of N + 1
displacements interspersed with N conditional photon subtractions. A second squeezer
is used to apply the final anti-squeezing operation S†(sout). Successful state preparation
is heralded by clicks of all N photodetectors PDk.

Pure-State Description

As in the preceding section, we first provide a simplified pure-state description of
the setup, assuming perfect detectors with single-photon resolution. This will allow
us to determine the dependence of the coherent displacements αj on the target state
(3.45). Generalizing the procedure presented in the preceding section, the input-output
transformation corresponding to the sequence of operations in Fig. 3.7 reads

|ψ〉out = S†(sout)D(αN+1)X̂D(αN )X̂ (3.46)

. . . D(α2)X̂D(α1)S(sin)|0〉.

In order to simplify this expression, we first rewrite all displacement operators in a
normally-ordered form and then move all the operators tn̂ to the right using the rela-
tions (3.13). This results in the substitution αj → αjt

N+1−j and α∗
j → α∗

j t
j−N−1 in

the exponents. Next, we propagate all the exponential operators e−t
j−N−1α∗

j â to the
right,

|ψ〉out ∝ S†(sout)e
αN+1â

†

âetαN â
†

â (3.47)

. . . âet
Nα1â

†

e−γ
∗âtNn̂S(sin)|0〉,

where γ =
∑N+1

j=1 αjt
j−N−1. The combined action of the operators tNn̂S(sin) on the

vacuum produces a single-mode squeezed vacuum state, tNn̂S(sin)|0〉 ∝ S(s)|0〉, where
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tanh(s) = t2N tanh(sin). After some algebraic manipulations and taking sout = s, we
get

|ψ〉out ∝
N∏

j=1

(â cosh(s) + â† sinh(s) − βj)|0〉, (3.48)

where

βj =

N+1∑

k=j+1

αkt
N+1−k. (3.49)

Formula (3.48) is valid provided that the overall displacement is zero, corresponding
to the constraint

cosh(s)

N+1∑

j=1

αjt
N+1−j = sinh(s)

N+1∑

j=1

α∗
j t
j−N−1 , (3.50)

which generalizes condition (3.21).

We now prove that an arbitrary superposition of the first N + 1 Fock states
∑N

n=0 cn|n〉 can be expressed as
∏N
j=1(A−βj)|0〉 ≡

∑N
k=0 hkA

k|0〉, whereA = â cosh(s)+

â† sinh(s) and hk are the coefficients of the characteristic polynomial whose roots are
βj . From the condition

N∑

k=0

hkA
k|0〉 =

N∑

n=0

cn|n〉, (3.51)

we can immediately determine the coefficients hN and hN−1. This is because only the
term AN gives rise to â†N and, similarly, only the expansion of AN−1 contains â†N−1.
We thus get

hN =
cN sinh−N (s)√

N !
, hN−1 =

cN−1 sinh1−N (s)
√

(N − 1)!
. (3.52)

Once we know hN and hN−1, we insert them back in Eq. (3.51), and, from
∑N−2

k=0 hkA
k|0〉 =

∑N
n=0 cn|n〉 − (hN−1A

N−1 + hNA
N )|0〉, we determine hN−2 and hN−3. By repeating

this procedure, we can find all coefficients hj . This proves that the condition (3.51)
can always be met for any nonzero squeezing, hence our method is indeed universal
and allows us to generate arbitrary superpositions. After finding the hj’s, the coeffi-

cients βj ’s are calculated as the roots of the characteristic polynomial
∑N
k=0 hkβ

k, and,
finally, the N + 1 displacements αj ’s are determined by solving the system of N + 1
linear equations (3.49) and (3.50).

Realistic Model

We shall now present a more realistic description of the proposed scheme, which takes
into account realistic photodetectors. After the k-th photon subtraction and the k+1-
th displacement, the density matrix ρk,A of mode A conditioned on a click of the
photodetector measuring the auxiliary mode Bk is related to ρk−1,A as follows,

ρk,A = Dk+1TrB[M(ρk−1,A ⊗ |0〉B〈0|)(IA ⊗ Π1,B)]D†
k+1, (3.53)

where ρ0,A = S(sin)|0〉〈0|S†(sin), Dk+1 = D(αk+1) is a displacement operator and M
denotes the Gaussian CP map (3.28) that describes the mixing of the modes A and
B on BS and accounts for imperfect detection. Since each step (3.53) gives rise to a
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linear combination of two Gaussian states from a Gaussian state, the Wigner function
of the state ρk,A can be written as a linear combination of 2k Gaussian functions,

Wk(r)Pk =

2k

∑

j=1

Cj,kWG(r; Γj,k, dj,k), (3.54)

where Pk is the probability of success of the first k photon subtractions. The correlation
matrices Γj,k and displacements dj,k after k photon subtractions and k+1 displacements
can be expressed in terms of Γj,k−1 and dj,k−1.

Similarly as in Section 3.2, we first define the real displacement vector zk ≡
√

2(ℜαk,ℑαk)T
and the two-mode covariance matrix and vector of mean values after the action of the
CP map M,

(
dj,k,A
dj,k,B

)

= S

(
dj,k
0

)

,

γj,k,AB = S(Γ−1
j,k ⊕ IB)ST +G. (3.55)

We also decompose the inverse matrix Γj,k,AB = γ−1
j,k,AB similarly as in Eq. (3.33),

Γj,k,AB =

[
Υj,k,A σj,k
σTj,k Υj,k,B

]

. (3.56)

The j-th term in Eq. (3.54) gives rise to two new terms. The (2j − 1)-th term is
parameterized by

Γ2j−1,k = Υj,k−1,A − σj,k−1Υ
−1
j,k−1,Bσ

T
j,k−1,

d2j−1,k = dj,k−1,A + zk+1,

C2j−1,k = Cj,k−1. (3.57)

Similarly, the formulas for the 2j-th term read

Γ2j,k = Υj,k−1,A − σj,k−1Υ̃
−1
j,k−1,Bσ

T
j,k−1,

d2j,k = dj,k−1,A + Γ−1
2j,kσj,k−1Υ̃

−1
j,k−1,Bdj,k−1,B + zk+1,

C2j,k = −2Cj,k−1

√

det(Γj,k−1,AB)

det(Γ2j,k) det(Υ̃j,k−1,B)

× exp
[
−dTj,k−1,BMdj,k−1,B

]
, (3.58)

where Υ̃j,k−1,B = Υj,k−1,B + I and

M = Υj,k−1,BΥ̃−1
j,k−1,B

−Υ̃−1
j,k−1,Bσ

T
j,k−1Γ

−1
2j,kσj,k−1Υ̃

−1
j,k−1,B.

Iterating these formulas N times starting from the initial (k = 0) Gaussian state (3.26)
and then applying the final anti-squeezing operation S†(sout) which acts on the inverse
correlation matrices Γj,N and displacements dj,N as in (3.39), one obtains the Wigner
function of the conditionally generated state. The probability of state preparation can

be calculated simply as the sum P =
∑2N

j=1 Cj,N .

Examples

We shall now consider, as an illustration, the generation of superpositions of |0〉, |1〉,
and |2〉. These states, namely,

|ψ〉 =
1

√

1 + |c0|2 + |c1|2
(c0|0〉 + c1|1〉 + |2〉). (3.59)
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can be prepared with two photon subtractions. Here, we assume that the coefficient
c2 of the Fock state |2〉 is non-zero (we arbitrarily take it equal to one). Otherwise,
only one (or zero) photon subtraction would be needed to generate the target state. In
the case of two photon subtractions interspersed with three displacements, Eq. (3.48)
reduces to

|ψ〉out ∝ (sinh(s) cosh(s) + β1β2)|0〉 (3.60)

− (β1 + β2) sinh(s)|1〉 +
√

2 sinh2(s)|2〉.

This state matches the target state (3.59) if

β1,2 =
−B ±

√
B2 − 4C

2
, (3.61)

where

B =
√

2 sinh(s)c1,

C =
√

2 sinh2(s)c0 − sinh(s) cosh(s).

Equations (3.49) and (3.50) allow us to calculate the displacements needed to generate
this state. Assuming for simplicity that c0, c1 and s are chosen such that β1 and β2

are both real, we obtain

α3 = β2,

α2 = (β1 − α3)/t, (3.62)

α1 =
tanh(s)(α3 + α2/t) − (α3 + tα2)

t2 − tanh(s)/t2
.

In order to illustrate our method, let us consider the following four superpositions
of the Fock states |0〉, |1〉, and |2〉:

|ψ1〉 = |2〉, (3.63)

|ψ2〉 =
1√
2
(|1〉 + |2〉), (3.64)

|ψ3〉 =
1√
2
(|0〉 + |2〉), (3.65)

|ψ4〉 =
1√
3
(|0〉 + |1〉 + |2〉), (3.66)

We plot the behavior of the fidelity and probability of generation of the target
states (3.63) – (3.66) as a function of the initial squeezing sin (Fig. 3.8), beam-splitter
transmittance (Fig. 3.9), and photodetector efficiency (Fig. 3.10). As in the preceding
section, we observe that the fidelity of the generation for any state gets arbitrarily close
to one as T approaches unity, as shown in Fig. 3.9. We also find that the fidelity is
very robust against small detector efficiency η, as can be seen in Fig. 3.10. On the
other hand, the preparation probability decreases with a growing T and decreasing η,
as predicted by the equation P ∝ (1 − T )2η2.

All these features are very similar to those found in the preceding section, where we
considered only states generated with one photon subtraction. Let us now stress some
new features. First, we note here the existence of a clear optimal input squeezing, giving
the maximum fidelity for each of the four studied states, see Fig. 3.8(a). Observing
that for a fixed T the optimal squeezing has a higher value [from 2.4 dB for state (3.65)
to 4 dB for state (3.64)] than those encountered in the case of one photon subtraction,
we can expect an increasing value of the optimal squeezing for an increasing number of
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Figure 3.8: (a) Fidelity between the generated state and the target state and (b)
probability of successful generation as a function of the squeezing sin for the four
target states (3.63) (solid line), (3.64) (dashed line), (3.65) (dot-dashed line), and
(3.66) (dotted line), with T = 0.95 and η = 0.25.
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Figure 3.9: (a) Fidelity between the generated state and the target state and (b)
probability of successful generation as a function of T for the four target states (3.63)–
(3.66). The curves are plotted considering the optimal squeezing sin for each state,
namely 3.54 dB for state (3.63) (solid line), 4.02 dB for state (3.64) (dashed line), 2.43
dB for state (3.65) (dot-dashed line), and 3.24 dB for state (3.66) (dotted line). The
curves are plotted for η = 0.25.

Fock states in the target superposition. It can be checked that the value of this optimal
input squeezing tends to zero when T tends to 100%, at the expense of a vanishing
generation probability.

Another interesting fact is the existence of very different values of the optimum
fidelity for different target states for a fixed T = 0.95 and η = 0.25, as shown in
Fig. 3.8(a). For example, the two-photon state |2〉 is much more difficult to gener-
ate using our method than the other three states (3.64)–(3.66). For the state |2〉, a
transmittance of T > 0.99 is necessary to reach a fidelity of F > 0.95, resulting in a
very low probability of generation. This would make the experimental generation of
|2〉 (or S(sout)|2〉 if the final squeezing operation is omitted) with a good fidelity very
challenging. In contrast, the balanced superposition state (3.66) can be generated with
a high fidelity F > 0.90 even with a transmittance T ≈ 0.90.

Finally, a surprising fact arises when β1 6= β2. Then, the equations (3.62) give two
distinct sets of αi’s generating the same target state, the second set being obtained by
making the exchange β1 ↔ β2. Considering the pure-state description and T → 1, the
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Figure 3.10: (a) Fidelity between the generated state and the target state and (b)
probability of successful generation as a function of η for the four target states (3.63)–
(3.66). The curves are plotted considering the optimal squeezing sin for each state,
namely 3.54 dB for state (3.63) (solid line), 4.02 dB for state (3.64) (dashed line), 2.43
dB for state (3.65) (dot-dashed line), and 3.24 dB for state (3.66) (dotted line). The
curves are plotted for T = 0.95.

two alternative choices of displacements become strictly equivalent. In contrast, when
considering the realistic model with T < 1, these two solutions for the same target
state do not have exactly the same behavior. As we can see in Fig. 3.11(a), one of the
two solutions is indeed more robust to decreasing T . However, the two solutions are
rather similar as far as the probability of state generation is concerned, as shown in
Fig. 3.11(b).
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Figure 3.11: (a) Fidelity between the generated state and the target state and (b)
probability of successful generation as a function of T for the two target states (3.64)
and (3.66). The curves correspond to the two choices of the displacements α1 and
α2 when considering the optimal squeezing sin for each state, namely 4.02 dB for
state (3.64) (dotted line, dot-dashed line), and 3.24 dB for state (3.66) (dashed line,
solid line). The curves are plotted for η = 0.25.

3.4 Efficient State Preparation

We have seen in the preceding sections that the probability of successful state prepara-
tion decreases exponentially with the maximum number of photons N in the superpo-
sition, P ∝ (1−T )NηN , which would limit the applicability of the scheme to N ≤ 2 in
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practice. In order to overcome this problem and enhance the success rate, we have to
use some additional resources besides linear optics and squeezers. The main weakness
of the present scheme is that all photon subtractions have to succeed simultaneously
for the state to be generated, which results in this exponential scaling. As we will see,
this can be avoided provided that a quantum memory is employed. Recently, the first
experimental demonstrations of quantum memory for light based on the interaction of
light beams with atomic ensembles have been reported [114, 131]. A quantum mem-
ory enables to deterministically store the state of a light mode for some time, and to
retrieve it later on when required.

Our efficient state preparation scheme works in an iterative manner, with two states
with up to N/2 photons being generated separately and stored in a quantum memory.
The total number of trials required to generate both states then scales as 1/PA+1/PB,
instead of 1/(PAPB) which would be the case without a memory. The two states are
then merged, and a state with up to N photons is produced. This merging is achieved
conditionally by combining the two modes on a balanced beam splitter and projecting
one of the output modes onto vacuum, see Fig. 3.12(a). This requires an efficient
detector, being able to discriminate between the presence and absence of a photon.
This is a second extra resource for our efficient state preparation scheme. The scheme
is iterative in the sense that each of the states with up to N/2 photons is itself obtained
by merging two states with up to N/4 photons, etc.

The scheme starts from superpositions of vacuum and single photon states c0|0〉 +
c1|1〉, which can be prepared conditionally using the scheme discussed in Section 3.3.
These states are repeatedly merged together and after each successful merging the
resulting state is stored in a quantum memory, see Fig. 3.12(b). After k successful
iterations, an arbitrary state containing up to 2k photons can be prepared. A similar
technique was already proposed in the literature to efficiently generate two-mode N -
photon entangled Schrödinger cat-like states [45], and it is inspired by the quantum
repeater concept [36, 65] where such a recursive method is exploited to efficiently
distribute entanglement through noisy channels over long distances.

(b)

1

2

4

8(a)

50:50 BA

|0> out

Figure 3.12: (a) Setup for merging two states in modes A and B into a single state.
The procedure succeeds conditionally on detecting no photons in the left output mode.
(b) Starting from superpositions of |0〉 and |1〉 and repeating the merging operation
iteratively, it is possible to prepare states with up to 2n photons after n iterations.

In order to check that the iterative scheme is universal, note that any state |ψ(2N)〉 =
∑2N

n=0 cn|n〉 can be written as |ψ(2N)〉 ∝ ∏2N
j=1(a

† − αj)|0〉. Now choose |ψ(N)
A 〉 ∝

∏N
j=1(

√
2a†A−αj)|0〉 and |ψ(N)

B 〉 ∝∏2N
j=N+1(

√
2a†B −αj)|0〉. If the modes A and B are

combined on a balanced beam splitter, then we have

aA,in =
1√
2
(aA,out + aB,out),

aB,in =
1√
2
(aA,out − aB,out). (3.67)
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As a consequence, the state of the output mode A conditioned on projecting B onto

vacuum is proportional to |ψ(2N)〉. This decomposition of |ψ(2N)〉 into |ψ(N)
A 〉 and

|ψ(N)
B 〉 can be repeated until we find the 2N basic states ck0 |0〉 + ck1 |1〉, k = 1, . . . , 2N ,

from which the state |ψ(2N)〉 can be iteratively prepared.
As a first example, let us consider the preparation of the state |ψ(2)〉 = c0|0〉 +

c1|1〉+ c2|2〉 by merging the states a0|0〉+a1|1〉 and b0|0〉+ b1|1〉, where the coefficients
aj and bj can be determined by solving a system of equations

b1
b0

+
a1

a0
=

√
2
c1
c0
,

a1

a0

b1
b0

=
√

2
c2
c0
, (3.68)

and using the normalization of the states. The probability of successful merging is
given by

PM = |a0|2|b0|2 +
1

2
|a0b1 + a1b0|2 +

1

2
|a1|2|b1|2. (3.69)

The probability can be bounded from below, PM ≥ 1
3 , and the minimum is achieved

when a0 = b0 = 1/
√

3 and a1 = −b1 =
√

2/3. It follows that the total number of
elementary operations required to generate the state |ψ(2)〉 is Otot ≈ 6/P1, where P1

is the probability of preparing the superposition of vacuum and single-photon states.
This should be compared with the total number of trials Otot ≈ 1/P 2

1 necessary when
the scheme described in the preceding section is used instead. As we have seen before,
P1 ≈ 10−2, hence the present procedure reduces the number of necessary operations
by more than an order of magnitude even in this simplest case. The price to pay, of
course, is the need for a quantum memory and a highly efficient photo-detector for the
merging operation.

In order to show that the required resources scale only sub-exponentially with N ,
let us consider the preparation of the single-mode states 1√

2
(|0〉 + |N〉). At the n-th

iteration step, states |0〉 ± cn−1|2n−1〉 are merged to produce a state |0〉 + cn|2n〉 (we
omitted the normalization prefactors for simplicity). The coefficients are related as
follows,

cn =
c2n−1

22n−12n−1!

√
2n! . (3.70)

Starting from clog2N = 1 all coefficients cn, n < log2N can be determined from Eq.
(3.70). The probability of successful merging is given by

P(n−1)→n =
1 + |cn|2

(1 + |cn−1|2)2
, (3.71)

and the total number of operations to prepare the state |0〉 + cn|2n〉 can be estimated
as On = 2On−1/Pn−1→n. For large K = 2n, we can use the Stirling approximation
K! ≈

√
2πKKKe−K and we get cn ≈ c2n−1/(π2n−1)1/4. Within this approximation,

we can bound the probability (3.71) as follows,

Pn−1→n ≈ 1√
π2n−1

√
π2n−1 + |cn−1|4
(1 + |cn−1|2)2

≥ 1

2
√
π2n−1

. (3.72)

The recurrence formula for the total number of operations becomesOn = 2
√
π2n+1On−1

which can be solved to yield

On =
1

P1
(2
√

2π)n 2n(n+1)/4, (3.73)

where P1 is the probability of preparation of |0〉 + c0|1〉. An approximate bound on
the total number of operations Ocat,tot(N) required to generate the state 1√

2
(|0〉+ |N〉)
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can be obtained from Eq. (3.73) by setting n = log2N and we get

Ocat,tot(N) ≤ 1

P1
N

7
4
+ 1

2
log2 πN

1
4

log2N , (3.74)

which is clearly a sub-exponential scaling with N. In Fig. 11, we plot the total number
of operations as a function of N determined by numerical calculations. The log-log
plot reveals that the dependence of Ocat,tot(N) on N is essentially polynomial.

As an example, consider the case N = 8. Assuming P1 = 10−2 we get Ocat,tot(8) =
37000, while if using the scheme discussed in Section 3.3 then eight photon subtractions
would have to be performed simultaneously and about (1/P1)

8 = 1016 trials would be
required. The scheme employing a quantum memory is thus eleven orders of magnitude
more efficient.
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Figure 3.13: Total number of operations required to prepare a single-mode Schrödinger
cat-like state (|0〉 + |N〉)/

√
2.

3.5 Conclusions

In summary, we have shown that an arbitrary single-mode state of light can be en-
gineered starting from a squeezed vacuum state and applying a sequence of displace-
ments and single-photon subtractions, followed by a final squeezing operation. Since
our proposal does not require single-photon sources and can operate with low-efficiency
photodetectors, we anticipate that its experimental implementation will be much eas-
ier than for the previous proposals, in particular the one based on repeated photon
additions [55].

We have shown that an arbitrary superposition of |0〉, |1〉 and |2〉 states can be
successfully produced with high fidelity using a reasonably low squeezing (≃ 3dB) if
the transmittance T of the beam splitter used for photon subtraction is sufficiently close
to unity (e.g. T ≃ 95%). This holds even when inefficient photodetectors with single-
photon sensitivity but no single-photon resolution are employed, such as the standard
avalanche photodiodes, as it only affects the probability of successful generation of the
state without compromising the fidelity. However, low η and high T drastically reduce
the preparation probability, so that a compromise has to be made when determining
T . The final anti-squeezing operation required to obtain a finite superposition of Fock
states is technically perhaps the most demanding part of the scheme, but is nevertheless
achievable with the current technology.

The recent demonstrations of single-photon subtraction from a single-mode squeezed
vacuum [142, 197] provides a strong evidence of the practical feasibility of our scheme.
We may reasonably assert, based on our proposal, that the preparation of squeezed
superpositions of |0〉, |1〉, and |2〉 states should be experimentally achievable with the
present technology.
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Chapter 4

Loophole-free Bell Test

4.1 Introduction

Since the inception of quantum mechanics, several physicists have considered his coun-
terintuitive aspect as an evidence of the incompleteness of the theory. There have been
repeated suggestions that its probabilistic features may possibly be described by an
underlying deterministic substructure. The first attempt in this direction originates
from the famous paper by Einstein, Podolsky, and Rosen (EPR) [69] in 1935. There,
it was advocated that if “local realism” (causality + deterministic substructure, as de-
scribed below) is taken for granted, then quantum theory is an incomplete description
of the physical world.

The EPR argument gained a renewed attention in 1964, when John Bell derived his
famous inequalities, which must be satisfied within the framework of any local realistic
theory [15]. Bell showed that any such deterministic substructure model (also called
“hidden-variables model”), if local, yields predictions that significantly differ from those
of quantum mechanics. The merit of Bell inequalities lies in the possibility to test them
experimentally, allowing physicists to test whether either quantum mechanics or local
realism is the correct description of Nature.

Bell Inequalities

In this chapter, we will use the Clauser-Horne-Shimony-Holt inequality (called Bell-
CHSH inequality in the following), originally devised for a two-qubit system [48]. Let
us consider the following thought experiment, which we will analyze from the point of
view of local realism. The experiment involves three distant parties, Sophie, Alice, and
Bob. Sophie (the source) prepares a bipartite state and distribute it to Alice and Bob
(the two usual partners), see Fig. 4.1.

Then, Alice and Bob randomly and independently decide between one of two possi-
ble quantum measurements A1 or A2 (B1 or B2), which should have only two possible
outcomes +1 or −1. The timing of the experiment should be arranged in such a way
that Alice and Bob do their measurements in a causally disconnected manner. Thereby,
Alice’s measurement cannot influence Bob’s, and vice-versa. Local realism implies two
assumptions:

1. Realism: the physical properties A1, A2, B1, B2 have definite values a1, a2, b1, b2,
which exist independently of their observation. This implies the existence of a
probability distribution P (a1, a2, b1, b2), dependent on how Sophie generates the
bipartite state.

63
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Alice Bob

Sophie

A or A1 2 orB B21

a  ,a  ,b  ,b 1 2 1 2P(                  )

Figure 4.1: Sophie prepares a bipartite state and distributes it to Alice and Bob, who
perform each a measurement. Alice measures either A1 or A2, while Bob measures B1

or B2. In a local realistic theory, there must exist an underlying probability distribution
p(a1, a2, b1, b2), generated by Sophie.

2. Locality: Alice’s measurement choice and outcome do not influence the result of
Bob’s measurement, and vice-versa. The measurement events are separated by a
spacelike interval.

If we consider local realism as the correct description of the physical world, then we
obtain the Bell-CHSH inequality

|S| = |〈a1b1〉 + 〈a1b2〉 + 〈a2b1〉 − 〈a2b2〉| ≤ 2, (4.1)

where 〈ajbk〉 denotes the average over the subset of experimental data where Alice
measured aj and, simultaneously, Bob measured bk. Indeed, if there is an underly-
ing probability distribution p(a1, a2, b1, b2), then each realization of it contributes by
a1(b1 + b2) + a2(b1 − b2) = ±2 to the average, implying Eq. (4.1).

Now, if we consider that Sophie generates and distributes an entangled pair of
qubits, quantum mechanics predicts S = 2

√
2, which is in contradiction with local

realism. Thus, an experimental test of Bell-CHSH inequalities where a violation of
S ≤ 2 is observed disproves any classical (local realistic) description of Nature.

Experimental Bell Test and Related Loopholes

From the beginning of the 80’s, many experimental Bell tests [8, 9, 10, 80, 122, 188, 195]
have been performed, observing the violation of Bell inequalities predicted by quantum
mechanics. All these schemes used optical setups because, at that time, it was the only
known way of generating and distributing entangled particles (photons) at a distance in
order to make Alice’s and Bob’s measurements causally disconnected. The technology
of generation of entangled states of photons is very well mastered today [122] and the
prepared entangled states can be distributed over long distances via low-loss optical
fibers [195]. However, the currently available single-photon detectors continue to suffer
from a too low efficiency ηPD, which can be exploited by a local realistic model to yield
a violation. Thus, to reject local realism, it is necessary to make the extra assumption
that the registered pairs form a fair sample of the emitted pairs. So, from a logical
point of view, these experiments do not succeed in ruling out a local realistic model;
this is the so-called detector-efficiency loophole [121, 146, 163]. This loophole has been
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closed in a recent experiment with trapped ions [161], thanks to the high efficiency
of the measurement of the ion states. However, the ions were held in a single trap,
only several micrometers apart, so that the measurement events were not spacelike
separated, opening in turn the so-called locality loophole [16, 164].

So far, no experimental test has succeeded to close both loopholes at the same
time, that is, the measured correlations may be explained in terms of local realistic
theories exploiting the low detector efficiency or the timelike interval between the two
detection events. It was suggested that two distant trapped ions can be entangled via
entanglement swapping by first preparing an entangled state of an ion and a photon
on each side and then projecting the two photons on a maximally entangled singlet
state [37, 64, 75, 182]. Very recently, the first step toward this goal, namely the entan-
glement between a trapped ion and a photon emitted by the ion, has been observed
experimentally [24]. However, the entanglement swapping would require interference
of two photons emitted by two different ions, which is experimentally very challenging.
An interesting alternative to the atom-based approaches [81, 82, 182] consists of all-
optical schemes based on continuous variables of light. Indeed, the balanced homodyne
detection used in these schemes can exhibit a high detection efficiency [152], sufficient
to close the detection loophole.

4.2 Bell Test with Continuous Variables of Light

Quantum continuous variables of light have been successfully used to realize some
of the standard informational tasks traditionally based on qubits. Unfortunately,
the entangled two-mode squeezed state that can easily be generated experimentally
[32, 140, 167] cannot be directly employed to test Bell inequalities with homodyning.
Indeed, as noted by Bell himself, this state is described by a positive-definite Gaus-
sian Wigner function, which thus provides a local realistic model that can explain all
correlations between quadrature measurements (carried out by balanced homodyne
detectors). Thus, similarly as in the case of the purification of continuous variable
entanglement [37, 71, 73, 79, 89], one has to go beyond the class of Gaussian states or
Gaussian operations.

In particular, it is possible to obtain a Bell violation with a Gaussian two-mode
squeezed vacuum state by performing a non-Gaussian measurement, for example a
photon-counting measurement [13]. As shown in Fig. 4.2, Sophie prepares an entangled
state and distributes it to Alice and Bob. The two possible measurements on Alice’s
and Bob’s sides consist in randomly choosing between applying the displacement D(α)
or no displacement, followed by a measurement of the parity of the number of photons
n impinging on the single-photon detector. The resulting parity ai = (−1)n gives the
binary result used in the Bell-CHSH inequality. It can be shown (see [13]) that

S = |W (0, 0) +W (α, 0) +W (0, α) −W (α, α)| (4.2)

where W (x, p) is the Wigner function of the entangled state, violates the Bell-CHSH
inequality S ≤ 2 by about 10% for an appropriate choice of α. Recent proposals using
more abstract measurements described in Refs. [46, 76, 113] gave similar results. Note,
however, that these measurements are either experimentally infeasible or suffer from a
very low detection efficiency, thereby re-opening the detection loophole.

Considering the current state of the art in quantum optics technologies, the scheme
based on high-efficiency homodyne detection seems to be the most promising way of
closing the detection loophole. However, since homodyning is a Gaussian measurement,
it is then necessary to generate highly non-classical non-Gaussian entangled states,
whose Wigner function is not positive definite. In addition, one has to develop a
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Figure 4.2: Bell test using the parity of the number of photons impinging on each
photodetector. Sophie prepares an entangled state (EPR) and distributes it to Alice
and Bob. Each of them either applies a displacement D(α) or not, and uses the parity
of the number of photons measured using a photodetector with single-photon resolution
[13].

method for converting the continuous result obtained by homodyne measurement into
a binary result (the so-called “binning” method).

Several recent theoretical works have demonstrated that a violation of Bell inequal-
ities can be observed using balanced homodyning provided that specific entangled light
states such as pair-coherent states, squeezed Schrödinger cat-like states, or specifically
tailored finite superpositions of Fock states, are available [90, 91, 134, 196]. More
specifically, the violation of the Bell-CHSH inequality was derived in Ref. [134] for a
state of the form

|ψin〉AB =
∞∑

n=0

cn|n, n〉AB, (4.3)

with |n〉 denoting Fock states, and a binning based on the sign of the measured
quadrature. Optimizing over the quadrature angles and probability amplitudes cn
(see Fig. 4.3), one obtains a maximal Bell-CHSH inequality violation of S = 2.076.
Interestingly, it was shown in Ref. [196] that the highest possible violation of S = 2

√
2

can be obtained with the bipartite state

|ψin〉AB = |f, f〉 + eiθ|g, g〉, (4.4)

where f(q) and g(q) are the wave functions of some specific states, and a more com-
plicated binning based on the roots of f(q) and g(q) is used. Unfortunately, no fea-
sible experimental scheme is known today that could generate the states required in
Refs. [90, 91, 134, 196].

In a recent experiment, an entangled state obtained by splitting a single photon on
a balanced beam splitter was used to make a Bell test where an homodyne detection
was carried out on each output [11]. It was claimed that the observed data violate Bell
inequality; however, the violation was obtained by post-selecting only the data when
the absolute value of the detected quadrature was above some threshold. This rejection
of data introduces a loophole very similar to the detection efficiency loophole, and this
experiment therefore does not refute local realism.

Recently, we showed [85] (and independently by Nha and Carmichael [135]), that a
very simple non-Gaussian state obtained by subtracting a single photon from each mode
of a two-mode squeezed vacuum state can exhibit a Bell violation with homodyning.
Note that this non-Gaussian state is close to the optimal state obtained in Ref. [134],
as is visible in Fig. 4.3, and gives a violation of S = 2.046. An essential feature of
this proposal is that the photon subtraction can be successfully performed with low-
efficiency single-photon detectors [49, 138, 139], which renders the setup experimentally
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Figure 4.3: Probabilities |cn|2 in the Fock basis of the two-mode squeezed vacuum
state with λ = 0.57 (black), the non-Gaussian state obtained from the previous state
by subtracting one photon from each mode (grey), and the optimal state of Ref. [134]
(white).

feasible. In fact, the basic building block of the scheme, namely the de-Gaussification
of a single-mode squeezed vacuum via single-photon subtraction, has recently been
demonstrated experimentally [197]. In the following, we provide a thorough analysis
of the scheme proposed in Refs. [85, 135]. We present the details of the calculation of
the Bell factor for a realistic setup that takes into account mixed input states, losses,
added noise and imperfect detectors. Moreover, we shall also discuss several alternative
schemes that involve the subtraction of one, two, three, or four photons.

4.3 Feasible Bell Test with Homodyne Detection

Proposed Optical Setup

The conceptual scheme of the proposed experimental setup is depicted in Fig. 4.4.
A source generates a two-mode squeezed vacuum state in modes A and B. This can
be accomplished, e.g., by means of non-degenerate parametric amplification in a χ(2)

nonlinear medium or by generating two single-mode squeezed vacuum states and com-
bining them on a balanced beam splitter. Subsequently, the state is de-gaussified by
conditionally subtracting a single photon from each beam. A tiny part of each beam
is reflected from a beam splitter BSA (BSB) with a high transmittance T. The re-
flected portions of the beams impinge on single-photon detectors such as avalanche
photodiodes. A successful photon number subtraction is heralded by a click of each
photodetector PDA and PDB [138]. In practice, the photodetectors exhibit a single-
photon sensitivity but not a single photon resolution, that is, they can distinguish the
absence and presence of photons but cannot measure the number of photons in the
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Figure 4.4: Conceptual scheme of the proposed experimental setup for observing a
violation of Bell inequalities with balanced homodyning. The source emits a two-mode
squeezed vacuum state in modes A and B. A small part of the beams is subtracted on
two unbalanced beam splitters BSA and BSB and sent on single-photon detectors PDA

and PDB. The two remaining beams A and B,which are conditionally prepared in a
non-Gaussian entangled state, are sent to Alice and Bob, respectively, who perform
each a balanced homodyne detection using their local oscillator LOA and LOB.

mode. Nevertheless, this is not a problem here because in the limit of high T , the most
probable event leading to the click of a photodetector is precisely that a single photon
has been reflected from the squeezed beam on the beam splitter. The probability of
an event where two or more photons are subtracted from a single mode is smaller by a
factor of ≈ 1−T and becomes totally negligible in the limit of T → 1. Another impor-
tant feature of the scheme is that the detector efficiency ηPD can be quite low because
small ηPD only reduces the success rate of the conditional single-photon subtraction
but it does not significantly decrease the fidelity of this operation. These issues will be
discussed in detail in Section 4.4.

After generation of the non-Gaussian state, the two beams A and B together with
the appropriate local oscillators LOA and LOB are sent to Alice and Bob, who then
randomly and independently measure one of two quadratures x̂Aθj

, x̂Bφk
characterized by

the relative phases θ1, θ2 and φ1, φ2 between the measured beam and the corresponding
local oscillator. The rotated quadratures x̂Aθ = cos θ x̂A + sin θ p̂A and x̂Bφ = cosφ x̂B +

sinφ p̂B are defined in terms of the four quadrature components of modes A and B
that satisfy the canonical commutation relations [x̂j , p̂k] = iδjk, j, k ∈ {A,B}.

Proposed Binning

In the proposed experiment, Alice and Bob measure quadratures which have continuous
spectrum. We discretize the quadratures by postulating that the outcome is +1 when
x ≥ 0 and −1 otherwise. The two different measurements on each side correspond
to the choices of two relative phases θ1, θ2 and φ1, φ2. Quantum mechanically, the
correlation E(θj , φk) ≡ 〈ajbk〉 can be expressed as

E(θi, φk) =

∫ ∞

−∞
sign(xAθi

xBφk
)P (xAθi

, xBφk
)dxAθi

dxBφk
, (4.5)

where P (xAθi
, xBφk

) ≡ 〈x̂Aθi
, x̂Bφk

|ρc,AB|x̂Aθj
, x̂Bφk

〉 is the joint probability distribution of the

two commuting quadratures x̂Aθi
and x̂Bφk

, and ρc,AB denotes the (normalized) condi-
tionally generated non-Gaussian state of modes A and B. In practice, the correlations
would be determined from the subset of the experimental data corresponding to the
successful conditional de-Gaussification, i.e., Alice and Bob would discard all results
obtained in measurement runs where either PDA or PDB did not click. We emphasize
again that this does not open any loophole in the Bell test.
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Avoiding the Locality Loophole

To avoid the locality loophole, the whole experiment has to be carried out in the pulsed
regime and a proper timing is necessary. In particular, the measurement events on
Alice’s and Bob’s sides (including the choice of phases) have to be space-like separated.
A specific feature of the proposed setup is that the non-Gaussian entangled state needed
in the Bell test is generated conditionally when both “event-ready” detectors [16] PDA

and PDB click. However, we would like to stress that this does not represent any
loophole if proper timing is satisfied. Namely, in each experimental run, the detection
of the clicks (or no-clicks) of photodetectors PDA and PDB at the source should be be
space-like separated from Alice’s and Bob’s measurements. This guarantees that the
choice of the measurement basis on Alice’s and Bob’s sides cannot in any way influence
the conditioning “event-ready” measurement [16, 85, 182]).

As we shall see, exploiting the fact that PDA and PDB can be viewed here as
“event-ready” detectors [16], one can prove that all local-realistic models for Alice and
Bob measurements must satisfy the Bell-CHSH inequality |S| ≤ 2. In the formalism
of “event-ready” detectors introduced by John Bell [16], one should know, by some
initiating event, when a measurable system has been produced. The main idea is to pre-
select – rather than post-select – the relevant events. For that purpose, one considers
three partners, Alice and Bob who perform the measurements, and Sophie who controls
the source, see Fig. 4.4. The entire data analysis must be performed on a pulsed basis,
with Sophie sending time-tagged light pulses (local oscillator and squeezed light) to
Alice and Bob. In each experimental run, Sophie records whether her photodetectors
clicked, while Alice and Bob carry out spacelike separated measurements of one of
two randomly chosen quadratures. After registering a large number of events, the
three partners discard all events not corresponding to an “event-ready” double-click
registered by Sophie. The correlation coefficients 〈ajbk〉 are then evaluated from all
remaining events, and plugged into the S parameter (4.1). In a local realistic approach,
the light pulses in each time slot supposedly carry some random unknown parameter
µ, which ultimately determines the sign of x̂Aθ and x̂Bφ . Imposing by proper timing that
the clicks of Sophie’s conditioning detectors cannot be influenced by the measurements
on Alice’s and Bob’s sides implies that the probability distribution p(µ) is independent
of the measurement phases θ1,2 and φ1,2. The measured sign sA on Alice’s side (resp.
sB on Bob’s side) therefore only depends on µ and θ (resp. φ on Bob’s side), so that
〈ajbk〉 =

∫
dµ p(µ) sA(θj , µ) sB(φk, µ), from which the derivation of the Bell-CHSH

inequality is very standard [7]. Consequently, a truly “loophole-free” Bell test can
be performed provided that Sophie’s “event-ready” detectors effectively pre-select the
measuring events.

A scheme for observing a Bell-CHSH inequality violation with balanced homodyn-
ing very similar to the setup depicted in Fig. 4.4 was proposed by Nha and Carmichael
[135]. They also consider de-Gaussification by means of photon subtraction with ineffi-
cient detectors exhibiting single-photon sensitivity but no single-photon resolution. The
difference between the setup shown in Fig. 4.4 and the scheme of Nha and Carmichael
is that in the latter case the single-photon detectors are located on Alice’s and Bob’s
sides while in our case the detectors are spatially separated from the two observers.
The position of the photodetectors is irrelevant as far as the state preparation is con-
cerned and both schemes conditionally produce the same photon subtracted two-mode
squeezed vacuum. However, the position of these detectors plays a crucial role in the
Bell test. If the single-photon detectors are placed together with the balanced homo-
dyne detectors on Alice’s and Bob’s sides, then the choice of the measurement basis
may influence (within the local-hidden-variable models) whether the single-photon de-
tector will click or not. This must be avoided, which is achieved by spatially separating
the state preparation and homodyne detection and by proper timing as in our setup.
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Ideal Photodetectors

We shall first present a simplified description of the setup, assuming ideal photode-
tectors (ηPD = 1) with single-photon resolution and conditioning on detecting exactly
a single photon at each detector [49, 139]. This idealized treatment is valuable since
it provides an upper bound on the practically achievable Bell factor S. Moreover, as
noted above, in the limit of high transmittance of BSA and BSB , T → 1, the realistic
(inefficient) detector with single-photon sensitivity is in our case practically equivalent
to these idealized detectors.
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Figure 4.5: (a) Bell factor S is plotted as a function of the effective squeezing parameter
Tλ for θ1 = 0, θ2 = π/2, φ1 = −π/4 and φ2 = π/4. (b) Probability P of successful con-
ditional generation of the state |ψout〉 as a function of the effective squeezing parameter
Tλ, assuming T = 0.95.

The two-mode squeezed vacuum state can be expressed in the Fock state basis as
follows,

|ψin(λ)〉AB =
√

1 − λ2

∞∑

n=0

λn|n, n〉AB, (4.6)

where λ = tanh(s) and s is the squeezing constant. In the case of ideal photodetectors,
the single-photon subtraction results in the state

|ψout〉AB ∝ âAâB|ψin(Tλ)〉AB, (4.7)

where âA,B are annihilation operators and the parameter λ is replaced by Tλ in order
to take into account the transmittance of BSA and BSB. A detailed calculation (see
Appendix F) yields

|ψout〉AB =

√

(1 − T 2λ2)3

1 + T 2λ2

∞∑

n=0

(n+ 1)(Tλ)n|n, n〉AB, (4.8)

and the probability of the conditional preparation of state (4.8) can be expressed as

P = (1 − T )2λ2(1 − λ2)
1 + T 2λ2

(1 − T 2λ2)3
. (4.9)

For pure states exhibiting perfect photon-number correlations, the correlation co-
efficient (4.5) depends only on the sum of the angles, E(θj , φk) = E(θj +φk). With the
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help of the general formula derived by Munro [134] we obtain for the state (4.8)

E(ϕ) =
(1 − T 2λ2)3

1 + T 2λ2

∑

n>m

8π(2Tλ)n+m

n!m!(n−m)2
(n+ 1)(m+ 1)

×[F(n,m) −F(m,n)]2 cos[(n−m)ϕ], (4.10)

where F−1(n,m) = Γ((1 − n)/2)Γ(−m/2) and Γ(x) stands for the Euler gamma func-
tion.

We have numerically optimized the angles θ1,2 and φ1,2 to maximize the Bell factor
S. It turns out that for any λ, it is optimal to choose θ1 = 0, θ2 = π/2, φ1 = −π/4 and
φ2 = π/4. The Bell factor S for this optimal choice of angles is plotted as a function of
the effective parameter Tλ in Fig. 4.5(a), and the corresponding probability of success
of the conditional preparation of the state |ψout〉 is plotted in Fig. 2(b). We can see that
S is higher than 2 so the Bell inequality is violated when Tλ > 0.45. The maximal
violation is achieved for Tλ ≈ 0.57, giving S ≈ 2.048. This figure is quite close to
the maximum Bell factor S = 2.076 that could be reached with homodyne detection,
sign binning, and arbitrary states exhibiting perfect photon-number correlations |ψ〉 =
∑

n cn|n, n〉 [134].

4.4 Realistic Model

In this section we will consider a realistic scheme with inefficient (ηPD < 1) photodetec-
tors exhibiting single photon sensitivity but no single-photon resolution, and realistic
homodyning with efficiency ηBHD < 1. The mathematical description of this real-
istic model of the proposed experiment becomes strikingly simple if we work in the
phase-space representation and use the Wigner function formalism. Even though the
state used to test Bell inequalities is non-Gaussian, it can be expressed as a linear
combination of four Gaussian states, so all the powerful Gaussian tools can still be
used.

Two Photon Subtractions

We shall now present a detailed calculation of the Bell factor for our proposed setup,
taking into account realistic photodetectors (ηPD < 1) with single-photon sensitivity
(but not resolution), imperfect homodyning, and added electronics noise. The cal-
culation is an extension to two modes states of the photsubtraction presented in the
previous chapter.

Preparation of a Non-Gaussian State

As shown in Fig. 4.6, the modes A and B are initially prepared in a two-mode squeezed
vacuum state, and the auxiliary modes C and D are in vacuum state. The Wigner
function of the four-mode state ABCD is a Gaussian centered at the origin,

Win,ABCD =

√
det Γin

π4
exp

[
−rTΓinr

]
, (4.11)

where r = [xA, pA, . . . , xD, pD], and Γin = γ−1
in . The initial state is fully characterized

by the covariance matrix

γin = γTMS,AB ⊕ ICD, (4.12)

where γTMS is the covariance matrix of a two-mode squeezed vacuum and ⊕ denotes
the direct sum of matrices.
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Figure 4.6: Scheme of the proposed experimental setup for observing a violation of Bell
inequalities considering realistic photodetectors (ηAPD < 1) with single-photon sensitiv-
ity, imperfect homodyning (ηBHD < 1), and unbalanced beam splitters of transmittance
T < 1.

The imperfect single-photon detectors (balanced homodyne detectors) with detector
efficiency ηPD (ηBHD) are modeled as a sequence of a lossy channel with transmittance
ηPD (ηBHD) followed by an ideal photodetector (homodyne detector). In our setup,
the modes AC (BD) interfere on the unbalanced beam splitters BSA (BSB) and pass
through the four “virtual” lossy channels before impinging on ideal detectors. The
covariance matrix of the mixed Gaussian state ρout,ABCD just in front of the (ideal)
detectors is related to γin via a Gaussian CP map,

γout = SηSmixγinS
T
mixS

T
η +G, (4.13)

where

Sη =
√
ηBHDIAB ⊕√

ηPDICD, (4.14)

G = (1 − ηBHD)IAB ⊕ (1 − ηPD)ICD, (4.15)

and the symplectic matrix

Smix = SBS,AC ⊕ SBS,BD (4.16)

describes the mixing of modes A with C andB withD on the unbalanced beam splitters
BSA and BSB, respectively.

The state ρc,AB is prepared by conditioning on observing clicks at both photode-
tectors PDA and PDB. These detectors respond with tho different outcomes, either a
click, or no click. Mathematically, an ideal detector with a single photon sensitivity is
described by a two-component positive operator valued measure (POVM) consisting of
the projectors onto the vacuum state and on the rest of the Hilbert space, Π0 = |0〉〈0|,
Π1 = I − |0〉〈0|. The resulting conditionally prepared state ρc,AB can be calculated
from the density matrix ρout,ABCD as follows,

ρc,AB = TrCD[ρout,ABCD(IAB ⊗ Π1,C ⊗ Π1,D)]. (4.17)

It is instructive to rewrite the partial trace in Eq. (4.17) in terms of Wigner functions,
taking into account that

Tr[XY ] = (2π)N
∫ ∞

−∞
WX(r)WY (r)d2N r, (4.18)

where WX(r) and WY (r) denote the Wigner representations of the operators X and Y ,
respectively, and N is the number of modes we trace over. The POVM element Π1 is a
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difference of two operators whose Wigner representations are both Gaussian functions,
WI = 1/(2π), W0 = π−1e−x

2−p2 . After a bit lengthy but otherwise straightforward
calculations, as shown in the previous chapter, we find that the Wigner function Wc,AB

of (normalized) conditionally prepared state (4.17) can be expressed as a linear com-
bination of four Gaussian functions,

Wc,AB(r) =

√
det Γout

π2PG

4∑

j=1

qj
√

det Γj,CD
e−r

T Γj,ABr, (4.19)

where q1 = 1, q2 = q3 = −2 and q4 = 4. The corresponding probability of success is
given by

PG =
√

det Γout

4∑

j=1

qj
√

det(Γj,ABΓj,CD)
. (4.20)

To define the various matrices appearing in Eqs. (4.19) and (4.20), we first introduce
a matrix Γ = γ−1

out and we divide Γ into four smaller submatrices with respect to the
bipartite AB vs CD splitting,

Γ =

[
ΓAB σ
σT ΓCD

]

. (4.21)

It holds that
Γj,AB = ΓAB − σΓ−1

j,CDσ
T , (4.22)

and the four matrices Γj,CD read

Γ1,CD = ΓCD,
Γ2,CD = ΓCD + IC ⊕ 0D,
Γ3,CD = ΓCD + 0C ⊕ ID,
Γ4,CD = ΓCD + ICD.

(4.23)

Correlation Coefficient E(θi, φk)

The joint probability distribution P (xAθi
, xBφk

) of the quadratures xAθi
and xBφk

appearing
in the formula (4.5) for the correlation coefficient E(θi, φk) can be obtained from the
Wigner function (4.19) as a marginal distribution. We have

P (xAθi
, xBφk

) =

∞∫

−∞

∞∫

−∞

Wc,AB(STshrθi,φk
)dpAθi

dpBφk
, (4.24)

where rθi,φk
= [xAθi

, pAθi
, xBφk

, pBφk
] and the symplectic matrix Ssh = SPS,A(θi)⊕SPS,B(φk)

describes local phase shifts applied to modes A and B that map the measured quadra-
tures xAθi

and xBφk
onto the quadratures xA and xB, respectively.

In order to express the result of the integration in Eq. (4.24) in a compact matrix
notation, we re-order the elements of the vector rθi,φk

as follows,







xAθi

xBφk

pAθi

pBφk







=







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1













xAθi

pAθi

xBφk

pBφk







(4.25)

which defines a matrix Shom. After these algebraic manipulations, the four matrices
Γj,AB appearing in the exponents in Eq. (4.19) transform to

Γ′
j,AB = ShomSshΓj,ABS

T
shS

T
hom ≡

[
Aj Cj
CTj Bj

]

, (4.26)
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where we have divided the matrix Γ′
j,AB into four sub-matrices with respect to the x

vs p splitting. A straightforward integration over pAθi
and pBφk

in Eq. (4.24) then yields
the joint probability distribution,

P (xAθi
, xBφk

) =

√
det Γout

πPG

4∑

j=1

qje
−yT Γjy

√
det Γj,CD

√
detBj

, (4.27)

where y = (xAθi
, xBφk

)T and

Γj = Aj − CjB
−1
j CTj . (4.28)

Taking into account the choice of binning, the normalization of the joint probabil-
ity distribution, and its symmetry, P (xAθi

, xBφk
) = P (−xAθi

,−xBφk
), we can express the

correlation coefficient as follows,

E(θi, φk) = 4

∫ ∞

0

∫ ∞

0

P (xAθi
, xBφk

)dxAθi
dxBφk

− 1. (4.29)

This last integral can be easily evaluated analytically. For a given Γj matrix

Γj =

[
aj cj
cj bj

]

, (4.30)

the integral of the exponential term

Gj =

∫ ∞

0

∫ ∞

0

e−ajy
2
1−bjy

2
2−2cjy1y2dy1dy2 (4.31)

can be calculated by transforming to polar coordinates and integrating first over the
radial coordinate and then over the angle. After some algebra (see Appendix G), we
finally arrive at

Gj =
1

2
√

ajbj − c2j




π

2
− arctan

cj
√

ajbj − c2j



 . (4.32)

The final fully analytical formula for the correlation coefficient reads

E(θi, φk) =
4
√

det Γout

πPG





4∑

j=1

qjGj
√

det Γj,CD
√

detBj



− 1 (4.33)

and the Bell factor can be expressed as

S = E(θ1, φ1) + E(θ1, φ2) + E(θ2, φ1) − E(θ2, φ2). (4.34)

Violation of Bell-CHSH Inequalities

A necessary condition for the observation of a violation of Bell inequalities with homo-
dyne detectors is that the Wigner function of the two-mode state used in the Bell test is
not positive definite. Figure 4.7 illustrates that the Wigner function (4.19) of the con-
ditionally generated state ρc,AB is indeed negative in some regions of the phase space.
The area of negativity, as well as the attained negative values of W, are rather small,
which indicates that we should not expect a high Bell violation with homodyning.

As we have shown before, the maximum Bell factor S achievable with our setup and
sign binning is about S = 2.048. We conjecture that this binning is optimal or close to
optimal. This is supported by the simple structure of the joint probability distribution
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Figure 4.7: A one-dimensional cut of the Wigner function of the two-mode state ρc,AB
along the line xB = xA, pA = pB = 0 for λ = 0.6 and beam splitters BSA and BSB
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Figure 4.8: Joint probability distribution P (xAθj
, xBφk

). Panels (a) and (b) show the
distribution for the conditionally-prepared non-Gaussian state with T = 0.99. Panels
(c) and (d) display the distribution for the initial Gaussian two-mode squeezed vacuum
state. The curves are plotted for perfect detectors ηPD = ηBHD = 100%, squeezing
λ = 0.6 and θAlice = 0 and φBob = π/4.

(4.27). As can be seen in Fig. 4.8(a,b), P exhibits two peaks, both located in the
quadrants where Alice’s and Bob’s measured quadratures have the same sign. Note
also that the two-peak structure is a clear signature of the non-Gaussian character of
the state (c.f. Fig. 4.8(c,d)).

We have carried out numerical calculations of S for several other possible binning
which divide the quadrature axis into three or four intervals, and have not found any
binning which would provide higher S than the sign binning. We have also performed
optimization over the angles θj and φk and all the results and figures presented in this
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Section were obtained for the optimal choice of angles θ1 = 0, θ2 = π/2, φ1 = −π/4,
φ2 = π/4.
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Figure 4.9: Violation of Bell-CHSH inequality with the conditionally-prepared non-
Gaussian state. (a) Bell factor S as a function of the squeezing. (b) Probability of
success of the generation of the non-Gaussian state as a function of the squeezing. The
curves are plotted for perfect detectors (ηPD = ηBHD = 100%) with T = 0.9 (solid
line), T = 0.95 (dashed line), and T = 0.99 (dot-dashed line).

Figure 4.9(a) illustrates that the Bell-CHSH inequality |S| ≤ 2 can be violated
with the proposed set-up, and shows that there is an optimal squeezing λopt which
maximizes S. This optimal squeezing is well predicted by the simple model assuming
perfect detectors with single-photon resolution, λoptT ≈ 0.57. The curve plotted for
T = 0.99 practically coincides with the results obtained from the ideal model, c.f.
Fig. 4.5(a). This confirms that in the limit T → 1 the detectors with single-photon
sensitivity become for our purposes equivalent to photodetectors with single-photon
resolution. The maximum Bell factor achievable with our scheme is about Smax ≈ 2.045
which represents a violation of the Bell inequality by 2.2%. To get close to the Smax

one needs sufficiently high (but not too strong) squeezing. In particular, the value
λ ≈ 0.57 corresponds to approximately 5.6 dB of squeezing. Figure 4.9(b) illustrates
that there is a clear trade-off between S and the probability of success PG. To maximize
S one should use highly transmitting beam splitters but this would reduce PG. The
optimal T that should be chosen would clearly depend on the details of the experimental
implementation.

Sensitivity to the Experimental Imperfections

It is shown in Fig. 4.10(a) that the Bell factor S depends only very weakly on the
efficiency ηPD of the single-photon detectors, so the Bell inequality can be violated
even if ηPD ≈ 1%. This is very important from the experimental point of view because,
although the quantum detection efficiencies of the avalanche photodiodes may be of
the order of 50%, the necessary spectral and spatial filtering which selects the mode
that is detected by the photodetector may reduce the overall detection efficiency to
a few percent. Low detection efficiency only decreases the probability of conditional
generation PG of the non-Gaussian state, see Fig. 4.10(b). The dependence of PG on
ηPD and T can be very well approximated by a quadratic function, PG ≈ η2

PD(1 − T )2

which quickly drops when ηPD decreases. In practice, the minimum necessary ηPD will
be determined mainly by the constraints on the total time of the experiment and by
the dark counts of the detectors.

In contrast, the Bell factor S strongly depends on the efficiency of the homodyne
detectors, and ηBHD must be above ∼ 90% in order to observe Bell violation, see
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Figure 4.10: Effect of the inefficiency of the photodetectors PDA and PDB. (a) Bell
parameter S as a function of the efficiency ηPD of the photodetectors. (b) Probability
of success as a function of the efficiency ηPD. The curves are plotted for Tλ = 0.57,
ηBHD = 100% and the same transmittance as in Fig. 4.9.
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Figure 4.11: Effect of inefficient homodyning. (a) Bell parameter S as a function of the
efficiency ηBHD of the homodyning. The curve is plotted for Tλ = 0.57, ηPD = 30%
and the same transmittance as in Fig. 4.9. (b) Bell parameter achieved for the optimal
squeezing λopt is plotted as a function of ηBHD. (c) Optimal squeezing λopt is plotted
as a function of ηBHD. The curve is plotted for ηPD = 30% and the same transmittance
as in Fig. 4.9.

Fig. 4.11. However, this is not an obstacle because such (and even higher) efficiency
has been already achieved experimentally (see e.g. [203]). Interestingly, we have found
that it is possible to partially compensate for imperfect homodyning with efficiency
ηBHD < 1 by increasing the squeezing of the initial state. This effect is illustrated in
Fig. 4.11(b) which shows the dependence of the Bell factor S on ηBHD for optimal
squeezing λopt. Figure 4.11(c) then shows how the optimal squeezing increases with
decreasing ηBHD.

In addition to imperfect detection efficiency ηBHD, the electronic noise of the homo-
dyne detector is another factor that may reduce the observed Bell violation. We model
the added electronic noise by assuming that the effective quadrature that is detected
x̂det is related to the signal quadrature x̂S by a formula,

x̂det =
√
ηBHD x̂S +

√

1 − ηBHD x̂vac +
√

Nel x̂noise,

where x̂vac and x̂noise are two independent Gaussian distributed quadratures with zero
mean and variance 1/2, and Nel is the electronic noise variance expressed in shot noise
units. On the level of covariance matrices, Nel can be included by modifying the
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Figure 4.12: Effect of the electronic noise and thermal input states. (a) Maximum
achievable Bell parameter S with the optimal squeezing λopt as a function of the elec-
tronic noise Nel. (b) Optimal squeezing λopt giving the highest Bell parameter S for
a given electronic noise. (c) Maximum Bell parameter S as a function of the ther-
mal noise of the input state Vnoise. (d) Optimal squeezing λopt giving the highest
Bell parameter S for a given thermal noise at the input. The curves are plotted for
ηPD = 30%, ηBHD = 95%, and T = 0.9 (solid line), T = 0.95 (dashed line), and
T = 0.99 (dot-dashed line).

formula for the noise matrix G ,

G = (1 − ηBHD +Nel)IAB ⊕ (1 − ηPD)ICD. (4.35)

The homodyne detector with electronic noise is actually equivalent to a detector with-
out noise but with a lower homodyne detector efficiency η′BHD = ηBHD/(1+Nel). This
can be shown by noting that the re-normalized quadrature xdet/

√
1 +Nel is exactly a

quadrature that would be detected by a balanced homodyne detector with Nel = 0 and
efficiency η′BHD. Our calculations reveal that the electronic noise should be 15− 20 dB
below shot noise (see Fig. 4.12(a) and (b)), which is currently attainable with low-noise
charge amplifiers. Again, higher squeezing can partially compensate for the increasing
noise.

So far we have assumed that the source in Fig. 1 emits pure two-mode squeezed
vacuum state. However, experimentally, it is very difficult to generate pure squeezed
vacuum saturating the Heisenberg inequality. It is more realistic to consider a mixed
Gaussian state such as squeezed thermal state which can be equivalently represented
by adding quadrature independent Gaussian noise with variance Vnoise to each mode
of the two-mode squeezed vacuum. The effect of the added noise stemming from input
mixed Gaussian state is quite similar to the influence of the electronic noise of the
homodyne detector, see Fig. 4.12 (c) and (d). We find again that the added noise in
the initial Gaussian state should be 15− 20 dB below the shot noise.

In the experimental demonstration of single-photon subtraction [197], a main source
of noise and imperfections was that the single-photon detector was sometimes triggered
by a photon coming from other modes than the mode detected in the balanced homo-
dyne detector. The single-mode description of a parametric amplifier is only an ap-
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proximation and the amplifier produces squeezed vacuum in several modes. A balanced
homodyne detector very efficiently selects a single mode defined by the spatiotempo-
ral profile of the local oscillator pulse. However, this reference is missing in case of
single-photon detector, where the effective single mode has to be selected by spatial
and spectral filtering, which reduces the overall detection efficiency η. In practice, the
filtering is never perfect, hence the photodetector PDA (PDB) can sometimes click
although no photon was removed from mode A (B).

We can model this false triggering by re-defining the POVM element Π1,C (Π1,D)
appearing in Eq. (4.17). The new Π1 becomes a convex mixture of the original POVM
element I − |0〉〈0|, which corresponds to triggering by a photon coming from the mode
A(B), and the identity operator I, which corresponds to the false triggering. We can
write Π1(ξ) = I − ξ|0〉〈0| and the coefficient 0 ≤ ξ ≤ 1 can be related to the fraction of
false triggers Pf . Assuming for simplicity pure two-mode squeezed vacuum in modes
A and B, the single-mode state in C or D just before detection is a thermal state with
mean number of chaotic photons n̄ = ηPD(1 − T )λ2/(1 − λ2) (note that this includes
the effect of imperfect detectors with efficiency ηPD). The probability of projection of
the thermal state on vacuum reads Pvac = 1/(n̄ + 1). The probability of false trigger
Pf can be expressed in terms of the probability of a trigger P (ξ) = 1 − ξPvac and the
probability of a correct triggering event P (ξ = 1) = 1 − Pvac,

Pf =
P (ξ) − P (ξ = 1)

P (ξ)
. (4.36)

From this formula we obtain

ξ =
1 − (1 + n̄)Pf

1 − Pf
. (4.37)

The analytical formula (4.34) for the Bell factor S can still be used even in the presence
of false triggering. We only have to re-define the four coefficients qj as follows, q1 = 1,
q2 = q3 = −2ξ, q4 = 4ξ2.
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Figure 4.13: Influence of false triggers. The Bell factor S is plotted as a function of the
probability of false triggering Pf for T = 0.9, λ = 0.62 (solid line), T = 0.95, λ = 0.66
(dashed line), and T = 0.99, λ = 0.72 (dot-dashed line), ηPD = 30%, and ηBHD = 95%.

The effect of the false triggers is illustrated in Fig. 4.13. As expected, the achiev-
able Bell factor decreases with increasing Pf . The results are shown for a realistic set
of parameters as identified in [85] and for three different values of T . For high trans-
mittance (T = 0.99) up to 11% of false triggers can be tolerated while for T = 0.95
the acceptable fraction of false triggers decreases to Pf = 6%. In a recent experiment
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[197], the estimated fraction of false triggers was Pf ≈ 30% which would have to be
significantly reduced in the Bell test experiment. Possible ways of suppressing false
triggers include better filtering and/or using sources that produce squeezed light in
well defined spatial modes, such as nonlinear periodically poled waveguides.

Four Photon Subtractions

Until now we have focused on a single-photon subtraction on each side (one photon
removed from mode A and one from mode B). If we now consider a scheme where
two photons are subtracted from each mode, the de-Gaussification of the state will
be stronger and we may expect a higher Bell violation than before. To subtract two
photons from each mode, we only need to add one more unbalanced beam splitter and
photodetector on each side in Fig. 4.6. A successful state generation would be indicated
by simultaneous clicks of all four detectors. Assuming perfect photon-number resolving
detectors, the state generated from two-mode squeezed vacuum (4.6) by subtracting
two photons from each mode can be expressed as (see Appendix F),

|ψout〉AB ∝ â2
Aâ

2
B|ψin(T

2λ)〉AB
∝

∑

n

(n+ 2)(n+ 1)(T 2λ)n|n, n〉AB, (4.38)

and the probability of success reads

P4ph = 4T 2(1 − T )4λ4(1 − λ2)
1 + 4T 4λ2 + T 8λ4

(1 − T 4λ2)5
. (4.39)

Since the state (4.38) exhibits perfect photon number correlations, the Munro’s formula
for the Bell factor can again be directly applied [134]. Numerical calculations show that
the maximum Bell violation with the state (4.38) and sign binning of quadratures is
achieved for T 2λ = 0.40 which yields Smax,4ph = 2.064, which is indeed higher than the
maximum achievable with two-photon subtraction, Smax,2ph = 2.048, and very close to
the maximum value S = 2.076 [134].
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Figure 4.14: Violation of Bell-CHSH inequality with four photon subtractions. (a) Bell
parameter S as a function of the squeezing λ for perfect detectors ηPD = ηBHD = 100%.
(b) Bell parameter S as a function of the efficiency ηBHD of the homodyning. The curve
is plotted for T 2λ = 0.40, ηPD = 100% and the same transmittance as in Fig. 4.9.

A more realistic description of the four-photon subtraction scheme that takes into
account realistic imperfect photon subtraction can be developed using the approach
used for two photon subtractions. We find that the Wigner function of the conditionally
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generated state is a linear combination of sixteen Gaussian. The results of numerical
calculations are shown in Figs. 4.14(a) and (b), which illustrate that the two-photon
subtraction from each mode yields higher violation of Bell-CHSH inequality than one-
photon subtraction only for very high transmittance T > 0.95. For lower transmittance,
the fact that the photodetectors do not distinguish the number of photons reduces the
Bell factor. Moreover, adding a second stage of photon subtractions dramatically
decreases the probability of generating the non-Gaussian state. The probability can be
estimated as PG ≈ η4

PD(1−T )4, so for T > 0.95 and η = 50% we get PG ≈ 10−6 and the
duration of data acquisition would make the experiment infeasible. We conclude that
from the practical point of view there seems to be no advantage in using the scheme
with four photon subtractions instead of the much simpler scheme with two photon
subtractions.

4.5 Alternative Schemes

In this section we will study the violation of Bell-CHSH inequalities for a large group
of alternative schemes, which involve from one to four photon subtractions. The main
objective of this section is to compare the maximum Bell-CHSH factor S obtained for
the different proposed setups. As the main purpose of this section is the comparison
of the different schemes, we will consider only idealized schemes with almost perfect
single-photon subtraction on the beam splitters (T = 0.99), and perfect photodetectors
and homodyning (ηPD = ηBHD = 100%). The maximum achievable Bell factor for each
scheme presented below was determined by optimizing over the angles θ1,2, φ1,2 as well
as over the squeezing λ of the initial Gaussian states. The sign binning of the measured
quadratures has been used in all cases. All the schemes presented in this section use
the symbol convention depicted in Fig. 4.15.

BS

X

c )

a )

b )

Figure 4.15: Symbol convention. (a) Single-mode squeezer along the x quadrature. (b)
Beam splitter. (c) Conditional subtraction of a photon as described in the preceding
section.

In the preceding section, we have seen that the probability of successful generation of
a non-Gaussian state decreases significantly with the number of photon subtractions.
At the same time the complexity of the implementation of the experimental setup
increases with the number of photon subtractions. It is then obvious that the most
interesting schemes for a Bell-CHSH violation are those involving only one photon
subtraction. Unfortunately, for the schemes that we have considered (see Fig. 4.16),
no violation was observed 1. In this case, the maximal value of the Bell-CHSH factor
is S = 2, which is achieved at the limit of an infinite squeezing. Note that in this
limit the effect of subtracting a single photon vanishes, so that one clearly tends to an
infinitely squeezed Gaussian state

∑

n |n〉A|n〉B. For this state, it is easy to check that

1Note that we represent the two-mode squeezer using its theoretical equivalent scheme composed of
two orthogonal single-mode squeezers followed by a beam splitter. Even though these two schemes cor-
respond to physically distinct optical implementations, this choice of representation is better adapted
to the comparison between the different possible positions of the photon subtraction.
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S = 2 can be achieved with the sign binning and an appropriate choice of angles. So,
here and below, all the schemes that do not result in a Bell violation correspond to
S = 2, a point which is associated with the limit λ→ 1.
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Figure 4.16: Schemes with only one photon subtraction. The first column labels the
different setups proposed, the second shows the scheme and finally the last column gives
the maximal Bell factor S obtained when optimizing the squeezing. (a) Photon sub-
traction after the creation of the two-mode squeezed vacuum. (b) Photon subtraction
before mixing two single-mode squeezed states on a beam splitter.

After one photon subtraction, the simplest schemes are those with two photon
subtractions. In the preceding sections it was shown that it is possible to violate the
Bell-CHSH inequality with two photon subtractions (scheme Fig. 4.17(a)). It follows
from Fig. 4.17 that several other schemes (see Figs. 4.17(d) and (e)) also violate Bell-
CHSH inequality, but the maximal achievable Bell factor S appears to be much smaller
in comparison to the scheme shown in Fig. 4.17(a).

By adding one more photon subtraction to the schemes shown in Fig. 4.17, we
can construct an ensemble of schemes with three photon subtractions. After numerical
optimization we have found that none of these schemes succeeds to violate Bell-CHSH
inequality. This striking result together with the the fact that we have not found any
violation for schemes based on a single subtraction suggests that it may be necessary to
have a scheme with an even number of photon subtractions in order to observe S > 2.

In the preceding section, we have also proposed one scheme with four photon sub-
tractions that violates Bell-CHSH inequality. Many other possible schemes exist where
four photons are subtracted. Figure 4.18 illustrates some particular examples, which
are based on the preparation of two-mode squeezed vacuum via mixing of two single-
mode squeezed states on an balanced beam splitter. The photon subtractions are
symmetrically placed to both modes. Strikingly, if all four photons are subtracted ei-
ther before or after mixing on a beam splitter, then we get S > 2. However, if a single
photon is subtracted from each mode both before and after combining the modes on a
beam splitter, then we do not obtain any Bell violation.

Finally we have also studied an alternative group of schemes where instead of sub-
tracting photons separately from modes A and B, we mix the auxiliary modes C and
D on a balanced beam splitter before the detection on the photodetectors. Consider
the scheme depicted in Fig. 4.19(a) where only a single photon is subtracted. The
mixing of modes C and D on a beam splitter erases the information about the origin of
the detected photon which implies that the conditionally prepared state is a coherent
superposition of states where a single photon has been removed either from mode A
or from mode B. However, even this modification does not lead to Bell violation with
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Figure 4.17: Schemes with two photon subtractions. The right column gives the max-
imal value of the Bell factor S for the proposed setups.
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Figure 4.19: Schemes consisting of superpositions of other schemes proposed above.
(a) Superposition of one photon subtraction on modes A or B. (b), (c) Superposition
of two photon subtractions on modes A or B.

just a single subtraction.

We can extend the scheme by placing a photodetector at both output ports of
the beam splitter, cf. Fig. 4.19(b). In the limit of a high transmittance T → 1, the
conditioning on the click of each detector selects the events where there were altogether
two photons at the beam-splitter inputs. The bosonic properties of the photons imply
that a simultaneous click of both photodetectors occurs only if the two subtracted
photons are coming from the same mode (A or B) [106], but again we do not know
from which mode the two photons are subtracted. This scheme is thus equivalent to
the superposition of two schemes of the type shown in Fig. 4.17(c). Unlike the scheme
in Fig. 4.17(c), the scheme in Fig. 4.19(b) is symmetric with respect to the modes
A and B. However, no violation can be observed. On the other hand, the scheme in
Fig. 4.19(c) leads to S > 2 by realizing a superposition of states where two photons
are subtracted from a single-mode squeezed vacuum state and this state is then mixed
with another single-mode squeezed vacuum on a balanced beam splitter, see 4.17(d). In
comparison to the scheme in Fig. 4.17(d), we obtain much higher violation (S = 2.046),
recovering the optimal for two photon subtractions.

4.6 Setup Proposal and Realistic Parameters

In our experimental proposal, Fig. 4.20, the source (controlled by Sophie) is based on
a master laser beam, which is converted into second harmonic in a nonlinear crystal
(SHG). After spectral filtering (F), the second harmonic beam pumps an optical para-
metric amplifier (OPA) which generates two-mode squeezed vacuum in modes A and
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B. Single photons are conditionally subtracted from modes A and B with the use of the
beam splitters BSA and BSB and single-photon detectors PDA and PDB. Alice (Bob)
measures a quadrature of mode A (B) using a balanced homodyne detector that con-
sists of a balanced beam splitter BS3 (BS4) and a pair of highly-efficient photodiodes.
The local oscillators LOA and LOB are extracted from the laser beam by means of two
additional beam splitters BS1 and BS2. The random switching of the relative phase
θ (φ) between LOA and A (LOB and B) can be performed using fast electro-optical
modulators.
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Figure 4.20: Proposed experimental setup.

In order to be more specific, let us consider the single-mode photon subtraction
experiment [197]. It is based on a commercial cavity-dumped titanium-sapphire laser,
delivering nearly Fourier-limited pulses at 850 nm, with a duration of 150 fs and a
repetition rate of 790 kHz. Squeezed vacuum pulses generated by parametric deampli-
fication are sent through a beam splitter, and the reflected beam is detected by a silicon
APD. Conditional on a click, the transmitted pulse is prepared in a non-Gaussian state,
which is measured by homodyne detection with an overall efficiency ηBHD ≈ 75%. This
experiment gives us useful estimates for a possible Bell test. First, the delay between
pulses (1.2 µs) allows ample time for individual pulse analysis. A fast random choice
of the analyzed quadratures can be performed using electro-optical modulators on the
LO beams, triggered for instance by digitizing the shot-noise of locally generated aux-
iliary beams. Switching times around 100 ns, associated with propagation distances of
a few tens of meters, seems quite feasible. The APDs can be triggered only when a
pulse is expected, reducing the effect of dark counts to a negligible value. The intrinsic
APD efficiency is about 50%, but the filtering used to select a single mode currently re-
duces the overall η to less than 5%, which should be improved for accumulating enough
statistics.

This allows us to define a set of realistic parameter values that should be reached
in a loophole-free Bell test : with η = 30%, T = 95%, and λ = 0.6, a violation of
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Bell-CHSH inequality by about 1% should be observable if the homodyne efficiency
ηBHD is larger than 95%. With a repetition rate of 1 MHz and P ≈ 2.6 × 10−4, the
number of data samples would be several hundreds per second, so that the required
statistics to see a violation in the percent range could be obtained in a reasonable
time (a few hours). In addition, the electronic noise of the homodyne detectors should
be 15-20 dB below shot noise, attainable with low-noise charge amplifiers. All these
numbers have already been reached separately in various experiments, but attaining
them simultaneously certainly represents a serious challenge. Nevertheless, taking into
account many possible experimental improvements, the existence of an experimental
window for a loophole-free test of Bell inequalities can be considered as highly plau-
sible. Therefore, it appears that, with quantum continuous variables, a reasonable
compromise can be found between the experimental constraints and the very stringent
requirements imposed by a loophole-free test of Bell inequalities.

4.7 Conclusions

We have proposed an experimentally feasible setup allowing for a loophole-free Bell test
with efficient homodyne detection using a non-gaussian entangled state generated from
a two-mode squeezed vacuum state by subtracting a single photon from each mode. We
have presented a full analytical description of a realistic setup with imperfect detectors,
noise and mixed input states. We have studied in detail the influence of the detector
inefficiencies, the electronic noise of homodyne detector, and the input mixed states,
on the achievable Bell violation. The main feature of the present scheme is that it is
largely insensitive to the detection efficiency of the avalanche photodiodes that are used
for conditional preparation of the non-gaussian state, so that detector efficiencies of
the order of a few per cent are sufficient. On the other hand, the detection efficiency of
the balanced homodyne detector should be of the order of 90% and the electronic noise
of the homodyne detector should be at least 15 dB below the shot noise level. The
optimal squeezing that yields maximum Bell violation depends on the experimental
circumstances but is, generally speaking, within the range of experimentally attainable
values. As a rule, the optimal squeezing increases with decreasing ηBHD and increasing
noise.

We have also discussed several alternative schemes that involve the subtraction of
one, two, three or four photons. Unfortunately, the experimentally simplest and most
appealing scheme consisting in a single photon subtraction does not exhibit violation
of the proposed Bell inequalities. Taking into account that we have not found any
scheme with three photon subtractions which would violate Bell-CHSH inequality, the
only way of exceeding the 2.046 violation appears to be by subtracting four photons.
Unfortunately, the price to pay for this slight increase of S is that the probability of
successful conditional generation is so low that it makes the experiment infeasible.

The experimental demonstration of a single photon subtraction from a single-mode
squeezed vacuum state [142, 197] provides a strong incentive for further theoretical and
experimental developments along these lines, and we can thus expect that some of the
schemes discussed here will be experimentally implemented in a not too distant future.
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Chapter 5

Shannon Information Theory

5.1 Introduction to Data Compression

Let us consider an experiment where we toss a fair coin many times. Even if it is
impossible to guess the outcome of a given toss, we expect after a large number of
events that half of the results are head. Now repeat the experiment with a biased coin
with probability of outputting head ph = p. The law of large numbers [133] tells us
that after a large number (n) of coin tossing the amount of head (Nh) and tails (Nt)
will be approximately, Nh ≈ np and Nt ≈ n(1−p), respectively. All the sequences that
we observe after a high number of coin tossing belong to a subset called the typical set
that asymptotically captures all the occurrence probability.

Typical Sequence

A sequence of n coin tossing is called typical if it is composed of Nh ≈ np heads and
Nt ≈ n(1 − p) tails, its occurrence probability reads

p(x1, x2, ..., xn) ≈ pnp(1 − p)n(1−p), (5.1)

which gives

log p(x1, x2, ..., xn) ≈ np log p+ n(1 − p) log(1 − p) = −nH(p), (5.2)

where H(p) is the Shannon entropy,

H(p) = −[p log p+ (1 − p) log(1 − p)], (5.3)

where the log is a base 2 logarithm and the entropy is expressed in bits. Remark that,
by convention, 0 log 0 = 0 which is justified by continuity. This function displayed in
Fig. 5.1, is concave with minima (H(0) = H(1) = 0) corresponding to deterministic
coins, and maximum for fair random coins H(1/2) = 1.

By definition all the typical sequences have the same probability of occurrence
pTS ≈ 2−nH(p). The number of such typical sequences NTS can be estimated for larger
n assuming that np is (close to) an integer, as

NTS ≈
(
n

np

)

=
n!

(np)!(n(1 − p))!
. (5.4)

Using the Stirling formula for large numbers

logn! ≈ n logn− n, (5.5)

89
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Figure 5.1: Entropy of a binary source, where p is the probability of one of the outcomes.

one can show that the number of typical sequences is approximately

NTS ≈ 2nH(p). (5.6)

We conclude that among the set of all possible sequences that may occur after tossing n
coins (N = 2n), there is a subset composed of approximately NTS ≈ 2nH(p) equiprob-
able typical sequences (pTS ≈ 2−nH(p)) that concentrates almost all the occurrence
probability, PTS = pTSNTS ≈ 1.

Data Compression

Imagine that you want to send by email the result of the n coin tossing xn = x1, x2, ..., xn.
A trivial solution will be to send a string of n bits where heads are encoded by zeros
and tails by ones. But, does there exist a more economic technique that allows one to
reduce the number of bits we have to send. The answer is yes, for example using the
following encoding-decoding (see Fig. 5.2) based on the properties of the typical set:

1. The encoding operation of xn:

• If xn is typical, use a bijective mapping M that encode which of the 2nH(p)

typical sequences you have obtained using nH(p) bits.

• If its not typical send a string of nH(p) zeros.

2. The decoding of xn:

• Apply the inverse mapping M−1 in order to recover the typical sequences
from the nH(p) bits.

We observe that an error occurs only when the sequence xn is non-typical. The proba-
bility of the typical set being arbitrarily close to one for n→ ∞ the error can be made
arbitrarily small, implying that the encoding is reliable. Later in this chapter we will
show that nH(p) is indeed the optimal compression that can be achieved.
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2         elementsnH(p) 

2   elementsn

Typical Set

Figure 5.2: The encoding bijective function M maps the typical set into an smaller
ensamble of nH(X) bits. The decoding is done by applying M−1 which recovers
without error the typical set.

A Measure of Randomness

An ideal fair coin (pt = ph) is a source of perfect randomness, where all the events
are equiprobable. We say that the source generates 1 bit of randomness, that will be
denoted c in the following. Interestingly any biased source can be converted in a fair
source (equiprobable). One way of doing it is by applying data compression to the
output string. The 2nH(p) typical sequences being equiprobable, assigning a string of
nH(p) bits to each typical sequence is a way of generating nH(p) random bits. This
gives an operational interpretation of the entropy as the rate of randomness generated
by a large family of sources, as we will see in the next section.

5.2 Definitions

Two Families of Resources

In the following sections we are going to give an operational interpretation to different
entropic quantities by showing how two partners can distill bits of correlations (denoted
[cc] 1) from a noisy correlation (denoted {cc}). Subsequently we will study its relation
with a protocol of communication of noiseless bits (denoted [c → c]) through a noisy
channel ( denoted {c→ c}) Such protocols consider two different scenarios, generating
either static or dynamic resources.

Static Resources

A static resource {cc} consist in a noisy distribution p(x, y) shared by Alice and Bob,
as shown in Fig. 5.3. The task will be to convert the noisy distribution, through
distillation, into bits of correlations [cc].

1In the following we will use the following notation for information (randomness) processing re-
sources: a noiseless binary channel will be denoted by {c → c}, and [cc] for a noiseless bit of distributed
corelation. reflecting their static/dynamical nature. A noisy correlated distribution is denoted {cc},
and a general noisy channel is denoted by {c → c}.
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X Y

Alice Bob

Figure 5.3: A static bipartite source consist in pairs of correlated letters (X,Y ) ac-
cording to the distribution p(x, y) and shared by Alice (X) and Bob (Y ).

Dynamic Resources

X Y

X’

N

Noisy Channel

n usses

Alice Bob

Figure 5.4: Alice holds a pure entangled state |ψ〉AB0
. She sends to Bob the mode B0

through the quantum channel N .

A dynamic resource {c → c} is a noisy channel N taking a bipartite perfectly
correlated distribution p(x, x′) = pxδx,x′ at Alice site, into a noisy distribution p(x, y)
shared between Alice and Bob, as shown in Fig. 5.4. The objective will be to transmit
noiseless bits of correlations ([c → c]) through a noisy channel ({c→ c}).

Information Theory

Shannon developed his theory in order to apply it to the compression and transmission
of data through communication channels. One can see any text (or image, song...) as
a generalized source:

Definition: A source consists in a sequence of random variables X1, X2, ... whose
values represent the output of the source taking values from the finite alphabet H =
{0, 1, .., d}, of size d.

Independent and Identically Distributed Sources

The coin is a simple example of a large family of sources, the so-called ”independent
and identically distributed” (i.i.d.) sources.

Definition: An independent and identically distributed (i.i.d.) source consists in
a sequence of random variables X1, X2, ..., Xn whose values represent the output of



5.2. DEFINITIONS 93

the source taking values from the finite alphabet H = {0, 1, .., d}, of size d. All vari-
ables Xi are independent p(x1, x2, ...) = p(x1)p(x2)...p(xn) and identically distributed
Xi = X with probability mass function p(x) = Pr{X = x}, x ∈ H .

As in this thesis we are concerned with key distribution, which are nothing else than
random and private data, restricting our study to i.i.d. sources will be sufficiently
general.

Shannon work assumed that the text was resulting from an i.i.d. source, then com-
pressing (transmitting) information or randomness are equivalent tasks. Real sources
do not generally behave as i.i.d. sources, as it is easy to check that the letters in this
English text do not occur in an independent fashion; strong correlations exist between
them. Nevertheless, the assumption of an i.i.d. works already pretty well in prac-
tice, and the ideas introduced to deal with the special case of an i.i.d. source can be
generalized to more sophisticated sources.

Shannon Entropy

The first example concerned a random source with an alphabet composed of two letters
A = {”head”, ”tail”}. This can be generalized to random sources X with a larger
alphabet H = {0, 1, ..., d} where each letter x occurs with probability p(x). In a string
of n letters, x typically occurs about np(x) times, the number of typical string being,

n!
∏

(np(x))!
≈ 2nH(X) (5.7)

and all the typical sequences have the same probability p(x) ≈ 2−nH(X), where H(X)
is the Shannon entropy

H(X) = −
∑

x∈H

p(x) log p(x), (5.8)

The Shannon entropy H(X) gives the optimal data compression rate that can be
reached for a given i.i.d. source, giving a measure of the randomness (or information)
generated by the source. Alternatively, it can be seen as the amount of uncertainty
about X before we learn its value.

Joint Entropy

The joint entropy H(X,Y ) of a pair of discrete random variables (X,Y ) with alphabets
H = {0, 1, ..., d1} and J = {0, 1, ..., d2} with a joint distribution p(x, y) is defined as

H(X,Y ) = −
∑

x∈H

∑

y∈J

p(x, y) log p(x, y). (5.9)

As for the usual entropy H(X) the joint entropy H(X,Y ) has an interpretation as the
amount of uncertainty about the pair (X,Y ) before we learn its value or as the optimal
joint compression rate.

Conditional Entropy

The conditional entropy H(Y |X) of a pair of discrete random variables (X,Y ) with a
joint distribution p(x, y) is defined as

H(Y |X) =
∑

x∈H

p(x)H(Y |X = x), (5.10)

= −
∑

x∈H

∑

y∈J

p(x, y) log p(y |x). (5.11)
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The conditional entropy H(Y |X) has an interpretation as the average uncertainty we
have about Y when we know X . Both joint and conditional entropies are related by
the following chain rule, which can be recovered using a Venn diagram (Fig. 5.5).

H(X) H(Y|X)

H(X,Y)

Figure 5.5: Relation between H(X) and H(Y |X).

Theorem 1 (Chain rule)

H(X,Y ) = H(X) +H(Y |X). (5.12)

Proof
Using the definition of the conditional probability one can write

log p(x, y) = log p(x) + log p(y |x), (5.13)

and take the expectation value of both sides of the equation to obtain the theorem. �

The chain rule can be generalized to a collection of random sources X1, X2, ..., Xn

H(X1, X2, ..., Xn) =

n∑

i=1

H(Xi|Xi−1, ..., X1). (5.14)

Relative Entropy

The relative entropy or Kullback-Leibler distance between two probability mass func-
tions p(x) and q(x) is defined as

D(p || q) =
∑

x∈H

p(x) log
p(x)

q(x)
, (5.15)

which is always non-negative and zero if and only if p(x) = q(x).

Mutual Entropy

The mutual information H(X :Y ) of a pair of discrete random variables (X,Y ) with a
joint distribution p(x, y) is defined as

H(X :Y ) = −
∑

(x,y)∈H ×Y

p(x, y) log
p(x, y)

p(x)p(y)
= D(p(x, y) ‖ p(x)p(y)). (5.16)

The mutual entropy (or mutual information) H(X :Y ) of a bipartite source (X,Y ) has
an interpretation as the amount of correlations between Alice and Bob, measured in
bits of correlation. Using the definition of the mutual information, conditional entropy
and entropy one can easily derive the following relations:
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H(Y|X)

H(X,Y)

H(X:Y)H(X|Y)

H(X) H(Y)

Figure 5.6: Relation between H(X), H(Y |X), H(X |Y ) and H(X :Y ).

Theorem 2 (Mutual information and entropy)

H(X :Y ) = H(X) −H(X |Y ) (5.17)

H(X :Y ) = H(Y ) −H(Y |X) (5.18)

H(X :Y ) = H(X) +H(Y ) −H(X,Y ) (5.19)

The relation between H(X), H(Y |X), H(X |Y ) and H(X :Y ) can be recovered using a
Venn diagram (Fig. 5.6).

Conditional Mutual Entropy

The conditional mutual entropy (information) of random variables X and Y given Z
is defined as

H(X :Y |Z) = H(X |Z)−H(X |Y, Z), (5.20)

which satisfies the chain rule,

H(X1, X2, ..., Xn:Y |Z) =

n∑

i=1

H(Xi:Y |Xi−1, ..., X1, Z). (5.21)

If Z is completely decorrelated from the rest, it becomes the chain rule for the mutual
information.

Properties of the Entropies

We now give some simple relations between the different entropies.

1. D(p || q) ≥ 0

2. H(X) ≥ 0.

3. H(Y |X) ≥ 0.

4. H(X) ≤ log d.

5. Subadditivity of entropy: H(X,Y ) ≤ H(X) +H(Y ).

6. Concavity of H(X): if X =
∑
piXi ⇒ H(X) ≥∑ piH(Xi).

7. H(X,Y ) ≥ max{H(X), H(Y )}.

8. H(X :Y ) ≥ 0.
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9. H(X :Y ) ≤ min{H(X), H(Y )}.

10. H(X :Y |Z) ≥ 0.

11. Conditioning reduces entropy: H(X |Y, Z) ≤ H(X |Y ).

12. For a fixed transition p(y|x) H(X :Y ) is a concave function of p(x).

13. For a fixed input p(x) H(X :Y ) is convex in p(y|x).

Proof
(1) Using the concavity of the logarithmic function and Jensen’s inequality, see [51] for
a detailed proof.
(2) 0 ≤ p(x) ≤ 1 implies − log p(x) ≥ 0, with equality when the distribution in deter-
ministic p(x) = δx,i.
(3) The proof is direct as by definition the conditional entropy is an average of en-
tropies.
(4) We define u(x) as the uniform distribution over an alphabet H of size d. The proof
is easy using the definition H(X) = log |H | − D(p(x) ||u(x)) and the non-negativity
of the relative entropy.
(5) H(X) +H(Y ) −H(X,Y ) = H(X :Y ) = D(p(x, y) || p(x)p(y)) ≥ 0.
(6) Defining a joint source where Y encodes which sourceXy is used gives

∑
pyH(Xy) =

H(X |Y ). Using H(X,Y ) = H(Y ) +H(X |Y ) ≤ H(X) +H(Y ) gives the result.
(7) Using (3) and H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X |Y ).
(8) equivalent to (5).
(9) Using H(X :Y ) = H(X) −H(X |Y ) = H(Y ) −H(Y |X) and (3).
(10) D(p || q) ≥ 0 can be rewritten as D(p(y|x) || q(y|x)) ≥ 0 which gives H(X :Y |Z) =
D(p(x, y|z) || p(x|z)p(y|z)) ≥ 0.
(11) Using the chain rule we have H(X |Y ) = H(X |Y, Z) +H(X :Z|Y ) and (10).
(12) We define a third variable Z which encodes which transition pz(x) is used. Using
H(X,Z:Y ) = H(X :Y ) + H(Z:Y |X) = H(Z:Y ) + H(X :Y |Z) and H(Z:Y ) ≥ 0 and
H(Z:Y |X) = H(Y |X) −H(Y |X,Z) = 0 as p(y|x) is independent of Z, gives the final
result.
(13) We define a third variable Z which encodes which input pz(y|x) is used. Using
H(X :Y, Z) = H(X :Z) +H(X :Y |Z) = H(X :Y ) +H(X :Z|Y ) and H(X :Z|Y ) ≥ 0 and
H(X :Z) = 0 gives the result. �

5.3 Entropy Operational Interpretation

The concept of typical sequence being at the core of all the results of information
theory we rigorously generalize the concept of typical sequence beyond the binary case.
Suppose X is an i.i.d. information source. Given ǫ > 0 we say that a string of source
symbols xn = x1x2...xn is ǫ-typical (∈ TX) if

2−n(H(X)+ǫ) ≤ p(x1x2...xn) ≤ 2−n(H(X)−ǫ) (5.22)

A useful equivalent reformulation of the definition is

∣
∣
∣
∣
∣

1

n
log

1

p(x1x2...xn)
−H(X)

∣
∣
∣
∣
∣
≤ ǫ. (5.23)

Using the law of large numbers we can prove the following theorem [51].
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Theorem of typical sequences

1. Most of the sequences are typical : Fix ǫ > 0. Then for any δ > 0, for sufficiently
large n, the probability that a sequence is ǫ-typical is at least 1 − δ.

2. Size of the typical set : For any fixed ǫ > 0 and δ > 0, for sufficiently large n, the
number |TX | of ǫ-typical sequences satisfies

(1 − δ)2n(H(X)−ǫ) ≤ |TX | ≤ 2n(H(X)+ǫ). (5.24)

3. Small sets have zero probability: Let S(n) be a collection of size at most 2nR,
of length n sequences from the source, where R < H(X) is fixed. Then for any
δ > 0 and for sufficiently large n,

∑

x∈S(n)

p(x) ≤ 2δ. (5.25)

The third point states that for large n the probability of a sequence output from the
source lying in a subset S(n) of size 2nR goes to zero, as the number of typical sequences
becomes exponentially larger than 2nR.

Shannon noiseless channel coding theorem

A compression scheme of rate R maps possible sequences xn = (x1, ..., xn) of n
letters from a finite alphabet H (containing d elements) to a bit string of length
nR which we denote by Cn(xn) = Cn(x1, ..., xn). The decompression scheme takes
the nR compressed bits and maps them back to a string of n letters from H . A
compression-decompression scheme Dn(Cn(x)) (as in Fig. 5.7) is said to be reliable if
Pr(Dn(Cn(x)) = x) → 1 as n → ∞. The Shannon’s noiseless coding theorem specifies
for which rates R a reliable compression scheme exists.

x1

x2

xn

x2

xn

x1

n nC (x ) D (x )
n n

nR bits

.   .    .   .    .

.   .    .   .    .

Figure 5.7: A compression scheme Cn of rate R maps possible sequences xn =
(x1, ..., xn) of letters from a finite alphabet H to a bit string of length nR. The
decompression scheme takes the nR compressed bits and maps them back to the string
of the n original letters reliably.

Theorem 3 (Shannon’s noiseless channel coding theorem) Suppose X is an i.i.d.
information source with entropy rate H(X). Suppose R > H(X). Then there exists a
reliable compression scheme of rate R for the source. Conversely, if R < H(X) then
any compression scheme will not be reliable.
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Proof
The method of compression as described previously consists in checking if the output
of the source is ǫ-typical. If it is not we output a failure sequence of nR zeros (this
generates an error). If the output is typical then we compress the output simply by
storing an index of the particular typical sequence using nR bits. Choosing ǫ > 0 such
that H(X) + ǫ < R, for δ > 0 and large n there are at most 2n(H(X)+ǫ) < 2nR typical
sequences. Then the probability of error reads,

Pe = Pr(x /∈ TX) ≤ δ, (5.26)

Conversely if R < H(X) we know by the point (3) of the theorem of typical sequences
that the probability that an output sequence lies in a subset S(n) of size 2nR goes to
zero, for sufficiently large n. Thus any compression scheme with R < H(X) cannot be
reliable. �

A measure of Randomness or Information

As we mentioned in the introduction, the entropy H(X) is a measure of the random-
ness that can be generated by an i.i.d. source. The 2nH(p) typical sequences being
equiprobable, assigning a string of nH(p) bits to each typical sequence is a way of gen-
erating nH(p) random bits (c). In an i.i.d. model of source of information the entropy
can be equivalently interpreted as the rate of information generated by the source.

A measure of Correlations

X

Y
P(X,Y)

Figure 5.8: A noiseless correlated distribution corresponds to a joint distribution
p(x, y), where once we know x (y) we have total certainty about y (x). The black
dots correspond to pairs of the joint random variable (x, y) that have non-zero proba-
bility.

A bipartite source generates a noiseless correlated distribution when there is a
bijection b that maps each element of X into an element of Y , as in Fig. 5.8. By
knowing xn (yn) Alice (Bob) will know Bob’s string yn (Alices’s string xn) with full
certainty. The joint distribution reads,

p(x, y) = pxδy, b(x). (5.27)

When the noiseless correlated source has equiprobable probability distribution p(x, y) =
δy,b(x)/d we see that after distributing n pairs of symbols to Alice and Bob, both share
n log d perfectly correlated bits, which locally look like n log d bits of randomness. We
say that Alice and Bob share n log d bits of correlation (denoted n log d[cc]).

Non-Uniform Noiseless Correlation For non-uniform noiseless distribution it is
easy to check that Alice and Bob can extract nH(X) bits of correlation from a string of
n correlated pairs of letters drawn from the noiseless distribution p(x, y), by applying a
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P(X,Y)

P(X,Y)

P(X,Y)

P(X,Y)

P(X,Y)

P(X,Y)

Bob

C C

Alice

nH(X) correlation bits

Figure 5.9: Alice and Bob can output nH(X) shared random bits out of a noiseless
correlated source (X,Y ) by applying the compression map C without needing any
communication.

data compression at each location (Alice and Bob), as shown in Fig. 5.9. This gives an
operational interpretation of the entropy as the correlations generated by a noiseless
correlated source.

Degenerate Noiseless Correlations

The source generates a correlated distribution where there is a mapping f from X to
non-overlapping sets of Y (or vice-versa). The joint distribution then reads,

p(x, y) = pxδx, f−1(y). (5.28)

By a local mapping g(y) Bob can transform the degenerate noiseless correlated distribu-
tion between elements of X and non-overlapping subsets of Y to a noiseless distribution
between element of X and elements of g(Y ), as shown in Fig. 5.10. Then considering
that local operations cannot increase the correlations, the maximum bits of correlation
that Alice and Bob can extract is min{H(X), H(Y )}.

XX

Y

Figure 5.10: Applying a map g(y) on Y Bob can transform the degenerate noiseless
correlated distribution between elements of X and non-overlapping subsets of Y into
a noiseless distribution.

Generalization This can be generalized to noisy correlated sources where the mu-
tual entropy I(X :Y ) will be the measure of the amount of correlations that can be
extracted from the joint distribution. Notice that for noiseless correlations H(X :Y ) =
min{H(X), H(Y )}, which saturates the upperbound H(X :Y ) ≤ min{H(X), H(Y )}
(property (9) of the entropies).
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5.4 Data Merging and Correlation Distillation

In this section we are going to give an operational definition of the conditional entropy
as the average amount of information that one partner has to send to another in order
to allow him to get the full information about the bipartite sequence.

Jointly and Conditional Typical Sequences

Before giving an operational interpretation to the conditional entropy we need to in-
troduce the joint and conditional typical sets.

Jointly Typical Set

The set TX,Y of jointly typical sequences {xn, yn} with respect to the distribution
p(x, y) is the set of n-sequences with entropies ǫ-close to the true entropies, i.e.,

TX,Y =
{

(xn, yn) ∈ H n × J n : p(xn) = 2−(H(X)±ǫ), (5.29)

p(yn) = 2−(H(Y )±ǫ), p(xn, yn) = 2−n(H(X,Y )±ǫ)
}

, (5.30)

where

p(xn, yn) =

n∏

i=1

p(xi, yi), (5.31)

and we used the notation an = 2−n(b±ǫ) to mean

| 1

n
log an − b |< ǫ, (5.32)

for n sufficiently large. In Fig. 5.11 we observe a net composed of the ensemble
TX ⊗ TY built by combinning all typical sequences of X and Y . We observe that
in general not all are jointly typical TXY (dark circles), as for example in perfectly
correlated distributions (Fig. 5.8). The set TX,Y of jointly typical sequences satisfies

TX

TY

TX,Y

TY|X

Figure 5.11: Each line (column) correspond to a typical sequence of of TX (TY ). Each
dark circle correspond to a typical sequence of TX,Y . The dotted points in a given line
(xn) correspond to the set TY |xn .

the following theorem, which is a generalization of the theorem of typical sequences.

Theorem 4 (Joint Asymptotic Equipartition Property) For any ǫ > 0, for suf-
ficiently large n, and S ⊆ {X,Y }
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1. Pr(sn ∈ TS) ≥ 1 − ǫ.

2. sn ∈ TS ⇒ p(sn) = 2−n(H(S)±ǫ).

3. |TS| = 2n(H(X)±2ǫ).

Conditional Typical Set:

The set TY |xn of the set of sequences yn that are jointly typical with a particular typical
xn ∈ TX is defined as,

TY |xn =
{

(xn, yn) ∈ TX,Y : p(yn|xn) = 2−n(H(Y |X=xn)±ǫ)
}

. (5.33)

In Fig. 5.11 we observe that for each typical sequence of xn there is a subset of typical
sequences of Y that are at the same time jointly typical with X . This is just the
ensemble TY |xn .

Theorem 5 (Conditional Asymptotic Equipartition Property) For any ǫ > 0,
and sufficiently large n, if (xn, yn) ∈ TX,Y then

1. Pr(yn ∈ TY |X) ≥ 1 − ǫ,

2. yn ∈ TY |X ⇒ p(yn|xn) = 2−n(H(Y |X)±2ǫ),

3. |TY |X | = 2n(H(Y |X)±3ǫ),

where we have used the notation TY |X to express that we take the average over all the
TY |xn .

Data Merging

Given the joint sequence xnyn generated by the source (X,Y ) defined over alphabets
of dimension d and distributed to Alice (X) and Bob (Y ). Data merging is a protocol
that allows Alice to send all the information that Bob lacks about the joint sequence
xnyn. The most trivial solution is Alice sending directly the sequence xn using n log d
bits of communication. Alice can improve it by applying data compression to xn

(compression up to nH(X) bits on average) and sending the compressed data to Bob
through a noiseless channel. Fortunately we can do even better, as we prove in this
section, where the optimal solution is shown to be nH(X |Y ).

Theorem 6 (Data Merging) Suppose (X,Y ) is an i.i.d. distributed source shared
by Alice (X) and Bob (Y ). Suppose R > H(X |Y ), then there exists a reliable protocol
that transfers X from Alice to Bob using R bits of noiseless communication. Con-
versely, if R < H(X |Y ) then the transfer will not be reliable.

In order to prove the lower bound we need the following result,

Theorem 7 (Data Transfer) By sending one bit of communication we can increase
the correlations at most by one bit.

Intuitively we see that the best we can do is to send a bit through a noiseless channel in
order to increase the correlations by one unit, this can be formally proven, see Appendix
H.
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The Lower Bound

Interestingly one can write any bipartite correlated distribution p(x, y) as a noiseless
correlated tripartite distribution by appending a third partner called the Reference
(denoted W ) that memorizes which sequence (xn, yn) is shared by Alice and Bob. The
tripartite distribution reads,

p(x, y, w) = p(x, y)δ(x,y),w. (5.34)

The proof is strikingly simple if we group Alice and the Reference into a single partner,
see Fig. 5.12. Using the ”data transfer” (Theorem 7) it is trivial to derive the following

X

X
inI outI

X

W

Reference

Alice Bob

Y

W

Reference

Alice Bob

R bits of
communication

Y

Figure 5.12: Alice sends R bits of communication to Bob in order to give Bob access
to the joint distribution (X,Y ). Alice and the Reference are inside a dashed rectangle
to emphasize that we have considered Alice and the Reference as a unique partner for
technical reasons in the proof.

bound
Iin +R ≥ Iout, (5.35)

where Iin are the initial correlations between Alice+Reference and Bob and Iout are
the final correlations after Alice has sent R bits to Bob through a noiseless channel.
Using the fact that the tripartite distribution is perfectly correlated (5.34) and that
knowing W then X is redundant, the initial amount of correlations reads

Iin = H(Y ). (5.36)

For a successful protocol, after Alice’s communication of R bits, Bob has access to the
distribution (X,Y ). It is then trivial to see that Iout = H(X,Y ), which together with
equation (5.35) gives,

R ≥ Iout − Iin = H(X,Y ) −H(Y ) = H(X |Y ). (5.37)

Achievability Proof

Now, we are going to present a protocol that succeeds to transfer X to Bob with a rate
R > H(X |Y ), which shows that the lower bound derived previously is tight.

The Protocol

• Encoding: Alice independently generates a map g(xn) that assigns to each se-
quence xn ∈ TX a bin (j) among a set of 2nR bins, according to a uniform
distribution.

• Communication: Alice sends to Bob the index of the bin (j) to which xn belongs.



5.4. DATA MERGING AND CORRELATION DISTILLATION 103

• Decoding: Given the received index j and his prior information yn, Bob makes a
guess x̂n = f(j, yn) of Alice data, where the mapping function f is defined only
on the jointly typical set.

The protocol would be reliable if the average probability of error satisfies Pe → 0 for
n→ ∞. There are two sources of error on the protocol:

1. E0: The mapping function f being defined only on the set of jointly typical sets,
if the pair (xn, yn) is not jointly typical we have an error.

2. E1: When for a given yn ∈ TY there is another jointly typical sequence on the
same bin (j) as x̂n = f(j, yn).

The Joint Equipartition Theorem (Theorem 4) shows us that Pr(E0) → 0 for suffi-
ciently large n. Now we are going to prove that for sufficiently large n the bound
R ≥ H(X |Y ) can be asymptotically achieved, while satisfying Pr(E1) → 0.

The probability Pr(E1) is the probability that during the construction of the code
using the map f Alice had assigned to the same bin two typical sequences of TX which
are jointly typical with the same sequence yn,

Pr(E1) =
∑

TX×TY

p(xn, yn)Pr{∃x̄n 6= xn : g(x̄) = g(x), (xn, yn) ∈ TX,Y }

≤
∑

TX×TY

p(xn, yn)
∑

(xn,x̄n)∈{TX|yn\ xn}
Pr(g(x̄) = g(x))
︸ ︷︷ ︸

=2−nR

(5.38)

=
∑

TX×TY

p(xn, yn)2−nR|TX|Y | (5.39)

≤ 2−nR2n(H(X|Y )+3ǫ), (5.40)

which goes to zero for all R > H(X |Y ), for a sufficiently large n. �

Correlations Distillation

Because data merging succeeds to transfer Xn from Alice to Bob using nH(X |Y ) bits
of noiseless communication it allows Alice and Bob to extract nH(X) bits of corre-
lation (denoted nH(X)[cc]) from the joint distribution, as at the end of the protocol
both partners know Xn perfectly. This can be summarized in the following resource
inequality,

H(X |Y )[c → c] + {cc} ≥ H(X)[cc], (5.41)

which express that by sending nH(X |Y ) bit of noiseless communication from Alice to
Bob, both partners can extract nH(X) bits of randomness out of n pairs of shared
letters (xn, yn) generated by an i.i.d. probability distribution p(x, y).

Strong Subadditivity

Using data merging we can get an operationally intuitive proof of strong subadditivity,
which can be shown to be equivalent to conditioning decrease entropy

H(X |Y Z) ≤ H(X |Y ). (5.42)

Strong subadditivity is just the observation that if Bob has access to an additional
register Z, then Alice surely does not need to send more information than in the case
where Bob does not have access to Z. After all, Bob could always ignore Z.
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5.5 Channel Capacity

The scheme studied in the previous section where Alice sends information to Bob in
order to share a perfectly correlated string xn (of size nH(X) bits) can be transformed
in a noiseless correlation distribution protocol (generating bits of correlation [c → c])
through a noisy memoryless channel ({c→ c}), as we show below.

Correlation Distribution and Communication

The mathematical analog of a physical signaling (correlation distribution) system is
shown in Fig. 5.13. A message W , drawn from the index set {1, 2, ...,M}, is encoded
by Alice in the sequence xn = f(W ) using the encoding function f : {1, 2, ...,M} →
H n. Alice sends the sequence xn through the memoryless channel N characterized
by the probability transition function p(y|x). Finally Bob guesses the index W by an
appropriate decoding rule Ŵ = g(yn). We define a (M,n) code as the ensemble of
index {1, 2, ...,M} plus the encoding (f) and decoding functions (g). The rate of a
code (M,n) is

R =
logM

n
bits per transmission. (5.43)

A rate is said to be achievable if there exists a sequence of (2nR, n) codes such that the
average error Pe → 0 as n→ ∞.

1X

2X

3X

4X

nX

p(y|x)

p(y|x)

p(y|x)

p(y|x)

p(y|x)

1Y

2Y

3Y

4Y

nY

EncoderW Decoder W

Message Estimate of
Message

Figure 5.13: Alice encodes the message W in a sequence xn(W ) and sends it through
the memoryless channel N (p(y|x)) which outputs a sequence yn. Finally Bob guesses
the index W by decoding yn.

Memoryless Channel

In what follows we will restrict our study to noisy memoryless channels which are
the channels that for a given input string xn = x1x2...xn yields an output string
yn = y1y2...yn, where each element yi depends only on the input xi,

p(yn|xn) =

n∏

i=1

p(yi|xi). (5.44)

The channel is then completely characterized by the transition probability p(y|x).

Typical Sets Notice that if the characteristic p(y|x) of the channel is known we can
calculate p(y), p(x, y) and p(x|y) = p(x, y)/p(y) from p(y|x) and p(x), which allows us
to calculate all the typical sequences: TXY , TX , TY , TY |X and TX|Y .
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Channel Capacity

The highest rate in bits per channel use at which correlations can be distributed (or
information can be sent) with arbitrarily low probability of error is called the channel
capacity, which is defined as

C = max
p(x)

H(X :Y ), (5.45)

where the maximum is taken over all possible input distributions p(x). At the end of
this section we shall show how to reach the capacity and that equation (5.45) is indeed
the highest achievable rate.

Achievable Protocol

Alice’s objective is to send a messageW drawn from an equiprobable source {1, 2, ...,M}
to Bob without any error through a memoryless noisy channel. Based on the data merg-
ing protocol presented in the previous section Alice can send information to Bob helped
by a noiseless channel, using the following technique sketched in Fig. 5.14.

n H(Y)

X Y

X’

sequences
n H(X)

sequences

N

Noisy Channel

nH(X|Y) usses

Noiseless Channel

n usses

Alice Bob

Figure 5.14:

Encoding Alice associates each message W to one typical sequences xn generated by
her source (p(x)). After making a copy x′n of the generated sequence (that she keeps)
Alice sends xn to Bob through the noisy channel N , Bob receiving a noisy version of it
(yn). Now we are back to the situation of the preceding section where Alice and Bob
share a distributed source p(x, y).
Error Correction Communication If Alice and Bob have access to a parallel noise-
less channel, then Alice sending nH(X |Y ) bits to Bob will allow him to correct the
errors in yn, as shown in the preceding section, recovering xn efficiently (Pe → 0 when
n→ ∞).
Rate Because at the end of the protocol Bob knows xn without any error, Alice and
Bob have succeed to share nH(X) bits of correlations, or equivalently nH(X) bits of
communication. But in the process they have used nH(X |Y ) bits of communication
through the noiseless channel, which is summarized in the following resource inequality
(per signal sent),

H(X |Y )[c→ c] + {c→ c} ≥ H(X)[c→ c], (5.46)

which is the source-channel dual of the correlations distillation resource inequality
(5.41). The net gain of correlations per signal sent through the noisy channel (denoted
R) then reads,

R = H(X) −H(X |Y ) = H(X :Y ), (5.47)

which is just the mutual entropy between Alice and Bob data.
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Error Correcting Codes

In practice a noiseless channel does not exist, but interestingly one can get rid of the
error correction communication through the noiseless channel. Alice instead of using
the full ensemble of typical sequences TX to encode W uses a smaller set of typical
sequences of size 2nH(X:Y ) to encode W . This protocol is summarized by the following
resource inequality (per signal sent),

{c→ c} ≥ H(X :Y )[c→ c]. (5.48)

The trick is to select among the 2nH(X) typical sequences of TX a code C of size
2nR so that the codewords are sufficiently far away one from the others such that
Bob errors become negligible. Each typical sequence yn received by Bob could have

2
nH(X)

2
nH(X|Y)

2
nH(X:Y)

XT

X|YT

C l

Figure 5.15: We construct a reliable (Bob estimation error being negligible) code Cl
of size 2nH(X:Y ) by dividing the typical space TX into 2nH(X:Y ) non-overlapping cells
(TX|Y ) of size 2nH(X|Y ) by selecting one single typical sequence from each cell.

come on average from one of the 2nH(X|Y ) sequences of the conditional typical subspace
TX|yn (remember that H(X |Y ) measure Bob’s uncertainty on Alice data). By properly

dividing the typical set TX into 2nR non-overlapping cells of size 2nH(X|Y ) and selecting
one single codeword from each cell, we construct a reliable (Pe → 0 when n→ ∞) code
C of rate R, as shown in Fig. 5.15. The size of the space TX being 2nH(X), we see that
the optimal rate R we can achieve is

R =
1

n
log

|TX |
|TY |X | = H(X) −H(X |Y ) = H(X :Y ). (5.49)

This shows that Alice can distribute H(X :Y ) bits of correlation using a noisy channel.
Its easy to see that TX can be divided in 2H(X|Y ) different non-overlapping subspaces,
each one corresponding to a given code Cl, which allows us to interpret the nH(X |Y )
bits sent to Bob by Alice during the data merging protocol as telling Bob in ”which
code Cl” the sequence xn lies.

Optimality

Let us prove that the channel capacity (5.45) is indeed the optimal rate that can be
achieved by a protocol which gives an arbitrarily low probability of error. Assume we
have a code (2nR, n) with zero probability of error, the decoder output Ŵ = g(Y n)
(see Fig. 5.13) is equal to the input index W with probability 1, then H(W |Y n) = 0.
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We can now write

nR = nH(Xn(W )) = H(Xn|Y n)
︸ ︷︷ ︸

=0

+H(Xn : Y n) (5.50)

= H(Y n) −H(Y n|Xn) (5.51)

(a)
= H(Y n) −

n∑

i=1

H(Yi|Y1, ..., Yi−1, X
n) (5.52)

(b)
= H(Y n) −

n∑

i=1

H(Yi|Xi) (5.53)

(c)

≤
n∑

i=1

H(Yi) −
n∑

i=1

H(Yi|Xi) (5.54)

=

n∑

i=1

H(Xi : Yi) (5.55)

(d)

≤ nC, (5.56)

where (a) follows from the chain rule of conditional entropy, (b) from the definition
of a memoryless channel (Yi depends only on Xi), (c) from the subadditivity of the
entropy and (d) from the definition of C. Hence for any zero-error code, C gives the
optimal communication rate for a fixed channel.

5.6 Decorrelation

In the previous section we have given an operational interpretation of the mutual
information as the amount of communication (or correlation distribution) that can be
achieved with a given channel and source. Here we show that mutual information
is a measure of the correlations inside a bipartite distribution, giving the amount of
randomness needed to decorrelate a bipartite distribution.

Consider the following scenario, Alice and Bob share a correlated bipartite source
(X,Y ) that generates the distribution p(x, y) (H(X :Y ) 6= 0). In addition Alice has ac-
cess to a second source W , which is decorrelated from the bipartite source (p(x, y, w) =
p(x, y)p(w)). In order to decorrelate her data (X) from Bob’s data (Y ) Alice combines
the sequence wn with xn using a deterministic function (x′n) = f(xn, wn) that pre-
serves Alice’s probability distribution, p(x′) = p(x).

Proof To simplify the proof we append to each independent source (X,Y ) and W
a perfectly correlated reference system R1 and R2, respectively, as shown in Fig 5.16.
Both reference systems being independent at the beginning of the process, the initial
amount of correlation per signal between the reference systems (R1, R2) and (X,Y,W )
reads,

Iin = H(R1) +H(R2) = H(W ) +H(X,Y ). (5.57)

After applying the function f to systems X and W and discarding W ′, if Alice and Bob
distributions are independent, so are their references R′

1 and R′
2. The final amount of

correlations reads,

Iout = H(R′
1) +H(R′

2) = H(X) +H(Y ). (5.58)

Because local operations (applying f) and discarding a system (W ′) can only decrease
the correlations (Iin ≥ Iout) we obtain a lower bound for the amount of randomness
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outIinI

R1

R2

Reference

X’

Y

X

Y

Alice

Bob

Bob
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1
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Figure 5.16: Alice and Bob share a correlated distribution (X,Y ) which is perfectly
correlated with the reference R2. The independent source of random bits W is perfectly
correlated with R1. After Alice applying the function X ′ = f(X,W ) and discarding
the system W the correlations between the references (R1, R2) and the rest of the
systems can only decrease.

needed per signal (H(W )) for a successful decorrelation,

H(W ) ≥ H(X) +H(Y ) −H(X,Y ) = H(X :Y ). (5.59)

One can prove that this bound can be achieved applying the following protocol. Al-
ice divides her typical set TX into 2nH(X|Y ) codes Cl of size 2nH(X:Y ). At the beginning
of the protocol Bob’s uncertainty is on which code Cl lies xn in. In order to increase
Bob’s uncertainty to the ensemble of the typical set TX , Alice applies to each code Cl
the following random permutation: Firstly, assign to each code a binary number c of
size nH(X :Y ); Secondly, apply the XOR operation c′ = c ⊕ r, where r is a sequence
of nH(X :Y ) random bits. Finally apply the mapping c → c′, which applies a random
permutation among the sequences of each code Cl.

5.7 Continuous Variables

Because in this dissertation we are interested in applications using continuous variables
we need to introduce the concept of differential entropy H(X), which is the entropy of
a continuous random variable X with density f(x),

H(X) = −
∫

S

f(x) log f(x)dx, (5.60)

where S is the support of the random variable. The size of the typical set |TX | now
becomes a volume. Differential entropy is also related to the shortest description length,
and shares most of the properties of the entropy of discrete random variables. One can
similarly define conditional, mutual and relative differential entropies, which together
with the differential entropy have exactly the same properties as those introduced in
Section 5.2 for the discrete distributions.

There is just one but very important difference, the differential entropy is defined
up to an arbitrary constant depending on the scaling. If we apply a rescaling y = ax
where fY (y) = fX(y/a)/|a|, the differential entropy reads,

H(aX) = −
∫

fY (y) log fY (y)dy = −
∫

1

|a|f(
y

a
) log

( 1

|a|f(
y

a
)
)

dy

= −
∫

fX(x) log fX(x)dx + log |a| = H(X) + log |a|. (5.61)
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The conditional entropy being also ill defined. Interestingly, this illness in the definition
vanishes when we consider a quantity defined as the difference of two entropies, such as
for mutual information H(X :Y ) = H(Y )−H(Y |X), since as both arbitrary constants
cancel out. Then quantities such as capacity or secret key distribution rate over a
continuous variable channels are well defined.

Gaussian Distributions

We now introduce the important case of Gaussian distributions that we will use later
in this dissertation.

Entropy Consider a normal distribution

g(x) =
1√

2πVX
e−x

2/2VX . (5.62)

with variance VX . The differential entropy entropy reads,

H(X) = −
∫

g(x) ln g(x)dx = −
∫

g(x)
[
− x2

2VX
− ln

√

2πVX
]
dx

=
1

2
+

1

2
ln 2πVX =

1

2
logVX + C, (5.63)

where C is an arbitrary constant changing with the scaling.

For a bipartite normal distribution with covariance matrix

KAB =

[
〈x2〉 〈xy〉
〈xy〉 〈y2〉

]

(5.64)

the differential entropy reads [51],

H(X,Y ) =
1

2
log(detKAB) + C′, (5.65)

and similarly for more parties.

Conditional Entropy The conditional entropy H(Y |X) of the distribution Y con-
ditioned on X it can be written as,

H(Y |X) =

∫

dxH(Y |X = x). (5.66)

Using the definition of conditional probability f(y|x) = f(x, y)/f(x) [133] read,

H(Y |X) =
1

2
logVY |X + C, (5.67)

where VY |X is the variance of Y when X is known,

VY |X =
detKAB

VX
= 〈y2〉 − 〈xy〉2

〈x2〉 . (5.68)



110 CHAPTER 5. SHANNON INFORMATION THEORY

Mutual Entropy The mutual entropy (mutual information) of a bipartite distribu-
tion has three equivalent definitions,

H(X :Y ) = H(Y ) −H(Y |X) =
1

2
log

[

VY
VY |X

]

(5.69)

= H(X) −H(X |Y ) =
1

2
log

[

VX
VX|Y

]

(5.70)

= H(X) +H(Y ) −H(X,Y ) =
1

2
log

[

VXVY
detKAB

]

. (5.71)



Chapter 6

Quantum Information Theory

6.1 Introduction

Quantum information theory may be understood in terms of interconversion between
various resources, such as entanglement, classical correlations or secret keys. In this
chapter we present the distillation and distribution through quantum channels of the
first two resources. The issue secret key will be studied in more detail in the next
chapter. In the following we will use capital letters (A) to refer to quantum states, where
as we will use small letters (a) for the output of a measurement over the corresponding
quantum system (A).

Two Related Families of Resources

In the previous chapter we have shown how two partners could distill bits of correlations
(a resource denoted [cc]) from a noisy bipartite probability distribution (a resource
denoted {cc}) 1 and its relation with a protocol of communication of noiseless bits
(resource denoted [c → c]) through a noisy channel (resource denoted {c → c}). By
analogy with the classical information theory in its quantum counterpart we define a
noiseless unit of entanglement or e-bit ((|00〉 + |11〉)/

√
2) which is denoted [qq] and

noiseless qubit channel denoted [q → q]. Similarly as for noiseless resource, there are
two different types of resource, either static or dynamic.

Static Resources

A B
ΑΒ

ρ
Alice Bob

Figure 6.1: A static source distributes a quantum state ρAB between Alice and Bob,
which can distill entanglement or classical correlation from it.

A static source {qq} consist in a bipartite noisy quantum state ρAB shared by Alice
and Bob, as shown in Fig. 6.1. The task will be to convert the quantum state, through
distillation, into either static resources such e-bits (Bell pairs) [qq], classical correlations
[cc] or secret bits [ss].

1Remember that {} represents a noisy resource and [] a noiseless one.
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Dynamic Resources

A dynamic resource {q → q} consist in a noisy quantum channel N taking a bipartite
pure state |ψ〉AB0

at Alice site, into the mixed state ρAB = (IA ⊗N )|ψ〉〈ψ|AB0
shared

between Alice and Bob, as shown in Fig. 6.2. The quantum channel can be used to
distribute either e-bits (or communicate qubits) [q → q], classical correlations [c → c]
or secret bits [s→ s].

ΨAB0

A

Alice

B

Bob

N
0B

Quantum Channel

Figure 6.2: Alice holds a pure entangled state |ψ〉AB0
and sends mode B0 to Bob

through the quantum channel N .

Independent and Identically Distributed Sources

The generalization of the independent and identically distributed (i.i.d.) classical
source plays also a very important role in quantum information theory. In order to
distribute e-bits ([q → q]) between two partners, we need sources that generate entan-
glement.

Definition: An i.i.d. entanglement source generates independent entangled states,
where the entire bipartite message state reads |ψ〉AB ⊗ ...⊗ |ψ〉AB, where

|ψ〉AB =
∑

x

√

p(x)|x〉A|x〉B . (6.1)

If the resources we are interested to generate are classical correlations ([cc],[c → c])
or secret bits, we will then use the so called classical-quantum sources (C-Q sources).

Definition: An i.i.d. Cclassical-quantum source generates independent pairs of classical-
quantum states, where the entire joint state of the classical register a and the quantum
signal B has the density matrix ρaB ⊗ ... ⊗ ρaB. For a source generating pure states
ρaB we have,

ρaB =
∑

a

p(a)|a〉〈a| ⊗ |ϕa〉〈ϕa|B . (6.2)

Relation between both sources

Entanglement and classical-quantum sources are indeed related. A classical-quantum
source ρaB such as (6.2) can be generated starting from an entanglement source
|ψ〉AB =

∑

a

√

p(a)|a〉|ϕa〉. Alice applies a projective measurement
∑

a |a〉〈a| on sys-
tem A, obtaining the outcome a distributed according to the probability distribution
p(a) which projects Bob’s state to |ϕa〉B, as shown in Fig. 6.3.
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AA

a
Alice

B

U
A

ΨΑΒ

Figure 6.3: Alice’s measurement of system A of the bipartite state ρAB, giving the result
a and projecting B to ρaB. Equivalently, a denotes the internal state of a preparer who
prepares the state ρaB according to a.

6.2 Entropies

Von Neumann Entropy

Von Neumann entropy of a quantum state defined in a Hilbert space Hd of dimension
d is defined by the formula,

S(ρ) = −Tr(ρ log ρ), (6.3)

where the logarithms are taken in base 2 as usual. If we choose the orthogonal basis
(|i〉) that diagonalizes ρ

ρ =
∑

i

λi|i〉〈i|, (6.4)

then the von Neumann entropy can be re-expressed as the Shannon entropy of the
eigenvalues (λi) of ρ; S(ρ) = H(λ). The von Neumann entropy can be interpreted
as the smallest Hilbert space HS(ρ) to which the quantum state ρ can be compressed
reliably, as we show later in this chapter.

Extremum It is easy to show that the von Neumann entropy is minimal (S(ρ) = 0)
when the state is pure ρ = |ψ〉〈ψ| and it is maximum (S(ρ) = log d) when the state is
maximally mixed ρ = I/d.

Block-diagonal density matrix: States for which the density matrix is block diag-
onal are characterized by a probability distribution pi and state ρi that have support
on orthogonal subspaces

ρ =
∑

i

piρi. (6.5)

It is then easy to prove that the von Neumann entropy of ρ reads,

S(ρ) = H(p) +
∑

i

piS(ρi). (6.6)

Proof
Let λji and |eji 〉 be the eigenvalues and corresponding eigenvectors of ρi. Observe that

piλ
j
i and |eji 〉 are eigenvalues and eigenvectors of

∑

i piρi, and thus

S(
∑

i

piρi) = −
∑

ij

piλ
j
i log piλ

j
i (6.7)

(a)
= −

∑

i

pi log pi −
∑

i

pi
∑

j

λji logλji (6.8)

= H(p) +
∑

i

piS(ρi). (6.9)
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where (a) follows from Tr[ρi] =
∑

j λ
j
i = 1.

Diagonal density matrix : For a probabilistic mixture of orthogonal states |i〉,

ρ =
∑

i

pi|i〉〈i| (6.10)

the von Neumann entropy is just the Shannon entropy of the diagonal terms S(ρ) =
H(p).

Remarks For sake of simplification, we will use the term entropy for the von Neu-
mann entropy. In what follows we will use two different notations either S(ρA) to stress
that the entropy is a function of a given density matrix or S(A) = S(ρA) to stress the
role played by the system A.

Quantum Joint Entropy

The joint entropy S(A,B) of a bipartite quantum system (A,B) with density matrix
ρAB is defined as

S(A,B) = −Tr(ρAB log ρAB). (6.11)

As for the usual entropy S(A) the joint entropy S(A,B) has an interpretation as the
optimal joint compression rate we can achieve on system AB.

Quantum Conditional Entropy

The conditional entropy S(A|B) of a bipartite quantum system (A,B) with density
matrix ρAB cannot be generalized directly from its classical counterpart using log
functions, as there is no quantum generalization of the conditional probability. Never-
theless, one can define the quantum conditional entropy using the chain rule,

S(A,B) = S(B) + S(A|B), (6.12)

giving

S(A|B) = S(A,B) − S(B). (6.13)

Contrary to its classical counterpart the quantum conditional entropy can be negative.

Example This can be trivially shown for Bell states, such as |Φ+〉AB = [|00〉 +
|11〉]/

√
2, where S(A|B) = −1, which can be proven from: (i) S(A,B) = 0 since the

joint state is pure; (ii)S(A) = 1 since ρA = TrB[|Φ+〉AB ] = I/2.

Interpretation The negativity of the conditional entropy is intimately related to the
existence of entanglement, and it will play an important role in studying the distillation
and distribution of entanglement.

Classical-Quantum Conditional Entropy

If the bipartite state can be written as a block diagonal density matrix

ρaB =
∑

a

p(a)|a〉〈a| ⊗ ρaB, (6.14)
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then the conditional entropy S(B|a) reads,

S(B|a) =
∑

a

p(a)S(ρaB). (6.15)

In this case the conditional entropy being an average of von Neumann entropies it
is clearly non-negative. The C-Q conditional entropy plays an important role in the
distillation and distribution of classical correlations over quantum channels.

Quantum Relative Entropy

As on Shannon information theory it is extremely useful to define a quantum version
of the relative entropy. Suppose ρ and σ are density operators. The relative entropy is
defined by

D(ρ ||σ) = Tr[ρ log ρ] − Tr[ρ log σ], (6.16)

which is always non-negative (Klein’s Inequality [119, 136]) and zero if and only if
ρ = σ.

Mutual Entropy

The mutual entropy (or mutual information) S(A : B) of a bipartite quantum system
(A,B) with density matrix ρAB must also be defined through an equation using only
von Neumann entropies,

S(A:B) = S(A) + S(B) − S(A,B), (6.17)

or using the relative entropy,

S(A:B) = D(ρAB || ρA ⊗ ρB). (6.18)

where ρA = TrBρAB and ρB = TrAρAB.

Example 1: Decorrelated State A bipartite decorrelated state ρ ⊗ σ has null
mutual information S(A:B) = 0. This can be trivially shown using the relative entropy
definition of the mutual entropy and its property ”D(ρ ||σ) is zero if and only if ρ = σ”.

Example 2: Perfect Classical Correlations The quantum state ρAB =
∑d
i

1
d |i〉〈i|A⊗

|i〉〈i|B being equivalent to a classical distribution with perfect classical correlations
gives S(A:B) = log d.

Example 3: Maximally Entangled State For a maximally entangled state |Ψ〉AB =
∑d

i

√
1
d |i〉A⊗ |i〉B we have S(A:B) = 2 log d as S(A) = S(B) = log d (ρA = ρB is max-

imally mixed) and S(A,B) = 0 (|Ψ〉AB being pure).

Interpretation Similarly as for probability distributions, the mutual entropy S(A:B)
of a bipartite source (A,B) has an interpretation as the minimal amount of randomness
that is needed in order to decorrelate the quantum state ρAB. Using S(A:B) random
bits one can transform ρAB into ρ′AB = ρA ⊗ ρB, as shown in [93]. For example a Bell
pair can be decorrelated using 2 random bits by applying a random bit flip followed by
a random phase flip on one side. There is a full quantum scenario where the S(A:B)
bits of randomness are replaced by S(A:B)/2 e-bits (Bell pairs), as shown in [1]. For
example, in order to decorrelate a Bell pair ([|00〉 + |11〉]/

√
2) a second pair is needed

(S(A:B)/2 = 1). In order to implement the decorrelation Alice applies a noisy version
of entanglement swapping without communicating the measurement result.
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Conditional Mutual Entropy

The quantum conditional mutual entropy (information) of a bipartite quantum systems
A and B given C is defined as

S(A:B|C) = S(A|C) − S(A|B,C), (6.19)

which is non-negative because of the strong subadditivity of the entropy. If C is
completely decorrelated from the rest, it becomes the usual mutual information S(A:B).

Properties of the Entropies

We now give some simple relations between the different entropies.

1. S(A) ≥ 0, with equality if the state is pure.

2. S(A) ≤ log d, with equality for a maximally mixed state.

3. S(A|B) ≥ −S(B).

4. Subadditivity of entropy: S(A,B) ≤ S(A) + S(B).

5. Concavity of S(ρ): S(
∑
piρ

i
A) ≥∑ piS(ρiA).

6. S(A) = S(B) if S(A,B) = 0.

7. S(A,B) ≥ |S(B) − S(A)|.

8. S(A:B) ≥ 0.

9. S(A:B) ≤ S(A) + S(B).

10. Conditioning reduces entropy: S(A|B,C) ≤ S(A|B).

11. S(A:B|C) ≥ 0.

12. Discarding a quantum system never increases the mutual information:
S(A:B) ≤ S(A:B,C).

13. S(A,B|C) ≤ S(A|C) + S(B|C).

14. Subadditivity of conditional entropy:
S(A1, A2|B1, B2) ≤ S(A1|B1) + S(A2|B2).

Proof
(1) It follows from the definition of von Neumann entropy that is equal to the Shannon
entropy of the eigenvalues of ρA. H(λ) = 0 if and only if just one eigenvalue is strictly
positive which implies that the state must be pure.
(2) Let ρA be defined in a Hilbert space Hd of dimension d. The proof is easy using
the property S(A) = log |Hd|−D(ρA || I/d) and D(ρ ||σ) ≥ 0. We have equality if and
only if D(ρA || I/d) = 0 which occurs only if ρA = I/d.
(3) Follows from the definition of the conditional entropy and (1): S(A,B) ≥ 0.
(4) Similarly as in the classical case: S(A)+S(B)−S(A,B) = S(A:B) = D(ρAB || ρA⊗
ρB) ≥ 0.
(5) Defining a joint state

∑

i p(b)|b〉〈b| ⊗ ρbA where b encodes which state ρbA is used
gives

∑
pbS(ρbA) = H(A|b). Using H(A,B) ≤ H(A) +H(B) gives the result.

(6) If S(A,B) = 0 the bipartite state is pure ρAB = |ψ〉〈ψ|AB. Then using the Schmidt
decomposition |ψ〉AB =

∑

i

√

p(i)|i〉A|i〉B, we see that the partial traces ρA and ρB
have the same eigenvalues (p(i)) which implies the result.
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(7) Introduce a system R that purifies A,B. Then (6) implies S(R) = S(AB) and
S(RA) = S(B), which combined with (4) S(R) + S(A) ≥ S(RA), gives S(A,B) ≥
S(B) − S(A). Replacing A by B in the previous development gives the symmetric
counterpart. Combining both gives the result.
(8) It is equivalent to (4).
(9) Using S(A:B) = S(A) + S(B) − S(A,B) and S(A,B) ≥ 0.
(10) This will be proved later. Intuitively it relies on the observation that if Bob
has access to an additional register C, then Alice surely does not need to send more
information than in the case where Bob does not have access to C.
(11) Using S(A:B|C) = S(A|C) − S(A|BC) and (10).
(12) S(A:BC) = S(A:B) + S(A:C|B) and (11).
(13) S(A,B|C) = S(A|C) + S(B|C) − (A:B|C) and (11).
(14) Use (13) followed by (10).�

6.3 Quantum Data Compression

Consider an i.i.d. C-Q source generating a message of n pure quantum states ({p(x), |x〉})
with the density matrix of the entire message reading ρn = ρ⊗ ...⊗ ρ. A compression
of rate R for this source consists in a compression operation Cn taking states from
H⊗n to states in a 2nR- dimensional Hilbert space Hn

c , composed of nR qubits. The
decompression operation Dn restores the initial message from the compressed state.
We say that the operation Dn ◦ Cn is reliable if the fidelity of Dn ◦ Cn approaches 1 in
the limit of large n.

Entanglement-based Description

As explained in Appendix A, any quantum system Q prepared in a quantum state ρ
with eigenvalues λx can be seen as the partial trace of a pure state

|ψ〉PQ =
∑

x

λx|x〉P |x〉Q, (6.20)

where P is a reference system. Any quantum operation E on system Q can be re-
defined as the operation IP⊗EQ applied to the state |ψ〉PQ. How well the entanglement
between Q and P is preserved is quantified by the entanglement fidelity F (ρ, E) which
is a function of ρ and E defined by

F (ρ, E) = 〈ψ|[(IP ⊗ EQ)|ψ〉〈ψ|]|ψ〉. (6.21)

One can then present the quantum compression Cn as the operation that compresses
the state ρ⊗n of system Q defined over the space H⊗n to a 2nR-dimensional typical
subspace Q′, see Fig. 6.4, while preserving its entanglement with system P .

In order to prove the quantum version of the noiseless coding theorem we need to
generalize the concept of typical sequences to the quantum scenario. We are going to
show that for large n, the density matrix ρ⊗n has nearly all its support on a subspace
of H⊗n called the typical subspace of dimension 2nS(ρ).

Typical Subspace

Working in the orthogonal basis {|x〉} in which ρ is diagonal, we may regard our
quantum source as an effectively classical source, the eigenvalue playing here the same
role as the probability in Shannon theory. The quantum source generates messages that
are strings (|x〉 = |x1〉|x2〉|x3〉...|xn〉) of ρ’s eigenstates (|x〉), each with a probability
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Cn

Dn

n log d
qubits qubits

n S(  )ρ

P

Q Q’

Figure 6.4: The compression operation Cn compresses a quantum source Q stored in
n log d qubits into nS(ρ) qubits, while preserving the entanglement with the reference
system P . The source is accurately recovered via the decompression operation Dn

without damaging the initial entanglement with P .

given by the product of the corresponding eigenvalues. Therefore, it makes sense to
talk of an ǫ-typical sequence, x1, ..., xn for which
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log
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− S(ρ)

∣
∣
∣
∣
∣
≤ ǫ. (6.22)

in exactly the same way as for classical typical sequences. An ǫ-typical state is a state
|x1〉|x2〉...|xn〉 for which the sequence x1, x2, ..., xn is ǫ-typical. Define the ǫ-typical
subspace to be the space spanned by all ǫ-typical states. We will denote the ǫ-typical
subspace by T (n, ǫ), and the projector onto the ǫ-typical subspace by P (n, ǫ),

P (n, ǫ) =
∑

ǫ−typical

|x1〉〈x1| ⊗ |x2〉〈x2| ⊗ ...⊗ |xn〉〈xn|. (6.23)

The theorem of typical sequences can be generalized to the quantum case:

Theorem of typical subspace

1. ρ⊗n is ǫ-typical : Fix ǫ > 0. Then for any δ > 0, for sufficiently large n, the
probability that the source outputs an ǫ-typical state is at least 1 − δ:

Tr(P (n, ǫ)ρ⊗n) ≥ 1 − δ. (6.24)

2. Size of the typical subspace: For any fixed ǫ > 0 and δ > 0, for sufficiently large
n, the dimension |T (n, ǫ)| = Tr(P (n, ǫ)) of T (n, ǫ) satisfies:

(1 − δ)2n(S(ρ)−ǫ) ≤ |T (n, ǫ)| ≤ 2n(S(ρ)+ǫ). (6.25)

3. Small subspaces have zero probability: Let S(n) be a projector onto any subspace
of H⊗n of dimension at most 2nR, where R < S(ρ) is fixed. Then for any δ > 0,
and for sufficiently large n,

Tr(S(n)ρ⊗n) ≤ δ. (6.26)
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The proof of points (1) and (2) results directly from the classical version of the theorem.
(3) uses the property of the operators P (n, ǫ) and S(n) to show that for large n the
dimension of S(n) is exponentially smaller than T (n, ǫ), see [136, 170] for more details
on (3).

Noiseless Channel Coding theorem

Using the typical subspace theorem it is not difficult to prove the quantum analogue
of Shannon’s noiseless channel coding theorem. The main difference with the classical
case is that the operation must preserve the quantum coherence of the system.

Theorem 8 (Schumacher’s noiseless channel coding theorem) Let {p(x) , |x〉}
be an i.i.d. quantum source , where ρ =

∑

x p(x)|x〉〈x|. If R > S(ρ) then there exists a
reliable compression scheme of rate R for the source. If R < S(ρ) then any compression
scheme of rate R is not reliable.

The proof is a direct generalization of Shannon’s version and is strikingly similar
to the classical one. The encoding is done by first measuring whether the output
string lies in the typical subspace or not (using the orthogonal projectors P (n, ǫ) and
I − P (n, ǫ)). If the state lies in the typical subspace nothing more is done. If it does
not, then replace the state of the system with some standard state ’|0〉’ chosen from
the typical subspace. It follows that the encoding is a map Cn : H⊗n → Hn

c into the
2nR-dimensional subspace Hn

c , with operator-sum representation

Cn(σ) = P (n, ǫ)σP (n, ǫ) +
∑

i

AiσA
†
i , (6.27)

where Ai = |0〉〈xi|, |xi〉 is an orthogonal basis for the subspace orthogonal to the typical
subspace T (n, ǫ) and |0〉 is a blank state. The decoding operation Dn : Hn

c → H⊗n is
defined to be the identity on Hn

c . It is then easy to proof R < S(ρ) using point (1) of
the theorem of typical subspaces. The converse is proven using point (3), similarly as
for Shannon theorem, see [112, 136, 170].

Practical Data compression

Classical encoding techniques such as Huffman coding [51] can be adapted to quantum
sources with three constraints:

1. The encoding must be completely reversible (unitary).

2. The encoding must preserve the quantum coherence (superpositions) of the states.
Which is equivalent to preserving the entanglement between systems Q and its
reference P .

3. The encoding must erase the original state in the process of creating the com-
pressed one, as we have to fulfill the no-cloning theorem.

6.4 Quantum and Classical Correlations

In this section we show that the von Neumann entropy has also an interpretation as
the measure of the amount of quantum correlations [qq] (e-bits) and classical bits [cc]
that can be extracted from a pure bipartite states |ψ〉AB.
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Entanglement Distillation of Pure States

Given a pure bipartite state |ψ〉AB ,

|ψ〉AB =
∑

x

√

p(x)|x〉A|x〉B , (6.28)

with partial trace TrA(B)[|ψ〉〈ψ|AB ] = ρ. Entanglement distillation transforms n copies
of |ψ〉AB, using local operations (EA ⊗ EA), into nR Bell pairs |Φ+〉 (|Φ+〉 = [|00〉 +
|11〉]/

√
2), where R is the rate of the protocol. The nR Bell pairs being a maximally

entangled state, they can be written as,

|Φ+〉⊗nRAB =

2nR

∑

i=1

√

1

2nR
|i〉A|i〉B. (6.29)

The n-fold tensor product |ψ〉⊗nAB reads,

|ψ〉⊗nAB =
∑

x1,x2,...,xn

√

p(x1)p(x2)...p(xn)|x〉A|x〉B. (6.30)

where x = x1x2...xn. The entanglement distillation of pure states is strikingly similar to
the distillation of classical correlations from a noiseless probability distribution. Here
we need to construct a bijection assigning an |i〉 to each |x1x2...xn〉 preserving the
quantum coherence and being implementable by local operations and communication.
It is easy to see that the optimal solution is to assign to each i a typical sequence of x
which gives the bound R < S(ρ). Having 2nR| > 2nS(ρ) will oblige us either to assign
some i to a non-typical sequence x or to implement mappings, such as |x〉|x〉 → [|ii〉+
|i′i′〉]/

√
2, which are impossible by local operations as they generate entanglement.

Achievability

B 1

B 2

B 3

B 4

aU

ψ

ψ

ψ

ψ
A 2

A 1

A 3

A 4

ρnS(  ) ebits

bU

Alice Bob

Figure 6.5: Applying Schumacher compression on each side to n copies of a bipartite
pure state we obtain 2nS(ρ) Bell pairs |Φ+〉.

Once we understand that the compression operation Cn preserves the entanglement
between the system Q and the reference P it is easy to generalize it to the distillation
of entangled bipartite pure states, by applying a projection on the typical subspace on
both locations A and B, as shown in Fig. 6.5. We obtain a maximally entangled state
(all the Schmidt coefficients are equal) of rank 2nH(λx) = 2nS(ρ), which is equivalent to
nS(ρ) ebits.
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Classical Correlations

By a similar reasoning as the one used for entanglement distillation one can prove that
the maximal amount of classical correlations that can be extracted from the n-fold
tensor product |ψ〉⊗n are nS(ρ) bits, which can be reached by applying a projective
measurement over the Schmidt basis at each side.

6.5 State Merging

Consider an i.i.d. source which distributes a n product bipartite states ρAB between
Alice (A) and Bob (B). In order to simplify the discussion we assign a reference
system E that purifies the states ρAB, as shown in Fig 6.6, where E can be seen as the
environment.

E

BA

Alice

Reference

Bob

Figure 6.6: An i.i.d. source distributes a n product bipartite states ρAB between Alice
(A) and Bob (B). We assign a reference system E that purifies the states ρAB.

Similarly to the classical ”data merging”, at the end of the quantum ”state merg-
ing” protocol Bob has control of the whole joint state ρAB. There are two important
differences with the classical case. Firstly, in the quantum case Alice has to erase her
state in the process, as we have to fulfill the no-cloning theorem. Secondly, in some
cases (S(A|B) < 0) the protocol generates entanglement.

As in the classical case, the quantity related to state merging is the conditional
entropy S(A|B), the interpretation being different if the conditional entropy is positive
or negative. During the state merging protocol either we need to expend quantum
communication (S(A|B) > 0) or we are able to generate entanglement (S(A|B) < 0).
To quantify the entanglement generated we define the coherent information I(A〉B) =
−S(A|B).

Theorem 9 (Data Merging) Suppose (A,B) is an i.i.d. distributed source shared
by Alice (A) and Bob (B). Suppose R > S(A|B), then there exists a reliable protocol
that succeeds to transfer A from Alice to Bob either by using on average R qubits
of noiseless communication (S(A|B) > 0) or distilling I(A〉B) e-bits of entanglement
(S(A|B) < 0) on average by using S(A:E) bits of classical communication. Conversely,
if R < S(A|B) the data merging will not be reliable.

The Optimal Rates

The proof of R > S(A|B) is strikingly similar to the classical case. The key idea
is that the initial entanglement between two partners sharing a pure bipartite state
cannot increase by local operations and classical communication (LOCC) and sending
R qubits increases the entanglement at most by R e-bits. We separate the proof in two
different cases depending on the sign of S(A|B).
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Positive Conditional Entropy

As in the classical case we regroup Alice and the Reference into a single partner, see
Fig 6.7. Using the entropy as a measure of entanglement of a pure state (section 6.4)

E

B

A

A

E

Reference

Alice Bob

communication

B

Bob

Alice

Reference

nR qubits of

inI
I out

Figure 6.7: Alice sends R qubits of quantum communication to Bob in order to give Bob
access to the joint state (A,B). Alice and the Reference are inside a dashed rectangle
to stress that for technical reason of the proof they are considered as a unique partner.
At the beginning of the protocol B is entangled with (A,E) where at the end it is only
entangled with E.

the initial entanglement between Bob and Alice+Reference reads,

Ein = S(B). (6.31)

After Alice has sent R qubits through a quantum noiseless channel to Bob and suc-
cessfully implemented the state merging protocol, the final entanglement between Bob
and Alice+Reference reads,

Eout = S(A,B), (6.32)

as at the end of the merging Bob has the full state ρAB. Because communicating R
qubits can increase at most the entanglement by R e-bits 2, we obtain the bound,

Ein +R ≥ Eout, (6.33)

which gives R > S(A|B).

Negative Conditional entropy

Here the initial situation is similar, but the protocol changes as it will generate entan-
glement. As shown in Fig. 6.8, by applying local operations (EA⊗EB) after a successful
state merging Alice and Bob share R e-bits of entanglement and Bob has on his side
the state ρAB which is entangled with the reference, The final entanglement between
Bob and Alice+Reference then reads,

Eout = S(A,B) +R. (6.34)

Because the entanglement cannot increase through local operations and classical com-
munication

Ein ≥ Eout, (6.35)

we get the lower bound R ≤ I(A〉B) = −S(A|B).

2Sending R half of Bell pairs through a quantum noiseless channel is the optimal solution.
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Figure 6.8: At the same time that Alice merges her system A with Bob’s system B
they succeed to generate R e-bits of entanglement (system (A′, B′)).

Achievability

The proof works on the asymptotic limit where Alice and Bob share n realizations of
the joint distribution: ρ⊗nAB.

Positive Conditional Entropy

The solution for the case S(A|B) > 0 is a trivial generalization of the classical case.
Alice divides her typical subspace TA into 2nS(A|B) subspaces and maps each subspace
into a given single letter message |i〉. After sending |i〉, which costs her R qubits on
average, Bob can reconstruct ρ⊗nAB from ρ⊗nB and |i〉. The only subtlety appearing in
the quantum case is that the operation must preserve the coherent superpositions and
Alice must erase her state in the process.

Negative Conditional Entropy

Let us summarize the proof of [59, 109]. Alice decorrelates her quantum system A
from Eve by applying an incomplete measurement that maps A = A1, A2, ..., An into
a subspace Ã of dimension 2nI(A〉B) with measurement outcome j of rank nS(A:E).
After Alice decorrelation operation, given the outcome j, the tripartite state reads
|Ψj〉

ÃBE
. Where Alice and Eve system reads,

ρ
ÃE

= τ
Ã
⊗ ρE, (6.36)

where τ
Ã

is a maximally mixed state of dimension 2nR. Then Alice communicates j to
Bob using nS(A:E) bits of classical communication. Because Bob holds the purification
of ρ

ÃE
(he controls modes B = B1, B2, ..., Bn and knows the result j of Alice’s mea-

surement) and all the purifications are equivalent up to a local isometry (see appendix
A), there is a U j

B
: B → B̃B̂B such that

(I
ÃE

⊗ U j
B

)|Ψj〉
ÃBE

= |Φ+〉⊗nR
ÃB̃

⊗ |Ψ〉
B̂BE

, (6.37)

as |Φ+〉ÃB̃ is a valid purification of τ
Ã

and |Ψ〉
B̂B

of ρE. We observe that the merg-
ing protocol succeeds to send Alice’s system to Bob at the same time that we distill
nI(A〉B) ebits. In the process Alice had to communicate nS(A:E) bits to Bob in or-
der to tell Bob which U j

B
to apply. The protocol can then be summarized using the

following resource inequality,

S(A:E)[c → c] + {qq} ≥ I(A〉B)[qq]. (6.38)
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I(A>B) e−bits of entanglement

BobAlice

Figure 6.9: Alice applies a partial measurement that maps A into Ã (dimension
nI(A〉B)) and outputs j (rank nS(A:E)). Then Alice communicates j to Bob who
applies a unitary operation U j

B
that allows distill him to nR ebits.

A Family of Protocols

As shown in [1], the previous entanglement distillation protocol can be made fully quan-
tum by replacing the communication of nS(A:E) classical bits by sending nS(A:E)/2
qubits through a quantum noiseless channel. Alice applies a Schumacher compression

bUj

B 1

B 2

B 3

B 4

ρAB

ρAB

ρAB

ρAB

aU

A 1

A 2

A 3

A 4

Alice

nS(A:B)/2 e−bits of entanglement

Bob

nS(A:E)/2 qubits communication

Figure 6.10: Alice applies a Schumacher compression on her system A, subsequently
applies a given unitary operation UA, and factors the output in two subsystems A1

and A2 of size nR1 = S(A:B)/2 and nR2 = S(A:E)/2 qubits, respectively. She sends
A2 to Bob who applies a local isometry UA2B : A2B → B1B̂B distilling in the process
nR ebits.

on her system A (size nS(A) qubits) and subsequently applies a given unitary opera-
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tion UA
3 and factors the output in two subsystems A1 and A2 of size nR1 and nR2

qubits, respectively. By sending A2 to Bob Alice completely decorrelates A1 from E,
if Ua is chosen properly. After Bob receives A2 he has a purification of the system
ρA1

⊗ ρE, then by applying a local isometry UA2B : A2B → B1B̂B he can transform
the tripartite system into

(IA1E ⊗ UA2B)|Ψ〉ABE = |Φ+〉⊗nR1

A1B1
⊗ |Ψ〉

B̂BE
. (6.39)

Because sending nR2 qubits of communication cannot increase the entanglement
by more than nR2 e-bits, and nR1 being the number of distilled e-bits at the end of
the protocol, using similar techniques as before we get the inequality,

R2 + S(B) ≥ S(A,B) +R1. (6.40)

Because the sizes of A1 and A2 correspond to A we have the constraint,

R1 +R2 = S(A). (6.41)

Combining equations (6.40) and (6.41) we obtain R1 ≤ S(A:B)/2 and R2 ≥ S(A:E)/2,
which gives the following resource inequality,

1

2
S(A:E)[q → q] + {qq} ≥ 1

2
S(A:B)[qq]. (6.42)

This is called the mother resource inequality and generates other known quantum
protocols by appending (a) or prepending (p) either the teleportation (TP) protocol
[21]

2[c→ c] + [qq] ≥ [q → q], (6.43)

or the dense coding (DC) protocols [22]

[q → q] + [qq] ≥ 2[c→ c], (6.44)

as shown in [58]. The three children of the mother protocol are, a noisy version of
teleportation

S(A:B)[c → c] + {qq} ≥ I(A〉B)[q → q] : (a − TP), (6.45)

a noisy version of dense coding

S(A)[q → q] + {qq} ≥ S(A:B)[c → c] : (a − DC), (6.46)

and one-way entanglement distillation,

S(A:E)[c→ c] + {qq} ≥ I(A〉B)[qq] : (p − TP), (6.47)

which is exactly the protocol presented before.

Quantum Channel Capacity

Previously we were considering a static scenario where a bipartite source distributed a
given quantum state ρAB to Alice and Bob and subsequently they applied entanglement
distillation to extract e-bits. Here we are going to study a dynamic scenario where the
source (|ψ〉AA′) is located at Alice’s site and Alice sends the system A′ through the

3For more details on how to construct UA see [1].
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quantum channel N to Bob. The previous mother protocol can be shown to have a
source-channel dual called the father protocol

1

2
S(A:E)[qq] + {q → q} ≥ 1

2
S(A:B)[q → q], (6.48)

that can be deduced from the mother protocol as explained in [1]. The father protocol
has two children, the entanglement-assisted classical information transmission

S(A)[qq] + {q → q} ≥ S(A:B)[c → c] : (a − DC), (6.49)

and the quantum communication protocol,

{q → q} ≥ I(A〉B)[q → q], (6.50)

which can be found by prepending the entanglement distribution [q → q] ≥ [qq] 4 to
the father protocol.

Analogy with Classical Communication In the classical communication through
noisy channels ({c→ c}), one can get rid of the noiseless channel ([c→ c]) used in the
error correction by selecting a proper code Cl. Similarly, in the quantum communication
scenario we can get rid of the 1

2S(A:E) ebits by using the protocol described in [59],
inspired on the secret key distillation presented in next chapter.

Quantum Capacity

For a given source-channel pair {|ψ〉AA′ ,N}, Alice’s and Bob’s final state reads

ρAB = (IA ⊗NA′→B)|ψ〉AA′ , (6.51)

The coherent information I(N , ρ) = I(A〉B), where ρ = TrA[|ψ〉〈ψ|AA′ ], gives the
amount of entanglement that can be distributed among the channel using i.i.d. sources.
Optimizing among the different i.i.d. sources for a fixed channel N we obtain the i.i.d.
quantum capacity

C1 = max
ρ

I(N , ρ). (6.52)

One could expect, by analogy with the classical case, that C1 gives the optimal capacity
of the quantum channel. Unfortunately this is not the case in quantum information as
shown in [61, 179] for very noisy depolarizing channels and more recently in [185] for
general depolarizing channels. This clearly shows that i.i.d. sources are not sufficiently
general. The most general definition of the capacity reads,

C = lim
n→∞

1

n
max
ρn

I(N⊗n, ρn), (6.53)

where we must consider the behavior of the channel on input states entangled across
many uses (ρn) .

6.6 Classical Communication

In this section we will derive how to distribute classical correlations through quantum
channels. In order to simplify the discussion we use the entanglement-based description
of communication over quantum channels, as shown in Fig. 6.11. After Alice and
Bob measurements, the joint state (a, b) being completely classical (diagonal density

4Which is trivially implemented by sending an e-bit through a noiseless channel.
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Figure 6.11: Alice source is modelled by combining an entanglement source |ψ〉AB0

and a POVM measurement MA. Alice’s message B0 is sent through the quantum
channel, which is modeled by an unitary interaction UBE . Finally Bob applies a POVM
measurement MB on B.

matrix), the correlations between Alice and Bob are given by the mutual entropy S(a:b).
Sometimes we will use the notation

I(ρAB;MA,MB) = S(a : b), (6.54)

to stress that the joint probability distribution (a, b) has been obtained by applying
POVMs MA and MB on the bipartite state ρAB = I ⊗N (|ψ〉AB0

).

Accessible Information

If we restrict Bob’s measurements to individual (product) measurements (MB = M⊗n
B )

over each message of the i.i.d. source sent by Alice through the quantum channel, as
in Fig. 6.12, the optimal mutual information that both partners can reach reads,

A 1
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A 4

a1
U a

U a

U a
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a3
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b1
U b
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U b

b2
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Ψ

Ψ

Ψ
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N
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N

AB

AB

AB

AB

Bob

Figure 6.12: Alice generates an i.i.d. source by applying individual POVM measure-
ments over n copies of an entangled state. After sending half of the modes through the
quantum channel Bob applies an individual measurement over each signal.

Iacc(ρAB ;MA) = max
MB

I(ρAB;MA,MB), (6.55)

which is called the accessible information. Optimizing over the possible C-Q sources
S (the best combination entangled state+measurement S = {|ψ〉AB0

,MA}) we obtain
the product states and product measurement capacity

C11(N ) = max
S

Iacc(I ⊗N (|ψ〉AB0
);MA). (6.56)

The accessible information can be very difficult to calculate as it needs an optimization
over all the different possible measurements. Interestingly a simpler quantity called
the Holevo bound gives a useful upperbound.
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Holevo Bound

For a given source {p(a), |ϕ〉B0
} and for a fixed measurement MB on Bob side, Alice

and Bob mutual entropy is upperbounded by the so-called Holevo bound,

S(a : b) ≤ S(a:B) = S(ρB) −
∑

a

p(a)S(ρaB). (6.57)

S(a:B) being a function of the quantum state B preceding the measurement, it does
not depend on Bob’s measurement MB. The accessible information is then also up-
perbounded by S(a:B). Interestingly, the calculation of S(a:B) is strikingly simple as
it only depends on the von Neumann entropies of Bob’s state ρB and of Bob’s state
conditioned on Alice data a (ρaB).

The proof of the Holevo bound can be made strikingly simple by combining the
physical model of measurement, entanglement-based description of sources (see ap-
pendix A) and the strong subadditivity of von Neumann entropy.

Proof

Consider a quantum bipartite state ρAB shared by Alice and Bob, as shown in Fig.
6.13. Suppose that after receiving mode B, Bob applies the quantum operation T .

B

Bob

C

C

T

BA
AB0

ρ

Figure 6.13: Alice and Bob share a quantum state ρAB. Bob applies a quantum
operation T over mode B which can be modeled by applying a unitary operation UBC
on B and an ancillary system C.

Using the physical description of a quantum operation (see appendix A) we can model
T by applying a unitary operation UBC on B and an ancillary system C. Without loss
of generality we can consider that the ancilla is initially decorrelated from the bipartite
state (ρABC = ρAB ⊗ ρC) giving

S(A:B) = S(A:B,C) (6.58)

where we used S(A,C) = S(A) + S(C) and S(A,B,C) = S(A,B) + S(C) as C is
decorrelated from A and B. Because a unitary interaction does not increase the entropy
of a system (the eigenvalues do not change) we have,

S(A:B,C) = S(A:B′, C′) = S(A:B′) + S(A:C′|B′)
︸ ︷︷ ︸

≥0

. (6.59)

After discarding the ancilla C′ and using the strong subadditivity of the entropy we
finally obtain

S(A:B′) ≤ S(A : B). (6.60)



6.6. CLASSICAL COMMUNICATION 129

This result being true for any quantum system on Alice side, it holds also when Alice’s
state is the result of a POVM measurement (ρaB),

S(a:B′) ≤ S(a : B). (6.61)

Measurements MB being a subclass of the existing quantum operations T that Bob
can apply, as explained in appendix A, they must satisfy equation (6.61), giving the
Holevo bound (B′ = b).

Achieving the Holevo Bound

Unfortunately the accessible information does not generally achieve the Holevo bound.
One can see that in order to saturate the Holevo bound using product measurements the
states ρaB must have orthogonal support, which is not generally satisfied. Interestingly
one can saturate the Holevo bound if we allow Bob to apply collective measurements,
which are more general than product measurements.

HSW Codes

The technique used to achieve the Holevo bound is pretty similar to the encoding used
in the communication over classical channels.

Correlation Distillation

In order to saturate the Holevo bound Alice divides her set of typical sequences Ta into
2nS(a|B) non-overlapping subset Cl of size 2nS(a:B), the so-called HSW codes [104, 171].
Bob assigns a collective POVM measurementMl to each code Cl, where each POVMMl

allows him to determine which of the 2nS(a:B) sequences of Cl was really measured by
Alice, see [136, 97] for a detailed description of how to construct such a measurement.
In order to extract perfect correlations Alice first applies M⊗n

A to the n modes A and
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nS(a|B) bits of communication

Figure 6.14: Alice i.i.d. C-Q source can be modeled by applying a POVM over each
entanglement source. In full generality in order to reach nS(a:B) bits of correlation
Bob would have to apply a collective measurement over all his received states.

communicates to Bob in which code Cl lies her measurement outcome a = a1a2...an,
see Fig. 6.14. Knowing in which code Cl lies a, Bob applies the corresponding POVM
(Ml) which allows him to determine a without error.
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Correlation Distribution

Similarly as in the case of quantum communication or Shannon communication, the cor-
relation distillation protocol can be transformed into a correlation distribution without
the need of a supporting noiseless channel. To do so, Alice actively selects a given HSW
code Cl among all the typical sequences of Ta. By just sending sequences among this
code and Bob applying the corresponding POVM Ml Alice succeeds to send nS(a:B)
classical bits of correlation to Bob efficiently.

Classical Communication Capacity

Optimizing over the possible C-Q sources, or equivalently searching the best combi-
nation entangled state+measurement S = {|ψ〉AB0

,MA}, we obtain the product states
and collective measurement capacity

C1∞(N ) = max
S

S(a : B). (6.62)

Note thas by the Holevo bound this is an upperbound of the product states and product
measurement capacity C11 defined in equation (6.56).

An even more general scenario of correlations distribution allows Alice to use non-
i.i.d sources. In this scenario the capacity reads,

C(N ) = lim
n→∞

1

n
C11(N⊗n). (6.63)

An important open question in quantum information theory is whether the conjecture
C1∞(N ) = C(N ) is true. This is called the additivity of the ”classical capacity of
quantum channels” problem, which is related to other conjectures in quantum infor-
mation [178]. Up to now, there is only a proof for some channels such as the unital
channels [117] and entanglement-breaking channels [177].

6.7 Continuous-Variable Entropy

Any N -mode quantum state of a continuous variable system is completely described
by the density operator

ρ =

∞∑

n,m=0

ρn,m|n1, ..., nN 〉〈m1, ...,mN |. (6.64)

The von Neumann entropy (6.3) of ρ is calculated by calculating the Shannon entropy
of the eigenvalues of ρ, as described previously. Contrary to the Shannon entropy
of continuous distributions here the entropy is well-defined, as Fock basis is infinite
but discrete. As in the case of discrete variables one can define quantum conditional,
mutual and relative entropies for continuous variable systems. In the following we will
restrict to the case of Gaussian states as it is the only family of states that we use in
the following chapters.

Gaussian States

The displacement being a unitary operation and the entropy being invariant under
unitary operations 5, we have

S(ρ) = S(D(α)†ρD(α)). (6.65)

5As it is defined using a trace operation (S(ρ) = −Tr[ρ log ρ]) and the trace is invariant under
unitary operations.
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It is then trivial to see that the mean value does not play any role in the calculation
of the entropy. We can then restrict ourselves to the family of states with null mean
value. As we explained in Chapter 2 every Gaussian state ρG with null mean value and
covariance matrix γ can be decomposed into a tensor product of thermal states λkI by
applying a proper symplectic transformation S,

SγST =

N⊗

k=1

[
λk 0
0 λk

]

, (6.66)

where the symplectic eigenvalues are the solution of a polynomial with the symplectic
invariants as coefficients, as described in Chapter 2.

Symplectic transformations being a subclass of unitary operations, the von Neu-
mann entropy of ρG and

⊗

k λkI must be equal. This proves that the problem of
calculation the von Neumann entropy of a N -mode Gaussian state reduces to calculat-
ing the von Neumann entropy of a product of N thermal states λkI,

S(ρG) =

N∑

k=1

S(λkI). (6.67)

Thermal State

The density operator of a thermal state reads,

ρ =

∞∑

n=0

〈n〉n
(〈n〉 + 1)n+1

|n〉〈n|, (6.68)

where 〈n〉 is the mean number of thermal photons in the state. The density matrix
being diagonal on the Fock basis, its von Neumann entropy reads

S(ρ) = − 1

〈n〉 + 1

∞∑

i=0

(

〈n〉
〈n〉 + 1

)i

log

[
( 〈n〉
〈n〉 + 1

)i 1

〈n〉 + 1

]

= − 1

〈n〉 + 1

∞∑

i=0

(

〈n〉
〈n〉 + 1

)i
[

i log〈n〉 − i log(〈n〉 + 1) − log(〈n〉 + 1)
]

(a)
= − 1

〈n〉 + 1

[

〈n〉(〈n〉 + 1)
(
log〈n〉 − log(〈n〉 + 1)

)
− (〈n〉 + 1) log(〈n〉 + 1)

]

= (〈n〉 + 1) log(〈n〉 + 1) − 〈n〉 log〈n〉, (6.69)

where in (a) we used
∑∞
i=0 x

i = 1/(1 − x) and
∑∞
i=0 ix

i = x/(1 − x)2.
Having in mind that the relation between the mean photon number and the sym-

plectic eigenvalue of a thermal state is λ = 2〈n〉 + 1 we obtain,

S(λkI) = G[(λk − 1)/2], (6.70)

where
G(x) = (x+ 1) log(x+ 1) − x log x. (6.71)
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Chapter 7

Quantum Key Distribution

7.1 Introduction

Armies, governors, diplomats and politicians have always tried to secure their com-
munications from a potential adversary. This has always been accompanied with a
willing of intercepting the adversary secret messages, in order to place theirself in an
advantageous strategic position. This has generated a continuous demand of improv-
ing secret coding methods as well as decoding techniques all along the human history.
From the simple methods used during the Antiquity based on simple transpositions of
the alphabet to modern methods based on the difficulty of solving some mathematical
problems such as factoring large numbers on a usual computer, the history of cryp-
tography has been a continuous competition between cryptographs developping novel
coding techniques and others trying to crack them. See reference [184] for a fascinating
introduction to the history of cryptography. The development of telecommunications
all along the 20th century came along with an increasing demand for treating huge
amounts of data. In order to deal with such a quantity of data the encoding and
decoding techniques were automatized, first by using mechanized engines and later
with computers. During the last decades of the 20th the demand for secure commu-
nications has expanded to new domains of activity such as financial and commercial
communications, a phenomenon that has been amplified with the development of the
Internet.

All the cryptographic techniques from the simplest to the most evolved one have a
similar working procedure. Two partners, usually called Alice and Bob by the crypto-
graphic community, want to communicate a message (the plaintext) secretely from a
potential eavesdropper, usually called Eve. Alice applies an encoding algorithm having
as inputs the plaintext and an encoding key. This turns the plaintext into a cyphertext
non-understandable to Eve. Then Bob decodes the cyphertext sent by Alice using a
decoding algorithm with the help of a second key. Alice and Bob keys do not need
to be the same, as in asymmetric cryptography used in public encryption techniques
such as RSA [160], which is the encoding algorithm most commonly used nowadays.
In RSA the encoding key (Alice) is public, allowing anyone to encode a message and
send it to Bob. On the other hand the decoding key is only known by Bob, so he is
the only one able to decode the message.

Unconditional Security

All the encryption techniques developed in the past have been sooner or later broken,
usually requiring the effort of large groups of brilliant people working intensively during
long periods of time. The cracking of the Enigma encoding machine of the German

133
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army during the Second World War by the Allies scientists working at Bletchley Park
[184] is such an example. Modern cryptographic techniques do not escape to this
problem. Most of them being based on the difficulty of solving quickly enough some
mathematical problems, such as factorizing large numbers in RSA [160], there is no
guarantee that one day we will found an algorithm that solves those problems in an
efficient time.

One can rise the following question: ”does it exist an encoding technique that
allows for a completely unbreakable secure communication?”. The surprising answer
is yes, the technique is called the One-Time Pad, where the key is the same length
as the plaintext. If the key is secure, truly random, and never reused, the cipher is
unbreakable. The protocols is extremely simple as show in Fig. 7.1: Alice applies a
modular addition to the plaintext pn and the secret key kn (cn = pn⊕kn) and sends the
cyphertext cn to Bob. After receiving the string cn Bob undoes the modular addition
pn = cn ⊕ kn, recovering the plaintext pn. The idea of the protocol is to transform
the plaintext into a completely noisy message non-understandable by Eve by applying
random noise. In order to decode the message Bob needs to know exactly the noise
added by Alice, the secret key.

Public Channel

Key:     11010010010110Key:     11010010010110

Plaintext:     01101011100101

Cyphertext:     10111001110011

Cyphertext:     01101011100101

Plaintext:     10111001110011

BobAlice Eve

Figure 7.1: Alice applies a modular addition to the plaintext pn and the secret key kn

(cn = pn ⊕ kn) and sends the cyphertext cn to Bob. After receiving the string cn Bob
undoes the modular addition pn = cn ⊕ kn, recovering the plaintext pn.

In 1949 Shannon [176], fixed the conditions to have ”perfect secrecy” using his
recently developed information theory [175]: Alice encodes the plaintext X using a
key K and an encoding algorithm C = f(X,K) that outputs the cyphertext C that
she later sends to Bob. In order to have perfect security we need that Eve does not
gain any information by knowing the cyphertext sent by Alice. This translates in the
Information Theory language into the condition

H(X |C) = H(X), (7.1)

where we demand that the uncertainty on the plaintext knowing the cyphertext being
equal to the initial uncertainty on the plaintext. The conditional entropy H(X |C) can
be rewritten as

H(X |C) = H(X) +H(C|X) −H(C). (7.2)

In the case of One-Time Pad, the modular addition cn = xn ⊕ kn implies H(C|X) =
H(K|X), the plaintext and the key been independent, we finally obtain H(C|X) =
H(K). By construction of the protocol we have H(C|K) = H(X |K) = H(X), which
together with the concavity of entropy (H(C|K) ≤ H(C)) gives H(C) ≥ H(X). Fi-
nally, in order to satisfy the condition (7.1) we need the secret key entropy being larger
than the plaintext amount of information,

H(K) ≥ H(X). (7.3)

The best way of implementing One-Time Pad is Alice applying compression to his
message up to nH(X) bits and then using nH(X) bits of secret key to generate the
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cyphertext by applying a modular addition to the plaintext and the secret key. In [176]
Shannon proved that all the protocols achieving ”perfect security” are equivalent to
the One-Time Pad.

The Problem of Distributing the Secret Key

If we inspect the One-Time Pad protocol we see that the ”perfect security” is based on
a cornerstone assumption, ”Alice and Bob initially share a secret key”. In practice it
is impossible to have a guaranteed perfectly secure secret key distribution by classical
cryptographic techniques, we have to trust some messenger or communication channel
that distributes the secret keys between Alice and Bob. Despite that, One-time Pad
has been widely used, usually combined with a public cryptographic protocol that
generates the secret key.

Surprisingly, at the middles of the 80’s Bennett and Brassard [20] showed that the
secret key distribution can be made ”perfectly” secure if one uses Quantum Key Dis-
tribution (QKD) techniques. The security of QKD is based on the no-cloning theorem
[199] that shows that it is impossible to perfectly copy ensembles of non-orthogonal
quantum states. Any attack by a potential adversary being detectable by Alice and
Bob as it would disturb the quantum communication signal.

7.2 Classical Key Distribution

Before presenting the theory of Quantum Key Distribution we are going to analyze
a classical analogue, allowing us to present some of the key elements that we will
later generalize in QKD. We will show how two partners can distill secret bits from a
bipartite distribution correlated with the potential eavesdropper Eve by using public
communication over a classical chanel.

Definition of Resources We will use the notation [ss] for the static resource corre-
sponding to a secret bit shared between Alice and Bob, and {ss} will denote a bipartite
correlated distribution shared by Alice, Bob and the potential eavesdropper Eve. The
dynamical resource [s→ s] corresponds to the distribution of a secret bit between Alice
and Bob, and {s→ s} to a eavesdropped channel.

Static Scenario

Consider three parties Alice, Bob and the eavesdropper Eve sharing a tripartite dis-
tribution (X,Y, Z) generated by an independent and identically distributed (i.i.d.)
source with distribution p(x, y, z), as shown in Fig. 7.2. In order to extract a secret
key (unknown by Eve) from their shared data, Alice and Bob have to apply secret
key distillation. In what follows we will concentrate on one-way distillation protocols
where one of the trustfull partner’s data (Alice or Bob) is used as reference to generate
the key and the communication travels on one single direction.

Secret Key Distillation Helped by a Private Channel

In order to simplify the proof let’s first consider that Alice and Bob have access to prior
secret keys and a private channel. A private key being a perfectly correlated sequence,
the first thing that Alice and Bob have to do is to distill a noiseless correlated sequence.
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YX

Alice Bob
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Figure 7.2: Alice, Bob and the eavesdropper Eve sharing a tripartite distribution
(X,Y, Z) generated by an i.i.d. source.
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a)  After Error Correction b)  After Privacy Amplification

Figure 7.3: a) After the error correction Alice and Bob data are perfectly correlated, but
remain correlated to Eve. b) Privacy amplification allows Alice and Bob to completely
decorrelate their joint data from Eve.

Error Correction To do so they can decide to fix Alice data as the reference and
apply data merging as explained in Chapter 5, by Alice communicating nH(X |Y ) bits
to Bob through a private channel (nH(X |Y )[s → s]). After the error correction Alice
and Bob sequences are the same, as shown in Fig. 7.3, generating nH(X) bits of
correlation.

Privacy Amplification After the error correction Alice and Bob data remains cor-
related to Eve data (Z). Alice or Bob could then individually decorrelate their own
data from Eve by using nH(X :Z) random bits as explained in section 5.6, but this
would decrease their shared correlations. To overcome this problem Alice and Bob
use nH(X :Z) shared secret bits (denoted nH(X :Z)[ss]) as input of their decorrelation
protocol. This allows them to decorrelate their data from Eve, as by definition she
has no information on the secret bits and at the same time it preserves their joint
correlations as both partners apply the same deterministic operation.

Secret Key Rate At the end of the protocol Alice and Bob share a perfectly corre-
lated distribution (X,X) unknown by Eve which generates nH(X) bits of secret key
(nH(X)[ss]). The protocol can be resumed using the following resource inequality,

H(X |Y )[s→ s] +H(X :Z)[ss] + {ss} ≥ H(X)[ss]. (7.4)
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The net gain of secret key reads,

K = H(X) −H(X |Y ) −H(X :Z) = H(X :Y ) −H(X :Z), (7.5)

which corresponds with the well known result of Csiszar and Korner [52]. A symmetric
counterpart exists if we interchange Alice and Bob roles, Bob data Y being now the
reference,

K = H(X :Y ) −H(Y :Z). (7.6)

Secret Key Distillation

Following the results of section 5.5, Alice divides her typical set TX into 2nH(X|Y ) codes
Cl of size 2nH(X:Y ). When the secret key rate K is positive (K = H(X :Y )−H(X :Z) >

H(X:Y)

H(X:Z)

H(X)

=Typical sequenceCode (l)

Code (l,s)

Figure 7.4: Alice divides the Typical set TX into 2nH(X|Y ) codes Cl of size 2nH(X:Y )

labeled by l (error correcting codes). Each code Cl is again divided into 2nK =
2n[H(X:Y )−S(X:Z)] privacy amplifications codes Cl,s of size 2nH(X:Z) labeled (l, s), where
s encodes the secret key.

0), each code Cl can be divided into 2nK codes Cl,s of size 2nS(X:Z), as shown in Fig.
7.4. Eve in order to estimate xn needs Alice revealing in which of the 2nH(X|Z) codes
Cl,s lies xn. Alice by revealing just l′ during the error correcting allows Bob to perfectly
estimate xn but leaves Eve on the uncertainty of knowing on which of the 2nK codes
Cl′,s lies xn. The secret key being just the information on s which is known by Alice
and Bob but unknown by Eve, generating nK secret bits.

One can then get rid of the prior secret key and the use of a private channel without
error using the preceding technique that can be resumed in the following resource
inequality,

H(X |Y )[c→ c] + {ss} ≥ (H(X :Y ) −H(X :Z))[ss], (7.7)

where now the comunication can be done over a public channel without compromising
the security of the key, as in Csiszar and Korner work [52]. If the error correction
is done in the opposite direction (from Bob to Alice) one can derive the symmetric
relation

H(Y |X)[c→ c] + {ss} ≥ (H(X :Y ) −H(Y :Z))[ss]. (7.8)

The big problem of classical key distribution is that no physical law forbides Eve
from monitoring the communication of the channel and getting the same information as
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Bob receives, which gives a null secret key. Then in order to have a positive secret key
we need to do some assumptions on Eve capability to extract information. Hopefully,
Quantum Key Distribution (QKD) techniques make possible the distribution of a secret
key because of the physical constraint imposed on Eve by the no-cloning theorem [199].

Secret Key Distribution

One can transform the previous static protocol of secret key distillation into a secret
key protocol if Alice sends a copy of the data generated by her sourceX to Bob through
a noisy channel, Bob receives a noisy version Y of X and Eve extracts information Z
by monitoring the channel, as shown in Fig. 7.5. Subsequently Alice and Bob apply

X Y

X’

N

n uses

Alice Bob

Z

Eve

Figure 7.5: Alice sends a copy of the data generated by her source X to Bob through
a noisy channel. Bob receives a noisy version Y of X and Eve extracts information Z
by monitoring the channel.

error correction and privacy amplification to their data in order to extract a secret key.

7.3 Quantum Key Distribution

A Quantum Key Distribution protocol [92] is divided in two steps; Firstly, a quantum
communication part where Alice prepares and sends quantum signals through a quan-
tum channel to Bob, who measures them. This is usually implemented over optical
fibers in order to benefit from the huge speed and low decoherence of light. Secondly, by
running a classical post-processing protocol through a classical authenticated channel
Alice and Bob extract a secret key from their correlated data. In the following we will
describe a general QKD protocol for binary alphabets that can be easilly generalized
to continuous variables.

Quantum Communication Step

Before presenting a general prepare-and-measure QKD protocol, we are going to intro-
duce a simple example, the first proposed quantum key distribution protocol, called
BB84 [20], where the bits are encoded on a given internal degree of freedom of the
photon, such as the polarization. An alternative encoding system more suited to fiber
transmission (usual telecom fibers does not preserve the polarization) is the so called
time-bin encoding [92], where the bits are encoded in the time delay of the photon plus
a phase. The encoding is achieved by using an interferometer with arms of different
lengths combined with a controlled phase shift on one of both arms.
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BB84

In BB84 Alice first generates two random bits for each photon that she will send to
Bob. The first bit (xi) will be used to generate the secret key and the second (bi) is used
to choose which basis Alice would use to encode the bit xi, either the computational
basis {|0〉, |1〉} or the conjugate basis {|+〉 = [|0〉+ |1〉]/

√
2, |−〉 = [|0〉 − |1〉]/

√
2}. The

state sent to Bob depends on both bits xi and bi such that {|0〉, |−〉} encodes xi = 0
and {|1〉, |+〉} encodes xi = 1. Finally, Alice sends the quantum state to Bob who
measures either the computational or conjugate basis depending on the value of his
own random bit b′i, obtaining the result yi.

x i

bi

y i

b’i

1
+
−

Alice Bob

B’

Channel

Eve
QM

Random

0

Figure 7.6: Alice generates two random bits that defines which state among
{|0〉, |1〉, |+〉, |−〉} she sends to Bob through the quantum channel. Bob randomly
chooses which basis (b′) he is going to measure. The state sent by Alice decohered
after the interaction with Eve ancilla which is stored in a quantum memory (QM).

The random switching between two conjugate bases is crucial in order to secure the
protocol against intercept-resend attacks by Eve. If Alice was encoding always on the
same basis Eve could just measure the right basis and then re-prepare and send the
same state to Bob. Fortunately, the no-cloning theorem forbids perfectly cloning two
non-orthogonal states (ex: {|0〉 and |−〉} encoding the same bit xi = 0), making any
intercept-resend attack detectable if Alice and Bob change between conjugate bases.
The protocol is built in such a way that Eve having no information on bi, the optimal
attack she can apply is to interact with the signal sent by Alice in order to make an
imperfect clone and keep it on a quantum memory until Alice reveals the chosen basis
to Bob.

Generalization

A general protocol starts by Alice choosing randomly among l different ensembles
El = {pi,l, |ψi,l〉〈ψi,l|}, where pi,l is the probability of sending |ψi,l〉〈ψi,l| once we have
chosen the ensemble l, with all the ensembles El giving the same average state σ,

∀l :
∑

i

pi,l|ψi,l〉〈ψi,l| = σ, (7.9)

in order to forbid Eve from knowing which basis ensemble was chosen. Subsequently
Alice randomly chooses which state |ψi,l〉〈ψi,l| among the ensemble El she will send
to Bob through the quantum channel. The choice of l corresponds to the basis (bi in
BB84) and i to the data that will be used later to generate the secret key (xi in BB84).
In an entanglement-based description of the protocol Alice starts from a pure entangled
state |Ψ〉AB0

, applies a randomly selected POVM measurement Ml which generates
the ensemble El, as explained in Chapter 7, and subsequently sends the system B0 to
Bob through the quantum channel. Once the signal arrives to Bob station, he applies
a randomly selected POVM measurement Nl′ , where each Nk is constructed in order
to optimize the secret key for a given preparation Ek of Alice.
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Most of the QKD protocols, such as BB84, are constructed in such a way that
all the ensembles El are a resolution of the identity σ = I (BB84: |0〉〈0| + |1〉〈1| =
|+〉〈+| = |−〉〈−| = I) and Alice and Bob POVM measurements use the same projective
measurement (Nl′ = Ml =

∑

i |ϕli〉〈ϕli|) on the entanglemen-based description. In the
prepare-and-measure scheme, this is equivalent to Bob measuring the orthogonal basis
which correspond with the ensembles of states sent by Alice. Nearly all of the existing
protocols use either conjugate or mutually unbiased bases, as in BB84, which give no
correlations between Alice and Bob when they use different bases.

Classical Post-Processing Step

Once Alice and Bob have collected a sufficiently large list of correlated data, they
proceed with the classical post-processing step. They first apply sifting, where they
compare Alice encoding basis l and Bob measurement basis l′ and keep only those data
where they have used the same basis. Subsequently they apply parameter estimation,
where by revealing a randomly chosen sample of their data they obtain an estimation
of the parameters of the channel, which allows them to upperbound Eve information
IE . Now they are ready to extract a secret key from the remaining data by using error
correction and privacy amplification [190], using similar techniques as those used in
Section 7.2. The size of the secret key reads,

K = IC − IE −M, (7.10)

where IC is the amount of correlations that Alice and Bob could extract over a noise-
less channel, IE is an upperbound of Eve information and M is the size of the message
disclosed during the error correction. Hence, it is important that the error correction
discloses as little information as possible and that the parameter estimation upper-
bounds correctly Eve’s information.

Choice of the Bases

Alice and Bob choosing their bases randomly implies the loss of a fraction of the
data during the sifting step of the classical post-processing, due to a mismatch of the
selected bases. As an example, in the usual version of BB84 Alice and Bob randomly
select among two conjugate bases using a balanced probability distribution (p(b1) =
p(b2) = 1/2) which forces Alice and Bob to discard half of their data. Interestingly,
an equiprobable distribution between the bases is not compulsory, one can reduce the
amount of data loss by using an unbalanced distribution between bases b1 and b2.
Consider the case where we use basis b1 most of the time (probability P (b1) = 1 − p,
p small) and the conjugate basis b2 is used just to estimate the channel, which in the
entanglement-based description corresponds to a tomographic reconstruction of ρAB

1.
Now the fraction of lost data is reduced to 2p(1 − p) and 1 − 2p of the data is used to
extract the secret key, where 2p2 of the data is used for tomographic reconstruction of
the channel.

In what follows we will consider that Alice and Bob use the optimal single mea-
surement in order to extract a secret key and the rest of measurements are just used
to estimate the channel, it is then enough to analyze the tripartite state corresponding
to a single measurement,

ρaBE =
∑

an

P (an)|an〉〈an|a ⊗ ρa
n

BE
. (7.11)

1Fortunately, usually a fully tomographic reconstruction is not needed, as selecting a proper set of
measuring bases, as in BB84, is enough to have an upperbound of Eve information.
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From ρaBE one can calculate the secret key rate K, which must be corrected by a
prefactor s = 1−2p (K ′ = sK) taking into account the sifting procedure. The price to
pay when we want to increase the prefactor s is that we have to wait for longer times
in order to collect enough statistics to estimate the channel.

One can also avoid losing data (s = 1) if Bob has access to a quantum memory.
Bob just needs to store the quantum signal sent by Alice in a quantum memory until
she reveals the selected ensemble El, after which Bob applies the correct measurement.
Unfortunately, even if quantum memories have been implemented experimentally in
the lab, they are extremely hard to implement, making this alternative unrealistic for
a commercial implementation.

7.4 Security Against Eavesdropping

In quantum key distribution, in order to have unconditional security we evaluate the
secret key rate by upper bounding the information that the adversary (Eve) can acquire
in the worst case scenario. This is typically done under the following assumptions:

1. Eve has no limit in terms of computational power.

2. Eve has full control over the quantum channel, and is only limited in her action
on this channel by the laws of quantum physics.

3. Eve can freely monitor the classical public channel used for key distillation, but
she cannot modify the messages (authenticated channel) 2.

4. Eve has no access to the laboratories (apparatuses) of Alice and Bob.

In order to be unconditionally secure, a QKD protocol must be secure against an
attack where Eve is allowed to prepare any global ancillary system and make interact
it collectively with all the pulses sent by Alice, as shown in Fig. 7.7. After the
communication of n pulses Alice-Bob-Eve tripartite state reads,

ρaBE =
∑

an

P (an)|an〉〈an|a ⊗ ρa
n

BE
. (7.12)

where ρaBE is not necessarily an i.i.d. state ρ⊗naBE as the different pulses sent by Alice
can be entangled by Eve’s interaction.

After having monitored the public communication between Alice and Bob during
the classical post-processing, Eve applies the optimal joint measurement over all her
ancilla, as shown in Fig. 7.7. The security with respect to this attack, called coherent
attack, is very complex to address. Fortunately, it was proven for discrete-variable
QKD in [155] that under the assumption of the symmetry of the privacy amplification
and channel estimation protocols, coherent attacks are not more efficient than collective
attacks.

Coherent Attacks are not More Efficient than Collective Attacks In [155] it
is shown that assuming the channel estimation and the privacy amplification algorithms
being built in a symmetric way, which is generally the case, one can show that collective
attacks are as efficient as coherent attacks. This extremely important result shows that
under some trivial constraint on the post-processing protocol one can restrict the proof
of unconditional security to the class of collective attacks. Interestingly, in collective

2In order to authenticate the channel Alice and Bob need to spend a fixed amount of secret key
per round of the QKD protocol, which is obtained by extracting part of the generated secret key.
Obviously Alice and Bob need a preexisting key provided by the QKD company (which they have to
trust) for their first protocol round.
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Figure 7.7: Eve prepares her ancilla in a global state by applying a joint unitary op-
eration UP to the ensemble of all ancilla. After the interaction of the ancilla with
the pulses sent by Alice, the ancilla are stored in a quantum memory. Once the clas-
sical post-processing is finished Eve applies the optimal global measurement over the
ensemble of ancilla, by implementing a joint unitary UM plus individual measurements.

attacks the tripartite state can be considered being i.i.d. (ρ⊗naBE), which simplifies very
much the calculations, as we can use entropic quantities.

Consider the bipartite ρN
AB

shared between Alice and Bob after Alice sending N
pulses to Bob. In [155, 157] the authors show that assuming that ρN

AB
is symmetric,

after tracing a small fraction of the modes (r ≪ N) the state ρN−r
AB

can be approximated
by a mixture of i.i.d. states,

ρN−r
AB

≈
∫

dσσ
⊗(N−r)
AB (7.13)

with exponentially high precision (on r). Parameter estimation will tell Alice and Bob
which of the different σAB they actually share. One can even relax the symmetric
constraint on ρN

AB
if the privacy amplification is built in a symmetric way [156].

Unfortunately the result of [155] only works for discrete variables. This results can
not be trivially extended to continuous variable systems, due to some technicalities of
taking the limit d → ∞ in the proof. But this problem also arises when we try to
trivially generalize some other information theory proofs to continuous variables, such
as the continuity of the von Neumann entropy, where the problem is solved by adding a
bound on the energy of the system. This leads us to conjecture the equivalence between
coherent and collective attacks for continuous variables in [84].

Collective Attacks

In a collective attack (see Fig. 7.8) Eve prepares her ancillary system in a product
state and each ancilla interacts individually with a single pulse sent by Alice, being
later stored in a quantum memory. The tripartite state then reads,

ρaBE =
[∑

a

P (a)|a〉〈a|a ⊗ ψaBE

]⊗n
. (7.14)

After listening to the public communication between Alice and Bob during the classi-
cal post-processing, Eve applies the optimal collective measurement on the ensemble
of stored ancilla. Alice-Bob-Eve tripartite state being i.i.d., the security analysis of
collective attacks is much more tractable as we can use entropic quantities.
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MU
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Eve Ancillae

Figure 7.8: Eve ancilla are prepared in a product state. After interaction of each
ancilla with a single pulse sent by Alice, the ancilla are stored in a quantum memory.
Once the classical post-processing is finished, she applies a global measurement over
the ensemble of ancilla, applying a joint unitary UM plus individual measurement.

Individual Attacks

If Eve has no access to collective measurements, the optimal attack she can perform
is the so called individual attack, see Fig. 7.9. In an individual attack Eve interacts

Source

Alice Bob

Detector

Eve Ancillae

Eve Individual Measurement

Figure 7.9: Eve ancilla are prepared in a product state. After interaction of each ancilla
with a single pulse sent by Alice, the ancilla are stored in a quantum memory. After
the sifting step of the post-processing Eve applies individual measurement over her
ancilla.

individually with each pulse sent by Alice and stores each ancilla in a different quantum
memory. Contrary to preceding attacks Eve now performs an individual measurement
on each ancilla, just after the sifting procedure but before the classical post-processing.
The tripartite state then reads,

ρabe =
[ ∑

x,y,z

P (x, y, z)|x, y, z〉〈x, y, z|
]⊗n

, (7.15)

where z are Eve POVM measurement results. During the post-processing Eve is limited
to operations on her classical data.

For a given protocol, the upperbound on Eve information is calculated by running
an optimization among all the possible POVM measurements that Eve can apply. For
some protocols implemented over highly symmetric channels, as BB84 over a depolar-
izing channel, Eve individual attacks are as efficient as collective attacks. But this is
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not generally the case, for example for Gaussian protocols over Gaussian channels the
individual attacks perform worse than collective attacks as we will see in Chapters 8
and 9 of this dissertation.

7.5 One-Way QKD Protocols

In this section we are going to present the generalization of the classical protocols
presented in Section 7.2. This family of protocols are called ”One-way protocols” as
the error correction communication through the public authenticated channel is done
in one single direction. We will use an entanglement-based description of the protocols,
similarly as in Chapter 7, in order to simplify the analysis and to stress the similarities
between entanglement distribution and quantum key distribution. One can see that
an e-bit (denoted [qq]) is an stronger resource than a secret bit (denoted [ss])

[qq] ≥ [ss], (7.16)

as a secret bit ([ss]) can be extracted from an e-bit ([qq]) if Alice and Bob measure
their respective system over the Schmidt basis (see Appendix A), where no e-bit can
be obtained from secret bits. In what follows we will restrict our study to collective
attacks by Eve as it is highly probable that they are sufficient to prove unconditional
security.

Secret Key from Entanglement Distillation

Consider the situation presented in Fig. 7.10 where Alice generates n entangled states
|Ψ〉AB0

and sends all systems B0 through a noisy quantum channel N . After the
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Figure 7.10: Alice distributes n entangled states |Ψ〉AB0
through a noisy quantum

channel N . After the distribution Alice and Bob share n copies of a bipartite noisy
entangled state ρAB, which they subsequently transform into nR e-bits, by applying
local operations and classical communication (LOCC).

distribution Alice and Bob share n copies of a bipartite noisy entangled state ρAB,
which they subsequently transform into nR e-bits, by applying local operations and
classical communication (LOCC).

In the preceding chapter we presented the ”state merging protocol” which allows
to distill entanglement using local operation and one-way classical communication (1-
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LOCC) [108, 109], achieving a rate

RDR = I(A〉B) = −S(A|B) = S(B) − S(A,B), (7.17)

where the ”DR” means ”Direct Reconciliation”, as classical communication is done
in the same direction as the quantum communication. Alternatively to this protocol,
there is another protocol based on classical communication going from Bob to Alice
that achieves a rate

RRR = I(B〉A) = −S(B|A) = S(A) − S(A,B), (7.18)

where the ”RR” means ”Reverse Reconciliation”, as classical communication is done
in the opposite direction as the quantum communication. Once Alice and Bob have
extracted nR e-bits they could use them to extract nR secret bit by measuring each
pair of ebits on the same basis. We have then a way of obtaining a secret key rate of
I(A〉B) or I(B〉A) bits depending on the direction of the error correction.

In many discrete variable channels such as the depolarizing channel both rates (DR
and RR) are equal, which is not generally the case. For example, Gaussian protocols
over Gaussian channels give different rates in direct and reverse reconciliation.

QKD with Collective Measurement

If we replace the collective operation on Alice side by individual POVM measurements
at each mode Ai, as shown in Fig. 7.11, we obtain the usual entanglement-based
description of Alice source in an usual prepare-and-measure QKD scheme. The differ-
ence with the usual QKD scheme is that Bob instead of measuring independently each
pulse, he applies a collective measurement over his n modes B = B1, B2, ..., Bn in order
to reach the Holevo bound S(a:B). One can generalize the classical key distribution
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Figure 7.11: If Alice applies individual measurements over each entangled pair, the
scheme becomes an entanglement-based description of Alice preparation of a QKD
protocol. Bob applies joint measurements over all his modes in order to reach the
Holevo bound.

presented in Section 7.2 using the results of Chapter 7.

Error Correction Similarly as in Section 7.2 Alice can use nS(a|B) bits of private
communication (nS(a|B)[s→ s]) to communicate Bob on which HSW code [104, 171]
Cl lies an, which tells Bob which POVM measurement Ml he has to apply in order to
optimally estimate an.



146 CHAPTER 7. QUANTUM KEY DISTRIBUTION

Privacy Amplification Using nS(a:E) secret bits (nS(a:E)[ss]) Alice and Bob can
decorrelate their perfectly correlated data from Eve quantum system, in a very similar
way as in the classical case (see [93] for more details), obtaining nS(a) secret bits
(nS(a)[ss]).

Secret Key Rate One then obtains the following resource inequality,

S(a:E)[ss] + S(a|B)[s→ s] + {qq} ≥ S(a)[ss]. (7.19)

As in the classical case one can get rid of the prior secret bits and private communica-
tion, by dividing each HSW code Cl into 2nK privacy amplification codes Cls, with

K = S(a:B) − S(a:E), (7.20)

obtaining the following resource inequality,

S(a|B)[c → c] + {qq} ≥ K[ss]. (7.21)

Need of Quantum Memories The main difference with classical key distribution
is that in order to reach the Holevo bound Bob has to store his quantum state ρB until
Alice communicates which POVMMl (which code Cl) Bob has to use. In full generality,
in order to implement collective measurements we need quantum memories, which are
very challenging to implement experimentally for one single pulse and impossible for
huge amount of data as used in an usual QKD protocol.

Interestingly, for some important channels where all the ρaB (ρaB) can be diagonalized
on the same basis [148] the use of quantum memories and collective measurements
are not necessary to achieve the Holevo bound as direct individual measurements are
enough. Unfortunately this is not the case for continuous-variable Gaussian channels
when using homodyne measurements, as even squeezed states and coherent states are
non-orthogonal states.

Projective Measurement It is easy to show that in the case of projective measure-
ments on Alice side the previous Direct Reconciliation protocol gives the same rate as
the one obtained via entanglement distillation I(A〉B). We can rewrite equation (7.20)
as

K =
[
S(B) − S(B|a)

]
−
[
S(E) − S(E|a)

]
. (7.22)

Because Alice-Bob-Eve state is pure we have S(E) = S(AB) and after Alice projective
measurement Bob-Eve state Ψa

BE remains pure implying that S(B|a) = S(E|a), which
gives,

K = S(B) − S(AB) = I(A〉B). (7.23)

That is not longer the case when we consider general POVM measurements on Alice
side, as for example when Alice applies a noisy measurement.

QKD with Collective Source

The preceding entanglement-based scheme has a symmetric protocol where Bob applies
individual measurements and Alice applies a collective measurement. In full generality,
Alice source generates entangled states among the different pulses, due to the collective
measurement. But after averaging among all the possible outgoing states we obtain an
i.i.d. state ρB0

⊗ ρB0
⊗ ... ⊗ ρB0

, as result from tracing modes Ai from an i.i.d. state
|Ψ〉⊗nAB0

. By similar techniques as used previously we can show that there is a one-way
protocol that achieves a secret key rate,

K = S(A:b) − S(b:E), (7.24)
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Figure 7.12: An entanglement-based scheme where Alice applies a collective mea-
surement over modes B is equivalent to a prepare-and-measure source sending en-
tangled pulses. Even so, averaging over all the codewords we obtain an i.i.d. state
ρB0

⊗ ρB0
⊗ ...⊗ ρB0

.

where the public communication goes now from Bob to Alice (H(b|A) bits). Similarly
as in its symmetric counterpart, if Bob applies a projective measurement the secret
key is the same as the coherent information K = S(A:b) − S(b:E) = I(B〉A).

Realistic QKD

If we now impose a fixed individual POVM measurement on both sides, as shown in Fig
7.13, we obtain the entanglement-based description of an usual QKD protocol, similar
to those implemented experimentally.
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Figure 7.13: Alice and Bob apply individual measurements over all their entangled
pairs, which is exactly the previously presented entanglement-based description of
QKD.

Similarly as in classical key distribution there is a Direct Reconciliation protocol
that achieves a secret key rate,

KDR = S(a:b) − S(a:E), (7.25)

where the public communication goes from Alice to Bob (S(a|b) bits). There is also a
Reverse Reconciliation protocol that achieves a secret key rate,

KRR = S(a:b) − S(b:E), (7.26)



148 CHAPTER 7. QUANTUM KEY DISTRIBUTION

where the public communication goes now from Bob to Alice (S(a|b) or S(b|a)). Notice
that in this case the quantum mutual information S(a:b) simply reduces to the Shan-
non mutual information I(a:b) and the quantum conditional entropies S(b|a) (S(a|b))
reduces to the Shannon conditional entropies H(b|a) (H(a|b)). The advantage of this
protocol is that no quantum memory is needed and that all the post-processing is done
on the classical data resulting from the measurements outputs.

QKD with Eve Individual Attacks

Historically there has been an interest on individual attacks by Eve, even if it is known
that in most of the cases they do not guarantee unconditional security. In individual
attacks Eve is limited to individual measurements over her ancilla and classical post-
processing of her measurement output data, as shown in Fig. 7.14. In the case of
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Figure 7.14: In an individual attack Eve has no longer access to a collective measure-
ment over all her ancilla.

direct reconciliation protocols Eve information on Alice data is upperbounded by the
accessible information,

Iacc(ρAE ;MA) = max
ME

I(ρAE ;MA,ME). (7.27)

and the secret key rate reads,

KDR = I(ρAB;MA,MB) − Iacc(ρAE ;MA). (7.28)

In reverse reconciliation protocol the secret key rate reads,

K = I(ρAB;MA,MB) − Iacc(ρBE ;MB). (7.29)

7.6 Continuous-Variable Quantum Key Distribution

Since the demonstration of continuous-variable quantum teleportation in 1998 [83],
there has been a growing interest into the field of continuous variable quantum infor-
mation, continuous-variable quantum key distribution (CV-QKD) being probably its
most fruitful application. Continuous-variable QKD has mainly three practical advan-
tages over qubit implementations such as BB84:

1. In continuous variable quantum processing the repetition rate of the homodyne
detection (≈ 1GHz) is much higher than that of the avalanche photodiodes with
single photon sensitivity (≈ 100kHz) used in qubit-based QKD.
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2. Homodyne detection is far more efficient than single photodetectors, achieving
detection efficiencies higher than 90% where single photon detectors currently
reach 30%.

3. The class of states generally used in continuous variable QKD, the so called
Gaussian states, is easier to generate, being the usual states generated on a
quantum optics laboratory.

In the following we are going to present the class of one-way Gaussian protocols, where
the states sent by Alice are Gaussian mixtures of Gaussian states, Bob applies Gaussian
measurements and the error correction communication travels in a single direction.

Squeezed States Protocol

The first idea that one can consider when trying to find a protocol for continuous
variables is to generalize the most well know discrete QKD protocol, BB84, described in
Section 7.3. Alice sending randomly chosen states of the computational basis {|0〉, |1〉}
or the conjugate basis {|+〉, |−〉} translates in continuous variables into Alice generating
eigenstates of the x quadrature {|x〉} or the p quadrature {|p〉}. Bob measurement
becoming a balanced homodyne measurement of x or p. Unfortunately the states {|x〉}
and {|p〉} are infinitely squeezed states which cannot be generated experimentally, as
they require sources of infinite energy. Fortunately one can overcome this problem by
building a protocol based on finitely squeezed states.

Realistic Squeezed States Protocol The protocols proposed in [44] is based on
Alice preparing x-squeezed states displaces along x or p-squeezed states displaces along
p, both giving a thermal state of variance V as average output state, as shown in Fig.
7.15. If Alice starts from an x-squeezed vacuum state with covariance matrix,

X

P

X

P

Modulation

a) b)

Figure 7.15: a) Alice generates x-squeezed vacuum states (squeezing 1/V ) and displaces
them according to a Gaussian distribution (variance VA = V − 1/V ). The mixture is
equivalent to a thermal state of variance V .

γ0 =

(
e−2r 0

0 e2r

)

,

where r ≥ 1 is the squeezing parameter. Then she encodes a random Gaussian-
distributed variable a (centered on zero and with variance VA) into the x-displacement
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applied to the squeezed vacuum state (d : (0; 0) → (a, 0)), as shown in Fig. 7.15 a).
Averaging over all possible realizations we get the mixed Gaussian state with null mean
value and covariance matrix

γf =

(
e−2r + VA 0

0 e2r

)

.

We observe that by imposing e−2r + VA = e2r we obtain a thermal state of variance
V = e2r. This thermal state is indistinguishable from a thermal state realized by
a mixture of p-squeezed states (squeezing parameter r) with Gaussian-distributed p-
displacement (variance VA)

γf =

(
e2r 0
0 e−2r + VA

)

=

(
V 0
0 V

)

,

as shown in Fig. 7.15 b). As in BB84 we have encoded information in two conjugate
quadratures with both output mixed states being the same thermal state of variance
V , being then indistinguishable.

The Protocol The quantum communication part of the protocol consists in repeat-
ing the following steps for each pulse sent by Alice:

1. Alice generates a random real number (a) from a Gaussian distribution of variance
VA (VA = e2r) and a random bit (b) from a equiprobable binary distribution. At
the same time Bob generates a random bit (b′).

2. Depending on the value of the random bit (b) Alice sends a x-squeezed state with
first moment d = (a, 0) or a p-squeezed state with first moment d = (0, a), where
the squeezing r satisfies VA = 2 sinh 2r.

3. Bob, depending on his random bit (b′), measures either x or p.

After Bob has measured all the pulses, the two partners proceed with the post-processing,
which starts by applying sifting:

1. Alice discloses for each pulse the value of b (whether she displaced x or p).

2. Bob keeps only the cases where he measured the right quadrature (b = b′).

Finally Alice and Bob apply a reconciliation protocols, such as those described in [190],
being a combination of error correction and discretization. The reconciliation protocols
is followed by a privacy amplification protocol that extracts the secret key using a given
hashing function, see [190] for more details on the post-processing.

Protocol Implementation

As shown in Fig. 7.16 the source (Alice) is based on a master laser beam which is
used to generate the local oscillator (phase reference) and to pump second harmonic
in a nonlinear crystal (SHG). After spectral filtering (F1) the second harmonic beam
pumps an optical parametric amplifier (OPA) which generates a squeezed vacuum state.
After filtering the second harmonic (F2) the squeezed vacuum state is displaced by an
amount a by mixing it in a high transmittance beamsplitter (BSHT ) with an attenuated
coherent state coming from the local oscillator (LO). The attenuation (A) is variable
and is a function of a distributed among a Gaussian G(a). After the displacement
Alice applies a random π/2 phase to the local oscillator depending on the value of
the bit b (displacement on x or p). Then the quantum signal and the local oscillator
travel through the same fiber to Bob multiplexed (M) in time. At Bob station the
two signals are demultiplexed (M ′), after what Bob applies a random π/2 phase to the
local oscillator depending on the value of the bit b′. Finally Bob applies an homodyne
measurement that will measure x or p depending on the value of b′.
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Figure 7.16: Scheme of the optical implementation of the squeezed states protocol.

Coherent States Protocol

A very important step in continuous-variable QKD was the development of a protocol
based on Gaussian modulation of coherent states [96], as generating coherent states is
far more simpler than squeezed states. The idea is that a thermal state of variance V
can also be obtained by a bi-variate Gaussian mixture of coherent states. Alice encodes

X

P

Figure 7.17: a) Alice generates coherent states with random mean value (ax, ap) accord-
ing to a Gaussian distribution (variance VA). The mixture is equivalent to a thermal
state if V = VA − 1.

a random bi-variate Gaussian-distributed variable (ax, ap) (centered on zero and with
variance VA) into the (x, p)-displacement applied to the vacuum:

γ0 =

(
1 0
0 1

)

−→ γf =

(
VA + 1 0

0 VA + 1

)

.

By imposing VA = V − 1 we obtain after averaging over the outgoing pulses a thermal
state of variance V , as shown in Fig. 7.17.

The Protocol The quantum communication consists in repeating the following steps
for all the pulses sent from Alice to Bob:

1. Alice generates two random real number (ax, ap) from two independent Gaussian
distributions of variance VA (VA = V − 1) and Bob generates a random bit b.

2. Alice sends a coherent state centered in d = (ax, ap) to Bob.
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3. Bob, depending on his random bit (b), measure either x or p.

After Bob has received all the pulses, the two partners proceed with the post-processing,
which starts by applying sifting:

1. Bob discloses for each pulse the value of b (whether he measured x or p).

2. Alice keeps ax or ap depending on the value of b.

After the sifting follows reconciliation and privacy amplification algorithms in order
to extract a secret key.

Protocol Implementation

b
2

BBS

a

1BS
M

Channel

Bob

M’

π/2

b

A

p Alice

LASER

φ

LO LO

Figure 7.18: Scheme of the optical implementation of the coherent states protocol.

As shown in Fig. 7.18 the source (Alice) is based on a master laser beam that is
divided at BS1 in a classical local oscillator and a low intensity signal that is later
attenuated in order to obtain a quantum coherent state with a small number of pho-
tons (≈ 10 − 100). The quantum coherent state is then modulated in phase (φ) and
amplitude (A) in order to get a coherent state centered in (ax, ap). Then the quan-
tum signal and the local oscillator travel through the same fiber to Bob multiplexed
(M) in time. At Bob station the two signal are first demultiplexed (M ′) and subse-
quently measured using homodyning, where Bob applies a random π/2 phase to the
local oscillator depending on the quadrature he wants to measure (b).

No Basis Switching Protocol

In the previous protocol Alice generates two random real numbers but uses only one to
generate the secret key. Interestingly, one can modify the coherent states protocols [96]
in order to use both values, as shown in [194]. The idea is to replace Bob homodyne
measurement by an heterodyne detection, where the incoming beam is divided in two
using a balanced beamsplitter and we measure x on one and p on the other using
homodyne detection, as shown in Fig. 7.19.

The Protocol The quantum communication step of the protocol consists in repeat-
ing the following steps for all the pulses sent from Alice to Bob, as shown in Fig.
7.19.

1. Alice generates two random real numbers (ax, ap) from two independent Gaussian
distribution of variance VA (VA = V − 1).

2. Alice sends a coherent state centered in d = (ax, ap) to Bob.

3. Bob applies an heterodyne measurement which extracts information on x and p.



7.7. CV-QKD ENTANGLEMENT-BASED SCHEME 153

After the quantum communication step Alice and Bob directly proceed with reconcil-
iation and privacy amplification, as no sifting is needed during the post-processing.

Protocol Implementation
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BBSBBS
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Figure 7.19: Scheme of the optical implementation of the no basis switching protocol.

As shown in Fig. 7.19 the only difference with the implementation of the coherent
states protocol (Fig. 7.18) [96] is Bob measurement, where he splits the quantum
signal (and the local oscillator) on two beams using a balanced beamsplitter (BSB)
and applies an homodyne measurement on each beam, as shown in Fig. 7.19. In order
to measure the quadrature p Bob dephases the second local oscillator by θ2 = π/2.

7.7 CV-QKD Entanglement-Based Scheme

Even if most of the experimental implementations use prepare-and-measure schemes,
the theoretical analysis is usually done using an entanglement-based scheme, as it
simplifies the calculations. The previously presented protocols are continuous variable
prepare-and-measure schemes, defined by a classical-quantum source

ρaB0
=

∫

da p(a)|a〉〈a| ⊗ |ψa〉〈ψa|B0
, (7.30)

where Alice prepares according to some random number (a) a given quantum state
|ψa〉〈ψa|B0

and sends it to Bob. As pointed in Chapter 7, each prepare-and-measure
protocol is strictly equivalent to a continuous-variable entanglement-based scheme,
where Alice generates an entangled state |Ψ〉AB0

, sends mode B0 to Bob and mea-
sures mode A on the appropriate basis in order to project B0 on the proper ensemble
|ψa〉〈ψa|B0

.

Alice State Preparation

All the Gaussian CV-QKD protocols presented in the preceding section had a thermal
state as average state ρB0

. A two-mode squeezed vacuum state (or EPR state) with
null mean value d = (0, 0) and covariance matrix

γAB0
=

(
γA σAB0

σAB0
γB0

)

=

(
V I

√
V 2 − 1σz√

V 2 − 1σz V I

)

(7.31)

where σz reads

σz =

(
1 0
0 −1

)

, (7.32)
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being a purification of a thermal state, as explained in Chapter 2, we can construct
the entanglement-based description of the family of protocols by starting from a EPR
state and applying a Gaussian measurement on mode A.

Squeezed States Protocol Alice applying an homodyne measurement on mode
A of an EPR state, as shown in Fig. 7.20, is equivalent to the prepare-and-measure
scheme of the squeezed states protocol [34]. To prove it we use the partial measurement

0Baxa
EPRα

Alice

Figure 7.20: Alice applying an homodyne detection over mode A projects mode B0 into
x(p)-squeezed states displaced along x(p) according to a Gaussian distribution as in the
prepare-and-measure scheme. Multiplies Alice’s result xa by a factor α =

√

1 − 1/V 2

we obtain a one-to-one correspondence between the prepare-and-measure scheme and
the entanglement-based scheme.

equations (2.57) and (2.58) of Section 2.3. In the case of an homodyne measurement the
mean (dB0

) and covariance matrix (γB0
) of mode B0 conditioned on Alice measurement

result (xa) reads,

γxa

B0
= γB0

− σTAB0

(
XγAX

)MP
σAB0

=

(
1/V 0
0 V

)

, (7.33)

and
dxa

B0
= σTAB0

(
XγAX

)MP
dA = dB0

=
√

1 − 1/V 2
(
xa, 0

)
, (7.34)

where dA is Alice measurement result, X = diag(1, 0, 1, 0) and MP denotes the pseu-
doinverse. This is exactly a x-squeezed vacuum state displace over the x quadrature,
in order to generate p-squeezed states Alice has just to measures the p quadrature of
mode A, instead of x.

Notice that there is a one-to-one correspondence between Alice measurement result
(xa) and the mean value of mode B0 (dB0

) up to a constant α =
√

1 − 1/V 2 (α ≈ 1
when V ≫ 1). The variance of dB0

reads,

〈∆2dB0
〉 = α〈x2

a〉 = V − 1/V, (7.35)

as 〈x2
a〉 = V . Notice that 〈∆2dB0

〉 is equal to VA, the variance of Alice modulation
(see Section 7.6). By adding a classical multiplication stage a = αxa after Alice mea-
surement we observe a one-to-one correspondence between the prepare-and-measure
scheme and the entanglement-based scheme.

General Preparation

Following [95], a more general measurement consists in Alice applying a generalized
heterodyne detection, where we use an unbalanced beamsplitter of transmittance TA,
as shown in Fig. 7.21. Before the beamsplitter of transmittance TA the tripartite state
ACB0 reads,

γACB0
=





V I 0
√
V 2 − 1σz

0 I 0√
V 2 − 1σz 0 V I



 , (7.36)
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Figure 7.21: Alice applying a generalized heterodyne detection (TA) over mode A
projects mode B0 on general squeezed states displaced among a bi-variate Gaussian
distribution. By adding a classical multiplication stage a = α(xa, pa), after Alice mea-
surement we observe a one-to-one correspondence between the prepare-and-measure
scheme and the entanglement-based scheme.

where C is the second input of the beamsplitter which is initially in the vacuum. The
beamsplitter transforms the tripartite state as

γ′ACB0
=
[
SBSAC ⊗ IB0

]T
γACB0

[
SBSAC ⊗ IB0

]
(7.37)

where SBSAC is the symplectic transformation of the beamsplitter (TA),

SBSAC =

( √
TAI

√
1 − TAI

−
√

1 − TAI
√
TAI

)

. (7.38)

Alice measurement on modes A (xa) and C (pa) projects mode B0 (using equation
(7.33) ) into a Gaussian state of covariance matrix,

γ
(xa,pa)
B0

=





µV+1
V+µ 0

0
(
µV+1
V+µ

)−1



 , (7.39)

where

µ =
1 − TA
TA

, (7.40)

and mean value (using equation (7.34)),

d
(xa,pa)
B0

=
(
√

TA(V 2 − 1)

TAV + (1 − TA)
xa,

√

(1 − TA)(V 2 − 1)

(1 − TA)V + TA
pa

)

, (7.41)

which is a squeezed state displaced along a bi-variate Gaussian distribution. For TA = 1
we recover the entangled-based description of the squeezed states protocol.

Coherent states protocol If we fix TA = 1/2 the covariance matrix and mean of
the projected state of mode B0 read,

γ
(xa,pa)
B0

=

(
1 0
0 1

)

and d
(xa,pa)
B0

=

√

2
V − 1

V + 1

(

xa, pa

)

, (7.42)

which is a coherent state centered at d
(xa,pa)
B0

. We observe that the variance of d
(xa,pa)
B0

,

using 〈x2
a〉 = (V + 1)/2 reads,

〈∆2dB0
〉 = V − 1 = VA, (7.43)
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being exactly the variance of the bi-variate Gaussian modulation of protocol [96].
Similarly as for the squeezed states protocol, adding a classical multiplication stage
a = α(xa, pa) , as shown in Fig. 7.21, after Alice measurement we observe a one-to-
one correspondence between the ”prepare-and-measure” scheme and the entanglement-
based scheme.

Entanglement-Based Scheme of CV-QKD

One can unify the description of all the previously proposed protocols into a single
entanglement-based scheme, as shown in Fig. 7.22, which simplifies the theoretical
calculations. Depending on Alice measurement the prepared states are:

• Squeezed states, if Alice applies a homodyne measurement (TA = 1)

• Coherent states, if Alice applies a heterodyne measurement (TA = 1/2)

PB

X B

T
B

Bob

EPR

A
P

A
T

A
X

Channel

Alice

A B

Figure 7.22: Entanglement-based scheme that generalizes all the previously presented
protocols. Depending on TA = {1, 1/2} Alice generates squeezed state or coherent
states and depending on TB = {1, 1/2} Bob applies homodyne or heterodyne detection.

Bob has the choice between applying two different measurements:

• Homodyne measurement on mode B (TA = 1)

• Heterodyne measurement on mode B (TA = 1/2)

We observe that there are four different optical implementations depending on the
values of TA, TB = {1, 1/2}, which combined to two different classical post-processing
(Direct and Reverse Reconciliation) generate eight possible protocols. Remark that
there is one combination that has not been proposed yet in the literature, the imple-
mentation where Alice sends squeezed states (TA = 1) and Bob applies heterodyne
detection (TB = 1/2). The probable reason for the lack of interest on this protocol
is that it is a noisy version of the protocol based on squeezed states (TA = 1) and
homodyne detection (TB = 1). Surprisingly, this protocol can be very interesting in
some situations as we show in Chapter 9.

Gaussian Channel

In Chapters 8 and 9 we will show that the optimal Individual and Collective attacks
are always a Gaussian CP map. It is then enough to consider the bipartite state ρAB
shared by Alice and Bob in the entanglement-based description as being Gaussian,
which simplifies very much the calculations.

In this dissertation the security analysis of the protocol would be done assuming
that Eve does a passive attack, where she replaces the real connection between Alice
and Bob by a unitary operation that mimics the channel between Alice and Bob when
we trace Eve’s modes. An optical fiber can be modeled by a thermal noise channel of
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transmittance T and noise referred to the input χ. Then the covariance matrix of the
state ρAB reads,

γAB =

(
V I

√

T (V 2 − 1)σz√

T (V 2 − 1)σz V (T + χ)I

)

. (7.44)

But in QKD we have to assume that Eve can apply any attack, an active Eve could
certainly decide to apply a different attack generating a different γAB than that of
equation (7.44). The calculation for general γAB in the case of collective attacks is
numerically as simple as those of the thermal noise channel, but has much more than
two free parameters (T and χ) making the comparison of the protocols more difficult.
For the shake of simplicity, in this dissertation we will give the results only for thermal
noise channels as it gives us an intuition on the efficiency of the protocols, but we stress
that its generalization to more general channels is easy.
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Chapter 8

CV-QKD: Individual Attacks

8.1 Introduction

In this chapter we are going to study the security of Gaussian Quantum Key Distribu-
tion protocols presented in the previous chapter against individual attacks, where Eve
information is quantified by the accessible information defined in Chapter 6. In a QKD
scheme we consider that Eve (E) holds the purification of Alice and Bob quantum sys-
tem ρAB. The pure tripartite state shared by Alice, Bob and Eve reads |Ψ〉ABE , which
is completely defined by the eigenvalues of ρAB. This implies that any function on the
system ABE, such as Eve’s accessible information on Alice measurement output a, is
in fact a function of ρAB. We will use the notation IEacc(ρAB;MA) for Eve’s accessible
information on Alice data (a resulting from the POVM MA),

IEacc(ρAB ;MA) = max
ME

I(ρAE ;MA,ME), (8.1)

to stress that it only depends on ρAB, where we use the upperscript E on IE to
differentiate it from Alice and Bob accessible information Iacc(ρAB;MA).

Secret Key Rates

In the scenario of individual attack the achievable Direct Reconciliation (DR) secret
key rate reads,

KDR(ρAB) = I(ρAB ;MA,MB) − IEacc(ρAB ;MA). (8.2)

The Reverse Reconciliation (RR) achievable secret key rate reads,

KRR(ρAB) = I(ρAB;MA,MB) − IEacc(ρAB;MB). (8.3)

Entropy of a Measurement Result

In some situations we will use the notation

H(ρX ;MX), (8.4)

to express the entropy of the measurement result x after applying the POVM MX to
the quantum state ρX .

159
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8.2 Optimality of Gaussian Individual Attacks

To prove the optimality of Gaussian individual attacks, we need first to remind a very
useful theorem, recently proven in [198]. Subsequently we will prove the optimality
of Gaussian attacks against Direct Reconciliation Gaussian protocols. Its extension
to Reverse Reconciliation being straightforward, one simply needs to interchange the
roles of Alice and Bob.

Optimality of Gaussian States

Let us first sketch the proof in [198] for bipartite states ρAB with null mean value. Let
f be a function satisfying the properties

1. continuity in trace norm: if ‖ρ(n)
AB − ρAB‖1→ 0 when n → ∞, then f(ρ

(n)
AB) →

f(ρAB),

2. invariance under local “Gaussification” unitaries (defined below):

f(U †
G ⊗ U †

G ρ
⊗N
AB UG ⊗ UG) = f(ρ⊗NAB ),

3. strong sub-additivity: f(ρA1...NB1...N
) ≤ f(ρA1B1

)+ ...+ f(ρANBN
) with equality

if ρA1...NB1...N
= ρA1B1

⊗ ...⊗ ρANBN
.

Then, for every bipartite state ρAB with covariance matrix γAB, we have that

f(ρAB) ≤ f(ρGAB), (8.5)

where ρGAB is the Gaussian state with the same γAB. The proof can be summarized by

f(ρAB)
3
=

1

N
f(ρ⊗NAB )

2
=

1

N
f(ρ̃A1...NB1...N

)

3
≤ 1

N

N∑

k=1

f(ρ̃AkBk
)

1,⋆≃ f(ρGAB), (8.6)

where the superscripts label the assumptions used in each step, while

ρ̃A1...NB1...N
≡ U †

G ⊗ U †
G ρ

⊗N
AB UG ⊗ UG. (8.7)

The ⋆ stands for the use of a central limit result for quantum states (see [198] for
details). The Gaussification unitary UG is a local passive operation that applies the

Input

Oput

Figure 8.1: The Gaussification UG can be realized with the following network of beam
splitters and phase shifters.
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same transformation to both quadratures independently:
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=
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.
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in

, (8.8)

where N = 2m. The Gaussification UG can be realized with a network of beam split-
ters and phase shifters,as shown in Fig.. Importantly for what follows, the x and p
quadratures of all N modes are thus not mixed via Gaussification.

Optimality of Gaussian Individual Attacks

The core of our proof now consists in combining this extremality result with a general-
ized version of the entanglement-based version of CV-QKD, where Alice and Bob apply
a general Gaussian measurement which does not mix both quadrature, as shown in Fig.
8.2, supplemented with the physical model of measurement. In a real implementation

0B

UBE

E

B B

U
B

AA

Bob

EPR

a Alice b

A
U

Eve

Figure 8.2: Entanglement-based scheme for CV-QKD. Alice’s preparation is modelled
by a measurement UA on her half of an EPR pair. The channel is modelled by an
unitary interaction between mode B and Eve’s ancillae E. Finally, Bob’s measurement
is modelled by UB. The only constraint on the measurement is that both unitary
interactions UA and UB should not mix both quadratures.

of CV-QKD protocol Alice and Bob mutual information S(a:b) is fixed by the data
obtained by the two partners and the efficiency of the reconciliation. Then, in order
to prove the optimality of Gaussian attacks it is enough to prove that Eve information
IEacc(ρAB ;MA) is maximized when she applies a Gaussian map.

Proof

We are going to prove that IEacc(ρAB;MA) satisfies the three conditions of the Gaussian
extremality theorem. For this, we need to define the extension of this function over
2N modes (A = A1, A2, ..., AN , B = B1, B2, ..., BN ), namely

IEacc(ρAB;M⊗N
A ) = max

ME

I(ρAE;M⊗N
A ,ME), (8.9)

where Alice applies the same measurement MA on each mode, and Eve applies the
optimal POVM ME on ρE which is the purification of ρAB. Note that Eq. (8.9)
restricts to Eq. (8.1) when N = 1.

Continuity If ‖ρ(n)
AB

−ρAB‖1≤ ǫ, using Ulhmann’s theorem and well-known relations
between the fidelity and trace distance (see Appendix I), we can find a purification

|Ψ〉(n)
ABE

(|Ψ〉ABE) of ρ
(n)
AB

(ρAB) such that

‖Ψ̂(n)
ABE

− Ψ̂ABE‖1≤ 2
√
ǫ. (8.10)
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We define the difference of accessible informations over ρ
(n)
AB

and ρAB as,

∆IEacc = IEacc(ρ
(n)
AB

;M⊗N
A ) − IEacc(ρAB;M⊗N

A ). (8.11)

This is equivalent by equation (8.9) to

∆IEacc = max
ME

I(ρ
(n)
AE

;M⊗N
A ,ME) − max

ME

I(ρAE;M⊗N
A ,ME). (8.12)

Eve’s optimal POVM over ρ
(n)
AE

(Mopt
E

) is not necessarily optimal on ρAE, we obtain
then,

∆IEacc ≤ I(ρ
(n)
AE

;M⊗N
A ,Mopt

E
) − I(ρAE;M⊗N

A ,Mopt
E

) (8.13)

≤
[

H(ρ
(n)
A

;M⊗N
A ) −H(ρA;M⊗N

A )
]

(8.14)

+
[

H(ρ
(n)
E

;Mopt
E

) −H(ρE;Mopt
E

)
]

(8.15)

−
[

H(ρ
(n)
AE

;M⊗N
A ,Mopt

E
) −H(ρAE;M⊗N

A ,Mopt
E

)
]

(8.16)

Then, considering that partial trace can only decrease the trace norm [136], Eq. (8.10)
combined with our physical model of measurement and the continuity of von Neumann
entropies together with (8.16) implies ∆IEacc ≤ δ. Using the same argument but with
the POVM optimal for ρAB we obtain −∆IEacc ≤ δ, giving |∆IEacc| ≤ δ, implying the
continuity of IEacc. �

Invariance under Local Gaussification Unitaries Applying the local Gaussifica-
tion operation UG⊗UG on the product states |ψ〉⊗NABE (as shown in Fig. 8.3 for N = 2),

we obtain the state |ψ̃〉ABE. After the measurements on Alice’s and Bob’s sides, the
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Figure 8.3: Invariance under local “Gaussification” unitaries: UG can be interchanged
with the measurement UA, then U−1

G and UG cancel each other.

state becomes ρ̃abE. But because the Gaussian measurement (usually homodyne or
heterodyne) does not mix x and p quadratures, the measurement and the Gaussifica-

tion operation can be interchanged by applying U †
G⊗U †

G on modes a and b we recover
the state ρ⊗NabE , which coincides with the state obtained by directly measuring |ψ〉⊗NABE
without Gaussification. Since the two states ρ̃ab and ρ⊗Nab are related by a local unitary

operation U †
G⊗U †

G and since the von Neumann entropies appearing in IEacc(ρAB;M⊗N
a )

are invariant under (any) local unitaries, we obtain the invariance of IEacc(ρAB;M⊗N
a )

under local Gaussification unitaries. �

Strong Subadditivity We will restrict the proof to two modes on each side, A1,2 and
B1,2, as shown in Fig. 8.4, where E is the purification of A1,2B1,2. The generalization
to N > 2 being straightforward.
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ψ
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Α 1Β

Β 2Α2

a1

a2

b1

b2

e

Ε

Figure 8.4: Alice and Bob share a quantum state A1,2B1,2 where Alice applies inde-
pendent measurements on each mode MA1

⊗MA2
, and so does Bob MB1

⊗MB2
. Eve

holds the purification (E) of A1,2B1,2. Remark that the purification of A1B1 (A2B2)
is A2B2E (A1B1E).

Before continuing, let’s before stress a property of Shannon mutual entropy

H(a1a2 : e) = H(a1a2) −H(a1a2|e), (8.17)

which can be rewritten,

H(a1a2 : e) = H(a1a2)
︸ ︷︷ ︸

≤H(a1)+H(a2)

−[H(a1|a2e) +H(a2|a1e)
︸ ︷︷ ︸

≥H(a1|a2b2e)+H(a2|a1b1e)

+H(a1 : a2|e)
︸ ︷︷ ︸

≥0

].

≤ H(a1) +H(a2) −H(a1|a2b2e) −H(a2|a1b1e). (8.18)

as a consequence of subadditivity, strong subadditivity of entropy and using the fact
that conditioning can only decrease the conditional entropy. This bound can be rewrit-
ten as,

H(a1a2 : e) ≤ H(a1 : a2b2e) +H(a2 : a1b1e), (8.19)

which using the notation used for the accessible information reads,

I(ρA1A2E ;MA1
⊗MA2

,ME) ≤ I(ρA1E1
;MA1

,MA2
⊗MB2

⊗ME)

+I(ρA2E2
;MA2

,MA1
⊗MB1

⊗ME). (8.20)

Considering Eve’s optimal measurement over system E that reaches the accessible
information over (a1, a2) resulting from Alice measurement (MA1

⊗MA2
) on system

A1A2, and knowing that the purification of A1B1 (A2B2) is E1 = A2B2E (E2 =
A1B1E) we can rewrite (8.19) as

Iacc(ρA1A2E ;MA1
⊗MA2

) ≤ I(ρA1E1
;MA1

,MA2
⊗MB2

⊗Mopt
E )

+I(ρA2E2
;MA1

,MA2
⊗MB2

⊗Mopt
E ). (8.21)

Considering that the POVM MA2
⊗MB2

⊗Mopt
E (MA1

⊗MB1
⊗Mopt

E ) is not necessar-
ily the measurement optimizing the classical correlation between a1 (a2) and A2B2E
(A1B1E) we obtain,

Iacc(ρA1A2E ;MA1
⊗MA2

) ≤ Iacc(ρA1E1
;MA1

) + Iacc(ρA2E2
;MA2

). (8.22)

which is exactly the strong subadditivity of Eve’s accessible information. �

Thus, using Eq. (8.5), we have proved that for all bipartite quantum states ρAB
with covariance matrix γAB, one has IEacc(ρAB;MA) ≤ IEacc(ρ

G
AB ;MA). This means

that IEacc(ρ
G
AB;MA) is an upper bound on Eve accessible information on Alice data for



164 CHAPTER 8. CV-QKD: INDIVIDUAL ATTACKS

any protocol (even non-Gaussian) and individual attack (including non-Gaussian). The
only requirement for this result to hold is that Alice and Bob measurements commute
with the Gaussification operation UG and that Alice and Bob use the second-order
moments of the quadratures in order to calculate this bound. In particular, for the
Gaussian-modulation protocols of [34, 96, 94, 194] presented in the previous chapter,
Eve’s optimal attack is a Gaussian attack, in which case the bound is saturated. Note
that the proof concerns DR, but its extension to RR is straightforward: one simply
needs to interchange Alice and Bob roles.

8.3 Security Analysis using Uncertainty Relations

The calculation of the accessible information is not trivial. In order to calculate it
for the eight Gaussian protocols presented in the previous chapter we will proceed in
two steps; Firstly, we will use continuous variable entropic uncertainty relations to
upperbound Eve’s information; Secondly, we will try to find the implementation that
saturates the bound.

Since Gaussian attacks are optimal, we consider in what follows that Eve affects
a Gaussian channel. Consequently, the quantum state ρAB before Alice and Bob’s
measurements can be assumed to be a Gaussian two-mode state with a zero mean value
and a covariance matrix γAB. Usual Gaussian channels, such as optical fibers, add a
symmetric and uncorrelated noise in both quadratures x and p (including, of course,
the loss-induced noise), so that we will only consider symmetric channels without x-p
correlations in what follows. Since the EPR state (two-mode squeezed state) is also
symmetric and exhibits no correlations between x and p, we can write the resulting
covariance matrix in a block-diagonal form as

γAB =

(
γxAB 0
0 γpAB

)

, (8.23)

with

γ
x(p)
AB =

(
V ±

√

T (V 2 − 1)

±
√

T (V 2 − 1) T (V + χ)

)

(8.24)

where the signs + and − correspond to γxAB and γpAB, respectively. Here, V is the
variance of Alice’s output thermal state, while T and χ = (1 − T )/T + ǫ are the
transmittance and noise referred to the input of the Gaussian channel [the term (1 −
T )/T stands for the loss-induced vacuum noise, while ǫ is the excess noise referred to
the input].

Entropic Uncertainty Relations

In order to address the security of the protocols, we may, without loss of generality,
assume that Eve holds the purification of the quantum state ρAB. By measuring their
systems, Bob and Eve then project Alice’s share of the joint pure state |ΨABE〉 onto
another pure state1. Applying the Heisenberg uncertainty relation on the pure state
held by Alice (conditioning on Bob and Eve’s measurements), we have

VXA|EVPA|B ≥ 1, (8.25)

where XA and PA are the canonically conjugate quadratures of Alice’s mode and
VX|Y is the conditional variance measuring the remaining uncertainty on X after the

1We may indeed always assume that Eve performs a measurement based on a rank-one Positive
Operator Valued Measure (POVM), so that the resulting state is pure. Otherwise, she would just
need to disregard a part of her measuring system.
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measurement of Y ,

VX|Y = 〈x2〉 − 〈xy〉2
〈y2〉 , (8.26)

expressed in shot-noise units. Equation (8.25) also has a symmetric counterpart that
reads,

VPA|EVXA|B ≥ 1. (8.27)

Since we focus on a symmetric noise in x and p, Eqs. (8.25) and (8.27) can be unified
into a single uncertainty relation

VA|EVA|B ≥ 1, (8.28)

where A stands for any quadrature (XA or PA) of Alice’s mode. This inequality will
be used to put a lower bound on the uncertainty of Eve’s estimate of the key in Direct
Reconciliation (DR). Similarly, in Reverse Reconciliation (RR), one can derive a dual
inequality

VB|EVB|A ≥ 1, (8.29)

where B stands for any quadrature of Bob’s mode. This will be used to put a lower
bound on the uncertainty of Eve’s estimate of the key in RR.

Now, we will derive lower bounds on the secret key rates using the above uncertainty
relations on the variances.

Squeezed States and Homodyne Detection

The protocol based on squeezed states and homodyne measurement [44] is equivalent to
an entanglement based scheme where Alice and Bob apply homodyne measurements
over modes A and B respectively, as shown in Fig. 8.5. Restricting to individual

EPR

a
X X b

Channel

Alice

A B

Bob

Figure 8.5: Entanglement based scheme of the protocol based on Alice sending squeezed
states and Bob applying homodyne detection. Alice generation of squeezed states is
replaced by an EPR state where Alice applies an homodyne detection on one half of
the EPR and the other half is sent to Bob.

attacks and one-way reconciliation, the DR and RR secret key rates read

KDR = H(A|E) −H(A|B), (8.30)

KRR = H(B|E) −H(B|A), (8.31)

where E stands for Eve’s optimal measurement maximizing her information (which is
not necessarily the same in DR and RR). If we assume that the channel is Gaussian, we
can express the conditional entropies in Eqs. (8.30) and (8.31) in terms of conditional
variances,

H(X |Y ) =
1

2
logVX|Y , (8.32)

where the log is to the base 2 and entropy is expressed in bits. The above Heisenberg
inequalities on conditional variances directly translate into bounds on the secret key
rates.
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Direct Reconciliation

Using equations (8.26) and (8.23) one obtains,

VA|B =
V χ+ 1

V + χ
, (8.33)

which together with equation (8.30) and the Heisenberg uncertainty relation (8.28)
gives

KDR =
1

2
log

[

VA|E
VA|B

]

≥ log

[

1

VA|B

]

= log

[

V + χ

V χ+ 1

]

, (8.34)

as shown in [34].

Reverse Reconciliation

Using equations (8.26) and (8.23) one obtains,

VB|A = T
(
χ+ 1/V

)
, (8.35)

which together with equation (8.31) and the Heisenberg uncertainty relation (8.29)
gives

KRR =
1

2
log

[

VB|E
VB|A

]

≥ log

[

1

VB|A

]

= log

[

1

T (χ+ 1/V )

]

, (8.36)

as shown in [95].

Implementation of the Optimal Attack

In order to saturate (8.34, 8.36) Eve can use the so called entangling cloner [95]. In an

A
X

B
X

X
E 2

X
E 1

X
E 1

X
A

M X
B

M

EPR−N
0

Alice Bob

Eve

EPR−V

X
B 0

T

Figure 8.6: Eve replaces the usual Gaussian channel of transmittance T and excess
noise referred to the input χ by half of an EPR pair (N) that she mixes with Alice
signal into a beamsplitter of transmittance T . The value of N is tuned in order to
inject the same noise as in the original channel χ = (1 − T )N/T .

entangling cloner attack Eve replaces the Gaussian channel with transmittance T and
excess noise referred to the input χ) by an EPR pair of variance N and a beamsplitter
of transittance T . Half of the EPR is mixed with the state sent by Alice x̂B0

in the
beamsplitter. Alice and Bob having only access to half of the EPR, they see a thermal
noise of variance N , where N is tuned to match the noise of the real channel. The
other half of the EPR will be used by Eve to reduce her uncertainty on the noise added
by the channel. The channel being symmetric for x and p quadratures, we restrict our
study to the x quadrature. The quantum signal received by Bob reads,

x̂B =
√
T x̂B0

+
√

1 − T x̂E0
1
, (8.37)
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where using (8.23) the variance reads,

〈x̂2
B〉 = T

[

V +
1 − T

T
N

]

, (8.38)

as 〈x̂2
B0

〉 = V and 〈x̂B0
ˆxE1

〉 = 0. In order to have the same variance 〈x̂2
B〉 as in the

real channel (8.23) Eve has to fix N in order to satisfy,

χ =
1 − T

T
N. (8.39)

Eve stores her two ancillary systems, E1 and E2, in two quantum memories. After
Alice and Bob reveal the selected basis during the sifting step, Eve measures the right
quadrature on systems E1 and E2. The measurement on E2 will allow her to decrease
the noise added by mode E1.

Direct Reconciliation The quadrature of mode E1, his variance and correlations
with A read,

x̂E1
=

√
T x̂0

E1
−
√

1 − T x̂B0
, (8.40)

〈x̂2
E1

〉 = TVE1
+ (1 − T )V, (8.41)

〈x̂Ax̂E1
〉2 = (1 − T )(V 2 − 1). (8.42)

If Eve uses only her measurement on mode E1 to estimate x̂A her uncertainty, using
Eq. 8.26 reads,

VA|E1
=

V +
[

1−T
TVE1

]

V
[

1−T
TVE1

]

+ 1
, (8.43)

where VE1
= N . But Eve’s measurement of x̂E2

on the EPR allows her to reduce her
uncertainty on the other half of the EPR (x̂E1

), obtaining

VE1|E2
=

1

N
. (8.44)

After replacing VE1
in Eq. (8.43) by Eq. (8.44), Eve uncertainty on x̂A reads,

VA|E1,E2
=

V +
[

(1−T )N
T

]

V
[

(1−T )N
T

]

+ 1
=

V + χ

V χ+ 1
, (8.45)

which is exactly the VA|E saturating the bound (8.34), which shows that the entangling
cloner is an optimal attack against the protocol based on squeezed states and homodyne
detection and Direct Reconciliation.

Reverse Reconciliation The correlations between E1 and B read,

〈x̂B x̂E1
〉2 =

√

T (1 − T )(VE1
− V ). (8.46)

If Eve only uses her measurement on mode E1 to estimate x̂B her uncertainty reads
(using Eq. 8.26),

VB|E1
=

1

T
[(

1−T
TVE1

)
+ 1/V

] , (8.47)
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where VE1
= N . But Eve’s measurement of x̂E2

allows her to reduce her uncertainty
on the other half of the EPR (VE1|E2

= 1/N), obtaining

VB|E1,E2
=

1

T
[( (1−T )N

T

)
+ 1/V

] =
1

T
[
χ+ 1/V

] , (8.48)

which is exactly the VB|E saturating the bound (8.36), which shows that the entan-
gling cloner is also an optimal attack against the Reverse Reconciliation version of the
protocol based on squeezed states and homodyne detection.

Coherent States and Homodyne Detection

The protocol based on coherent states and homodyne measurement [96] is equivalent
to an entanglement based scheme where Alice applies an heterodyne measurement over
mode A and Bob applies homodyne measurements over modes B, as shown in Fig. 8.7.

EPR

A
P

X B
A

X
A

X
B

XChannel

Alice
M

M
M

(0)X

Figure 8.7: Entanglement based scheme of the protocol based on Alice sending coherent
states and Bob applying homodyne detection. Alice generation of coherent states is
replaced by an EPR state where Alice applies an heterodyne detection on one half of
the EPR and the other half is sent to Bob.

Restricting to individual attacks and one-way reconciliation, the DR and RR secret
key rates read

KDR = H(AM |E) −H(AM |B), (8.49)

KRR = H(B|E) −H(B|AM ). (8.50)

Note that we use the variable AM here (not A), since in this protocol Alice does not
measure one single quadrature but a pair of conjugate quadratures [AM stands for
the measurement of one quadrature of mode A, given that the conjugate quadrature
is simultaneously measured]. The quadrature measured by the heterodyne detection
reads,

x̂AM =
1√
2

[
x̂A + x̂(0)

]
, (8.51)

where x̂(0) is the x quadrature of the vacuum noise added during the heterodyne mea-
surement (see Fig. 8.7). One can show using equation (8.26) that the variances condi-
tioned on an arbitrary variable Y before and after the heterodyne detection are related
by,

VX
AM |Y =

1

2

[
VXA|Y + 1

]
, (8.52)

as any quadrature Y is independent from the vacuum noise added during the measure-
ment x̂(0) (〈X̂(0)Y 〉 = 0).
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Direct Reconciliation

Using equations (8.52) and (8.33) for symmetric channels one obtains,

VAM |B =
1

2

[

VA|B + 1
]

. (8.53)

Eve modes and the vacuum noise at the measurement being not correlated, one can
then bound Eve uncertainty using equations (8.52) and (8.45),

VAM |E =
1

2

[

VA|E + 1
]

≥ 1

2

[ 1

VA|B
+ 1
]

. (8.54)

Finally the secret key rate reads,

KDR =
1

2
log

[

VAM |E
VAM |B

]

≥ 1

2
log

[

1

VA|B

]

=
1

2
log

[

V + χ

V χ+ 1

]

. (8.55)

Remark that the secret key rate obtained for Direct Reconciliation is just half of key
rate for the protocol using squeezed states and homodyne measurement (8.34). This
is not in contradiction with the claim in [96], as in this paper they decrease the key
rate by a factor 1/2 in order to consider the loss of half of the data during the sifting
procedure, due to Bob’s wrong basis choices. This loss can be avoided if one considers
an unbalanced choice of quadratures and waits for longer times as explained in Sec.
7.3. Then, one can asymptotically reach a sifting prefactor equal to one.

Reverse Reconciliation

In the case of Reverse Reconciliation the heterodyne measurement only affects Alice
and Bob mutual information as Eve information on Bob data is not affected by the
measurement at Alice’s side. Using equations (8.26) and (8.23) one can show that

VB|AM = 〈X2
B〉 − 〈XBX

M
A 〉2/〈(XM

A )2〉, (8.56)

where using 〈(XM
A )2〉 = (V + 1)/2 and 〈XBX

M
A 〉 = 〈XBXA〉/

√
2 finally gives,

VB|AM = T
(
χ+ 1

)
. (8.57)

The secret key rate then reads,

KRR =
1

2
log

[

VB|E
VB|AM

]

≥ 1

2
log

[

1

VB|AVB|AM

]

=
1

2
log

[

1

T 2(χ+ 1/V )(χ+ 1)

]

,

(8.58)
as shown in [94].

Implementation of the Optimal Attack

It is trivial to see that in the case of Reverse Reconciliation the entangling cloner is
optimal against the protocol based on coherent states and homodyne detection, as Eve
information is not changed by Alice measurement. In the case of Direct Reconciliation
we see that the only way of minimizing VAM |E (8.54) is by minimizing VA|E (8.45)
which implies that the entangling cloner is also optimal in Direct Reconciliation.
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Figure 8.8: Entanglement based scheme of the protocol based on Alice sending squeezed
states and Bob applying heterodyne detection. Alice generation of squeezed states is
replaced by an EPR state where Alice applies an homodyne detection on one half of
the EPR and the other half is sent to Bob.

Squeezed States and Heterodyne Measurement

The protocol based on squeezed states and heterodyne detection is equivalent to an
entanglement based scheme where Alice applies an homodyne measurement over mode
A and Bob applies heterodyne measurements over mode B, as shown in Fig. 8.8.
Restricting to individual attacks and one-way reconciliation, the DR and RR secret
key rates read,

KDR = H(A|E) −H(A|BM ), (8.59)

KRR = H(BM |E) −H(BM |A). (8.60)

Similarly as in subsection 8.3, one can show using equation (8.26) that the condi-
tional variance before and after the heterodyne detection are related by,

VX
BM |Y =

1

2

[
VXB |Y + 1

]
, (8.61)

for any quadrature Y which is independent of X̂(0) (〈X̂(0)Y 〉 = 0).

Direct Reconciliation

The case of Direct Reconciliation is the symmetric counterpart of the Reverse Rec-
onciliation protocol based in coherent states and homodyne measurement (8.3), as
the heterodyne measurement at Bob side affects Alice and Bob mutual but not Eve’s
information on Alice data. Using equations (8.26) and (8.23) one can show that

VA|BM =
T (V χ+ 1) + V

T (V + χ) + 1
. (8.62)

The secret key rate then reads,

KDR =
1

2
log

[

VA|E
VA|BM

]

≥ 1

2
log

[

1

VA|BVA|BM

]

=
1

2
log

[

(V + χ)(T (V + χ) + 1)

(V χ+ 1)(T (V χ+ 1) + V )

]

.

(8.63)

Reverse Reconciliation

The case of Reverse Reconciliation is the symmetric counterpart of the Direct Rec-
onciliation protocol based in coherent states and homodyne measurement (8.3). By
analogy with equations (8.52) we can write,

VBM |A =
1

2

[

VB|A + 1
]

. (8.64)
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Eve modes and the vacuum noise at the measurement being not correlated, one can
then bound Eve uncertainty using equation (8.35),

VBM |E =
1

2

[

VB|E + 1
]

≥ 1

2

[ 1

VB|A
+ 1
]

. (8.65)

Finally we obtain that the secret key rate reads,

KRR =
1

2
log

[

VBM |E
VBM |A

]

≥ 1

2
log

[

1

VB|A

]

=
1

2
log

[

1

T
[
χ+ 1/V

]

]

. (8.66)

Implementation of the Optimal Attack

The protocol being the symmetric counterpart of the protocol based on Coherent states
and homodyne detection, under the exchange of the measurements between Alice and
Bob, it is trivial to see that the entangling cloner is again optimal.

The Forgotten Protocol

The protocol based on squeezed states and heterodyne detection has never been studied
in the literature before. The most probable reason that explains why none has studied
it, is that it is just a noisy version of the protocol based on squeezed and homodyne
detection, giving lower secret key rates. Having the disadvantages of a difficult optical
implementation of squeezed states and retrieving no gain from applying an heterodyne
detection does not seem a very clever idea. Surprisingly when one considers security
against collective attacks this protocol becomes interesting, as we will show in the next
chapter.

Coherent States and Heterodyne Measurement

The protocol based on coherent states and heterodyne detection [194] is equivalent to
an entanglement based scheme where Alice applies an heterodyne measurement over
mode A and Bob applies heterodyne measurements over mode B, as shown in Fig. 8.9.
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Figure 8.9: Entanglement based scheme of the protocol based on Alice sending coherent
states and Bob applying heterodyne detection. Alice generation of coherent is replaced
by an EPR state where Alice applies an heterodyne detection on one half of the EPR
and the other half is sent to Bob.

Restricting to individual attacks and one-way reconciliation, the DR and RR secret
key rates for each of the two quadratures read,

Kx or p
DR = H(AM |E) −H(AM |BM ), (8.67)

Kx or p
RR = H(BM |E) −H(BM |AM ). (8.68)

The problem of estimating Bob’s uncertainty on Alice’s measurementsAM (that is, XM
A

or PMA knowing that the other one is also measured) can be reduced to estimating Bob’s
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uncertainty on each of the quadratures of mode A (XA, PA) since Alice’s measurements
result from mixing mode A with vacuum on a balanced beam splitter, see Fig. 8.9.

Direct Reconciliation

Using equations (8.26) and (8.23) one can show that

VAM |BM =
1

2

[

VA|BM + 1
]

=
1

2

[ (V + 1)(T (χ+ 1) + 1)

T (V + χ) + 1

]

. (8.69)

Eve uncertainty reads,

VAM |E ≥ 1

2

[ 1

VA|B
+ 1
]

=
1

2

[ (V + 1)(χ+ 1)

V χ+ 1

]

. (8.70)

The secret key rate then reads,

KDR ≥ log

[

VAM |E
VAM |BM

]

= log

[

(χ+ 1)(T (V + χ) + 1)

(V χ+ 1)(T (χ+ 1) + 1)

]

. (8.71)

Reverse Reconciliation

Using equations (8.26) and (8.23) one can show that

VBM |AM =
1

2

[

VBM |A + 1
]

=
1

2

[

T (χ+ 1) + 1
]

. (8.72)

Eve uncertainty reads,

VBM |E ≥ 1

2

[ 1

VB|A
+ 1
]

=
1

2

[T (V χ+ 1) + V

T (V χ+ 1)

]

. (8.73)

The secret key rate then reads,

KRR ≥ log

[

VBM |E
VBM |AM

]

= log

[

T (V χ+ 1) + V

T (V χ+ 1)(T (χ+ 1) + 1)

]

. (8.74)

Implementation of the Optimal Attack

The entangling cloner, that is, the optimal attack against the homodyne-based pro-
tocols [95], is clearly not optimal here as it allows to extract information about one
single quadrature. We may think of adapting it by applying an heterodyne detection
on the mode that is entangled with the mode injected in the line (as well as on the
output mode of Eve’s beamsplitter simulating the losses). However, this is equivalent
to having a classical source of noise controlled by Eve, so that the optimal VA(B)|E that
Eve can reach coincides with the beamsplitter attack, which does not saturate (8.71)
nor (8.74) as the excess noise ǫ only affects Alice and Bob mutual information but does
not help Eve to reduce any uncertainty.

Since the time when the heterodyne-based protocol was introduced [194], no attack
has been found saturating bounds (8.71) and (8.74). Logically, two possibilities remain
open:

1. These bounds are tight but the optimal attacks reaching them remain to be found.

2. These bound are not tight and the (unknown) optimal attacks can not saturate
them.

In the next section we will answer this open question by searching the optimal among
all possibles attacks.
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Figure 8.10: Eve’s attack against the protocol based on Alice sending coherent states
and Bob applying heterodyne detection. Eve performs a unitary operation on her two
ancillae E1 and E2 together with the mode B0 sent by Alice. She then measures x
on one ancillae and p on the other one, in order to estimate simultaneously the two
conjugate quadratures of Alice (DR) or Bob (RR).

8.4 No Basis Switching Protocol Optimal Attack

In order to answer the preceding question, we need to search for the optimal attack
against this protocol with respect to all possible (individual Gaussian) attacks that
Eve can do. Although we are dealing with an infinite-dimensional Hilbert space, this
task remains tractable because of the fact that Gaussian states and operations have a
simple characterization in terms of first- and second-order moments of the quadratures.
We thus need to find among all possible linear canonical transformations the one which
optimizes Eve’s information either on Alice’s data (DR) or on Bob’s data (RR). Some
symmetries also simplify the solution of this problem. Before searching for the optimal
attack, let us consider these simplifications.

Simplifying the Problem

Eve’s Gaussian Attack and the Number of Ancillae As we restrict Eve’s at-
tacks to Gaussian operations, it is trivial to see that Eve must apply a Gaussian
unitary transformation on the mode sent by Alice together with her ancillae, as shown
in Fig. 8.10. Indeed, applying a Gaussian completely positive map instead of a unitary
operation (i.e., discarding some ancillae) can only make Eve loose information on the
secret key. The number of ancillae that Eve needs is determined as follows. First, it is
easy to see that Eve needs at least two ancillary modes to estimate either Alice’s (DR)
or Bob’s (RR) quadratures, since one is needed to get x, the other to get p. Let us
give an argument why these two ancillary modes are actually sufficient to implement
the optimal attack. In the entanglement-based description, Eve holds the purification
of ρAB, and therefore can be restricted to occupy the same number of modes as ρAB,
see [105]. One should then be able to recover the entanglement-based scheme of Fig.
8.10 by applying a local unitary operation on Eve’s side, since all purifications are
equivalent up to a unitary operation on Eve’s side.

Thus, the optimal Gaussian attack we seek for corresponds, in the Heisenberg pic-
ture, to a symplectic transformation S acting jointly on Alice’s mode B0 and Eve’s
ancillary modes E1 and E2, that is,

[x̂B , x̂E1
, x̂E2

,p̂B, p̂E1
, p̂E2

]T =

S [x̂B0
, x̂

(0)
E1
, x̂

(0)
E2
, p̂B0

, p̂
(0)
E1
, p̂

(0)
E2

]T , (8.75)

where the superscript (0) is used to indicate that the corresponding state is the vacuum.
Then, Eve’s optimal measurement on her two modes E ≡ E1E2 can be assumed to be
a homodyne measurement on these two modes in order to estimate either (xA, pA) in
DR or (xB , pB) in RR.
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Symmetric Channel without x-p Correlations The symplectic transformation
S can be written without loss of generality in a block-diagonal form as

S =

(
Sx 0
0 Sp

)

, (8.76)

where Sx and Sp are related by the relation

Sp = (STx )−1, (8.77)

in order to preserve the canonical commutation relations. Indeed, we start with an
initial Gaussian state of covariance matrix γAB0

⊕ IE1E2
, which is of the same form

as Eq. (8.23). More precisely, it is symmetric in x and p and admits no correlations
between x and p. After Eve’s Gaussian operation, we have a Gaussian state for modes
A and B, which, by Schmidt decomposition, can be purified into a Gaussian 4-mode
state by extending the system with modes E1 and E2 [105]. This can be understood by
applying a symplectic decomposition on modes A and B that converts their joint state
into a product of two thermal states. These thermal states can then be written as the
reduction of EPR states, shared with Eve’s modes E1 and E2. Since this symplectic
decomposition does not mix the x and p quadratures, the covariance matrix of the
4-mode pure state is again of the same form as Eq. (8.23). Hence, the symplectic
transformation S applied by the eavesdropper does not mix the x and p quadratures.
We would like to stress that this form, Eq. (8.76), is not an assumption but rather a
simplification originating from the fact that the channels of interest have symmetric
uncorrelated noise in x and p, as mentioned above.

The entry of the matrix γxAB corresponding to 〈x̂2
B〉 = T (V +χ) provides constraints

on the first row of Sx, since we need to have

x̂B =
√
T (x̂B0

+
√
χ cos θ x̂

(0)
E1

+
√
χ sin θ x̂

(0)
E2

), (8.78)

where θ ∈ [0, 2π] is a free parameter. Remember that 〈x̂2
B0

〉 = 〈x̂2
A〉 = V . Thus, we

can write Sx in general as

Sx =
√
T





1
√
χ cos θ

√
χ sin θ

a b c
r s t



 , (8.79)

where {a, b, c, r, s, t} ∈ R are six other free parameters. Using Equation (8.77), we can
rewrite Sp as

Sp =
1

d
√
T

×







bt− cs cr − at as− br√
χ(s sin θ − t cos θ) t− r

√
χ sin θ r

√
χ cos θ − s√

χ(c cos θ − b sin θ)
︸ ︷︷ ︸

r′

a
√
χ sin θ − c

︸ ︷︷ ︸

s′

b− a
√
χ cos θ

︸ ︷︷ ︸

t′






, (8.80)

where d = det(Sx). Given the symmetry of the channel, the entry of γpAB corresponding
to 〈p̂2

B〉 = T (V +χ) provides a constraint on the first row of Sp, in a similar way as for
Sx. This yields the three conditions

bt− cs = dT,

cr − at = dT
√
χ cosφ,

as− br = dT
√
χ sinφ, (8.81)

where φ ∈ [0, 2π] is a free parameter. Finally, due to the symmetry of the channel in x
and p, we consider that Eve’s optimal attack gives her the same uncertainty in x and
p.
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Direct Reconciliation

As before, Eve’s uncertainty on Alice’s measurements AM ≡ (XM
A , PMA ) can be calcu-

lated from the uncertainty of Eve on each of the two quadratures of mode A (XA, PA).
We have, for example, VXM

A
|XE1

= 1
2 (VXA|XE1

+ 1), and similarly for the p quadrature.
The symmetry of Eve’s information on XA and PA imposes that

VXA |XE1
= VPA|PE2

≡ VA|E . (8.82)

Writing the second-order moments of A and E1,

〈x̂2
A〉 = V, (8.83)

〈x̂2
E1

〉 = T (a2V + b2 + c2), (8.84)

〈x̂Ax̂E1
〉 = a

√
T 〈x̂Ax̂B0

〉 = a
√

T (V 2 − 1), (8.85)

and plugging them into Eq. (8.26), we obtain

VXA|XE1
=

V + a2

b2+c2

V a2

b2+c2 + 1
. (8.86)

Similarly, one has for the p quadrature

VPA|PE2
=

V + r′2

s′2+t′2

V r′2

s′2+t′2 + 1
. (8.87)

Finally, as a consequence of Eq. (8.82) we can write

VA|E =
V + ρ

V ρ+ 1
, (8.88)

where

ρ ≡ a2

b2 + c2
=

r′2

s′2 + t′2
. (8.89)

Given Eq. (8.78), we see that ρ is proportional to the signal-to-noise ratio of the Alice-
to-Eve channel (more precisely, the latter signal-to-noise ratio equals ρV ). Thus, by
definition, ρ ≥ 0. Moreover, we can write in analogy with Eq. (8.25) the Heisenberg
uncertainty relation

VXA|XE1
VPA|PE2

≥ 1, (8.90)

which, together with Eq. (8.82), implies that VA|E ≥ 1, or, equivalently, ρ ≤ 1. Note
that the Heisenberg-limited attack in DR corresponds simply to choose ρ = χ.

We will now prove that such a choice is not possible, that is, it is not consistent
with the constraints we have on the matrices Sx and Sp. In order to further simplify
Sx, we introduce the following change of variables:

a = u
√
ρ,

b = u sin ξ,

c = u cos ξ. (8.91)

Using the variables r′, s′, t′ as defined in Eq. (8.80) and the expression of ρ in terms of
these variables, Eq. (8.89), we then obtain as explained in Appendix J

(

χ− ρ

ρ

)

cos2(ξ + θ) =
(

sin(ξ + θ) −√
ρχ
)2

. (8.92)



176 CHAPTER 8. CV-QKD: INDIVIDUAL ATTACKS

Using the symmetry of the channel, Eq. (8.81), and the explicit expression of d = detSx,
we obtain a second similar equation (see Appendix J)

(

χ− ρ

ρ

)

cos2(ξ + θ) =

(

sin(ξ + θ) +
1 − T

T
√
ρχ

)2

, . (8.93)

Expressing the equality between Eqs. (8.92) and (8.93) yields two solutions. The first
one, namely ρχ = −(1 − T )/T , is unphysical since T ≤ 1, ρ ≥ 0, and χ ≥ 0. The
second one yields

sin(ξ + θ) =
1

2

Tχρ− (1 − T )

T
√
χρ

. (8.94)

Furthermore, injecting Eq. (8.94) into Eq. (8.93) gives

cos2(ξ + θ) =

(

1

2

Tχρ+ (1 − T )

T
√

χ(χ− ρ)

)2

. (8.95)

Finally, the relation cos2(ξ + θ) + sin2(ξ + θ) = 1 provides us with a second-order
equation in ρ,

T (Tχ2 + 4)ρ2 − 2χT (T + 1)ρ+ (1 − T )2 = 0, (8.96)

which always admits two solutions for a given channel (i.e. given parameters T and
χ),

ρ± =
χT (T + 1) ± 2

√

T [(Tχ)2 − (1 − T )2]

T (Tχ2 + 4)
. (8.97)

Looking at Eq. (8.88), we see that minimizing VA|E is equivalent to maximizing ρ,
that is, choosing ρ+. Thus, Eve’s minimum uncertainty on Alice’s measurement reads,

V min
AM |E =

1

2

[
V min
A|E + 1

]
=

1

2

(V + 1)(ρ+ + 1)

V ρ+ + 1
, (8.98)

and the lower bound on the DR secret key rate reads

KDR = log

[
V min
AM |E

VAM |BM

]

= log

[

(ρ+ + 1)(T (V + χ) + 1)

(V ρ+ + 1)(T (χ+ 1) + 1)

]

. (8.99)

Interestingly, Eq. (8.98) is similar to its counterpart for the Heisenberg-limited attack,
Eq. (8.70), but with ρ+ replacing χ. It can easily be checked that ρ+ < χ, so that the
highest possible signal-to-noise ratio of the Alice-to-Eve channel is strictly lower than
the one deduced from Heisenberg uncertainty relations. Hence, Eve’s optimal attack
is less powerful than expected from Heisenberg relations.

This is illustrated in Fig. 8.11, where the secret key rates have been plotted for
experimental realistic values of V and ǫ. The lower bound deduced from the Heisenberg
relations is satisfied, but loose with respect to the actual key rate.

Reverse Reconciliation

Combining Eqs. (8.75) and (8.79), we obtain the second-order moments of B and E1

〈x̂2
B〉 = T (V + χ), (8.100)

〈x̂2
E1

〉 = T (a2V + b2 + c2), (8.101)

〈x̂B x̂E1
〉 = T (aV + b

√
χ cos θ + c

√
χ sin θ). (8.102)
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Figure 8.11: Secret key rate as a function of the line losses for the optimal (solid line)
and Heisenberg-limited (dashed line) attack. The curves are plotted for experimentally
realistic values, V = 12 and ǫ = 0.01, in direct reconciliation (left panel) or reverse
reconciliation (right panel).

This results in

VXB |XE1
= T

[
b2+c2

a2 + χ− 2
√
χ

a (b cos θ + c sin θ)
]

V + χ
a2 (b sin θ − c cos θ)2

V + b2+c2

a2

, (8.103)

where we have used Eq. (8.26). Similarly, using the symmetry of the channel, Eq. (8.81),
we can write,

VPB |PE2
= T

[
s′2+t′2

r′2 + χ− 2
√
χ

r′ (s′ cosφ+ t′ sinφ)
]

V + χ
r′2 (s′ sinφ− t′ cosφ)2

V + s′2+t′2

r′2

.

(8.104)
Imposing the symmetry of Eve’s information on XB and PB in analogy with

Eq. (8.82), that is,
VXB |XE1

= VPB |PE2
≡ VB|E , (8.105)

gives the three conditions

r′2

s′2 + t′2
=

a2

b2 + c2
= ρ, (8.106)

s′ cosφ+ t′ sinφ

r′
=
b cos θ + c sin θ

a
=

sin(ξ + θ)√
ρ

, (8.107)

s′ sinφ− t′ cosφ

r′
=
b sin θ − c cos θ

a
=

cos(ξ + θ)√
ρ

. (8.108)

Note that condition (8.106) is exactly the same as in direct reconciliation. Surprisingly,
it so happens that this condition is sufficient to find an expression for VB|E which is the
same as in direct reconciliation, making it unnecessary to use the other two conditions.
Indeed, Eve’s uncertainty on the quadratures of mode B can be rewritten as

VB|E = T

[
1 + χρ− 2

√
χρ sin(ξ + θ)

]
V + χ cos2(ξ + θ)

V ρ+ 1
. (8.109)

Then, using the definition of sin(ξ + θ) coming from Eq. (8.94) as well as Eq. (8.96),
we obtain

cos2(ξ + θ) =
ρ

Tχ
, (8.110)

1 + χρ− 2
√
χρ sin(ξ + θ) = 1/T, (8.111)
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which gives VB|E = VA|E . Therefore, just like in direct reconciliation, Eve’s uncertainty
on the quadratures of mode B is minimized by choosing ρ+,

V min
B|E =

V + ρ+

V ρ+ + 1
. (8.112)

Then, Eve’s uncertainty on Bob’s measured values becomes

V min
BM |E =

1

2

[

V min
B|E + 1

]

=
1

2

(V + 1)(ρ+ + 1)

V ρ+ + 1
, (8.113)

so that the RR secret key rate reads

KRR = log

[
V min
BM |E

VBM |AM

]

= log

[

(V + 1)(ρ+ + 1)

(V ρ+ + 1)(T (χ+ 1) + 1)

]

. (8.114)

This rate is illustrated in Fig. 8.11, where it is compared with the lower bound
deduced from the Heisenberg relations in RR. We conclude again that the Heisenberg-
limited attack is not reachable.

8.5 Optical Setup Achieving the Optimal Attack

In Section 8.4, we have reduced the problem of maximizing Eve’s information to that of
optimizing a single parameter ρ, the other parameters remaining free. This implies that
the optical implementation of the best Gaussian attack is not unique. In this Section,
we present two particularly interesting examples of such an optical implementation,
namely the teleportation attack and the “feed-forward” attack. Note that the latter
attack was also considered in Ref. [194], where it was noticed that it curiously does not
reach the Heisenberg limit.

Teleportation Attack

The teleportation attack consists in Eve applying a continuous-variable quantum tele-
portation where the input is Alice’s outgoing mode and the output is given to Bob,
as shown in Fig. 8.12. Eve extracts information from the outcomes (XM

E , PME ) of her
Bell measurement performed on Alice’s outgoing mode B0 together with one of the
modes (E′

1) of an EPR state. It is easy to see that there are two limiting cases. If the
squeezing factor r of the EPR pair is zero, implying that E′

1 is in a vacuum state, then
the scheme becomes equivalent to an heterodyne measurement of B0 by Eve followed
by the classical preparation of a coherent state (the vacuum state in mode E′

2 which is
displaced by some amount depending on XM

E and PME ). This situation corresponds to
an entanglement-breaking channel giving no secret key. On the contrary, if the squeez-
ing factor r is infinite, the teleportation succeeds perfectly and Eve gets no information
at all due to the infinite noise in the thermal state E′

1. This situation corresponds to
a perfect channel with no losses and no excess noise (T = 1, ǫ = 0). We will now show
that for any intermediate value of r, such a teleportation attack can be made optimal.

Since all the involved canonical transformations are symmetric in x and p, we will
detail the proof for the x quadrature only. Eve starts by preparing two squeezed
vacuum states, mode E2 squeezed along x and mode E1 squeezed along p,

x̂1 ≡ x̂E1
= erx̂

(0)
1 , (8.115)

x̂2 ≡ x̂E2
= e−rx̂(0)

2 , (8.116)
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Figure 8.12: Teleportation attack against the (entanglement-based scheme of the)
Gaussian protocol based on Alice sending coherent states and Bob applying hetero-
dyne detection. Eve first generates an EPR pair (E′

1, E
′
2) by mixing a x-squeezed

vacuum state (E2) with a p-squeezed vacuum state (E1) at a balanced beamsplitter.
Then, she performs a Bell measurement on Alice’s outgoing mode B0 together with
E′

1. Depending on the measurement outcome and the fixed gain gE , she then displaces
mode E′

2 by x (Dx) and p (Dp). The resulting state is sent to Bob. By tuning the
squeezing parameter r and the gain gE , Eve can simulate any Gaussian channel (T, χ)
and extract the optimal amount of information.

where we omitted the subscript E to lighten the notations. Subsequently we mix them
on a balanced beamsplitter, thereby generating an EPR state

x̂′1 = [e−rx̂(0)
2 − erx̂

(0)
1 ]/

√
2, (8.117)

x̂′2 = [e−rx̂(0)
2 + erx̂

(0)
1 ]/

√
2. (8.118)

Eve then applies a Bell measurement by mixing E′
1 and B0 on a balanced beamsplitter,

and measuring x on one output and p on the other,

x̂ME =
1√
2
[x̂B0

+ x̂′1] =
1√
2
x̂B0

+
1

2
[e−rx̂(0)

2 − erx̂
(0)
1 ]. (8.119)

Next, Eve displaces her mode E′
2 by an amount proportional to the measurement

outcome XM
E (multiplied by the classical gain gE) and sends it to Bob, giving

x̂B = x̂′2 + gE x̂
M
E

=
gE√

2
x̂B0

+
er√
2

[

1 − gE√
2

]

x̂
(0)
1 +

e−r√
2

[

1 +
gE√

2

]

x̂
(0)
2 . (8.120)

In order to comply with 〈x̂2
B〉 = T (V + χ), we need to fix gE and r in such a way that

gE =
√

2T , (8.121)

Tχ = (1 + T ) cosh2r − 2
√
T sinh 2r. (8.122)

Direct Reconciliation.

Writing the second-order moments of x̂A and x̂ME , namely

〈x̂2
A〉 = V, (8.123)

〈(x̂ME )2〉 = (V + cosh 2r)/2, (8.124)

〈x̂Ax̂E〉 = 〈x̂Ax̂B0
〉/
√

2 =
√

(V 2 − 1)/2, (8.125)
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one can show, using Eq. (8.26), that Eve’s uncertainty on Alice’s data is

VA|E =
V cosh 2r + 1

V + cosh 2r
. (8.126)

By choosing

ρ =
1

cosh 2r
, (8.127)

this expression for VA|E coincides with Eq. (8.88). Combining Eq. (8.122) with the

relation cosh2 2r−sinh2 2r = 1, we see that ρ must satisfy the second-order polynomial
equation (8.96), whose solution gives the value of ρ that optimizes Eve’s information.
Equation (8.96) having two possible solutions ρ± generating the same quantum channel
(T, χ), we then have two possible solutions for the squeezing parameter r. Looking at
Eq. (8.127), we see that that the squeezing parameter corresponding to the optimal
choice ρ+ is the lowest of the two solutions since it corresponds to the minimum added
noise on Eve’s measurement.

Reverse Reconciliation.

Using Eqs. (8.26), (8.122), (8.124), and

〈x̂Bx̂ME 〉 =
1√
2

[
V
√
T − sinh 2r +

√
T cosh 2r

]
, (8.128)

one can show that Eve’s uncertainty on each of Bob’s quadratures reads

VB|E =
V cosh 2r + 1

V + cosh 2r
= VA|E , (8.129)

implying that the teleportation attack is also optimal (choosing the lowest squeezing
parameter) for the reverse reconciliation protocol.

Feed-forward Attack
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Figure 8.13: Entanglement based scheme of Eve “feed-forward” attack over the protocol
based on Alice sending coherent states and Bob applying heterodyne detection. Eve
extracts part of the signal sent by Alice using a beamsplitter (transmittance G) and
applies an heterodyne detection on it (over mode E1). Depending on the measurement
result times a given fixed gain gE Eve displaces mode E2 over x (Dx) and p (Dp). The
resulting state is then sent to Bob. By tuning the transmittance of the beamsplitter
(G) and the gain (gE) Eve can simulate any Gaussian channel (T, χ) and extract the
optimal amount of information.
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In the case of a noisy channel with no losses (T = 1) and direct reconciliation,
Eve’s optimal teleportation attack is exactly the same scheme as the one proposed
in Ref. [5] to reach an optimal tradeoff between disturbance and state estimation for
coherent states (when the success of both processes is measured using the fidelity).
This is not surprising since optimally estimating the coherent state sent by Alice while
minimizing its disturbance is exactly what Eve attempts to achieve in her optimal
attack in direct reconciliation. In Ref. [5], two alternative schemes to the teleportation
reaching the same optimal tradeoff were also presented, the “feed-forward” attack and
the asymmetric cloning machine. Those two schemes can very naturally be extended to
our case (T ≤ 1) if we allow for different mean values for the input and output modes,
which gives rise to new optical schemes for the optimal attack.

For example, it can be checked that Eve can realize an optimal attack (both in
DR and RR) using the “feed-forward” scheme described in Fig. 8.13 by fixing the
parameters of the beamsplitter transmittance G and the feed-forward gain gE as

G =
1 − ρ+

1 + ρ+
, (8.130)

gE =
(√
T −

√
G
)
√

2

1 −G
. (8.131)

8.6 Security Analysis of the Gaussian Protocols

For a lossy channel (no excess noise, ǫ = 0), we observe in Fig. 8.14 that the proto-
col based on squeezed states and homodyne detection gives the highest rate together
with the no basis switching protocol in both Direct and Reverse Reconciliation. The
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Figure 8.14: Secret key rate as a function of the channel losses (measured in dB) for
a lossy channel (ǫ = 0) for all the Gaussian protocols: squeezed states and homodyne
detection (solid line), coherent states and homodyne detection (dotted line), coherent
states and heterodyne detection (dot-dashed line) and squeezed states and heterodyne
detection (dashed line). The curves are plotted for experimental realistic modulation
V = 40.

worst protocol in Direct Reconciliation is the forgotten protocol based on Alice sending
squeezed states and Bob applying heterodyne detection. In the case of Reverse Rec-
onciliation there are two protocols giving the worst secret rate, the protocol based on
coherent states and homodyne measurement and the one based on squeezed states and
heterodyning, as we can easily check using equations (8.58) and (8.66) and realizing
that T (χ+ 1) = 1 for ǫ = 0.

Once we move to a noisy channel we observe that the protocol based on squeezed
states and homodyne detection remains optimal but the no basis switching protocol
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Figure 8.15: Secret key rate as a function of the channel losses (measured in dB) for a
noisy channel (ǫ = 0.2)), for all the Gaussian protocols: squeezed states and homodyne
detection (solid line), coherent states and homodyne detection (dotted line), coherent
states and heterodyne detection (dot-dashed line) and squeezed states and heterodyne
detection (dashed line). The curves are plotted for experimental realistic modulation
V = 40.

becomes very sensitive to the noise, as shown in Fig. 8.15. After a given threshold, it
starts to perform worse than the protocol based on coherent states and homodyning
in DR and than squeezed states and heterodyne detection in RR.

Tolerable Excess Noise

In Direct Reconciliation, for both implementations based on Alice using coherent states,
the heterodyne-based protocol gives an advantage over the homodyne-based protocol
only for line losses below some threshold. This threshold can be shown to decrease
for increasing ǫ, so that the maximum tolerable excess noise is actually higher for the
homodyne-based protocol, as we can see in Fig. 8.16 where we plot the maximal excess
noise tolerable by each protocol as a function of the channel loss.

In Reverse Reconciliation we observe a symmetric effect for the protocol using
heterodyne detection, where the no-switching protocol gives an advantage over the
protocol based on squeezed states and heterodyne detection only for line losses below
some threshold, giving a lower tolerable excess noise as shown in Fig. 8.17.

In Fig. 8.18 we plot the tolerance to excess noise of all the Gaussian one-way pro-
tocols against individual attacks by Eve. Where we observe a relevant behavior of
continuous variables QKD, the difference existing between Direct and Reverse Recon-
ciliation maximal ranges. We remark that the range in Direct Reconciliation is limited
to 3dB while there is no theoretical limitation in the case of Reverse Reconciliation.

The coherent states and homodyne detection secret key rate in Direct Reconciliation
(8.55) being up to a constant factor exactly the same as that of the protocol based on
squeezed states and homodyne detection (8.34), it is then trivial to see that they
give the same tolerable excess noise as they become null for the same excess noise.
Similarly, the squeezed state and heterodyning protocol gives the same tolerable excess
noise (8.66) as that of the protocol based on squeezed states and homodyne detection
(8.36) in Reverse Reconciliation.
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Figure 8.16: Tolerable excess noise ǫ as a function of the channel losses (measured in
dB) for high modulation (V = 1000) and DR for the two protocols based on coherent
states; coherent states with heterodyne detection (solid line) and homodyne detection
(dashed line). The dotted line marks the transition where the key rate of the two
protocols is equivalent.
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Figure 8.17: Tolerable excess noise ǫ as a function of the channel losses (measured in
dB) for high modulation (V = 1000) and RR for the two protocols based on heterodyne
detection; coherent states with heterodyne detection (solid line) and squeezed states
and heterodyne detection (dashed line). The dotted line shows the channels (couple
T, ǫ) that give the same secret key rate for both protocols.
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Figure 8.18: Tolerable excess noise ǫ as a function of the channel losses (measured in
dB)for high modulation (V = 1000) for all the Gaussian protocols: squeezed states and
homodyne detection (solid line), coherent states and homodyne detection (dotted line),
coherent states and heterodyne detection (dot-dashed line) and squeezed states and
heterodyne detection (dashed line). The curves vanishing at (or above) 3dB correspond
to DR, whereas the rest refer to RR.



Chapter 9

CV-QKD: Collective Attacks

9.1 Introduction

In this chapter we are going to study the security of the continuous variable quantum
key distribution (CV-QKD) protocols based on Gaussian modulation of Gaussian states
presented in Chapter 7. All the protools can be described in an unified way using
an entanglement-based description of CV-QKD, as shown in Fig. 9.1, where Alice
and Bob distill a secret key from their measurement results a and b respectively. In

0B

UBE

E

B B

U
B

AA

Bob

EPR

a Alice b

A
U

Eve

Figure 9.1: Entanglement-based scheme for CV-QKD. Alice’s preparation is modelled
by a measurement UA on her half of an EPR pair. The channel is modelled by an
unitary interaction between mode B and Eve ancilla’s E. Finally, Bob’s measurement
is modelled by UB.

realistic protocols, Alice and Bob do not achieve the Holevo bound, but only extract the
mutual information Iab = S(a:b). In contrast, Eve is assumed to have no technological
limitation, so, by collective attacks, she can attain the Holevo bound χaE = S(a:E).
Then, using our notation, the achievable secret key rate reads [155],

KDR = S(a:b) − S(a:E), (9.1)

for Direct Reconciliation (DR) and

KRR = S(a:b) − S(b:E), (9.2)

for Reverse Reconciliation (RR), where the function KDR(RR)(ρAB) depends on the
choice of the measurements done by Alice and Bob (and on the sifting if any), but does
not depend on the purification of ρAB.

9.2 Optimality of Gaussian Collective Attacks

The proof of optimality of Gaussian attacks among the family of collective attacks
is strikingly similar to that of individual attacks presented in Chapter 8, using the

185
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entanglement-based version of CV-QKD supplemented by the physical model of mea-
surement and the optimality of Gaussian states derived in [198].

Before presenting the proof we briefly remind the results of [198], where it is shown
that for a given function f which is: (i) continuous in trace norm; (ii) invariant under
local ”Gaussification” operation UG; (iii) strongly sub-additive. Then, for every bipar-
tite state ρAB with covariance matrix γAB, we have that f(ρAB) ≤ f(ρGAB) where ρGAB
is the Gaussian state with the same γAB.

In the entanglement-based Gaussian protocols presented in Chapter 7 Alice and
Bob where using either homodyne or heterodyne detection. The next optimality result
is true for more general POVM measurements, such as noisy homodyne measurements.
The only constraint on the measurements is that they must commute with the ”Gaus-
sification” operation, which is satisfied if the measurement acts independently on x
and p quadratures.

Proof

Alice and Bob mutual information S(a:b) being fixed by the data obtained by the two
partners and the efficiency of the reconciliation, in order to prove the optimality of
Gaussian attacks it is then enough to prove that Eve information S(a:E) is maximized
when she applies a Gaussian map. For this, we need to use the extension of this
function over 2N modes (A = A1A2...AN , B = B1B2...BN ), S(a:E). Remark that E
being the purification of AB the quantum mutual information S(A:E) is a function of
ρAB. Note that S(a:E) restricts to S(a:E) when N = 1.

Continuity If ‖ρ(n)
AB

−ρAB‖1≤ ǫ, using Ulhmann’s theorem and the well-known rela-
tions between the fidelity and trace distance (see Appendix I), we can find a purification

|Ψ〉(n)
ABE (|Ψ〉ABE) of ρ

(n)
AB

(ρAB) such that ‖Ψ̂(n)
ABE−Ψ̂ABE‖1≤ 2

√
ǫ. Then, considering

that partial trace can only decrease the trace norm [136], we have ‖ρ(n)
aE − ρaE‖1≤ 2

√
ǫ,

‖ρ(n)
E − ρE‖1≤ 2

√
ǫ and ‖ρ(n)

a − ρa‖1≤ 2
√
ǫ. Finally, the continuity of von Neumann

entropies implies the continuity of S(ā:E). �

Invariance Under Local Gaussification Unitaries Applying the local Gaussi-
fication operation UG ⊗ UG on the product states |ψ〉⊗NABE (as shown in Fig. 9.2 for

N = 2), we obtain the state |ψ̃〉ABE. After the measurements on Alice’s and Bob’s

ψ

ψ

U
G

1
b

2b

a1

a2

Ε 1

Α1 Β 1

Β 2Α2

Ε 2

U
G

UA

UA UB

UB

U
−1

G
U

−1

G

Figure 9.2: Invariance under local “Gaussification” unitaries: UG can be interchanged
with the measurement UA, then U−1

G and UG cancel each other.

sides, the state becomes ρ̃abE. But because the measurement does not mix the x and
p quadratures and neither does the Gaussification operation, the two can be inter-
changed, by applying U †

G ⊗ U †
G on modes a and b we recover the state ρ⊗NabE , which

coincides with the state obtained by directly measuring |ψ〉⊗NABE without Gaussification.

Since the two states ρ̃aE and ρ⊗NaE are related by a local unitary operation U †
G ⊗ I and
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since the von Neumann entropies appearing in S(a:E) are invariant under (any) local
unitaries, we obtain the invariance of S(a:E) under local Gaussification unitaries. �

Strong Subadditivity We will restrict the proof to two modes on each side, A1,2 and
B1,2, as shown in Fig. 9.3, where E is the purification of A1,2B1,2. The generalization
to N > 2 being straightforward. Using the definition of the mutual entropy,

ψ
1

Α 1Β

Β 2Α2

a1

a2

b1

b2

Ε

Figure 9.3: Alice and Bob share a quantum state A1,2B1,2 where Alice applies inde-
pendent measurements on each mode MA1

⊗MA2
, and so does Bob MB1

⊗MB2
. Eve

holds the purification (E) of A1,2B1,2. Remark that the purification of A1B1 (A2B2)
is A2B2E (A1B1E).

S(a1, a2:E) = S(a1, a2) − S(a1, a2|E)

= S(a1, a2)
︸ ︷︷ ︸

≤S(a1)+S(a2)

−[ S(a1|a2E)
︸ ︷︷ ︸

≥S(a1|A2B2E)

+ S(a2|a1E)
︸ ︷︷ ︸

≥S(a2|A1B1E)

+S(a1:a2|E)
︸ ︷︷ ︸

≥0

]

≤ S(a1) + S(a2) − S(a1|A1B1E) − S(a2|A2B2E), (9.3)

where we used the subadditivity, the strong subadditivity of the entropy and ”condi-
tioning does not increase entropy”1. Finally, noticing that the purification of A1B1

(A2B2) is E1 = A2B2E (E2 = A1B1E) we obtain

S(a1, a2) ≤ S(a1:E1) + S(a2:E2). (9.4)

The additivity being a straightforward consequence of the additivity of von Neumann
entropies. �

Thus, we have proved that for all bipartite quantum states ρAB with covariance
matrix γAB, one has KDR(ρAB) ≥ KDR(ρGAB). This means that KDR(ρGAB) is a lower
bound on the secret key rate for any protocol (even non-Gaussian) and collective attack
(including non-Gaussian). The only requirement for this result to hold is that Alice and
Bob use the second-order moments of the quadratures in order to calculate this bound.
In particular, for the Gaussian-modulation protocols of [44, 94, 96, 194], Eve’s optimal
attack is a Gaussian attack, in which case the bound is saturated. Note that the above
proof concerns DR, see Eq. (9.1), but its extension to RR Eq. (9.2) is straightforward:
one simply needs to interchange a↔ b and A↔ B.

9.3 Security Analysis of Gaussian Protocols

Importantly, this boundKDR(RR)(ρ
G
AB) can easily be computed from the observed data

since one simply needs to calculate the entropy of thermal states. In the following we
are going to analyse the security of all existing Gaussian protocols.

1In Chapter 5 and 6 we proved that ”conditioning does not increase entropy” and strong subaddi-
tivity are strictly equivalent.
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Squeezed States and Homodyne Detection

The protocol based on squeezed states and homodyne measurement [44] is equivalent
to an entanglement based scheme where Alice and Bob apply homodyne measurements
over modes A and B respectively, as shown in Fig. 9.4. The quantum state ρAB before

EPR

a
X X b

Channel

Alice

A B

Bob

Figure 9.4: Entanglement based scheme of the protocol based on Alice sending squeezed
states and Bob applying homodyne detection. Alice generation of squeezed states is
replaced by an EPR state where Alice applies an homodyne detection on one half of
the EPR and the other half is sent to Bob.

Alice and Bob measurements is a Gaussian two mode state with null mean value and
covariance matrix,

γAB =

(
a I c σz
c σz b I

)

=

(
V I

√

T (V 2 − 1)σz√

T (V 2 − 1)σz T (V + χ)I

)

, (9.5)

where σz reads

σz =

(
1 0
0 −1

)

, (9.6)

V is the variance of Alice output thermal state and T and χ = (1 − T )/T + ǫ are
respectively the transmittance and noise referred to the input of the Gaussian channel
(ǫ being the excess noise referred to the input). The secret key rate reads,

K = S(xA:xB) − IE , (9.7)

where Eve information IE reads, S(xA:E) for DR and S(xB :E) for RR.

Alice and Bob Mutual Information

Alice and Bob mutual information

S(xA:xB) = S(xA) − S(xA|xB), (9.8)

can be calculated using the techniques developed in chapter 8,

S(xA:xB) =
1

2
log

[

VA
VA|B

]

=
1

2
log

[

V + χ

χ+ 1/V

]

, (9.9)

which is the same for Direct and Reverse Reconciliation.

Eve Information: Direct Reconciliation

Eve quantum information on Alice measurement

S(xA:E) = S(E) − S(E|xA), (9.10)

can be calculated using the following technique. First we use the fact that system E
purifies AB so we can write S(E) = S(AB). Secondly, after Alice projective mea-
surement XA the system BE being pure, we have S(E|xA) = S(B|xA). For Gaussian
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states S(B|xA) is the same for all xA, being just a function of the covariance matrix
γAB. S(AB) is a function of the symplectic eigenvalues λ1,2 of γAB which reads

S(AB) = G
[
(λ1 − 1)/2

]
+G

[
(λ2 − 1)/2

]
, (9.11)

where
G(x) = (x+ 1) log(x+ 1) − x log x, (9.12)

is the Von Neumann entropy of a thermal state (calculated in Chapter 6) and

λ2
1,2 =

1

2

[

∆ ±
√

∆2 − 4D2

]

, (9.13)

where we have used the notations

∆ = a2 + b2 − 2c2 = V 2(1 − 2T ) + 2T + T 2(V + χ)2,

D = ab− c2 = T (V χ+ 1). (9.14)

S(B|xA) = G
[
(λ3−1)/2

]
is a function of the symplectic eigenvalue λ3 of the covariance

matrix γxa

B of Bob mode after Alice projective measurement (using equation (2.57)),

γxa

B = γB − σTAB
(
XγAX

)MP
σAB , (9.15)

which gives,

γxa

B =

(
b− c2/a 0

0 b

)

=

(
T (χ+ 1/V ) 0

0 T (V + χ)

)

. (9.16)

The square of symplectic eigenvalue λ3 reads,

λ2
3 = b(b− c2/a) = T 2(V + χ)(χ+ 1/V ). (9.17)

Eve Information: Reverse Reconciliation

Eve quantum information on Bob measurement can be calculated in a similar way as
for Direct Reconciliation,

S(xB:E) = S(E) − S(E|xB). (9.18)

Because of the symmetry of the entanglement-based scheme we just need to interchange
a ↔ b in equation (9.16), in order to calculate γxb

A . The square of the symplectic
eigenvalue λ3 of the covariance matrix γxb

A then reads,

λ2
3 = a(a− c2/b) = V

V χ+ 1

V + χ
. (9.19)

Coherent States and Homodyne Detection

The protocol based on coherent states and homodyne measurement [96] is equivalent
to an entanglement based scheme where Alice applies an heterodyne measurement on
mode A, as shown in Fig. 9.5, where the heterodyne measurement is modeled by
combining mode A and a vacuum ancilla C in a balanced beamsplitter and measuring
x on A and p on C. Bob continues to apply homodyne measurements over mode B,
obliging Alice to drop one of both measurement results during the sifting step. The
secret key rate then reads,

K = S(xMA :xB) − IE , (9.20)

where Eve information IE is S(xMA :E) for DR and S(xB :E) for RR, Note that we
use the variable xMA here (not A), since in this protocol Alice does not measure one
single quadrature but a pair of conjugate quadratures [xMA stands for the measurement
of x quadrature of mode A, given that the conjugate quadrature p is simultaneously
measured].
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Figure 9.5: Entanglement based scheme of the protocol based on Alice sending coherent
states and Bob applying homodyne detection. Alice generation of coherent states is
replaced by an EPR state where Alice applies an heterodyne detection on one half of
the EPR and the other half is sent to Bob.

Alice and Bob Mutual Information

Following the calculations of the previous chapter Alice and Bob mutual information
reads,

S(xMA :xB) =
1

2
log

[

VA + 1

VA|B + 1

]

=
1

2
log

[

V + χ

χ+ 1

]

, (9.21)

which is the same for Direct and Reverse Reconciliation.

Eve Information: Direct Reconciliation

Eve quantum information on Alice measurements

S(xMA :E) = S(E) − S(E|xMA ), (9.22)

can be calculated in a similar way as before. The term S(E) = S(AB) is exactly
the same as in equation (9.11), while the evaluation of S(E|xMA ) is slightly more
complex. After Alice projective measurement xA the system BCE is pure, giving
S(E|xMA ) = S(BC|xMA ), where C is Alice auxiliary mode used at the heterodyne de-
tection. S(BC|xMA ) being a function of the symplectic eigenvalues λ3,4 of γxa

BC . The
covariance matrix γxa

BC being the result of applying homodyning over A after mixing
A and C in a balanced beamsplitter:

γACB =
[
SBSAC ⊗ IB

]T
γA0C0B

[
SBSAC ⊗ IB

]
(9.23)

where SBSAC is the symplectic transformation of the balanced beamsplitter. After Alice
homodyne detection, the covariance matrix γxa

BC reads (using equation (2.57)),

γxa

BC =







b− c2/a 0
√

2c/(a+ 1) 0

0 b 0 −c/
√

2√
2c/(a+ 1) 0 2a/(a+ 1) 0

0 −c/
√

2 0 (a+ 1)/2






. (9.24)

Then the conditional von Neumann entropy reads,

S(BC|xMA ) = G
[
(λ3 − 1)/2

]
+G

[
(λ4 − 1)/2

]
, (9.25)

where

λ2
3,4 =

1

2

[

A±
√

A2 − 4B

]

, (9.26)
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where we have used the notation

A =
1

a+ 1
[a+ bD + ∆]

B =
D

a+ 1
[b+D], (9.27)

with D and ∆ defined in equations (9.14).

Reverse Reconciliation

Bob still applying homodyne measurement, Eve quantum information on Bob mea-
surement

S(xB:E) = S(E) − S(E|xB), (9.28)

is then exactly the same as in the case of Reverse Reconciliation of the protocol based
on squeezed states and homodyne measurement (9.3).

Squeezed States and Heterodyne Detection

The protocol based on squeezed states and heterodyne detection is equivalent to an
entanglement based scheme where Alice applies an homodyne measurement over mode
A and Bob applies heterodyne measurements over mode B, as shown in Fig. 9.6. The
heterodyne measurement is modeled by combining mode B and a vacuum ancillae C
in a balanced beamsplitter and measuring x on B and p on C. The secret key rate

EPR
X B

PB
M

A
X

Channel
M

M

BobAlice

A B 0 B

C

Figure 9.6: Entanglement based scheme of the protocol based on Alice sending squeezed
states and Bob applying heterodyne detection. Alice generation of squeezed is replaced
by an EPR state where Alice applies an homodyne detection on one half of the EPR
and the other half is sent to Bob.

then reads,

K = S(xA:xMB ) − IE , (9.29)

where Eve information IE reads S(xA:E) for DR and S(xMB :E) for RR.

Alice and Bob Mutual Information

Following the calculations of the previous chapter Alice and Bob mutual information
reads,

S(xA:xMB ) =
1

2
log

[

VB + 1

VB|A + 1

]

=
1

2
log

[

T (V + χ) + 1

T (χ+ 1/V ) + 1

]

, (9.30)

which is the same for Direct and Reverse Reconciliation.
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Eve Information: Direct Reconciliation

Alice still applying homodyne measurements, Eve quantum information on Alice mea-
surements

S(xA:E) = S(E) − S(E|xA), (9.31)

is then exactly the same as in the case of Direct Reconciliation of squeezed states and
homodyne measurement.

Eve Information: Reverse Reconciliation

Eve quantum information on Bob measurement

S(xMB :E) = S(E) − S(E|xMB ), (9.32)

can be calculated in a similar way as we did for Direct Reconciliation in the protocol
based on coherent states and homodyning. By symmetry we have just to change a↔ b
in γxa

BC to obtain γxb

AC . It is then straightforward to calculate the conditional von
Neumann entropy,

S(BC|XM
B ) = G

[
(λ3 − 1)/2

]
+G

[
(λ4 − 1)/2

]
, (9.33)

where

λ2
3,4 =

1

2

[

A±
√

A2 − 4B

]

, (9.34)

where we have used the notation

A =
1

b+ 1
[b+ aD + ∆],

B =
D

b+ 1
[a+D]. (9.35)

Coherent States and Heterodyne Detection

The protocol based on coherent states and heterodyne detection [194] is equivalent to
an entanglement based scheme where Alice applies an heterodyne measurement over
mode A0 and Bob applies heterodyne measurement over mode B′, as shown in Fig.
9.7. The secret key rate then reads,

KCE = S(xMA0
, pMA0

:xMB , p
M
B ) − IE , (9.36)

where Eve information IE reads S(xMA0
, pMA0

:E) for DR and S(xMB , p
M
B :E) for RR.

Alice and Bob Mutual Information

Following the calculations of the previous chapter Alice and Bob mutual information
reads,

S(xMA0
, pMA0

:xMB , p
M
B ) = 2S(xMA0

:xMB ) (9.37)

= log

[

VB + 1

VB|AM + 1

]

= log

[

T (V + χ) + 1

T (χ+ 1) + 1

]

, (9.38)

which is the same for Direct and Reverse Reconciliation.
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Figure 9.7: Entanglement based scheme of the protocol based on Alice sending coherent
states and Bob applying heterodyne detection. Alice generation of coherent states is
replaced by an EPR state where Alice applies an heterodyne detection on one half of the
EPR and the other half is sent to Bob. Alice heterodyne measurement of mode A0 is
implemented by mixing A0 with the auxiliary vacuum C0 into a balanced beamsplitter
and homodyning the outputs A and C to obtain xMA and pMA respectively. Similarly
Bob heterodyne of mode B is implemented by mixing B with the auxiliary vacuum D0

into a balanced beamsplitter and homodyning the outputs B′ and D to obtain xMB and
pMB respectively.

Eve Information: Direct Reconciliation

Eve quantum information on Alice measurement

S(xMA0
, pMA0

:E) = S(E) − S(E|xMA0
, pMA0

), (9.39)

can be calculated in a similar way as before. The term S(E) = S(AB) is exactly the
same as in equation (9.11). After Alice heterodyne detection over mode A0, (homo-
dyning A and C to obtain xMA and pMC , respectively) the system BE is pure. This gives
S(E|xMA , pMA ) = S(B|xMA0

, pMA0
) = S(B|xA, pC), which is a function of the symplectic

eigenvalue λ3 of γxa,pa

B . The covariance matrix γxa,pa

B results from applying a projec-
tive measurement over A (xA) and C (pC) over γACB of equation (9.23), which using
equation (2.57) reads,

γxa

BC =
(
b− c2/(a+ 1)

)
I. (9.40)

Then the conditional von Neumann entropy reads,

S(B|XM
A , PMC ) = G

[
(λ3 − 1)/2

]
, (9.41)

where
λ3 = b− c2/(a+ 1) = T (χ+ 1). (9.42)

Eve Information: Reverse Reconciliation

Eve quantum information on Bob measurement

S(xMB , p
M
B :E) = S(E) − S(E|xMB , pMB ), (9.43)

is calculated in the same way as we did for Direct Reconciliation. After Bob het-
erodyne detection over modes B′ (xB) and D (pD) the system AE is pure, giving
S(E|xMB , pMB ) = S(E|xB′ , pD) = S(A|xB′ , pD), where D is Alice auxiliary mode.
S(A|xB′ , pD) being the symmetric counterpart of S(B|xA, pC) calculated for Direct
Reconciliation, we just have to change a ↔ b in γxa,pa

B to obtain γxb,pb

A . Then the
conditional von Neumann entropy reads,

S(A|xB′ , pD) = G
[
(λ3 − 1)/2

]
, (9.44)

where

λ3 = a− c2/(b+ 1) =
T (V χ+ 1) + 1

T (V + χ) + 1
. (9.45)
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Comparison of the Different Protocols

For a lossy channel, (no excess noise, ǫ = 0), we observe in Fig. 9.8 that the protocol
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Figure 9.8: Secret key rate as a function of the channel losses (measured in dB) for a
lossy channel (ǫ = 0) for all the Gaussian protocols: squeezed states and homodyne
detection (solid line), coherent states and homodyne detection (dotted line), coherent
states and heterodyne detection (dot-dashed line) and squeezed states and heterodyne
detection (dashed line). The curves are plotted for experimental realistic modulation
V = 40.

based on squeezed states and homodyne detection [44] gives the highest rates for Di-
rect and Reverse Reconciliation. Interestingly, compared to individual attacks where
the no basis switching protocol [194] performed nearly as well as the protocols based
on squeezed states and homodyning, here it performs much worse. Its performance,
unless for low losses (< 1dB in DR and < 3dB in RR), is now comparable to that of
coherent states and homodyning [96] in Reverse Reconciliation and that of squeezed
states and heterodyne detection in Direct Reconciliation (which is much worse than
coherent states and homodyning for DR). The protocol based on coherent states and
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Figure 9.9: Secret key rate as a function of the channel losses (measured in dB) for a
noisy channel (ǫ = 0.25), for all the Gaussian protocols: squeezed states and homodyne
detection (solid line), coherent states and homodyne detection (dotted line), coherent
states and heterodyne detection (dot-dashed line) and squeezed states and heterodyne
detection (dashed line). The curves are plotted for experimental realistic modulation
V = 40.

homodyning and the protocols based on squeezed states and heterodyne being a noisy
version of the protocol based on squeezed states and homodyne measurement, one
would expect them to give worse secret key rates for any channel. Surprisingly that
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is not the case as we can see in Fig. 9.9, where we observe that after some threshold
coherent states and homodyning performs better in Direct Reconciliation and squeezed
states and heterodyne in Reverse Reconciliation.

Noise Can Be Helpfull

Looking carefully at the different steps of the Reverse Reconciliation protocol using
squeezed states and heterodyne measurement, we observe that during the sifting phase
Bob throws away one of his two measurements (either xMB or pMB ) of the conjugate
quadratures depending on the measurement done by Alice. This operation translates
mathematically to tracing out the mode that does not correspond to the correct quadra-
ture measurement (mode C on Fig.9.6). This implies that our protocol can be seen as
a noisy version of the protocol based on squeezed states and homodyne detection where
Bob applies a 50% lossy channel (not controlled by Eve) before his homodyne measure-
ment. This is a clear demonstration that for reverse Reconciliation adding some noise
on Bob side not controlled by Eve could be beneficial and increase the secret key rate,
a phenomenon already known for discrete variables (see [158]) but unknown for contin-
uous variables. Using the entanglement-based description it is trivial to see that this
phenomena has a symmetric counterpart in Direct Reconciliation, where the protocol
based on coherent states and homodyne detection can be seen as the squeezed state
and homodyning protocol with a 50% lossy measurement on Alice side, outperforming
it for sufficiently high excess noise and losses.

Remark that in order to be beneficial, the noise must be added on the reference
partner of the reconciliation, Alice in DR and Bob in DR. Otherwise, the noise only
affects Alice and Bob mutual information without decreasing Eve information on the
final key. This explains why coherent states and homodyning (squeezed states and
heterodyning) performs worse than squeezed states and homodyning in RR (DR).

Tolerable Excess Noise
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Figure 9.10: Tolerable excess noise ǫ as a function of the channel losses (measured in
dB) for high modulation (V = 1000) for all the Gaussian protocols: squeezed states and
homodyne detection (solid line), coherent states and homodyne detection (dotted line),
coherent states and heterodyne detection (dot-dashed line) and squeezed states and
heterodyne detection (dashed line). The curves vanishing at (or above) 3dB correspond
to DR, whereas the rest refers to RR.
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In Fig. 9.10 we plot for all the proposed protocols the resistance to noise as a
function of the losses, which gives the excess noise ǫ given a null secret key K for
a given channel of transmittance T . As for individual attacks we remark that all
the Direct Reconciliation protocols have a maximal range of 3 dB where for Reverse
Reconciliation there is no theoretical limitation to the range. Having in mind the results
of the preceding subsection, it is not a surprise that the protocol based in squeezed
states and heterodyne detection (coherent states and homodyne detection) gives the
optimal resistance to noise in Reverse Reconciliation (Direct Reconciliation), as shown
in Fig. 9.10.

In Fig. 9.11 we compare the two protocols based on homodyne detection on Bob
side and the two protocols based on squeezed states in RR, the dotted line giving
the threshold where the respective noisy version outperforms the protocol based on
squeezed states and homodyne detection.
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Figure 9.11: Tolerable excess noise ǫ as a function of the channel losses (measured
in dB) for high modulation (V = 40). For DR we compare the protocol based on
squeezed states and homodyne detection (solid line) and coherent states with homodyne
detection (dashed line), where for RR we compare the protocol based on squeezed states
and homodyne detection (solid line) and squeezed states with heterodyne detection
(dashed line). The dotted line shows the channels (defined by the parameters T, ǫ)
giving the same secret key rate for both protocols.

9.4 Fighting Noise with Noise

In a recent paper [158] the authors pointed a surprising effect not previously observed.
Studying the protocols BB84 [20], BB92 [19] and the six-state protocol [38, 14] they re-
alized that Alice could increase the performance of the protocols by adding some noise
to her data before the error correction processing. Strikingly this additional classical
noise makes the protocol more robust against noise in the quantum channel. More pre-
cisely the authors showed that for each quantum channel there is an optimal classical
added noise that Alice has to add in order to optimize the secret key rate. It is easy to
understand that the operation of addition of classical noise must be done by the partner
who will be the reference during the error correction processing, as adding noise on the
other partner only decreases the mutual information of the trustfull parties without
having any effect on Eve. In a very recent paper [154] the authors gave an explantion
to this phenomenon by generalizing the Shor-Preskill proof of unconditional security
of BB84 [180] that combines an entanglement based description of the protocol and
entanglement distillation with CSS codes [136]. The authors exploit the result of [107]
that shows that entanglement distillation is not a necessary condition for security of
QKD, as it is enough to distill a more general class of states called private states. The
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authors show in [154] that the entanglement based description of the states obtained
after the addition of noise on Alice side can be distilled to a class of private states,
increasing the secret key rate. The analysis done in the preceding section for existing
Gaussian protocols shows that this striking effect exists also in continuous variable
QKD and explains some differences between the existing protocols that were not un-
derstood previously. In the following we are going to generalize the previous protocol
to a general Gaussian phase-insensitive noise added by either Alice (DR) or Bob (RR)
in order to optimize the secret key rate.

Reverse Reconciliation

In Reverse Reconciliation the optimal protocol would be a source of squeezed states on
Alice side combined with an inefficient homodyne measurement on Bob side, where the
efficiency of the detection and the electronic noise are chosen in order to optimize the
secret key rate. Fig. 9.12 shows an entanglement-based description of this new protocol,
where the efficiency of the detection is modeled by a beamsplitter of transmittance TB
and the electronic noise v is modeled by a thermal noise (variance NB) added at the
second input of the beamsplitter TB (v = (1 − TB)(NB − 1)). In the following we will

A
X EPR

V
A

EPR
G

Alice Bob

B

F

Eve

E

Τ, χc

ΤB

X B
N

BN

Figure 9.12: Generalized entanglement-based description of the protocol with general
Gaussian added noise on Bob side. The source of squeezed states on Alice side is
replace by an entangled pair (EPR) of squeezing parameter V followed by an homodyne
measurement by Alice on half of the pair. The other half of the EPR is sent to Bob
through the channel of transmittance T and added noise χ = (1−T )/T+ǫ. Before Bob
homodyne detection the state received by Bob is mixed with a thermal state (mode F )
of variance N on a beamsplitter of transmittance TB. The additional noise referred to
the input of the detector is χDB

= (1 − TB)NB/TB.

show that the effect of the Gaussian noisy measurement (TB, v) on the key rate depends
only on one parameter, the added noise referred to the input of the measurement device
(χDB

= (1 + v)/TB − 1). Therefore all the combinations of the parameters (TB, v)
giving the same χDB

are equivalent in terms of their effect on the secret key rate.
An alternative implementation would be a perfect homodyne detection followed by a
classical Gaussian noise of variance χDB

added on Bob data. The secret key rate reads

K = S(xA:xNB ) − S(xNB :E). (9.46)

Note that xNB stands for the noisy measurement of the x quadrature of mode B.
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Alice and Bob Mutual Information

Alice and Bob mutual information, generalizing the results of chapter 8 reads,

I(xA:xNB ) =
1

2
log

[

V NB
VBN |A

]

=
1

2
log

[

TBVB + (1 − TB)NB
TBVB|A + (1 − TB)NB

]

(9.47)

=
1

2
log

[

V + χT
χT + 1/V

]

. (9.48)

where χT = χ + χDB
/T is the total added noise referred to the input, χ the channel

added noise and χDB
= (1 − TB)N/TB the detector added noise.

Eve Information

Eve quantum information on Bob measurement

S(xNB :E) = S(E) − S(E|xNB ), (9.49)

can be easily calculated generalizing the technique used previously. The term S(E) =
S(AB) is exactly the same as in equation (9.11). Secondly, after Bob projective mea-
surement xB the system AEFG is pure, then S(E|xNB ) = S(AFG|xNB ). In order to
calculate S(AFG|xNB ) we need the covariance matrix γxb

AFG, which results from apply-
ing a projective measurement on mode B on γABFG,

γABFG =
[
IA ⊗ SBSAC ⊗ IG

]T
γAB ⊗ γFG

[
IA ⊗ SBSAC ⊗ IG

]
, (9.50)

where γAB was given in Eq. (9.5) and γFG is the covariance matrix of an EPR state
of variance N = TBv/(1 − TB). The covariance matrix γxb

AFG reads,

γxb

AFG =





γA σAF σAG
σTAF γF σFG
σTAG σTFG γG



 , (9.51)

where

γA =

(

a− TBc
2

TBb+(1−TB)N 0

0 a

)

, (9.52)

γF =

( bN
TBb+(1−TB)N 0

0 (1 − TB)b+ TBN

)

, (9.53)

γG =

(

N − (1−TB)(N2−1)
TBb+(1−TB)N 0

0 N

)

, (9.54)

σAF =

( √
1−TBNc

TBb+(1−TB)N 0

0 −√
1 − TBc

)

, (9.55)

σAG =

( √
TB(1−TB)(N2−1)b

TBb+(1−TB)N 0

0 0

)

, (9.56)

and

σFG =

( √
TB(N2−1)b

TBb+(1−TB)N 0

0 −
√

TB(N2 − 1)

)

. (9.57)
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S(AFG|xNB ) being a function of the symplectic eigenvalues λ3,4,5, it can be calcu-
lated from the symplectic invariants ∆3

1,∆
3
2 and ∆3

3 defined in Chapter 2. After some
calculation we obtain,

∆3
1 =

1

b + χDB

[
2b+ aD + χDB

(∆ + 1)
]
, (9.58)

∆3
2 =

1

b + χDB

[
b+ 2aD + χDB

(D2 + ∆)
]
, (9.59)

∆3
3 =

D

b + χDB

[
a+ χDB

D
]
. (9.60)

Interestingly the symplectic invariants satisfy the relation 1−∆3
1 +∆3

2−∆3
3 = 0 giving

λ5 = 1 (G(λ5) = 0), as the symplectic eigenvalues are solution of the polynomial
z3 − ∆3

1z
2 + ∆3

2z − ∆3
3 = 0. Then, λ2

3,4 are solutions of the second order polynomial
z2 −Az +B = 0, where

A = ∆3
1 − 1 =

1

b+ χDB

[
b+ aD + χDB

∆
]
,

B = ∆3
3 =

D

b+ χDB

[
a+ χDB

D
]
. (9.61)

We observe that the dependence of A and B on the Gaussian noisy measurement
implemented by Bob only depends on the parameter χDB

, as we mentioned previously.
There are then many combinations of the parameters (TB, v) that give the same result.
As expected, Bob heterodyne detection (TB = 1/2, N = 0) corresponds to χD = 1
where equation (9.61) recovers the solution of equation (9.35) for the protocol based
on squeezed states and heterodyne detection.

Results
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Figure 9.13: a) Secret key rate as a function of the channel losses (measured in dB)
for a channel excess noise (ǫ = 0.5) for the Gaussian RR protocols: squeezed states
and homodyne detection (dot-dashed line), squeezed states and heterodyne detection
(dashed line) and the optimization over Bob’s measurement added noise χDB

(solid
line). b) Optimal choice of χDB

that maximize the secret key rate at a). All the curves
have been plotted for experimental realistic modulation V = 40.

By correctly tuning Bob added noise χDB
it is possible to optimize the secret key

rate as we show in Fig. 9.13, where we compare the previous protocols based on Alice
generating squeezed states with the optimization over the noise on Bob side.

In Fig. 9.14 we compare the maximal tolerance to noise as a function of the losses of
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Figure 9.14: Tolerable excess noise ǫ as a function of the channel losses (measured
in dB)for modulation (V = 40) for all the Gaussian RR protocols: optimization over
Bob’s measurement added noise χDB

(bold solid line), squeezed states and homodyne
detection (solid line), coherent states and homodyne detection (dotted line), coherent
states and heterodyne detection (dot-dashed line) and squeezed states and heterodyne
detection (dashed line).

the channel for the previously existing Gaussian protocols and the optimized protocol.
We observe that the optimization slightly improves the resistance of the protocol based
on squeezed states and heterodyne detection.

Direct Reconciliation

Now we are going to consider the Direct Reconciliation counterpart of the previous
effect. Fig. 9.15 shows an entanglement-based description of this new protocol where
Alice replaces his homodyne measurement over half of the EPR pair by an inefficient
homodyne measurement of efficiency TA and added noise χDA

. The secret key rate

X B

EPR
V

Alice

Eve

E

Τ, χc

A

EPR
G

B

F

Bob

ΤA

A
XN

NA

Figure 9.15: Generalized entanglement-based description of the protocol with general
Gaussian added noise on Alice side. The source of squeezed states on Alice side is
replace by an entangled pair (EPR) of squeezing parameter V followed by an inefficient
homodyne measurement (TA, χDA

) by Alice on half of the pair. The other half of the
EPR is sent to Bob through the channel. The additional noise referred to the input of
the detector reads χDA

= (1 − TA)N/TA.

then reads,

K = S(xNA :xB) − S(xNA :E). (9.62)
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Alice and Bob Mutual Information

Alice and Bob mutual information, generalizing the results of chapter 8 reads,

I(xNA :xB) =
1

2
log

[

V NA
VAN |B

]

=
1

2
log

[

TAVA + (1 − TA)NA
TAVA|B + (1 − TA)NA

]

(9.63)

=
1

2
log

[

(V + χ)(V + χDA
)

V (χ+ χDA
+ χχDA

+ 1)

]

, (9.64)

where χ is the channel added noise and χDA
= (1 − TA)NA/TA Alice detector added

noise.

Eve Information

Eve quantum information on Bob measurement reads,

S(xNA :E) = S(E) − S(E|xNA ). (9.65)

It can be easily calculated generalizing the technique used previously. The term
S(E) = S(AB) is exactly the same as in equation (9.11). Secondly, after Alice pro-
jective measurement xNA the system BEFG is pure, then S(E|xNA ) = S(BFG|xNA ).
S(BFG|xNA ) being the symmetric counterpart of S(AFG|xNB ) calculated in the Re-
verse Reconciliation case, we just have to change a ↔ b in equation (9.61). The
square of the symplectic eigenvalues λ2

3,4 being solutions of the second order polyno-
mial z2 −Az +B = 0, where

A =
1

a+ χDA

[
a+ bD + χDA

∆
]
,

B =
D

a+ χDA

[
b+ χDA

D
]
. (9.66)

Notice that Alice heterodyne detection corresponds with χDA
= 1 recovering the solu-

tion of equation (9.27), as expected.

Results

By correctly tuning Alice added noise χDA
it is possible to optimize the secret key

rate as we show in Fig. 9.16. where we compare the previous protocols based on Bob
applying homodyne measurement with the optimization over Alice measurement with
phase insensitive noise, which is equivalent to a noisy prepare-and-measure scheme.

In Fig. 9.17 we compare the maximal tolerance to noise as a function of the losses of
the channel for the previously existing Gaussian protocols and the optimized protocol.
We observe that the optimization slightly improves the resistance of the protocol based
on coherent states and homodyne detection and does not succeed to pass the 3dB
limitation to the range in Direct Reconciliation protocols, as expected.

Alice Source

In the case of Reverse Reconciliation the translation from the entanglement based to the
prepare-and-measure scheme was trivial, Bob had either to apply a noisy measurement
of added noise χDB

or a perfect homodyne detection followed by a classical noise of
variance χDB

. In the case of Direct Reconciliation Alice can obviously send squeezed
states and apply a classical added noise of variance χDA

over her data. This solution
has two disadvantages, we need a source of squeezed states and more random numbers
to implement the classical noise.
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Figure 9.16: a) Secret key rate as a function of the channel losses (measured in dB)
for a channel excess noise (ǫ = 0.65) for the Gaussian DR protocols: squeezed states
and homodyne detection (dot-dashed line), coherent states and homodyne detection
(dashed line) and the optimization over Alice’s measurement added noise χDA

(solid
line). b) Optimal choice of χDA

that maximizes the secret key rate on a). The curves
have been plotted for experimental realistic modulation V = 40.
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Figure 9.17: Tolerable excess noise ǫ as a function of the channel losses (measured
in dB)for modulation V = 40 for all the Gaussian DR protocols: optimization over
Alice’s measurement added noise χDA

(bold solid line), squeezed states and homodyne
detection (solid line), coherent states and homodyne detection (dotted line), coherent
states and heterodyne detection (dot-dashed line) and squeezed states and heterodyne
detection (dashed line).

Interestingly for χDA
≥ 1 there is an easier implementation based on noisy coherent

states. The noise χDA
= 1 can be obtained by fixing TA = 1/2 which is equivalent

to a source of coherent states. Then it’s possible to cover all the range χDA
≥ 1 by

just sending noisy coherent states (displaced thermal states), where the variance of the
added noise is a function of χDA

. Unfortunately for χDA
≤ 1 we cannot avoid using a

source of squeezed states.
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9.5 Fiber Optic Implementation

The joint collaboration of the QuIC center of the ULB with the Charles Fabry labora-
tory of the Institut d’Optique d’Orsay, Thalès Research & Technologies, and GeorgiaTech-
Metz, has recently successfully implemented a fully functional CV-QKD system ready
to field implementation, generating secret keys at a rate of more than 2 kb/s over
25 km of optical fiber [128]. This CV-QKD system is based on a source of coher-
ent states at Alice side combined with an homodyne detection at Bob side, using a
reverse reconciliation protocol. Using a source of coherent states has the advantage
over squeezed states that we can use standard (low-cost) telecom optical components,
where the measurement on Bob side is limited to homodyning in order to simplify the
implementation. Finally we choose a reverse reconciliation protocol in order to beat
the 3dB limit imposed to reverse reconciliation protocols.

The security analysis of this CV-QKD system is strikingly similar to the generalized
protocol of the preceding section 9.4 based on a source of squeezed states and a general
phase insensitive noise on Bob side. Alice and Bob mutual information reads,

I(xMA :xNB ) =
1

2
log

[

V NB
VBN |AM

]

=
1

2
log

[

TBVB + (1 − TB)NB
TBVB|AM + (1 − TB)NB

]

(9.67)

=
1

2
log

[

V + χT
χT + 1

]

. (9.68)

where χT = χ + χDB
/T is the total added noise referred to the input, χ the channel

added noise and χDB
= (1 − TB)N/TB the detector added noise. Eve information on

Bob measurement is given by equation (9.49), as Alice changing from squeezed states
to coherent states does not change Eve information on Bob.
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Conclusion and Perspectives

205





Conclusion and Perspectives

In this thesis we have studied different aspects of the novel field of quantum information
with continuous variables. The higher efficiency and bandwidth of homodyne detec-
tion combined with the easiness of the generation and manipulation of Gaussian states
makes continuous-variable quantum information a promising and flourishing field of
research. This dissertation is divided in two parts. The first part explores some ap-
plications of the photon subtraction operation, while the second develops a detailed
analysis of an important family of continuous-variable quantum key distribution pro-
tocols, namely those based on Gaussian modulation of Gaussian states.

Photon subtraction After a detailed introduction to quantum optics and phase-
space representation of continuous-variable systems we have presented two different
applications of the photon substraction operation, being to date one of the simplest
techniques to generate non-Gaussian states of light.

In Chapter 4 we have shown that an arbitrary single-mode state of light can be
engineered starting from a squeezed vacuum state and applying a sequence of displace-
ments and single-photon subtractions, followed by a final squeezing operation. The
recent demonstration of single-photon subtraction from a single-mode squeezed vac-
uum [142, 197] provides a strong evidence of the practical feasibility of our scheme,
which will be much easier than previous proposals as it does not require single-photon
sources and can operate with low-efficiency photodetectors. Generalizing this technique
to two or more modes of light deserves further investigation, as it could lead to simpler
way of generating highly entangled states of light, which could improve the existing
proposal of loophole-free Bell test using homodyne detection. Two recent experiments
[142, 141] show that photon subtraction is a feasible operation with a vast range of
promising applications such as ”Schrödinger cat” generation, entanglement distillation
and implementation of Bell tests.

In Chapter 5 we proposed an experimentally feasible setup allowing for a loophole-
free Bell test with efficient homodyne detection. This proposal is probably the simplest
loophole-free Bell test experiment proposed so far based on quantum states of light and
homodyne detection. We showed that a violation of Bell inequalities becomes possi-
ble using a non-Gaussian entangled state generated from a two-mode squeezed vacuum
state by subtracting a single photon from each mode. We made a full analytical descrip-
tion of a realistic setup, studying in detail the influence of the detector inefficiencies,
the electronic noise of homodyne detector and the efficiency of the mode filtering that
must preceed the photon subtraction. However, the class of schemes that we have
studied is still somewhat restricted. The search of new non-Gaussian states easier
to generate and/or giving better violations deserves future investigation. Even more
interesting would be to find new Bell inequalities, using more and/or different mea-
surements and/or different binning giving a higher violation, experimentally accessible
with nowadays technology. We hope that the combination of improvements on the ex-
perimental side together with new theoretical ideas will lead to the first loophole-free
Bell test using the continuous-variable paradigm in the near future.
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Continuous-variable quantum key distribution Quantum key distribution (QKD)
is the most promising and developed application of the novel field of quantum infor-
mation. Over the past few years, an important research effort has been devoted to
continuous-variable quantum key distribution protocols (CV-QKD), motivated by the
prospects of realizing high-rate cryptosystems relying on homodyne detection instead
of photon counting. Since the discovery of a protocol based on coherent states [96] these
systems also have the advantage that they are based on standard (low-cost) telecom
optical components, using a simple laser as a source is enough to distribute a secret
key. The joint collaboration of the QuIC center of the ULB with the Charles Fabry
laboratory of the Institut d’Optique d’Orsay, Thales Research & Technologies, and
GeorgiaTech-Metz, has recently successfully implemented a fully functional CV-QKD
system ready to field implementation, generating secret keys at a rate of more than 2
kb/s over 25 km of optical fiber [128]. This field implementation will be one of the four
platforms of the first European Network for Secure Communication based on Quantum
Cryptography, under development by the European consortium SECOQC.

Our contribution to this project was to prove the unconditional security of the
family of Gaussian CV-QKD protocols 2, giving at the same time a systematic way of
calculating the secret key rates. This was achieved using a unified way of representing
all the existing QKD protocols based on Gaussian modulation of squeezed (coherent)
states by Alice and homodyne (heterodyne) detection by Bob for the two versions
of one-way reconciliation (Direct Reconciliation and Reverse Reconciliation). Subse-
quently we showed that adding noise on the reference partner of the error correction
post-processing can increase the secret key rate of a continuous-variable one-way QKD
protocols, clarifying the pros and cons of the different protocols of the family of Gaus-
sian protocols. Interestingly, for every quantum channel there is an optimal noise that
must be added in order to optimize the secret key rate. Finally, we have completed
the study of individual attacks, a weaker family of attacks compared to collective,
that had remained open since the proposal of the no basis switching protocol [194]
(with Alice sending coherent states and Bob performing heterodyne measurements).
We have found that, in contrast with all other Gaussian protocols that had been stud-
ied so far, no individual attack exists that attains the security bounds deduced from
the usual Heisenberg uncertainty relations, making these bounds unreachable in the
present case. A tight bound was derived, both in direct and reverse reconciliation, and
several explicit optical schemes that attain this bound have been exhibited.

The disadvantage of continuous variables compared to qubit-based QKD is the lim-
ited range of the existing protocols. The origin of this limitation is the sensitivity of
the error correction post-processing to the unavoidable vacuum noise. Qubit-based
QKD does not suffer from this effect because the vacuum noise is filtered out by the
avalanche photodetectors, as only the events with a detected photon are used to gener-
ate the secret key. Unfortunately homodyne detection is not capable of such a filtering,
generating useless data that only contribute to increase the noise, making the practical
reconciliation more difficult. To overcome this problem, different protocols have been
proposed recently [98, 123, 181], where a filtering stage is added after the homodyne
detection in order to get rid of the harmful vacuum noise. Unfortunately, the security
of those protocols is not fully understood, since it is based on the unproven assumption
that the optimal attack is Gaussian. The ideal case would be to devise a non-Gaussian
protocol implementing some filtering of the vacuum noise and keeping at the same
time the tractability of Gaussian states calculations. This would be similar to what we
did in the photon subtraction calculations, where we succeeded to model non-Gaussian
states keeping the easiness of the calculations with Gaussian states.

2It is known for qubit-based QKD that security against collective attacks is enough to have uncon-
ditional security (see Chapter 8). It then seems very reasonable to conjecture that the same holds for
CV-QKD.
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Appendix A

The Church of the Larger
Hilbert Space

The phrase ”Going to the Church of the Larger Hilbert Space”, coined by John Smolin,
for the dilation construction of channels and states, is an extremely useful tool in
quantum information theory. It is based on two key ideas; Firstly, every mixed state
can be seen as being the partial trace of a pure state defined in a larger Hilbert space.
Secondly, every quantum operation over a given quantum state can be described by
a reversible interaction between the system and its environment. Finally, following
Everett, the measurement can be considered as a type of quantum operation between
the object and a pointer system.

Schmidt Decomposition

Any bipartite pure state |ψ〉AB can be written as,

|ψ〉AB =
∑

i

λi|i〉A|i〉B, (A.1)

where |i〉A(B) is an orthonormal state of systems A(B) and λi are non-negative real
numbers satisfying

∑

i λi = 1 known as Schmidt coefficients.

Proof |ψ〉AB can be written

|ψ〉AB =
∑

j,k

aj,k|j〉A|k〉B, (A.2)

using the singular value decomposition a = vdw, where v and w are unitary matrices
and d is diagonal, |i〉A =

∑

j vji|j〉A and |iB〉 =
∑

k wki|k〉B gives the result.�

This result is extremely useful. For example, we see that ρA =
∑

i λ
2
i |i〉〈i|A and

ρB =
∑

i λ
2
i |i〉〈i|B have exactly the same eigenvalues. Many important properties of

quantum states, such as the entropy, are completely determined by the eigenvalues, so
for pure bipartite systems it will be the same for both subsystems.

Purification

An extremely useful technique for quantum information calculations is the purification.
If we are given a quantum state ρA =

∑

i λi|i〉〈i|A of a quantum system A, it is possible
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to introduce another system R (the reference) and define a pure state

|ψ〉RA =
∑

i

√

λi|i〉R|i〉A, (A.3)

such that TrR[|ψ〉〈ψ|RA] = ρA. The idea is to define a pure state whose Schmidt
coefficients are the square root of the eigenvalues of ρA.

Freedom of Purification Let |ψ1〉RA and |ψ2〉RA be two different purifications of
ρA. It is easy to prove that there is a unitary operation UR such that

|ψ2〉RA = UR ⊗ IA|ψ1〉RA, (A.4)

as both purifications have the same Schmidt decomposition up to a different orthonor-
mal basis in system R.

Quantum Operations

A natural way to describe the dynamics of an open quantum system A is to regard it
as arising from a unitary (reversible) interaction UAE between the system A and the
environment E which together form a closed system, as shown in Fig. A.1.

0

ρA A
ρ’

AE

E ancilla

signal
ΨRA

R

Purification

U’

U

Figure A.1: Any quantum operation E can be expressed in a Kraus operator repre-
sentation {Ei}, which can be thought of as arising from a unitary evolution UAE of
the target quantum state ρA with an auxiliary system E and subsequently tracing E.
The state ρA can be seen as the partial trace of its purification |ψ〉AB. The Kraus
representation {Ei} of the quantum operation E is unique up to a unitary operation
(U ′) on the auxiliary system E.

The resulting state after applying the quantum operation, also called Completely
Positive map (CP map), over the state ρA reads

E(ρ) = TrE [UAE
(
ρA ⊗ |0〉〈0|E

)
U †
AE], (A.5)

where there is no loss of generality in assuming that the environment starts in a pure
state. Defining |el〉 as an orthonormal basis of system E we can rewrite the quantum
operation

E(ρ) =
∑

l

〈el|UAE
[
ρA ⊗ |0〉〈0|E

]
U †
AE|el〉E (A.6)

=
∑

l

ElρE
†
l , (A.7)
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where El = 〈el|UAE |e0〉E is an operator on the state space of system A. The ensemble
{El} is called the Kraus operator representation of E . The Kraus operators satisfy the
so-called completeness relation,

∑

l

E†
l El = I, (A.8)

which arises from the requirement Tr[E(ρ)] = 1.

Unitary Representation Given a Kraus operator representation {El}, it is always
possible to construct a corresponding unitary representation,

UAE |ϕ〉A ⊗ |0〉E =
∑

l

El|ϕ〉A ⊗ |l〉E, (A.9)

which preserves the inner product, therefore being unitary.

Hom many Kraus operators? All quantum operations EA defined on a Hilbert
space of dimension d can be generated by a Kraus operator representation containing
at most d2 elements. In order to prove it, the key ingredient is to use the purification
of system A, |ψ〉RA. After applying the operation IR⊗EA to the initial state of system
RA we obtain a mixed state ρRA which can be expanded as

ρRA =
∑

l

λl|ϕl〉〈ϕl|. (A.10)

One can show that each state |ϕl〉 is indeed associated with a Kraus operator El.
Since ρRA has at most rank d2, EA has always a Kraus operator representation with
at most d2 elements. Therefore an ancillary system E in the unitary representation of
dimension d2 is enough. One can generalize the previous result to quantum operations
EA with input and output Hilbert space of different dimensions; let fix us d and d′, it
is then easy to prove that an ancillary system E of dimension dd′ is enough.

How ambiguous? Suppose {Ei} and {Fi} are Kraus operators giving the quantum
operations EA and FA. Then EA = FA if and only if there is a unitary matrix U such
that Ei =

∑

j UijFj .
Consider the purification |ψ〉RA of the initial state ρA. After applying a quantum op-

eration the output states read ρRA =
(
IR⊗EA

)
|ψ〉〈ψ|RA and σAB =

(
IR⊗FA

)
|ψ〉〈ψ|RA.

When EA = FA we have σAB = ρAB, whose purifications, by the freedom of purifi-
cation, must be equal up to a unitary operation U ′ on system E, as shown in Fig.
A.1.

Measurement

Following Everett’s interpretation of quantum mechanics [74], a measurement can be
seen as a physical process similar to other quantum operations [39]. In a measurement
the probe system A is entangled with an ancillary system P representing the pointer
of the measurement apparatus.

Interestingly the unitary representation (A.9) of a quantum operation gives the
physical model of the measurement that we need. The only difference is that now
instead of discarding the auxiliary system as in Fig. A.1 (considered as lost into the
environment), the state of the auxiliary system is accessible and gives the result of the
measurement. Tracing the outgoing system A we obtain the probability distribution
of the measurement result,

p(m) = TrA[EmρAE
†
m]. (A.11)
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If we apply a quantum non-demolition measurement, the state of system A conditioned
on the pointer giving the result m reads,

ρ′A = EmρAE
†
m/p(m). (A.12)

Finally, the completeness equation of the measurement operators results from the com-
pleteness relation of the quantum operation. We have then shown that this physical
model of measurement satisfies the three conditions of the measurement postulate of
quantum mechanics.

Macroscopic measurement apparatus In a real measurement, in order to be
readable by an human, the pointer system is composed by a macroscopic amount of
particles which are entangled with the probe system as shown in Fig. A.2. The ex-
perimentalist having only access to the macroscopic apparatus, the outgoing quantum
system is traced out, generating the randomness of the quantum measurement.

ρin

0

signal

ancilla

ancillae
macroscopic 

Figure A.2: The homodyne measurement can be seen as a C-NOT interaction between
the quantum signal and a first ancilla (|0〉) which is followed by an amplification process,
or ”classicization”, by entangling A with the rest of the apparatus ancillae through C-
NOT gates. This entanglement is responsible for the randomness in the outcome.



Appendix B

Partial Measurement of a
Bipartite Gaussian State

Consider a gaussian bipartite state ρAB defined by its covariance matrix

γAB =

[
γA σAB
σTAB γB

]

. (B.1)

and its mean (dA, dB). If we apply a partial measurement measurement by projecting
system B into a pure Gaussian state ψ of covariance matrix γM and mean m the
Wigner function of the final system A reads,

Wρ(rA)′ ∝
∫

drBWρ(rA, rB)Wψ(rB), (B.2)

where the proportionality comes from the fact that we do not pay attention the the
probabilities as we are only interested on the conditional state of system A. It is
convenient to deal with characteristic functions which are Fourier transform of the
Wigner functions, χ(x) =

∫
W (r) exp(irx)dr,

χρ′(xA) ∝
∫

dxBχρ(xA, xB)χψ(−xB) (B.3)

Using the definition of the characteristic function of a Gaussian state (2.24) we obtain,

χ′
ρ(xA) ∝

∫

exp
[

− 1/4
(
xTAγAxA + xTAσABxB + xTBσ

T
ABxA + xTB(γB + γM )xTB

)]

× exp[idTArA + i(dB −m)T rB ]dxB (B.4)

which after rearranging and using the change of variable zB = xB+(γB+γM )−1σTABxA,

χ′
ρ(xA) ∝ exp

[

− 1/4
(
xTA(γA − σAB(γB + γM )−1σTAB)xA

)]

× exp[idTArA − i(dB −m)T (γB + γM )−1σTABrA]

×
∫

dzB exp
[

− 1/4
(
zTB(γB + γM )zB

)]

exp[i(dB −m)T zB]

where the integral contributes only with a constant real number. Finally we see that
the final state of system A is a Gaussian state of covariance matrix,

γ′A = γA − σAB(γB + γM )−1σTAB (B.5)

and mean
d′A = dA + σAB(γB + γM )−1(m− dB). (B.6)

Interestingly the covariance matrix does not depend on the values of the measurement
result m.
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Appendix C

Properties of t
n̂

Propagation of tn̂

In order to propagate the operator tn̂ to the right in 3.2 we use the relations

tn̂eα
∗â = eα

∗â/ttn̂, tn̂eαâ
†

= etαâ
†

tn̂, (C.1)

that we proof below. Using the Taylor development of tn̂

tn̂ = en̂ log t = log t
[
1 + n̂t +

n̂2
t

2!
+ ...

]
, (C.2)

with n̂t = n̂ log t and the commutator of [n̂, â†] = â†, we obtain

n̂â† = â†(n̂+ 1) and n̂â = â(n̂− 1), (C.3)

it is easy to obtain

tn̂â† = â†tn̂+1 and tn̂â = âtn̂−1. (C.4)

Using the Taylor development of eαâ
†

eαâ
†

= 1 + αâ† +
(αâ†2)

2!
+ ... (C.5)

and equation (C.4) it is easy to show

tn̂eαâ
†

= etαâ
†tn̂ . (C.6)

The proof for â is similar to the previous one, where we use the commutator [n̂, â] = −â
which gives finally gives the first equation of C.1.

Effect on S(sin)|0〉

tNn̂S(s)|0〉 ∼
∞∑

k=0

√

(2k)!

2kk!
[tanh(sin)]ktNn̂|2k〉, (C.7)

∼ t2N
∞∑

k=0

√

(2k)!

2kk!
[tanh(sin)]k|2k〉, (C.8)

which is exactly a squeezed state with a new squeezing factor tanh(s) = t2N tanh(sin).
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Appendix D

Wigner Representation of
Photon Subtraction

After applying a projector IA ⊗XB over a bipartite quantum state ρAB, the density
matrix ρA,out of mode A after a successful projection reads,

ρA,out = TrB[ρAB(IA ⊗XB)]/P, (D.1)

where P = TrAB[ρAB(IA ⊗ XB)] is the probability of a successful projection of the
target state. The trace of the product of two operators can be evaluated by integrating
the product of their Wigner representations over the phase space. Then the output
Wigner function reads,

Wout(r)P = 2π

∫

Wρ(rA, rB)WX(rB)drB , (D.2)

where P is the probability of of a successful projection of the target state. In the
following we will use the notation W (r; Γ, d) for a Gaussian Wigner function with first
mean d and covariance matrix γ = Γ−1.

Partial trace: X = I

When we project on the identity X = I we obtain,

Wout(rA)P = 2π

∫

W (rA, rB ; ΓAB, dAB)drB =

√
det ΓAB
π

∫

e−Y drB (D.3)

where Y reads,

Y = zTAΓAzA + zTAσzB + zTBσ
T zA + zTBΓBzB, (D.4)

zA(B) = rA(B) − dA(B), and

ΓAB =

[
ΓA σ
σT ΓB

]

. (D.5)

Notice that Y can be rewritten as

Y = zTAΓAzA + (zB + Γ−1
B σT zA)TΓB(zB + Γ−1

B σT zA)
︸ ︷︷ ︸

=Z

−zTAσΓ−1
B σT zA (D.6)
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we obtain,

Wout(rA) =

√
det ΓAB
π

e−z
T
A(ΓA−σΓ−1

B σT )zA

∫

e−ZdrB
︸ ︷︷ ︸

1/
√

ΓB

=

√

det ΓAB
det ΓB det Γ1

W (rA; Γ1, d1) (D.7)

where Γ1 = ΓA − σΓ−1
B σT and d1 = dA. The Wigner function being normalized and

the probability of projecting on the identity being trivially P = 1 we must have
√

det ΓAB
det ΓB det Γ1

= 1, (D.8)

which holds as Γ1 is the Schur complement of ΓB of ΓAB.

Projection on vacuum: X = |0〉〈0|
When we project on vacuum X = |0〉〈0| we obtain,

Wout(rA)P = 2π

∫

W (rA, rB ; ΓAB, dAB)W (rA, rB; I, 0)drB

=

√
det ΓAB
π

∫

e−Y drB (D.9)

where Y reads,

Y = zTAΓAzA + zTAσzB + zTBσ
T zA + zTBΓBzB + rTBIrB

︸ ︷︷ ︸

=Z

, (D.10)

where zA(B) = rA(B) − dA(B). Notice that Z can be rewritten as,

Z =
(
rB − (ΓB + I)−1ΓBdB

)T (
ΓB + I

) (
rB − (ΓB + I)−1ΓBdB

)

︸ ︷︷ ︸

z̃B

−dTB
(
ΓB(ΓB + I)−1ΓB − ΓB

)
dB. (D.11)

Then using zB = z̃B + [(ΓB + I)−1ΓB − I]dB and (ΓB + I)−1ΓB − I = −(ΓB + I)−1 Y
reads,

Y = zTAΓAzA + [zTAσz̃B − zTAσ(ΓB + I)−1dB]

+[z̃TBσ
T zA − dTBσ(ΓB + I)−1zA]

+z̃B(ΓB + I)z̃B + dTBΓB(ΓB + I)−1dB , (D.12)

which can be rewritten using χ = ΓA − σ(ΓB + I)−1σT and ξ = χ−1σ(ΓB + I)−1dB

Y = (zA − ξ)Tχ(zA − ξ) − ξTχξ + dTBΓB(ΓB + I)−1dB

+
[

z̃B + (ΓB + I)−1σT zA)
]T

(ΓB + I)
[

z̃B + (ΓB + I)−1σT zA)
]

︸ ︷︷ ︸

W

(D.13)

Then the integral (D.9) using
∫
e−WdrB =

√

det(ΓB + I) reads,

Wout(rA)P = 2

√

det ΓAB
det(ΓB + I) det Γχ

e−d
T
BMdBW (rA;χ, ξ) (D.14)
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where M = ΓB(ΓB + I)−1 − (ΓB + I)−1σTχ−1σ(ΓB + I)−1. The Wigner function being
normalized the probability of projecting on the vacuum reads,

P = 2

√

det ΓAB
det(ΓB + I) det Γχ

. (D.15)

Photon Subtraction

One uses the fact that the POVM element characterizing the photon subtraction (Π1,B)
is the difference of two POVM, the identity IB and the projection on vacuum |0〉〈0|B,

WΠ1
(r) = I − |0〉〈0|B =

1

2π
− 1

π
e−x

2−p2 . (D.16)

The Wigner function of mode A can be written as a linear combination of two Gaussian
functions, namely

W (r)P = C1WG(r; Γ1, d1) + C2WG(r; Γ2, d2), (D.17)

where P is the probability of successful generation of the target state. The correlation
matrix Γ1 and the displacement d1 appearing in the first term on the right-hand side
of Eq. (3.31) are given by

Γ1 = ΓA − σ(ΓB + I)−1σT ,

d1 = dA,

C1 = 1. (D.18)

Similarly, the formulas for the parameters of the second term read

Γ2 = ΓA − σ(ΓB + I)−1σT ,

d2 = dA + Γ−1
2 σ(ΓB + I)−1dB,

C2 = −2

√

det(ΓAB)

det(Γ2) det(ΓB + I)
exp

[
−dTBMdB

]
, (D.19)

where
M = ΓB(ΓB + I)−1 − (ΓB + I)−1σTΓ−1

2 σ(ΓB + I)−1. (D.20)

Since all the Wigner functions are normalized, the probability of a successful photon
subtraction reads P = C1 + C2.
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Appendix E

Wigner Function from the
Fock Basis

A single mode quantum state of light can be written using the Fock state representation
as,

ρ =
∑

m,n

ρm,n|m〉〈n|. (E.1)

The Wigner function using polar coordinates reads,

W (r, θ) =
∑

m,n

ρm,nWm,n(r, θ), (E.2)

where (x = r cos θ, p = r sin θ) and Wm,n(r, θ) is the Wigner function of the operator
|m〉〈n| which reads,

Wm,n(r, θ) =
(−1)n

π

[ n!

m!

]1/2

ei(m−n)θ(
√

2r)m−ne−r
2

Lm−n
n (2r2) m ≥ n

Wm,n = W ⋆
n,m (E.3)

as shown in [86], where Lm−n
n (x) is a Laguerre polynomial,

Lkn(x) =

n∑

m=0

(−1)m
(n+ k)!

(n−m)!(k +m)!m!
xm. (E.4)
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Appendix F

Ideal Photon Subtraction

The initial bipartite two-mode squeezed vacuum state reads,

|ψ〉in =
√

1 − λ2

∞∑

n=0

λn|n〉A ⊗ |n〉B, (F.1)

where the state is normalized 〈ψ|ψ〉 = 1 as we have,

S0(x) =

∞∑

n=0

xn =
1

1 − x
. (F.2)

Two Photon Subtractions

The conditional photon subtraction on each mode can be described by the non-unitary
operator (with the same transmittance T on both beamsplitters),

X̂A ⊗ X̂B = tn̂ArâA ⊗ tn̂BrâB , (F.3)

where t =
√
T , as shown in Chapter 4. The conditional generated state can be written,

using the relations â|n〉 =
√
n|n−1〉, tn̂â = âtn̂−1 and tn̂|n〉 = tn|n〉 (see Appendix C),

√
p2|ψ〉out =

√

1 − λ2(1 − T )λ

∞∑

n=0

(Tλ)n(n+ 1)|n〉A ⊗ |n〉B , (F.4)

where p2 is the probability of success of the double photon subtraction.
First we determine the state conditioned on a successful subtraction,

|ψ〉out ∝
∞∑

n=0

(n+ 1)(Tλ)n|n〉A ⊗ |n〉B. (F.5)

In order to normalize it we need to calculate
∑∞
n=0(Tλ)

2n(n+ 1)2. Deriving among x
the equation (F.2) we obtain,

S1(x) =
d

dx
S0(x) =

∞∑

n=0

(n+ 1)xn =
1

(1 − x)2
. (F.6)

Applying a second derivative we get,

S2(x) =
d2

dx2
S0(x) =

∞∑

n=0

(n+ 2)(n+ 1)xn =
2

(1 − x)3
. (F.7)
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Combining equations (F.6) and (F.7) we obtain

∞∑

n=0

(Tλ)2n(n+ 1)2 = S2(T
2λ2) − S1(T

2λ2) =
1 + T 2λ2

(1 − T 2λ2)3
. (F.8)

Finally the final state reads,

|ψ〉out =

√

(1 − T 2λ2)3

1 + T 2λ2

∞∑

n=0

λn(n+ 1)|n〉A ⊗ |n〉B , (F.9)

and the probability of successfull photon subtraction reads,

p2 = (1 − T )2λ2(1 − λ2)
1 + T 2λ2

(1 − T 2λ2)3
. (F.10)

Four Photon Subtractions

The double conditional photon subtraction is model by applying the non-unitary op-
erator X̂2

A ⊗ X̂2
B. The output state reads,

√
p4|ψ〉out =

√

1 − λ2(1 − T )2Tλ2
∞∑

n=0

(n+ 2)(n+ 1)(T 2λ)n|n〉A ⊗ |n〉B, (F.11)

where p4 is the probability of success of the four photon subtraction. First we determine
the state conditioned on a successful subtraction,

|ψ〉out ∝
∞∑

n=0

(n+ 2)(n+ 1)(T 2λ)n|n〉A ⊗ |n〉B. (F.12)

In order to normalize it we need to calculate
∑∞

n=0(n+ 2)2(n+ 1)2(T 2λ)2n we need to
define

S3(x) =
d3

dx3
S0(x) =

∞∑

n=0

(n+ 3)!

n!
xn =

6

(1 − x)4
, (F.13)

and

S4(x) =
d4

dx4
S0(x) =

∞∑

n=0

(n+ 4)!

n!
xn =

24

(1 − x)5
. (F.14)

Combining equations (F.7), (F.13) and (F.13) we obtain

∞∑

n=0

(n+ 2)2(n+ 1)2(T 2λ)2n = (F.15)

= S4(T
4λ2) − 4S3(T

4λ2) + 2S2(T
4λ2) = 4

1 + 4T 4λ2 + T 8λ4

(1 − T 4λ2)5
. (F.16)

Finally the final state reads,

|ψ〉out =
1

2

√

(1 − T 4λ2)5

1 + 4T 4λ2 + T 8λ4

∞∑

n=0

(n+ 2)(n+ 1)λn|n〉A ⊗ |n〉B, (F.17)

and the probability of successfully subtracting four photons reads,

p = 4T 2(1 − T )4λ4(1 − λ2)
1 + 4T 4λ2 + T 8λ4

(1 − T 4λ2)5
. (F.18)



Appendix G

Calculation of G

In order to simplify the calculation,

G =

∫ ∞

0

∫ ∞

0

e−(ax2+by2+2cxy)dxdy, (G.1)

we use polar coordinates (x = r cos θ, y = r sin θ) giving

G =

∫ ∞

0

∫ π/2

0

e−r
2(a cos2 θ+b sin2 θ+2c sin θ cos θ)rdrdθ. (G.2)

Applying the following change of variables z = αr2 we obtain,

∫ ∞

0

e−αr
2

rdr =
1

2α

∫ ∞

0

e−zdz =
1

2α
, (G.3)

which gives us,

G =
1

2

∫ π/2

0

1

a cos2 θ + b sin2 θ + 2c sin θ cos θ
dθ. (G.4)

Then G can be rewritten as,

G =
1

2

∫ π/2

0

1/ cos2 θ

a+ b tan2 θ + 2c tan θ
dθ, (G.5)

which applying the following change of variables w = tan θ reads (see [2] for the inte-
gral),

G =
1

2

∫ ∞

0

1

a+ bw2 − 2cw
dw (G.6)

=
1

2
√
ab− c2

[

arctan
c+ bw√
ab− c2

]∞

0

(G.7)

=
1

2
√
ab− c2

(

π

2
− arctan

c√
ab− c2

)

. (G.8)
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Appendix H

Incremental Proportionality of
Mutual Information

We want to proof the following statement.

By sending R bits of communication we can increase the correlations at most by R
shared perfect random bits.

At the beginning Alice has two systems X and X ′ , see Fig. H.1, and Bob just one Y ,
their correlations are measured by H(X,X ′:Y ). After Alice has sent the system X ′ to
Bob their correlations read H(X : X′,Y). The final correlations reads,

YX X’

BobAlice

YX’X

BobAlice

a)

b)

Figure H.1: a) At the beginning Alice has two system X and X ′, and Bob just one Y .
Later Alice sends the system X ′ to Bob. b) At the end Alice has system X and Bob
has X ′ and Y .

H(X :X ′, Y ) = H(X) +H(X ′Y ) −H(X,X ′, Y ) (H.1)

which can be upperbounded using the subadditivity of the entropy,

H(X :X ′, Y ) ≤ H(X) +H(X ′) +H(Y ) −H(X,X ′, Y ). (H.2)

Then using H(X) ≤ H(X,X ′) we obtain,

H(X :X ′, Y ) ≤ [H(X,X ′) +H(Y ) −H(X,X ′, Y )] +H(X ′) (H.3)

= H(X,X ′:Y ) +H(X ′). (H.4)

We see that sending a signal X ′ taking values from an alphabet of size d the maximum
increase of correlations is log d, which in the case of a binary alphabet is just 1 bit.
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Appendix I

Distance between
Purifications

Trace Distance and Fidelity

Two different measures are the most commonly used to measure the closeness of two
quantum states (ρ and σ), the trace distance

D(ρ, σ) =
1

2
‖ρ− σ‖1 (I.1)

and the fidelity

F (ρ, σ) = Tr
√

ρ1/2σρ1/2. (I.2)

Uhlmann’s Theorem [189, 136]

Consider ρ and σ are states of a quantum system Q. Introduce a second register R
which is a copy of Q. Then

F (ρ, σ) = max
|ψ〉,|ϕ〉

|〈ψ|ϕ〉| (I.3)

where the maximization is over all purifications |ψ〉 of ρ and |ϕ〉 of σ into RQ.

Closeness of the Purifications

Consider two bipartite quantum states shared by Alice and Bob, ρAB and σAB. If the
two quantum state are close,

‖ρAB − σAB‖1≤ ǫ. (I.4)

Using the lower bound of the relation [136]

1 − F (ρ, σ) ≤ D(ρ, σ) ≤
√

1 − F (ρ, σ)2 (I.5)

we obtain
F (ρAB, σAB) ≥ 1 − ǫ/2. (I.6)

Using Uhlmann’s theorem we can show that there exists one purification ΨABE of ρAB
and ΦABE of σAB which satisfies

F (ΨABE,ΦABE) ≥ 1 − ǫ/2 (I.7)
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Then using the upperbound (I.5) we obtain,

‖ΨABE − ΦABE‖1≤ 2
√

1 − (1 − ǫ/2)2 ≤ 2
√
ǫ. (I.8)

�



Appendix J

Detail of Calculation of
Section (8.4)

Calculation of equation (8.92)

We develop

ρ =
r′2

s′2 + t′2
(J.1)

using the definition of r′, s′ et t′ in

SP =
1

d
√
T







bt− cs cr − at as− br√
χ(s sin θ − t cos θ) t− r

√
χ sin θ r

√
χ cos θ − s√

χ(c cos θ − b sin θ)
︸ ︷︷ ︸

r′

a
√
χ sin θ − c

︸ ︷︷ ︸

s′

b− a
√
χ cos θ

︸ ︷︷ ︸

t′







(J.2)

that gives us,

χ(c cos θ − b sin θ)2 = ρ
[
(a
√
χ sin θ − c)2 + (b− a

√
χ cos θ)2

]
. (J.3)

This equation can be simplified using the definition of a, b and c,

a = u
√
ρ (J.4)

b = u sin ξ (J.5)

c = u cos ξ (J.6)

giving,

χ cos2 (ξ + θ) = ρ(ρχ+ 1 − 2
√
ρχ sin (ξ + θ)). (J.7)

Using the identity cos2 (ξ + θ) + sin2 (ξ + θ) = 1, we obtain

(χ− ρ) cos2 (ξ + θ) = ρ(ρχ+ sin2 (ξ + θ) − 2
√
ρχ sin (ξ + θ)) (J.8)

which simplifies to

(

χ− ρ

ρ

)

cos2(ξ + θ) =
(
sin(ξ + θ) −√

ρχ
)2

(J.9)
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Calculation of equation (8.93)

Developping

(cr − at)2 + (as− br)2 = r2(b2 + c2) + a2(t2 + s2) − 2ar(ct+ bs) = d2T 2χ (J.10)

using the definition of a, b and c we obtain

r2 + ρ(t2 + s2) − 2r
√
ρ(t cos ξ + s sin ξ) =

d2T 2χ

u2
. (J.11)

Using
bt− cs = dT (J.12)

and the definition of b and c we obtain

ut sin ξ − us cos ξ = dT (J.13)

that squaring and adding (t cos ξ + s sin ξ)2 on both sides gives,

t2 + s2 =

(
dT

u

)2

+ (t cos ξ + s sin ξ)2 (J.14)

Replacing (J.14) into (J.11) gives

ρ(t cos ξ + s sin ξ)2 − 2r
√
ρ(t cos ξ + s sin ξ) + r2 =

d2T 2

u2
(χ− ρ) (J.15)

that can be simplified to

[
r −√

ρ(t cos ξ + s sin ξ)
]2

=
(dT

u

)2

(χ− ρ) (J.16)

writting s as a function of t using (J.13) we obtain

[

r − t

√
ρ

cos ξ
+
dT

√
ρ

u
tan ξ

]2

=
(dT

u

)2

(χ− ρ) (J.17)

We can obtain a second equation on r and t by using the definition of the determi-
nant d = detSX ,

d = (bt− cs) +
√
χ cos θ(rc − ta) +

√
χ sin θ(as− rb) (J.18)

Replacing (bt− cs) by dT and using the definition of a, b and c we obtain,

r cos (θ + ξ) +
√
ρ(s sin θ − t cos θ) =

d

u

(1 − T )√
χ

(J.19)

Writing s as a function of t using (J.13) we obtain

r cos (θ + ξ) + t
√
ρ(sin θ tan ξ − cos θ) =

d

u

[
(1 − T )√

χ
+ T

√
ρ

sin θ

cos ξ

]

(J.20)

that can be simplified to

r − t

√
ρ

cos ξ
=

d

u cos (θ + ξ)

[
(1 − T )√

χ
+ T

√
ρ

sin θ

cos ξ

]

. (J.21)

Injecting equation (J.21) into (J.17) finally gives,

(

χ− ρ

ρ

)

cos2(ξ + θ) =

(

sin(ξ + ρ) +
1 − T

T
√
ρχ

)2

. (J.22)
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