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A linear optical probabilistic scheme for the optimal cloning of a pair of orthogonally polarized photons is
devised, based on single- and two-photon interferences. It consists in a partial symmetrization device realized
with a modified unbalanced Mach-Zehnder interferometer, followed by two balanced beam splitters where the
Hong-Ou-Mandel photon bunching occurs. This scheme has the advantage that it enables quantum cloning
without the need for stimulated amplification in a nonlinear medium. It can also be modified so to make an
optical two-qubit partial SWAP gate, thereby providing a potentially useful tool to linear optics quantum
computing.
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I. INTRODUCTION

Perfect copying of unknown quantum states is forbidden
due to the linearity of quantum mechanics �1,2�. The rapid
development of quantum information theory over the last
decade has stimulated the investigation of optimal approxi-
mate quantum copying transformations, which produce two
or more copies of a state with maximum fidelity �3,4�. The
reason behind this interest is twofold. First, the optimal
“quantum cloners” provide insight into the fundamental lim-
its on the manipulation and distribution of quantum informa-
tion. Second, from a more practical point of view, these clon-
ers can be used as very efficient eavesdropping attacks on
quantum key distribution protocols. Of particular interest is
the cloning of single photons, which are ideal carriers of
quantum information as they can be distributed over long
distances through optical fibers or free space. In this context,
the optimal universal copying of the polarization state of
single photons has been thoroughly investigated theoretically
and successfully demonstrated experimentally by several
groups. These experiments can be divided, roughly speaking,
into two classes. The first strategy, suggested in Ref. �5�,
consists in exploiting the quantum-noise limited amplifica-
tion of light in a nonlinear crystal or in a fiber amplifier. It
was demonstrated in Refs. �6–8�. The second strategy is to
make the source photon interfere with an auxiliary photon
prepared in a maximally mixed state on a beam splitter
�9–12�. The bunching of photons then ensures the symmetri-
zation of the total state of the photons, which is a way of
effecting the optimal universal cloning transformation as
shown in Ref. �13�.

We thus observe that two fundamental quantum optical
processes which are quite unrelated, namely the amplifica-
tion of light and the multiphoton interference, become inter-
changeable as far as quantum cloning is concerned. In this
paper, we further exploit this interesting relationship by de-
signing an interferometric scheme for the optimal quantum
copying of a pair of orthogonally polarized photons �14�. In
the latter scenario, one assumes that the state to be cloned is
formed by a pair of qubit states �������, where �� ����=0
and ��� can be arbitrary. The optimal cloning operation
which produces M copies of the state ��� from the state

������� with highest fidelity was derived in Ref. �14�, where
it was shown that, surprisingly, the attained fidelity exceeds
that of the cloning of a pair ������ when M �6. It was also
proved that the optimal cloning of ������� could be proba-
bilistically accomplished with type-II nondegenerate para-
metric down-conversion, similarly as for the cloning of a
single photon. The trick is that the photon in polarization
state ��� must be fed in the signal input port of the amplifier,
while the photon in state ���� must be fed in the idler input
port. With a certain probability, the amplifier produces M
copies of ��� in the output signal port, with the value of M
being determined by measuring the number of output idler
photons. The distinct feature of this scheme is that the fidel-
ity of the clones depends on the amplification gain, which
must be set to the optimal value in order to recover the op-
timal cloning transformation �14�.

In the present work, we show how to implement the uni-
versal cloning of the state ������� with passive linear optics
and auxiliary photons, circumventing the need for active
nonlinear media. The term “universal” means that the trans-
formation is independent of the state ���, so that our scheme
can be viewed as a way to effect the polarization-insensitive
amplification of ������� without an optical amplifier. In Sec.
III, we will explain the working of our proposed scheme for
the simplest yet nontrivial example of the generation of two
copies; we will then extend it to arbitrary M. A crucial part of
our proposal happens to be the partial symmetrization of the
two-photon polarization state. Therefore, in Sec. II, we will
first show how the partial symmetrization device can be
�probabilistically� accomplished by an interference of two
photons in a specifically designed Mach-Zehnder interferom-
eter. Remarkably, a simple modification of this device also
enables the realization of a two-qubit optical partial-SWAP

gate. Our scheme may thus find applications in various areas
of quantum information processing with linear optics, be-
yond quantum cloning.

II. PARTIAL SYMMETRIZATION DEVICE

Let us begin with the description of the partial symmetri-
zation device. Let �+ and �− denote projectors onto the
symmetric and antisymmetric subspace of the polarization
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space of two photons. The nonunitary partial symmetrization
operation is defined as

���AB � ��+ + ��−����AB, �1�

where 0���1. The optical scheme which conditionally
implements this transformation is shown in Fig. 1. It is es-
sentially a Mach-Zehnder interferometer made of four bal-
anced beam splitters BS1–BS4, with a variable attenuator of
amplitude transmittance � placed in one of its arms. A single
photon is injected into each input port Ain and Bin, and the
partial symmetrization is successful if a single photon is
present in each output port Aout and Bout. Note that these two
output modes differ from those of a usual Mach-Zehnder
interferometer since one output beam is obtained by tapping-
off a part of the beam in the upper arm with the help of a
balanced beam splitter BS2. The two input photons first in-
terfere on the balanced beam splitter BS1, which forms a
Hong-Ou-Mandel interferometer. If the polarization state of
the two photons is symmetric then bunching occurs and both
photons end up in the same arm of the interferometer. With
probability 1/2, both photons follow the lower arm so that
none can reach the output port Aout, hence the device fails.
However, with probability 1/2, both photons are in the upper
arm and then, again with probability 1/2, one photon is re-
flected at BS2 while the other is transmitted through BS2,
ending in the output mode Aout. Finally, the reflected photon
can be again reflected with probability 1/2 at BS4, ending in
mode Bout. Taking all these probabilities into account, we
conclude that the symmetric part of the input polarization
state transforms according to

�+���AB �
1

2�2
�+���AB. �2�

Now, if the two-photon input state is antisymmetric, then the
photons are in the maximally entangled singlet state ��−�AB

= 1
�2

��V�A�H�B− �H�A�V�B�. The photons never bunch and, after
interference at BS1, one photon is found in each arm of the
interferometer so that the polarization state remains ��−�.
This well-known effect was exploited, e.g., in quantum tele-
portation to carry out a partial Bell state analysis, that is to
discriminate the singlet from the other three Bell states �15�.
In our scheme, the photon in the upper arm is transmitted
with probability 1/2 through BS2 into mode Aout. In parallel,
with the overall probability �2 /4, the photon in the lower
arm is reflected at BS3, passes through the attenuator � and
BS4, and reaches mode Bout. It follows that the antisymmet-
ric part of the input polarization state transforms according to

�−���AB �
�

2�2
�−���AB. �3�

If the interferometer is balanced such that the photons trav-
eling through the upper and lower arms perfectly overlap at
BS4, then the two above operations act coherently. Since an
arbitrary input state can be decomposed into a symmetric and
antisymmetric part, ���AB=�+���AB+�−���AB, the linearity
of quantum mechanics implies that overall conditional trans-
formation reads as

���AB �
1

2�2
��+ + ��−����AB, �4�

which is proportional to the desired partial symmetrization
operation �1�. The probability of success generally depends
on the input state and can be expressed as

Psym =
1

8
�����+ + �2�−���� . �5�

The fact that that the setup depicted in Fig. 1 effectively
implements the partial symmetrization transformation �4�
can also be verified by direct calculation in the Fock basis,
where the input two-photon state is written with the action of
bosonic creation operators onto the vacuum state, the cre-
ation operators of the input modes are replaced by appropri-
ate linear combinations of the output creation operators, and
finally only those terms are kept where a single photon is
present in each output mode Aout and Bout. The resulting
scheme is very versatile because the degree of symmetriza-
tion can be controlled simply by changing the attenuation �
in one arm of the interferometer. The case with full attenua-
tion corresponds to the full symmetrization operation, while
the case with no attenuation simply effects the identity.

Interestingly, the success probability of the partial sym-
metrization can be increased by using unbalanced beam
splitters with real amplitude transmittances tj and reflec-
tances rj, where j=1,2 ,3 ,4, and tj

2+rj
2=1. The attenuation in

the lower arm can be absorbed into the reflectance of BS3 by
substitution r3��r3, so the only free parameters are the tj’s
and we assume that there is no attenuator in the scheme. One
can express the probability amplitude that two photons in a
symmetric or antisymmetric input state reach the desired out-
put ports of the interferometer as �sym=2t1r1t2r2r4+ �r1

2

− t1
2�t2r3t4 and �antisym= t2r3t4, respectively. Then, one can

show that the conditional transformation preserves the form
���AB��P��++��−����AB, provided that the condition
��sym=�antisym holds. The success probability is proportional
to the parameter P given by

P =
1

�2 t2
2r3

2t4
2. �6�

The maximization of P over all admissible values of tj can
be performed analytically and the optimal intensity transmit-
tances Tj = tj

2 read as T1= �1−�� /2, T2= �1−�1−�2� /�2, T3
=0, and T4=1−�1−�2. This yields

η

A

B

BS2

BS4BS3

BS1

Ain

Bin

out

out

FIG. 1. Partial symmetrization of the polarization state of two
photons. The scheme consists of four balanced beam splitters BSj
and one attenuator �.
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Pmax =
1

�4 �1 − �1 − �2�2. �7�

Note that BS3 is actually replaced by a perfect mirror, which
minimizes the leakage of photons into unwanted modes. The
efficiency of the device is enhanced at the expense of the
dependence of the Tj’s on �. This means that, in contrast to
the scheme with balanced beam splitters, the degree of sym-
metrization cannot be controlled simply by changing the at-
tenuation in one arm of the interferometer. Instead, one must
simultaneously tune the splitting ratios of BS1, BS2, and
BS4. This makes this latter scheme less practical than the
former as it would be difficult, in practice, to change the
splitting ratios as required and it is much easier to control the
degree of symmetrization with a variable attenuator.

In addition, it is also possible to increase P while using
configurations where, as in the original scheme, the Tj’s do
not depend on �. The degree of symmetrization is again
determined by an attenuator, as shown in Fig. 1. Specifically,
if we set

T1 =
1

2
, T2 =

1 − 2T4

1 − T4
, T3 = 0, �8�

then we have

P =
T4�1 − 2T4�

1 − T4
. �9�

This is maximized for T4=1−1 /�2, namely P= ��2−1�2

	0.172�1 /8. Another interesting choice is to set T4=1 /3,
resulting in T2=1 /2 and P=1 /6. This last scheme thus re-
quires two balanced beam splitters BS1 and BS2, one mirror
BS3, a single unbalanced 2:1 beam splitter BS4, and a vari-
able attenuator.

Note that, in all these schemes, the partial symmetrization
relies on a fine interplay between single- and two-photon
interferences. This is in contrast with the partial antisymme-
trization device introduced in �16�, which is defined in anal-
ogy with Eq. �1� but interchanging the roles of �+ and �−. In
that case, the device works solely by a two-photon interfer-
ence on an unbalanced beam splitter, whose reflectance de-
termines the value of � �for a 50:50 beam splitter, we have
full antisymmetrization�. Our partial symmetrization device
is thus experimentally more challenging, but it opens inter-
esting new perspectives as we shall see.

III. OPTIMAL QUANTUM CLONING
WITHOUT NONLINEARITIES

A. Generation of two clones of 
�‹
��‹

Let us show how the above partial symmetrization device
can be used in order to optimally clone a pair of orthogonal
qubits ������� with linear optics. In our scheme, qubits are
encoded into polarization states of single photons. We first
consider the preparation of two clones, keeping the case of
M clones for Sec. III C. Remember first how the
polarization-insensitive cloning of single qubit ��� based on
linear optics works. The input photon in state ��� impinges
on a balanced beam splitter BS1 where it interferes with an-

other photon in a maximally mixed polarization state �see
Fig. 2�a��. The success of the cloning transformation is asso-
ciated with the bunching of the two photons at the beam
splitter BS1, which heralds the symmetrization operation.
Thus, the cloning is witnessed by the detection of two pho-
tons in the output mode Aout of BS1. The state of the two
clones of ��� is simply the polarization state of these two
photons. Note that the maximally mixed state may be ob-
tained by generating a two-photon polarization singlet state
��−�AB �an Einstein-Podolsky-Rosen �EPR� pair�, sending
one photon of this pair on BS1 �see Fig. 2�a��. Interestingly,
if we post-select the other photon of the pair in the cases
where we have detection of the two clones in Aout, the polar-
ization state of this photon in mode B then coincides with the
so-called anticlone, i.e., the approximate version of ����.

Assume now that the second photon of the EPR pair �the
one in mode B� impinges on another balanced beam splitter
BS2, where it interferes with mode D �see Fig. 2�b��. If the
latter mode is in the vacuum state and we only keep the cases
where the photon emerges in mode Bout, the overall cloning
transformation remains unchanged �except for a reduction of
the success probability by a factor of 1/2�. However, this
modification is crucial because it introduces mode D in the
scheme, which plays the same role as the input idler mode in
the implementation of a cloner based on the amplification of
light. When using parametric stimulated down-conversion in
a nonlinear medium to effect cloning, one sends a photon in

ψ| >

outB

ψ| >⊥ψ| >

out

EPR

symmetrization
partial

outA B
anticlonesclones

A B

BS BS1

C D

2

ψ| > ψ| >⊥

EPR

outA
clones

A B

BS1

C anticlone

(a)

(c)

out

EPR

outA B
anticlonesclones

A B

BS BS1

C D

2

(b)

FIG. 2. �a� Optimal cloning of the polarization state ��� of one
photon with linear optics. The EPR denotes an auxiliary two-photon
polarization singlet state, while BS1 is a balanced beam splitter. �b�
Suboptimal cloning of a pair of orthogonally polarized photons with
linear optics. The second input is prepared in the orthogonal polar-
ization state ����, and BS2 is another balanced beam splitter. �c�
Optimal cloning of the pair ������� using the previous cloning
scheme preceded by a partial symmetrization device.
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state ��� in the signal mode of the amplifier, and leaves the
idler mode in the vacuum state. The two photons emerging in
the signal mode are the clones, while the photon in the out-
put idler mode encodes the anticlone. It was shown in Ref.
�14� that the optimal cloning of a pair of orthogonally polar-
ized photons ������� can be realized by injecting the photon
in state ���� in the idler input mode instead of the vacuum.
This improves the fidelity of the cloning of the state ��� that
is sent into the signal input mode.

This suggests that a linear optics version of the cloning of
������� may be achieved similarly by injecting the photon in
state ���� in mode D instead of the vacuum �see Fig. 2�b��.
The success of cloning is then heralded by the detection of
two photons in mode Aout �the two clones� and two photons
in mode Bout �the two anticlones�. The resulting probabilistic
scheme approximates quite well the unphysical transforma-
tion �������� ����2�����2. However, as we will see below,
an additional element is needed in order to achieve the opti-
mal cloning transformation, namely the partial symmetriza-
tion device described in Sec. II.

The final scheme, which realizes the optimal cloning, is
illustrated in Fig. 2�c�. The two-photon input state to be
cloned ������� is first partially symmetrized using the setup
of Fig. 1. The resulting state in modes C and D reads as

��in�CD = ��+ + ��−����C����D

=
1 + �

2
���C����D +

1 − �

2
����C���D, �10�

where we made use of the relations �+�������= ��������
+ �������� /2 and �−�������= ��������− �������� /2. As in
the previous scheme, this state then interferes on the two
balanced beam splitters BS1 and BS2 with the auxiliary two-
photon singlet state ��−�AB.

With the help of creation operators, we can express the
states impinging on BS1 and BS2 as

��−�AB =
1
�2

�a�
†b��

† − a��

† b�
†��0� �11�

and

��in�CD =
1

2
��1 + ��c�

†d��

† + �1 − ��c��

† d�
†��0� , �12�

where the subscript � ���� indicates creation operator for the
polarization mode � ����. The cloning operation is probabi-
listic and succeeds if two photons are present in output mode
Aout and two photons are present in Bout. Indeed, in that case
the state of photons in modes A and C �B and D� is thus
symmetrized by the interference on BS1 �BS2�. The output
state can be determined from the input state ��−�AB��in�CD
by replacing the input creation operators with the appropriate
linear combinations of output creation operators, namely

a�
† �

1
�2

�a�
† + c�

†�, b�
† �

1
�2

�b�
† + d�

†� ,

c�
† �

1
�2

�a�
† − c�

†�, d�
† �

1
�2

�b�
† − d�

†� , �13�

while similar relations hold for the creation operators for the
�� polarization modes. By keeping only the terms of zeroth
order in c�

† , c��

† , d�
† , and d��

† , we obtain the following ex-
pression for the �unnormalized� output state conditional on
having two photons in mode Aout and two photons in mode
Bout:

��2,out� 	 �a�
†b��

† − a��

† b�
†��a�

†b��

† + qa��

† b�
†��0� , �14�

where q��1−�� / �1+�� has been introduced for the sake of
simplicity. Omitting the subscripts � and �†, we define �j ,k�
as the double Fock state containing j photons in polarization
state ��� and k photons in polarization state ����. In particu-
lar, ���A����B becomes �1,0�A�0,1�B. Then, the output state
�14� can be expressed as a linear combination of double Fock
states,

��2,out� 	 2�2,0�A�0,2�B + �q − 1��1,1�A�1,1�B

− 2q�0,2�A�2,0�B. �15�

The first term on the right-hand side of Eq. �15� corresponds
to perfect cloning, with two photons in mode Aout emerging
in the polarization state ��� and two photons in mode Bout
being in state ����. In the second term, one photon has the
right polarization and one photon has the wrong polarization
in both Aout and Bout, thus contributing to 1/2 in the cloning
fidelity. The third term does not contribute to the cloning
fidelity since the two photons have a polarization state that is
orthogonal to the expected one in each output mode. Thus,
the fidelity of single clones in mode Aout �or single anticlones
in mode Bout� can be evaluated as

F��2,q� =

1 
 22 +
1

2

 �q − 1�2

22 + �q − 1�2 + �2q�2 =
q2 − 2q + 9

2�5q2 − 2q + 5�
.

�16�

Note that in deriving formula �16�, we have taken into ac-
count that the state �15� is not normalized.

Coming back to the simplified cloning scheme of Fig.
2�b�, we see that removing the partial symmetrization device
is equivalent to taking �=1 �or q=0� in the scheme of Fig.
2�c�. In that case, the first term of Eq. �15� weighs 22 and the
second term 12, while the third term vanishes. The resulting
single-clone fidelity is 9/10. We notice that by choosing a
small value of q�0, the weight of the second term decreases
linearly with q while that of the third term increases only
quadratically with q. Since these two terms correspond to
cloning noise, it is clear that increasing q is advantageous as
it decreases the overall noise up to some extent. The optimal
q that maximizes F��2,q� �or minimizes the noise� can be
determined by solving the equation

�F��2,q�
�q =0, which yields

q2,opt = 5 − 2�6. �17�

By inserting q2,opt back into Eq. �16�, we obtain
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F��2� =
1

2
�1 +�2

3

 	 0.908 �18�

which is the maximum achievable fidelity �14�. Our scheme
thus optimally clones the pair of orthogonal photonic qubits,
as advertised. Note that the achieved fidelity is indeed
slightly larger than that of the simplified scheme which is not
preceded by the partial symmetrization of �������, namely
9/10. Note also that the optimal attenuation corresponding to
the value of q of Eq. �17� reads as �2,opt=�2 /3. The total
probability of success of the cloning scheme is given by
Ptot= PsymPEPR, where Psym=5 /48 is the probability of suc-
cessful partial symmetrization �in the scheme with balanced
beam splitters� and PEPR=3 /20 is the probability of success
of the scheme in Fig. 2�b�. Hence, we have Ptot=1 /64.

B. Experimental feasibility of the proposed setup

Let us briefly discuss how the setup of Fig. 2�c� may be
demonstrated experimentally. First note that although the
partial symmetrization device operates on a coincidence ba-
sis, this does not negatively affect the rest of the scheme
shown in Fig. 2�c�. This is because after partial symmetriza-
tion, the two emerging photons are not recombined at any
further beam splitter, but participate each in another separate
two-photon interference. Thus, if we know that a two-photon
singlet state was injected into input modes A and B, then the
detection of two photons in modes Aout and Bout confirms the
successful partial symmetrization. To prepare the two-photon
input state one could utilize, for example, two single pho-
tons, each one being prepared conditionally from a photon
pair generated via spontaneous parametric down-conversion
by triggering on detections of the idler photons. The auxil-
iary singlet state in modes A and B could be prepared in the
same way. The whole experiment would then involve a six-
photon coincidence. Even if very challenging, recent experi-
ments with three photon pairs and sixfold coincidence mea-
surements were reported �17,18�, so our proposed scheme is
within the reach of current technology.

The partial symmetrization device requires interferomet-
ric stability. Recently, the interference of two photons in bulk
Mach-Zehnder interferometer was demonstrated experimen-
tally and explored for the optimal universal asymmetric clon-
ing of single photons �19�. Moreover, the combination of
single- and two-photon interferences has recently been uti-
lized in fiber-based experiments, where very high visibility
was achieved �20,21�. This suggests that our cloning scheme
is experimentally realizable.

An interesting feature of our scheme is that the nonlinear-
ity which is inherent to the cloner when realized with stimu-
lated amplification is hidden here in the prior preparation of
the EPR pair. This can be viewed as a nonlinear resource
which is prepared “off-line,” and used only later on when
needed, which is reminiscent to the idea behind linear-optics
quantum computing �22,23�.

C. Generation of M clones of 
�‹
��‹

Let us finally show how our scheme can be extended to
more than two clones. The optimal copying operation which

produces M copies of ��� from the state ������� can be writ-
ten in a covariant form as follows �14�:

���A����B � �
j=0

M

� j,M��M − j��, j���A�j�,�M − j����B,

�19�

where the coefficients � j,M can be expressed as

� j,M =
�− 1� j

�2�M + 1�
�1 +

�3�M − 2j�
�M�M + 2�


 �20�

and �j� , �M − j���� denotes a totally symmetric polarization
state of M photons in a single spatiotemporal mode, with j
photons in polarization state ��� and M − j photons in state
����. The transformation �19� achieves the fidelity

F��M� =
1

2
�1 +�M + 2

3M

 . �21�

A physical insight into the structure of the unitary transfor-
mation �19� is obtained by considering cloning via stimu-
lated amplification. With a suitable choice of the crystal ge-
ometry, the type-II parametric down-conversion is governed
by the Hamiltonian

H = ig�aV
†bH

† − aH
† bV

†� + H.c., �22�

where aV
† �aH

† � and bV
† �bH

† � denote creation operators of the
vertically �horizontally� polarized modes of the signal and
idler beam, respectively, and g is the effective amplification
gain, proportional to the amplitude of the pump beam, the
second-order susceptibility of the crystal, and the crystal
length. Since H is invariant under simultaneous identical lo-
cal polarization rotation of both the signal and idler beams,
�U � U�H�U† � U†�=H, we can write

H = ig�a�
†b��

† − a��

† b�
†� + H.c. �23�

The output state of the amplifier reads as ��M,out�
=e−iH���A����B, where A stands for the signal mode and B
for the idler mode. The unitary transformation can be conve-
niently written in a factorized form,

e−iH = e�X��1 − �2�ntot/2+1e−�X�
†
, �24�

where �=tanh�g�, X�=a�
†b��

† −a��

† b�
† , and ntot denotes the

total photon-number operator in all four modes, ntot=a�
†a�

+a��

† a��
+b�

†b�+b��

† b��
. Using Eq. �24�, it can be shown by

a straightforward calculation that the output state corre-
sponding to having M photons in each mode �signal and
idler� reads as

��M,out� 	 X�
M−1�a�

†b��

† + qa��

† b�
†��0� , �25�

where the coefficient q depends on the gain g. For each value
of M, there is an optimal q which maximizes the cloning
fidelity, qM,opt= ��3M −�M +2� / ��3M +�M +2�.

Finally, comparing Eq. �25� with Eq. �14� suggests that
the state ��M,out� can be similarly prepared using the scheme
shown in Fig. 2�c�, where the input state is partially symme-
trized with factor �= �1−q� / �1+q� while the EPR state is
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replaced by the 2�M −1�-photon state produced by spontane-
ous type-II parametric down-conversion, ��EPR�	X�

M−1�0�.
Note that this state, corresponding to �M −1� photon pairs,
can be generated “off-line” in a nonlinear crystal with low
gain g, as in the case of M =2. In contrast, the implementa-
tion of this cloner with stimulated amplification requires a
gain g which grows with M. Interestingly, we thus conclude
that the above linear optical scheme enables us to simulate
the polarization-insensitive amplification of ������� with ar-
bitrarily high gain using only a “off-line” low-gain nonlinear
process, albeit with a low success probability.

IV. CONCLUSIONS

It was shown that the optimal quantum cloning of a pair
of photons with orthogonal polarizations ������� can be ex-
perimentally realized by using a linear optical scheme,
avoiding the traditional use of stimulated parametric down-
conversion in a nonlinear crystal. An appropriate combina-
tion of one- and two-photon interferences makes it possible
to effect, with some success probability, the transformation
resulting into M clones and M anticlones from the pair
������� and an auxiliary 2�M −1� photon entangled state
��EPR�. This transformation consists in the sequence of a
partial symmetrization device, acting on the input state
�������, followed by two balanced beam splitters where the
Hong-Ou-Mandel bunching effect is used as a means to sym-
metrize the state.

The partial symmetrization device is another probabilistic
interferometric scheme, with an attenuator � placed in one of
the interferometer arms in order to tune the symmetrization
parameter. Moreover, if this attenuator is replaced by a phase
shifter, it appears that the symmetrization scheme instead
effects the unitary partial SWAP gate �with probability 1/8 or

��2−1�2 if unbalanced beam splitters are employed�. For-
mally, we can substitute �=ei� in Eq. �1�, and get the unitary
transformation

U��� = �+ + ei��−. �26�

For �=
, we recover the SWAP gate, which interchanges the
states of the two photons. Of particular importance is the
square-root SWAP gate, which is achieved by choosing �
=
 /2. This gate, together with arbitrary single-qubit polar-
ization rotations, is sufficient for universal quantum comput-
ing. Thus, we have found a whole new class of two-qubit
optical quantum gates to be inserted in the toolbox of avail-
able linear-optics quantum gates �22,23�. The gate also al-
lows us to investigate quantum decoherence in the process of
quantum homogenization, where a qubit is successively
coupled to auxiliary qubits via partial SWAP gates �24,25�. In
this way it is possible to simulate relaxation of the qubit
toward equilibrium. The partial SWAP gate for polarization
states of single photons has been very recently successfully
demonstrated experimentally �26�, which clearly confirms
the experimental feasibility of the present proposal.
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