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1
Introduction

Information is (Quantum) Physical

The 20th century will be remembered, without a doubt, as a century of great
technological discoveries. Remarkably, many of these new technologies find
their roots in two mathematical theories which completely revolutionized
our perception of the world we live in. In 1901, in an attempt to explain the
black-body radiation, Max Planck suggested that the energy of the emitted
radiation could be described as consisting of discrete packets or quantas [87].
His remarkable intuition was soon embraced by Albert Einstein who used
this idea of quantization to explain the photoelectric effect [32], and the
specific heat of solids at very low temperature [33]. The quantum revolution
was on its way. Since its introduction, this theory of the infinitely small has
found applications ranging from the invention of the laser to the discovery of
superconductivity. Forty-seven years and two world wars later, the need for
efficient communication protocols led Claude Shannon to publish an article
entitled “A Mathematical Theory of Communication” [92]. In this seminal
paper, a collection of unpublished results gathered during the war, he ad-
dressed the problem of the transmission of information over noisy channels
by introducing new mathematical objects such as the entropy of a probabil-
ity distribution or the capacity of a communication channel. The resulting
theory, known as Information theory, radically changed our modern society
by providing a mathematical framework for the development of information
oriented applications such as the computer, the compact-disk, the internet,
i.e. all applications we now label as information technologies (IT).
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CHAPTER 1. Introduction

Interestingly, these two theories, which emerged in different contexts and
address different issues, are not as far apart as they seem. On the one hand,
information needs a physical support to be transmitted. When we speak, the
surrounding molecules of air vibrate according to the sounds we make. The
words I am typing now are stored in the hard drive of my computer, and will
later be printed on a piece of paper. To quote Rolf Landauer, “Information
is physical” [70]. On the other hand, physical objects are, ultimately, made
of microscopic particles described by the laws of quantum theory. A bit of
information stored on my computer is nothing but a collection of millions
of electrons, where each and everyone obey the laws of quantum mechanics.
Information should not only be physical then, but quantum physical! Just
as classical mechanics is an approximation of quantum mechanics valid for
macroscopic objects, the information theory developed by Shannon should
be the classical approximation of a quantum information theory which ap-
plies when information is stored and manipulated on quantum mechanical
systems. At the dawn of the 70’s, exploring the possibilities and implica-
tions of this quantum version of information theory rapidly gained interest
among a small group of pioneer physicists such as Richard Feynman, Charles
Bennett, Paul Benioff, and David Deutsch. A new revolution was about to
begin.

But let us not go too fast. In parallel of these intellectual considera-
tions, the 60’s also witnessed the rise of the computer era. Since the first
integration of a transistor in an electronic circuit in 1958, the performances
of computing machines had been improving at an amazing pace. This led
Gordon Moore, a co-founder of Intel, to conjecture in 1965 that the number
of transistors one can place on an integrated circuit was to increase expo-
nentially, approximately doubling every two years [75]. Amazingly enough,
his predictions have held true for more than 40 years! However, people soon
realized that such a trend could not continue for ever as the size of transis-
tors would ultimately have to reach the size of atoms and enter the quantum
regime. As noted by Moore himself in 2005, “It can’t continue forever. The
nature of exponentials is that you push them out and eventually disaster
happens”. But is a disaster due to the extreme miniaturization of transis-
tors inevitable? Probably not if one is willing to seriously investigate the
capabilities of this extreme quantum regime of computation.

At the beginning of the 80’s, both intellectual and economical motiva-
tions were present for the rapid development of a new fascinating field of
research; Quantum Information Science (QIS) was born.

The promises of Quantum Information

How can one benefit from the association of quantum mechanics with Shan-
non’s theory of information? At first sight, the use of microscopic objects to
support information seems to be the source of more problems than solutions.
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For example, Heisenberg’s uncertainty principle predicts the impossibility to
obtain all the information about the spin of a single particle. How can two
parties, say Alice and Bob, exchange information if they are unable to read
the messages they receive? Interestingly, it is precisely this impossibility
to read unknown quantum information which led Stephen Wiesner, then a
graduate student at Columbia, to what is considered as the first application
of quantum information theory; namely quantum money [105] (ironically,
Wiesner proposed this idea in 1970, but had to wait until 1983 to publish
it). By integrating a series of two-level quantum systems on a bank note,
Wiesner argued that it is possible to create an unforgeable note whose se-
curity is guaranteed by the laws of quantum mechanics. Indeed, preparing
these systems in well defined non-orthogonal quantum states would force a
counterfeiter to measure each of them in a random basis, thereby introduc-
ing perturbations in the copies which could be easily detected by the bank.
This unpractical but brilliant idea led, a few years later, to the discovery of
quantum key distribution [8] and is at the origin of an entire branch of QIS
devoted to cryptographic applications and communications.

Asides from the uncertainty principle, quantum mechanics has some
other interesting fundamental features with no classical counterparts. Can
they be exploited cleverly in order to solve, say, computational problems effi-
ciently? This question was first addressed by David Deutsch, who suggested
that, indeed, such quantum computers might have a computational power
exceeding that of classical ones [28]. Consider for example a bit, the basic
unit of classical information, which has only two possible values “0” or “1”.
Either a million electrons are stored in a given memory cell of my computer
and the bit is interpreted as “one”, or they are not and the bit is interpreted
as “zero”. Now suppose that this memory cell is a two-level quantum system
such as the spin of a single electron. The superposition principle of quantum
mechanics predicts that this quantum bit, or qubit, can not only be |0〉 or
|1〉, but can also be |0〉 and |1〉 at the same time, i.e. quantum mechanics
enables linear superpositions of the form |ψ〉 = α |0〉 + β |1〉. By processing
this qubit, one will therefore process “zero” and “one” simultaneously, a
feature of quantum computation known as parallelism. In 1994, these con-
siderations led Peter Shor to design an efficient algorithm, the so-called Shor
algorithm, proving the superiority of quantum over classical computers for
the factorization of large numbers [93]. Interestingly, while the uncertainty
principle guarantees the security of specific cryptographic tasks, the super-
position principle enables parallel quantum computation and is at the origin
of the computation and algorithmic branch of QIS.

The power of quantum information lies in its ability to exploit the many
possibilities offered by the quantum world. Its development is therefore
strongly correlated to our knowledge and understanding of quantum me-
chanics. Remarkably, the rise of quantum information caused a renewed
interest in the foundations of this well established theory. Questions which

3



CHAPTER 1. Introduction

were left unanswered or considered uninteresting for nearly a century soon
became the focus of intensive research. The most striking example of this re-
newal is a property of quantum mechanics known as entanglement. The term
entanglement was first coined by Erwin Schrödinger as “the characteristic
trait of quantum mechanics” [91]. It was also called “spooky action at the
distance” by Albert Einstein, and its implications caused Einstein to dislike
the theory he had helped create. He was not the only one puzzled by such
a counterintuitive aspect of quantum theory, although for many years ques-
tions related to entanglement were mostly considered of philosophical and
metaphysical nature. Following the work of John Bell [7], the recent renewal
of quantum mechanics has seen our understanding of entanglement change
from a controversial property of microscopic entities to a key ressource of
quantum information. Entanglement is now used to achieve many tasks
such as quantum teleportation [9] or quantum dense coding [10]. An entire
branch of QIS, sometimes known as entanglement theory, is now devoted to
the study of this fascinating ressource, ranging from its characterization to
the exploration of its possible uses.

Continuous Variables

The early investigations of quantum information mostly focused on qubits,
i.e. two-level quantum systems such as the spin of an electron or the polariza-
tion of a photon, since they are the natural quantum analog of the classical
bit. From a theorist’s perspective, these systems are the simplest to manip-
ulate. They also exhibit all the quantum features interesting for quantum
information applications. Using qubits, quantum states can be teleported,
secret keys can be established, numbers can be factorized, entanglement can
be produced, distributed and distilled. Unfortunately, manipulating a single
photon (or a single electron) is a difficult experimental task. Single photons
are hard to produce on demand, and hard to detect efficiently. The same
applies to the production and detection of entanglement. These experimen-
tal limitations make the implementation of quantum information based on
discrete variables both difficult and expensive.

Since 1998, the year of the first experimental demonstration of uncon-
ditional quantum teleportation by Furusawa and collaborators [43], a novel
approach developed, which relies on canonical observables with continuous
spectra. This quantum information with continuous variables (CV) rapidly
gained attention as it offers many practical advantages over its discrete vari-
able counterpart. On the one hand, when the quadratures of the electro-
magnetic field are used to carry the information, many interesting protocols
can be implemented by combining passive and active linear optical compo-
nents (beam splitters, phase shifters and squeezers), supplemented with an
efficient detection scheme known as homodyne detection. All these elements
are, up to some degree of accuracy, readily accessible in today’s optical labs.

4



Furthermore, continuous variable entangled states of light can be relatively
easily generated in a deterministic way with optical parametric amplifiers
[20], while their continuous quantum information is made accessible by the
fast and efficient homodyne detection technique. On the other hand, al-
though CV states lie in an infinite dimensional Hilbert space, many of them
can be handled by mathematical techniques from finite-dimensional algebra.
In particular, operations on the density matrix of the so-called Gaussian
states can be achieved by manipulating the finite-dimensional covariance
matrix. All these features make the optical continuous variable approach a
very promising candidate for quantum information and quantum communi-
cations in particular.

Outline of the Thesis

The objective of the present dissertation is to investigate some of the possi-
bilities offered by the continuous variable approach of quantum information,
with a focus on optical continuous variables in particular. As often in science,
practical applications emerge from purely theoretical considerations. Quan-
tum information is no exception, and many of its remarkable accomplish-
ments are the results of an improved understanding of quantum mechanics
and its many mysteries. The first part of this dissertation will therefore
be oriented towards fundamental issues. More precisely, we will address
various nonlocal aspects of quantum mechanics in the continuous variable
regime, and try to gain some insight into the peculiar relation between the
two essential ressources of QIS, namely nonlocality and entanglement. The
second part of the dissertation will be oriented towards practical applica-
tions. In particular, we will focus on an important primitive of quantum
information called error correction, and exploit optical continuous variables
advantageously in order to design experimentally feasible error-correcting
codes.

Quantum information is an interdisciplinary field. In Chapter 2, we will
introduce some basic concepts and mathematical tools central to quantum
mechanics, quantum optics, and information theory. Readers familiar with
CV quantum information are free to skip this preliminary chapter.

The next three chapters aim to improve our understanding of quantum
nonlocality in the continuous variable regime. In Chapter 3, we focus on
the standard nonlocality of quantum mechanics, and address the problem of
loophole-free Bell inequalities. We will show that Bell tests based on optical
continuous variables combined with homodyne detection can benefit from
an increased number of parties involved in the experiment. In particular,
we will prove that it is always possible to maximally violate the m-partite
Mermin-Klyshko inequality based on such quadrature measurements. In
Chapter 4, we will generalize a bizarre property of quantum mechanics
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CHAPTER 1. Introduction

known as Nonlocality Without Entanglement (NWE). This peculiar effect,
first identified in 1998 for three-level quantum systems, describes systems
that behave in a truly nonlocal manner without being entangled. By in-
troducing a simple quantum circuit, we will generalize the phenomena to
arbitrary dimension, and investigate the possibility to witness this effect
with CV states. Finally, the first part of this dissertation will be concluded
by introducing in Chapter 5 a third form of nonlocality arising when cer-
tain non-entangled states are detected with an entangled measurement. We
will name this property Nonlocality Without Squeezing, and experimentally
demonstrate its existence based on phase conjugated coherent states.

The second part of the thesis will be devoted to quantum error correction
with continuous variables. In Chapter 6, we will exploit a known connec-
tion between error correction and entanglement distillation to prove that a
large class of CV errors, called Gaussian errors, cannot be corrected using
the available Gaussian operations (linear optical elements plus homodyne
detection). We will nevertheless show in Chapter 7 that non-Gaussian er-
ror patterns can be corrected using Gaussian operations only, and we will
present the first continuous-variable quantum erasure-correcting code. The
key feature of our code is a nonlocal transmission of information that is
made possible by the use of CV entangled states.

In Chapter 8, we will summarize our results and look upon future
perspectives.

Publications

This dissertation is based on the following publications:

• J. Niset and N. J. Cerf, Multipartite Nonlocality Without Entanglement
in Many Dimensions, Phys. Rev. A 74, 052103 (2006).

• J. Niset, A. Aćın, U. L. Andersen, N. J. Cerf, R. Garćıa-Patrón, M.
Navascués, and M. Sabuncu, Superiority of Entangled Measurements
over All Local Strategies for the Estimation of Product Coherent States,
Phys. Rev. Lett. 98, 260404 (2007).

• J. Niset and N. J. Cerf, Tight Bounds on the Concurrence of Quantum
Superpositions, Phys. Rev. A 76, 042328 (2007).

• J. Niset, U.L. Andersen, N.J. Cerf, Experimentally Feasible Quantum
Erasure-Correcting Code for Continuous Variables, Phys. Rev. Lett.
101, 130503 (2008).

• A. Acin, N.J. Cerf, A. Ferraro, and J. Niset, Multimode Quantum Non-
Locality Using Homodyne Measurements, arXiv:0808.2373 (submitted
to Phys. Rev. A).
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rection, in preparation.
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2
All you Need to Know About...

This chapter

Quantum information is an interdisciplinary field. Fundamentally, it com-
bines aspects of quantum mechanics, information and computation theory.
However, going from theory to experiment also requires knowledges of quan-
tum optics, atomic physics, or solid state physics depending on the physical
system used to support the information. Good quantum information theo-
rists must therefore combine expertise of some, if not all, of these different
fields. The present dissertation being concerned with quantum informa-
tion based on optical continuous variables, we will restrict our attention to
quantum mechanics, quantum optics, and information theory. Each of these
topics is a field on its own; presenting them in a single chapter is therefore
a difficult, if not impossible, task. Nevertheless, the following sections are
an attempt to introduce the basic concepts and features of these three the-
ories, together with the associated mathematical formalism. Our goal is to
provide an unfamiliar reader with the necessary tools to tackle the problems
addressed in this thesis. However, a brief introduction can never replace a
good book, and we note that this chapter is mainly a compilation of results
found in [78, 101, 20, 26]. Interested readers are strongly encouraged to con-
sult these very instructive references for more details and (probably) better
explanations.
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CHAPTER 2. All you Need to Know About...

2.1 Quantum Mechanics

2.1.1 The postulates of Quantum Mechanics

The aim of quantum information theory is to use microscopic physical sys-
tems to store and manipulate information. These systems can be quite dif-
ferent in nature, but irrespective of their differences they can all be described
within a common mathematical framework called quantum mechanics. This
is what makes quantum mechanics both beautiful and powerful. Whether we
consider the spin of an electron, the polarization of a photon, or the atomic
levels of an atom, the mathematical objects we manipulate are the same.
In itself, quantum mechanics is not a theory about which laws a particu-
lar physical system must obey, but it provides some general principles from
which a mathematical description of these laws can be developed. These
general principles can be formulated as a set of basic postulates, which we
present here in a form that is particularly suitable for quantum information.

The first postulate of quantum mechanics defines the mathematical en-
tity representing a particular state of a physical system.

Postulate 1 To any isolated physical system S is associated a Hilbert space
(a complex vector space with inner product) HS. The system state is com-
pletely determined by a unit vector |ψ〉 of that Hilbert space.

Remarkably, this postulate does not specify what Hilbert space will be as-
sociated to a given physical system, that is, it does not give the basis states
or even the dimension of the space HS . In general, this dimension should be
adequately chosen to be able to reproduce the physical properties of the sys-
tem. As we will see, this dimension can be finite or infinite. An important
consequence of Postulate 1 is that vectors in a Hilbert space, and therefore
quantum states, have the interesting property that if |ψ1〉 and |ψ2〉 are two
states in HS , so will be any linear combination |ψ3〉 = α |ψ1〉+β |ψ2〉 where α
and β are complex numbers such that |α|2 + |β|2 = 1. This property, known
as the superposition principle of quantum mechanics, is at the origin of the
power of quantum information. Finally, the inner product of two states |ψ1〉
and |ψ2〉 of HS is denoted by the bracket notation 〈ψ1|ψ2〉.

While the first postulate deals with states at a fixed time, the second
postulate tells us how these states evolve in time.

Postulate 2 The evolution of an isolated quantum system is described by
a unitary transformation. That is, the state |ψ′〉 of the system at time t′ is

10



2.1. Quantum Mechanics

related to the state |ψ〉 of the system at time t by

∣

∣ψ′〉 = U |ψ〉 , (2.1)

where U is a unitary operator which depends on the times t and t′.

Just as quantum mechanics does not tell us the state space or quantum
state of a particular physical system, it does not tell us which unitary op-
erator describes its evolution. However, it assures us that this evolution
may be described in such a way. From the unitarity of the evolution follows
the interesting property that quantum processes are always reversible. In
practice, systems are never perfectly isolated as required by this second pos-
tulate. Nevertheless, there are interesting systems which can be described to
a good approximation as being closed, and whose evolution is approximately
unitary. In any case, we note that, at least in principle, every open system
can be described as part of a larger closed system, the Universe, which is
undergoing a unitary evolution.

So far, the postulates have only considered isolated systems. It is how-
ever clear that it is necessary to interact with a system at some point if we
want to extract some information from it. The process of interacting with a
system to extract information is called a measurement, and is the purpose
of the following postulate.

Postulate 3 A quantum measurement on a system S is described by a
collection {Mm} of measurement operators, defined as operators acting in the
Hilbert space HS associated with S and satisfying the completeness relation

∑

m

M †
mMm = IS (2.2)

where IS is the identity operator on HS. The index m refers to the measure-
ment outcomes that may occur in an experiment. The probability p(m) to
obtain the outcome m if the system was in the state |ψ〉 immediately before
the measurement is given by

p(m) = 〈ψ|M †
mMm|ψ〉, (2.3)

and the state after the measurement becomes

Mm |ψ〉
√

p(m)
. (2.4)

Measurements will play an important role in the following chapters, and are
central to quantum information. As we will see, they are often the last step
of an experiment where one is only interested in the probabilities of getting

11
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the different outcomes. In this case, postulate 3 shows that the only relevant
mathematical entities are the positive operators Em = M †

mMm. The set of
operators {Em} is called a Positive Operator-Valued Measure, or POVM in
short, and the POVM elements Em satisfy the completeness relation

∑

m

Em = IS . (2.5)

Physicists may not be familiar with this formulation of the measurement pos-
tulate. In traditional quantum physics, each physical property that can be
measured corresponds to a hermitian operator M , called an observable, that
has a spectral decomposition M =

∑

mmPm, where the m’s are the eigen-
values of M and Pm is the projector to the corresponding eigenspace. These
projectors Pm, with PmPm′ = δmm′Pm, define a particular type of measure-
ment called projective or von Neumann measurement, and correspond to the
special case where the measurement operators Em are orthogonal projectors.
Within this notation, we do recover the measurement postulate as stated in
most books on quantum mechanics, i.e. the possible outcomes of a mea-
surement are the eigenvalues m of the corresponding observable M , and the
state after the measurement lies within the eigenspace of M associated with
the observed outcome m. Let us also mention that we will sometimes refer
to “measuring in a basis |m〉”, where |m〉 forms an orthogonal basis. This
simply means that we perform a projective measurement with projectors
Pm = |m〉〈m|.

Our generalized formulation of the measurement postulate naturally
raises two questions. First, one may wonder why we state the postulate
in this form. The answer can be found in the development of quantum in-
formation theory, which has showed that it is often possible to extract more
information from a system by going beyond projective measurements (see
for example Chapter 4). Second, one may question the validity of the mea-
surement postulate in this form. As we now see, this formulation is strictly
equivalent to the traditional one provided that we add this last postulate

Postulate 4 The Hilbert space associated with a composite physical system
AB, made of two subsystems A and B, is the tensor product HA⊗HB of the
Hilbert spaces HA and HB associated with A and B. Furthermore, if A is
prepared in the state |ψA〉 and B is prepared in the state |ψB〉, the joint state
of the composite system AB will be the tensor product state |ψA〉 ⊗ |ψB〉,
sometimes noted as |ψA〉 |ψB〉 for simplicity.

Suppose for example that we want to realize the generalized measurement
{Mm} on a system S. We can always extend S by adding an additional
system A prepared in a known state, and such that the dimension of HA

coincides with the number of measurement operators Mm. Associating each
Mm with a basis state |m〉 of A, it is always possible to define a unitary

12



2.1. Quantum Mechanics

operator U such that U |ψ〉 |0〉 =
∑

mMm |ψ〉 |m〉, where |ψ〉 is the unknown
state of S and |0〉 is some arbitrary fixed state of A known as an ancilla.
It is now straightforward to check that the generalized measurement {Mm}
on S can be realized by a projective measurement on SA with projectors
Pm = U †(IS ⊗ |m〉〈m|)U , where IS is the identity on HS and |m〉〈m| is
the projector on the state |m〉 of HA. This useful correspondence between
POVMs and projective measurements in a larger system is known in quan-
tum information as Neumark’s theorem [86].

So far, we have formulated quantum mechanics using the language of
state vectors. However, it is important to note that there exists an alternate
formulation using a tool known as the density operator. This formulation
is mathematically equivalent, but much more practical in some commonly
encountered scenarios in quantum mechanics. In particular, the density
operator provides a convenient means for describing quantum systems whose
state is not completely known. For example, if a quantum system can be
in one of the states {|ψi〉} with respectives probabilities pi, the state of the
system is fully characterized by the density operator

ρ ≡
∑

i

pi|ψi〉〈ψi|. (2.6)

A quantum system whose state |ψ〉 is known exactly is said to be pure,
and its density operator is simply ρ = |ψ〉〈ψ|. Otherwise, the state is said
to be mixed and the density operator has the form of Eq. (2.6). Both
formulations will be used interchangeably in the following chapters, and we
refer the reader to e.g. [78] for some important properties of the density
operator.

2.1.2 Quantum Mechanics and Impossibilities

Remarkably, the simple formalism introduced by these four postulates is
sufficient to derive some interesting properties of the quantum theory. For
example, it can tell us what is possible and impossible within the framework
of quantum mechanics. Interestingly, this is exactly the goal of quantum
information; to test the possibilities offered by quantum mechanical systems
and see what it implies for the treatment of information. In the following
section, we thus present three limitations imposed by quantum mechanics
that have been of fundamental importance in the development of QIS. These
impossibilities will help us grasp the flavor of the revolutionary concepts
introduced by quantum mechanics. They will also introduce the principles
which triggered most of the questions addressed in this dissertation.

13
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Distinguishing Quantum States

An important question in quantum information is the problem of distin-
guishing quantum states. In the classical world, distinct states of an object
are usually distinguishable. One can always tell if the result of a coin toss
is head or tail for example. In the quantum world however, the situation is
more complicated. As we will see in Chapter 4 and 5, it also leads to some
very counterintuitive results.

The question of the distinguishability of quantum states is best under-
stood by considering the following simple game between two parties usually
called Alice and Bob. Suppose that Alice chooses a state |ψi〉 (1 ≤ i ≤ n)
from a given set known to her and Bob, and sends the state to Bob. Bob’s
task is to identify the value of the label i.

Let us assume first that the states of the set are orthogonal. Bob can de-
fine the n measurement operators Mi = |ψi〉〈ψi|, and an additional measure-
ment operator M0 = I −∑iMi. These operators satisfy the completeness
relation, and if the state |ψi〉 is prepared by Alice then p(i) = 〈ψi|Mi |ψi〉 = 1
so Bob will identify the index i with certainty. It is thus possible to reliably
distinguish orthogonal quantum states.

Suppose now that the states of the set are not orthogonal, and let us
imagine that there exists a measurement which can distinguish perfectly
between the non-orthogonal states |ψ1〉 and |ψ2〉. Bob will apply his mea-
surement described by the measurement operators Mj , and if the outcome
j is observed, he guesses that the index is i using some rule f(j) = i. If the
state |ψ1〉 (|ψ2〉) is prepared then the probability of measuring j such that

f(j) = 1 (f(j) = 2) must be one. Introducing Ei =
∑

j:f(j)=iM
†
jMj, this

translates to

〈ψ1|E1 |ψ1〉 = 1

〈ψ2|E2 |ψ2〉 = 1. (2.7)

Since
∑

iEi = I, it follows that
∑

i 〈ψ1|Ei |ψ1〉 = 1, and (2.7) implies
〈ψ1|E2 |ψ1〉 = 0, or equivalently

√
E2 |ψ1〉 = 0. Now, because the two states

are not orthogonal, we can write

|ψ2〉 = α |ψ1〉 + β |ϕ〉 , (2.8)

where |ϕ〉 is orthogonal to |ψ1〉, |α|2+|β|2 = 1 and |β| < 1. Then
√
E2 |ψ2〉 =

β
√
E2 |ϕ〉 which implies

〈ψ2|E2 |ψ2〉 = |β|2 〈ϕ|E2 |ϕ〉 ≤ |β|2 < 1. (2.9)

This is in clear contradiction with (2.7), from which we can deduce that there
is no quantum measurement capable of distinguishing reliably between non-
orthogonal states.
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Measuring Non-Commuting Observables

In quantum mechanics, a physical property that can be measured, or ob-
served, is associated with an hermitian operator called an observable. Some-
times, these observables correspond to physical properties that are comple-
mentary, and the order in which these observables are applied to a state
matters. If A and B are two such non-commuting observables, this prop-
erty is expressed as

[A,B] = AB −BA 6= 0, (2.10)

where [A,B] is called the commutator of A and B (we can also define their
anti-commutator {A,B} = AB +BA). In 1926, Werner Heisenberg arrived
at the astonishing conclusion that quantum mechanics precludes the perfect
knowledge of such non-commuting observables simultaneously. This famous
result is known as Heisenberg’s uncertainty principle.

Let us consider two non-commuting observables A and B, a quantum
state |ψ〉, and suppose that 〈ψ|AB |ψ〉 = x + iy, where x and y are real.
Note that 〈ψ|AB |ψ〉 is called the average value of AB for the state |ψ〉, and
is sometimes denoted as 〈AB〉 when it is clear that we refer to the state |ψ〉.
We can calculate the average value of the commutator and anti-commutator
of AB,

〈ψ| [A,B] |ψ〉 = 2iy

〈ψ| {A,B} |ψ〉 = 2x, (2.11)

which implies

| 〈ψ| [A,B] |ψ〉 |2 + | 〈ψ| {A,B} |ψ〉 |2 = 4| 〈ψ|AB |ψ〉 |2. (2.12)

By the Cauchy-Schwartz inequality, we also know that

| 〈ψ|AB |ψ〉 |2 ≤ 〈ψ|A2 |ψ〉 〈ψ|B2 |ψ〉 , (2.13)

from which we deduce

| 〈ψ| [A,B] |ψ〉 |2 ≤ 4| 〈ψ|AB |ψ〉 |2 ≤ 4 〈ψ|A2 |ψ〉 〈ψ|B2 |ψ〉 . (2.14)

If we now define two new observables C and D such that A = C − 〈C〉 and
B = D − 〈D〉, we obtain Heisenberg uncertainty principle

∆C∆D ≥ |〈[C,D]〉|
2

, (2.15)

where we have introduced the standard deviation ∆M of an observable M
with

∆2M = 〈(M − 〈M〉)2〉 (2.16)

= 〈M2〉 − 〈M〉2. (2.17)
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The conceptual implications of this uncertainty principle are at the ori-
gin of the discussion of the standard nonlocality of quantum mechanics ad-
dressed in Chapter 3.

Copying Quantum States

Quantum information is carried by quantum states. Unlike classical in-
formation, quantum information is not easy to manipulate as it requires
the manipulation of quantum objects. For example, a simple task such as
perfectly copying an unknown quantum state is precluded by the laws of
quantum mechanics. This principle, known as the no-cloning theorem, is at
the origin of the most advanced application of quantum information called
Quantum Key Distribution.

Suppose that we have at hand a device which can copy an arbitrary
quantum state. In particular, it can copy the two orthogonal states |ψ〉 and
|ψ⊥〉. Without loss of generality, we can associate to our device a unitary
operator U acting on the state we want to copy and the “blank” ancilla to
which we want the copied state, i.e.

U |ψ〉 |0〉 = |ψ〉 |ψ〉 (2.18)

U |ψ⊥〉 |0〉 = |ψ⊥〉 |ψ⊥〉 (2.19)

Applying our device to the superposition state

|Ψ〉 =
1√
2
(|ψ〉 + |ψ⊥〉)

we obtain

U |Ψ〉 |0〉 = U
1√
2
(|ψ〉 + |ψ⊥〉) |0〉 (2.20)

=
1√
2
(|ψ〉 |ψ〉 + |ψ⊥〉 |ψ⊥〉) (2.21)

One can easily check that this state does not correspond to the two copies
of |Ψ〉 that we wished, namely

|Ψ〉 |Ψ〉 =
1

2
(|ψ〉 + |ψ⊥〉)(|ψ〉 + |ψ⊥〉), (2.22)

from which we conclude that there is no universal quantum device that can
perfectly copy |ψ〉, |ψ⊥〉 and |Ψ〉 at the same time.

The impossibility to copy quantum states, and therefore quantum in-
formation, is at the origin for the need of cleverly designed quantum error
correcting codes that go beyond classical error correcting techniques. This
issue will be addressed in chapters 6 and 7.
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2.1.3 Entanglement

Definition

As we have just seen, many interesting features of quantum mechanics can
be derived from the basic postulates. However, one in particular deserves a
special treatment due to its importance in the development of QIS. Suppose
for example that we prepare two photons, A and B, with vertical polariza-
tion, and that vertical and horizontal polarizations are denoted by |0〉 and
|1〉 respectively. According to postulate 4, this system is described by the
tensorial product |0〉A |0〉B. On the other hand, if we choose to prepare two
photons with horizontal polarization the quantum state is |1〉A |1〉B . Now,
recall that quantum mechanics enables linear superpositions. In particular,
it enables the superposition state

∣

∣φ+
〉

AB
=

1√
2
(|0〉A |0〉B + |1〉A |1〉B). (2.23)

Remarkably, this state can no longer be written as the tensor product of
two quantum states, that is there is no description |a〉A and |b〉B of systems
A and B such that |φ+〉AB = |a〉A |b〉B (such a quantum state is called a
product state). Even if the system under consideration is still made of two
photons, these photons cannot be considered separately as they form one
joint entity, i.e., they are entangled.

The importance of entanglement in quantum mechanics was first stated
by Erwin Schrödinger in 1935, as part of a discussion on Einstein’s critique
of the quantum theory (see Chapter 3). To quote his own words [91]:

When two systems, of which we know the states by their respec-
tive representatives, enter into temporary physical interaction
due to known forces between them, and when after a time of
mutual influence the systems separate again, then they can no
longer be described in the same way as before, viz. by endow-
ing each of them with a representative of its own. I would not
call that one but rather the characteristic trait of quantum me-
chanics, the one that enforces its entire departure from classical
lines of thought. By the interaction the two representatives [the
quantum states] have become entangled. [...] Another way of ex-
pressing the peculiar situation is: the best possible knowledge of
a whole does not necessarily include the best possible knowledge
of all its parts, even though they may be entirely separate and
therefore virtually capable of being best possibly known, i.e., of
possessing, each of them, a representative of its own. The lack
of knowledge is by no means due to the interaction being insuf-
ficiently known, at least not in the way that it could possibly be
known more completely, it is due to the interaction itself.
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As noted by Schrödinger himself, entanglement is the characteristic fea-
ture of quantum mechanics. It has now also become the key ressource of
quantum information science. Like every ressource, it can be manipulated
and quantified. For example, one can prove that the state (2.23) is not only
entangled, but has the maximum entanglement achievable for bipartite two-
level systems, i.e., it is maximally entangled. However, a complete picture of
entanglement is still missing, and, depending of the context, different mea-
sures of entanglement have been introduced. Amongst all these measures,
the most important one is the von Neumann entropy of the reduced state

E[ρAB ] = S(ρA) = S(ρB), (2.24)

(see Sec. 2.3.2 for the definition of the von Neumann entropy S) which com-
pletely characterizes the entanglement of bipartite pure states ρAB. Another
important measure that will be used in this thesis is the logarithmic nega-
tivity [98]

EN [ρAB ] = log ‖ρ̃AB‖1, (2.25)

where ‖A‖1 = Tr |A| = Tr
√
A†A is the trace norm of an operator A, and

the logarithm is in base 2. The logarithmic negativity quantifies by how
much the partial transposed ρ̃AB of a bipartite mixed state ρAB fails to be
positive (fails to be a valid quantum state). Note that partial transposition,
i.e., transposing one out of two subsystems, has been proven one of the
most useful tool in the study of entanglement as one can show that every
separable state must have a positive partial transpose [85]. This result is
famously known as the PPT criterion.

Entanglement has many interesting properties. For example, the entan-
glement of a single bipartite state cannot be increased (on average) by local
operations. This is a consequence of the purely quantum nature of entan-
glement. Nevertheless, from many copies of a weakly entangled state, two
collaborating parties can sometimes extract a single highly entangled state
by means of local operations only. This process, known as entanglement
distillation, is an essential requirement for future quantum communication
networks. We will briefly investigate a possible CV distillation protocol in
Appendix E.

Finally, let us mention that during these four years of research, we have
investigated the connection between entanglement and the superposition
principle. This resulted in a publication entitled “Tight bounds on the
concurrence of quantum superpositions” [79]. However, this work focuses on
discrete variables only, hence it is not included in the present dissertation.

Quantum Teleportation

Let us illustrate the power of entanglement with a simple example; the well-
known quantum teleportation protocol. The goal of quantum teleportation
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is to transmit an unknown quantum state between two distant locations,
usually called Alice and Bob, using entanglement and classical communica-
tions only.

Suppose Alice and Bob share the maximally entangled state of Eq.
(2.23), and Alice wants to communicate the unknown state

|ψ〉in = α |0〉in + β |1〉in (2.26)

with |α|2 + |β|2 = 1. The state they share is therefore

|ψ〉in
∣

∣φ+
〉

AB
=

1√
2

(

α |0〉in + β |1〉in
)(

|0〉A |0〉B + |1〉A |1〉B
)

(2.27)

where the modes in and A are in Alice’s hands, while B is hold by Bob.
Grouping the shares of Alice, this input state can be written as

|ψ〉in
∣

∣φ+
〉

AB
=

1

2

[

∣

∣φ+
〉

in,A

(

α |0〉B + β |1〉B
)

+
∣

∣ψ+
〉

in,A

(

α |1〉B + β |0〉B
)

+
∣

∣φ−
〉

in,A

(

α |0〉B − β |1〉B
)

+
∣

∣ψ−〉
in,A

(

α |1〉B − β |0〉B
)

]

(2.28)

after the introduction of the four maximally entangled Bell states

∣

∣φ±
〉

=
1√
2

(

|0〉 |0〉 ± |1〉 |1〉
)

∣

∣ψ±〉 =
1√
2

(

|0〉 |1〉 ± |1〉 |0〉
)

. (2.29)

Remarkably, if Alice measures her two shares in this Bell basis and obtains
the result |φ+〉, an operation known as a Bell measurement, she knows that
Bob’s share is in the state |ψ〉in. If she obtains one of the other Bell states
however, she can inform Bob about her result and he will recover |ψ〉in by
applying the appropriate unitary transformation.

2.2 Quantum Optics

The present thesis investigates the possibilities offered by optical continuous
variables. By optical, we mean that the physical systems used to support the
information are quantum states of the electromagnetic field, i.e., quantum
states of light. The term continuous variables, on the other hand, refers
to the continuous spectra of the observables used to describe the quantum
state and support the information. The application of quantum mechanics
to characterize and manipulate the quantum properties of light is known as
quantum optics.
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2.2.1 Quantization of the Electromagnetic Field

In classical mechanics, the electromagnetic field obeys the source-free Maxwell
equations

∇× E = −µ0
∂H

∂t
, (2.30)

∇.E = 0, (2.31)

∇× H = ǫ0
∂E

∂t
, (2.32)

∇.H = 0, (2.33)

where ǫ0 and µ0 are the free space permitivity and permeability respectively.
The corresponding solution of the electric field is

E(r, t) =
∑

k,λ

Eke
(λ)
k

[

αk,λe
i(kr−ωkt) + α∗

k,λe
−i(kr−ωkt)

]

(2.34)

where k is the propagation vector, e
(λ)
k

is the polarization vector with po-
larization λ, ωk is the angular frequency of the mode k, and

Ek =
(

~ωk

2ǫ0

)1/2
. (2.35)

The quantization of the electromagnetic field is accomplished by choosing
the complex Fourier amplitudes αk,λ and α∗

k,λ to be the mutually adjoint

annihiliation and creation operators âk,λ and â†
k,λ. Since photons are bosons,

they satisfy the boson commutation relations

[âk,λ, â
†
k′,λ′ ] = δkk′δλλ′ ,

[âk,λ, âk′,λ′ ] = 0,

[â†
k,λ, â

†
k′,λ′ ] = 0. (2.36)

2.2.2 The Quadratures Operators

Although the electromagnetic field contains an infinite number of modes,
each mode is described by an independent Hilbert space. We can thus,
without loss of generality, restrict our attention to a single mode of the field.
The definition of the electric field using the single-mode annihilitiation and
creation operators â and â† may be rewritten as

Ê(r, t) = E0e
[

x̂ cos(kr− ωt) + p̂ sin(kr − ωt)
]

(2.37)

with E0 given by (2.35) for the considered mode, and after the introduction
of the dimensionless quadrature operators

x̂ =
1√
2
(â+ â†), (2.38)

p̂ =
1

i
√

2
(â− â†). (2.39)
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These operators are formally equivalent to the position and momentum of
an harmonic oscillator. Interestingly, unlike â and â†, they are Hermitian
and can therefore be measured. They obey the commutation relation

[x̂, p̂] = i , (2.40)

and satisfy the Heisenberg’s uncertainty relation

∆x̂∆p̂ ≥ 1

2
. (2.41)

The eigenstate of the quadrature operators,

x̂ |x〉 = x |x〉 (2.42)

p̂ |p〉 = p |p〉 (2.43)

form two sets of orthonormal states obeying

〈x|x′〉 = δ(x − x′) (2.44)

〈p|p′〉 = δ(p − p′), (2.45)

and are related by a Fourier transform, i.e.,

|p〉 =
1√
2π

∫ ∞

−∞
dp eixp |x〉 (2.46)

|x〉 =
1√
2π

∫ ∞

−∞
dx e−ixp |p〉 . (2.47)

Both ensembles are a resolution of the identity and form complete orthogonal
bases. However, their states have infinite energy and are therefore unphysi-
cal. The wave function, and its Fourier transform, of a given quantum state
|ψ〉 reads

ψ(x) = 〈x|ψ〉
ψ̃(p) = 〈p|ψ〉. (2.48)

2.2.3 Representations of the Field

Fock States

The eigenstates of the number operator n̂ = â†â with eigenvalue n

n̂ |n〉 = n |n〉 (2.49)

are called Fock states or photon number states, and they correspond to
the presence of n photons in the mode under consideration. The number
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operator is an Hermitian operator and can be measured. For a mode of
frequency ω, the states |n〉 are also eigenvectors of the Hamiltonian

H |n〉 = ~ω(â†â+
1

2
) |n〉 = En |n〉 (2.50)

with energy eigenvalue En = ~ω(n+ 1
2). Since Fock states have a well defined

energy, their phase is totally random. The state |0〉 containing no photon
is called the vacuum, and from the action of the creation and anihiliation
operators on a Fock state

â |n〉 =
√
n |n− 1〉 (2.51)

â† |n〉 =
√
n+ 1 |n+ 1〉 , (2.52)

one finds

|n〉 =
1√
n!

(â†)n |0〉 . (2.53)

The Fock states form an orthogonal and complete basis

〈n |m〉 = δn,m , (2.54)
∑

n

|n〉〈n| = 1 , (2.55)

hence we can write an arbitrary quantum state of the field as the superpo-
sition

|ψ〉 =
∑

n

cn |n〉 , (2.56)

with cn being complex amplitudes obeying
∑

n |cn|2 = 1.

Note that the coordinate representation of a Fock state |n〉 is given by

φn(x) = 〈x|n〉

=
e−x2

π1/4
√

2nn!
Hn(x) (2.57)

where Hn(x) is the Hermite polynomial of order n.

Coherent States

The Fock states only form a useful representation of the field for small num-
ber of photons. From a theoretical point of view, manipulating large sums
can be a daunting task, while perfect number states are extremely difficult
to generate experimentally for n > 2. A more appropriate basis for many
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applications is the coherent states basis, as the field generated by a highly
stabilized laser operating well above threshold is a coherent state.

A coherent state |α〉 is an eigenstate of the annihilation operator

â |α〉 = α |α〉 (2.58)

where α = 1√
2
(x + ip) is a complex number. Introducing the unitary dis-

placement operator

D(α) = exp[αâ† − α∗â], (2.59)

we find that the coherent state |α〉 is generated by displacing the vacuum

|α〉 = D(α) |0〉 . (2.60)

The displacement operator D(α) will be repeatedly used in this thesis. It
satisfies

D†(α) = D−1(α) = D(−α) (2.61)

and its action on the creation and annihilation operators reads

D†(α)âD(α) = â+ α (2.62)

D†(α)â†D(α) = â† + α∗. (2.63)

The coherent states can be expanded in terms of the number states as

|α〉 = e−|α|2/2
∑

n

αn

√
n!

|n〉 , (2.64)

which shows that a coherent state has an undefined number of photons.
However, this allows them to have better defined phases than the number
states. The probability to have n photons in the state |α〉 is a Poisson dis-
tribution with both mean value and variance 〈n〉 = ∆2(n) = |α|2.

Coherent states are not orthogonal

|〈β |α〉 | = e−|α−β|2/2 , (2.65)

although |α〉 and |β〉 become orthogonal in the limit |α − β| ≫ 1. They
nevertheless satisfy the completeness relation

1

π

∫

d2α|α〉〈α| = 1. (2.66)
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and can therefore be used as a (over complete) basis. Finally, we note that
coherent states are often called quasi-classical states1 as the uncertainties
in the quadrature operators are equal while their product is the minimum
allowed by the uncertainty principle (2.41), i.e.,

∆2x̂ = ∆2p̂ =
1

2
. (2.67)

Squeezed States

As we have seen, coherent states saturate the uncertainty principle with
equal uncertainty in both quadratures. However, one can easily define an
entire family of minimum-uncertainty states with unbalanced uncertainties.
The corresponding states are called squeezed states, and play an impor-
tant role in continuous variables quantum information. In particular, they
provide an approximation to the unphysical eigenstates of the quadrature
operators, |x〉 and |p〉 respectively.

The squeezed states may be generated by using the unitary squeezing
operator

S(ε) = exp[
1

2
(ε∗â2 − εâ†2)]. (2.68)

where ε = re2iφ, and r and φ are the squeezing factor and squeezing angle
respectively. Using this definition, one can define the squeezed vacuum

|0, ε〉 = S(ε) |0〉 , (2.69)

or an arbitrary squeezed state

|α, ε〉 = D(α)S(ε) |0〉 , (2.70)

resulting from first squeezing the vacuum, then displacing it.

2.2.4 Phase Space Representation and the Wigner Function

A continuous variable system of N modes is a canonical quantum system
associated with an infinite dimensional Hilbert space

H =
N
⊗

i=1

Hi.

1The term quasi-classical to describe coherent states also comes from the fact that they
behave as classical light in any optical interferometer such as a beam splitter.
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To each mode corresponds an Hilbert space Hi spanned by the infinite di-
mensional Fock basis {|ni〉}, and a couple of position-momentum like oper-
ators x̂i and p̂i. The quadrature operators of the N -mode system can be
grouped together in the vector

r̂ = (r̂1, . . . , r̂N ) = (x̂1, p̂1, . . . , x̂N , p̂N ) (2.71)

an must satisfy the canonical commutation relations

[r̂j , r̂k] = iΩjk (2.72)

where Ω is the symplectic form

Ω =

N
⊕

i=1

(

0 1
−1 0

)

. (2.73)

As already mentioned, the quadrature operators of a mode of the field be-
have like the position and momentum of an harmonic oscillator. In classical
physics, the motion of a particle can be represented in a phase space where
the coordinates of a point give its position and momentum respectively.
For many particles, one can represent the statistical distribution of position
and momentum in this phase space, hence providing a useful mathemat-
ical and graphical representation of the system. In quantum optics, it is
possible to push further the analogy between the quadrature operators of
the field and the position and momentum of a particle by introducing a
similar phase-space representation. This representation is provided by the
so-called Wigner function. For a single-mode of the field in a quantum state
ρ, this function can be written in terms of the eigenvectors of the quadrature
operators

W (x, p) =
1

2π

∫

dx′〈x− x′|ρ|x+ x′〉eix′p . (2.74)

Note that the Wigner function completely characterizes the quantum state
ρ, and vice versa. Note also that the definition (2.74) easily generalizes to
more than one mode. Although the Wigner function has many properties of
a probability distribution, it cannot be considered as such since the quantum
mechanical position and momentum of a particle cannot be known simulta-
neously, i.e. points in phase-space are meaningless. In particular, the Wigner
function can take negative values. However, it is a quasi-probability distri-
bution whose marginals give the real probability distribution of quadrature
measurements, i.e.,

P (x) =

∫

dpW (x, p) (2.75)

P (p) =

∫

dxW (x, p). (2.76)
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It is sometimes useful to work with the Fourier transform of the Wigner
function called the characteristic funtion. For a single-mode quantum state
ρ, the characteristic function reads

χ(ξ) = Tr[ρ D(ξ)] (2.77)

where ξ = (ξx, ξp) ∈ 2R, and

D(ξ) = exp[i(ξxx̂− ξpp̂)] (2.78)

is a Weyl (or displacement, see Eq. (2.59)) operator. Introducing the N-
mode Weyl operator

D(ξ) = eiξ
T Ωr̂ (2.79)

with ξ ∈ 2RN , the definition of the characteristic function is easily general-
izable to multimode settings.

2.2.5 Gaussian States

The Formalism

From a theorist’s perspective, most continuous variable states are difficult to
manipulate as their full characterization requires the knowledge of an infinite
number of amplitude coefficients. However, there exists one well-known
exception which, for this reason, plays an essential role in the development
of CV quantum information: the Gaussian states. The Gaussian states
are defined as those states whose characteristic and Wigner functions are
Gaussian functions in phase-space. They are thus fully characterized by the
first and second moments of their quadrature operators, the displacement
vector d and covariance matrix γ

d = 〈r̂〉 = Tr[ρr̂] (2.80)

γij = Tr[ρ{(r̂i − di), (r̂j − dj)}] (2.81)

where {.} denotes anti-commutation. For a single-mode state, this is only 5
independent parameters.

The characteristic function of an N -mode Gaussian state is the Gaussian
function

χ(ξ) = exp[−1

4
ξT Γξ + iDT ξ], (2.82)

where D = Ωd and Γ = ΩγΩ. The Wigner function, on the other hand, is
given by the Gaussian

W (r) =
1

πN
√

det γ
exp[−(r − d)T γ−1(r − d)]. (2.83)
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Note that not all 2N × 2N real symmetric matrices can be valid covariance
matrices as a state must satisfy Heisenberg’s uncertainty principle. This is
expressed as

γ + iΩ ≥ 0, (2.84)

which is a necessary and sufficient condition for γ to be the covariance ma-
trix of a Gaussian state. More details on how to manipulate the Wigner
function of Gaussian states can be found in Appendix D.

Some Examples

In addition to this attractive mathematical framework, Gaussian states also
happen to be the states which can (relatively) easily be implemented and
manipulated in a laboratory. For example, the vacuum, coherent states,
squeezed states and thermal states are all Gaussian states. In the following,
we list the properties of some important one-mode and two-mode Gaussian
states that we will repeatedly use in this thesis.

Vacuum The vacuum is a state centered at the origin of phase-space, i.e.
d = (0, 0), with the covariance matrix γ = 1. In phase-space, the vacuum is
represented by a disk centered at the origin (see Fig.2.1 left).

Coherent state A coherent state being generated by displacing the vac-
uum, the coherent state |α〉 with α = 1√

2
(xα + ipα) has d = (xα, pα) and

γ = 1. In phase-space, a coherent state is represented by a disk centered on
(xα, pα) (see Fig.2.1 left).

Squeezed state The squeezed vacuum is centered at the origin with a
vanishing vector of first moments. For a squeezing factor r, its covariance
matrix reads

γ =

(

e−2r 0
0 e2r

)

. (2.85)

When r > 0, we say that the state is squeezed in the x quadrature, while
r < 0 corresponds to an anti-squeezing in x or, equivalently, a squeezing in
the p quadrature. A displaced squeezed state has the same covariance ma-
trix but with non-vanishing first moments. As already mentionned, when
r → ∞ (r → −∞), the squeezed state with covariance matrix (2.85) approx-
imates the unphysical position (momentum) eigenstate |x〉 (|p〉). In general,
a squeezed state is represented by an ellipse centered on the first moments
(see Fig.2.1 right).
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p

x x

p

Figure 2.1: Phase-space representations. Left: Schematic representation of
the vacuum and an arbitrary coherent state. Right: Schematic representa-
tion of the squeezed vacuum and a displaced squeezed state.

Thermal state The thermal state has null first moments and a covariance
matrix given by

γ =

(

V 0
0 V

)

. (2.86)

where V = 2n̄+1 and n̄ is the average number of photons in the state. It is
obtained, for example, by processing the vacuum state in a noisy Gaussian
channel with equal noise in x and p.

Two-mode Squeezed vacuum Due to its entanglement properties, the
two-mode squeezed vacuum (TMS) is a key ressource in CV quantum in-
formation, enabling many protocols such as teleportation [43], dense coding
[16], CV quantum key distribution [57], and error correction as we will see
in chapter 7. Experimentally, the two-mode squeezed vacuum can be gen-
erated by either combining two squeezed states with orthogonal squeezing
angles on a balanced beam splitter, or by pumping a Non-degenerate Opti-
cal Parametric Amplifier (NOPA). In the Gaussian formalism, the TMS has
null first moments and a covariance matrix given by

γTMS =

(

cosh(2r)1 sinh(2r)Λ
sinh(2r)Λ cosh(2r)1 ) , (2.87)

where 1 =

(

1 0
0 1

)

Λ =

(

1 0
0 −1

)

.
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Interestingly, when r → ∞,

∆(x̂1 − x̂2) = ∆(p̂1 + p̂2) = e−2r → 0,

and the TMS becomes the EPR pair introduced by Einstein, Podolski and
Rosen in 1935 to prove the incompleteness of quantum theory [34]. We note
that it is sometimes useful to work with the Fock basis description of the
TMS,

|ψTMS〉 =

√

1 − tanh2(r)
∑

n

tanhn(r) |n, n〉 . (2.88)

Arbitrary two-mode Gaussian state The covariance matrix of an ar-
bitrary two-mode Gaussian state ρAB can be decomposed in four blocks

γAB =

(

γA C
CT γB

)

, (2.89)

from which we can directly address the properties of systems A and B sepa-
rately. For example, the covariance matrix of ρA = TrB ρAB is given by the
upper-left block γA (see Appendix D).

2.2.6 Gaussian Operations

Gaussian operations are defined as those that map Gaussian states onto
Gaussian states. Interestingly, when dealing with optical continuous vari-
ables, the entire set of Gaussian operations can be implemented by com-
bining passive and active linear optical components such as beam splitters,
phase shifters and squeezers, with homodyne detection followed by classical
communications. All these elements are, up to some degree of accuracy,
readily accessible in today’s optical labs, which makes Gaussian states and
Gaussian operations very attractive for experimental implementation of CV
protocols. Note that since Gaussian states are completely characterized by
their first and second moments, a Gaussian operation is fully described by
its action on d and γ.

Unitary Operations

Gaussian unitary transformations realize the mapping2

r̂ → r̂′ = Sr̂, (2.90)

2Relations which express the transformation as an evolution of the operators corre-
spond to the so-called Heisenberg representation of quantum mechanics. This representa-
tion is different, but equivallent, to the traditional representation of quantum mechanics
which describes transformations as an evolution of the state itself using the well-known
Schrödinger equation. Note that, in quantum information with continuous variables, peo-
ple are used to switch from one representation to the other depending of the context.
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and preserve the canonical commutation relations. This is possible if SΩST =
Ω which corresponds to the Symplectic operations S ∈ Sp(2N,R). Note that
detS = 1. On the level of covariance matrix, the transformation reads

γ → SγST . (2.91)

A particular subset of the symplectic transformations is formed by the sym-
plectic matrices S that are orthogonal, i.e. S ∈ Sp(2N,R) ∩O(2N). These
transformations are called passive as they do not change the number of
photons, and they include the action of beam splitters and phase shifters
with

SBS =

(
√
T1 √

1 − T1
−
√

1 − T1 √
T1 )

(2.92)

for a beam splitter of transmittance T , and

SPS =

(

cos θ sin θ
− sin θ cos θ

)

(2.93)

for a rotation of θ in phase-space. Note that every passive transformation of
N modes can be realized as a network of beam splitters and phase shifters
[89].

The symplectic transformations that are not passive are called active.
The most important one is the squeezing operation achieved by pumping an
Optical Parametric Amplifier (OPA). Its action is described by

SSq =

(

e−r 0
0 er

)

. (2.94)

Interestingly, any symplectic transformation of N modes can be realized as
a network of beam splitters and phase shifters, followed by squeezers and
another set of beam splitters and phase shifters. This is called the Bloch-
Messiah reduction theorem (see Fig.2.2 and Chapter 7 for an example).

CP maps

The set of Gaussian unitary operations does not contain all the operations
that can be applied to a Gaussian state while maintaining its Gaussian char-
acter. One can for example imagine the result of the action of a Gaussian
unitary operation U applied to a Gaussian state ρ, together with an envi-
ronment in a Gaussian state ρE , when we do not control the environment,
i.e.,

ρ→ TrE U(ρ⊗ ρE)U †. (2.95)
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Sq1

Sq2

SqN

UV
(passive)(passive)

Figure 2.2: Decomposition of an arbitrary symplectic transformation of N
modes as a network of beam splitters, phase shifters and squeezers. U and
V are passive linear interferometers. Sqi are single-mode squeezers.

These transformations, also called Gaussian channels, belong to the general
framework of Gaussian completely positive (CP) maps. At the level of co-
variance matrices, their action is completely characterized by two matrices
M and N

γ →MγMT +N (2.96)

where M is real and N is real and symmetric. The complete positivity of
the map requires that

N + iΩ − iMΩMT ≥ 0. (2.97)

Instances of Gaussian channels include the transmission through a lossy
fiber, or the passive interaction with another mode in a thermal state.

2.2.7 Homodyne Detection

In quantum optics, the way to measure the quadratures of the electromag-
netic field is the so-called homodyne detection3. The rapidity and high
efficiency of this detection technique strongly contributes to the the experi-
mental succes of CV quantum information. Note that from a mathematical
point of view, an ideal homodyne detection is a Gaussian operation.

Homodyne detection works as follows. Suppose that we want to measure
the position quadrature of a target mode with quadratures (x̂t, p̂t). First,
this mode is combined at a balanced beam splitter with a strong field (∼
109 photons), the so-called local oscillator (LO), used as a phase reference.
Denoting by (XLO, 0) the classical quadratures of the local oscillator, the

3When both quadratures are measured simultaneously, using a balanced beam splitter
and two homodyne detection, the measurement is called an heterodyne measurement.
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Figure 2.3: Schematic of an ideal homodyne detection. The quantum target
mode (t) is combined with the local oscillator (LO) at a balanced beam splitter
(BS). The phase θ of the local oscilator determines the measured quadrature.

output modes of the beam splitter read

x̂+ = (x̂t +XLO)/
√

2,

p̂+ = p̂t/
√

2,

x̂− = (x̂t −XLO)/
√

2, (2.98)

p̂− = p̂t/
√

2.

Second, the intensities of these two modes are measured using two photodi-
odes

I± ∝ x̂2
± + p̂2

±

∝ x̂2
t +X2

LO + p̂2
t ± 2XLO x̂t, (2.99)

and the two photocurrents are subtracted and amplified with a low noise
amplifier. On can easily check that the difference gives an estimation of the
measured quadrature

I+ − I− ∝ XLO x̂t. (2.100)

In order to measure the conjugate quadrature p̂t of the target mode, one
simply needs to apply a π/2 phase shift to the local oscillator. In full gen-
erality, one can measure a quadrature x̂θ = cos θx̂t + sin θp̂t by shifting the
phase of the local oscillator by θ, using for example a piezoelectric transducer
(PZT). Although technically challenging, the efficiency of a good homodyne
detection scheme can easily reach 90% [57, 66].
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2.3 Information Theory

Finally, one cannot be called a quantum information scientist without basic
knowledge of information theory. As mentionned in the introduction, infor-
mation theory is a mathematical theory developed by Claude Shannon in
1948 to address the problem of the transmission of information over noisy
channels. The most fundamental results of the theory are known as Shan-
non’s source coding theorem and Shannon’s channel coding theorem. The
first of these theorems states that, on average, the number of bits needed to
represent the result of an uncertain event is given by a quantity called the
entropy, while the second guarantees that reliable communication is possi-
ble over noisy channels provided that the rate of communication is below a
certain threshold called the channel capacity.

Remarkably, the concepts introduced by Shannon for the manipulation
of classical objects can be adapted to the manipulation of quantum states,
which gives rise to the theory of quantum information and communication.
Quantities such as the entropy or the capacity have their quantum counter-
part known as the von Neumann entropy and the quantum channel capacity
respectively. The following section will introduce these basic notions, em-
phasizing on the parallel between the classical versus the quantum version.
Let us mention that most of these quantities will not be used directly in
the following chapters, but underly the concepts and challenges of quantum
information science as a whole.

2.3.1 Classical Information Theory

Suppose that a source emits a sequence of random variables X1,X2, . . .
whose values belong to a finite alphabet A = {0, 1, . . . , d}. If the variables
are independent and identically distributed according to the probability dis-
tribution p(x) = Pr{X = x}, x ∈ A, the entropy of the source is defined
as

H(X) = −
∑

x∈A

p(x) log p(x) , (2.101)

where the logarithm is taken in base 2. The entropy gives a useful measure
of the uncertainty one has about X before learning its value. Interestingly,
it can also be interpreted as the amount of information one gains by learning
the value of X.

Similarly, one can define the joint entropy H(X,Y ) of a pair of dis-
crete variables (X,Y ) which take values in A1 = {0, 1, . . . , d1} and A2 =
{0, 1, . . . , d2}, namely

H(X,Y ) = −
∑

x∈A1

∑

y∈A2

p(x, y) log p(x, y), (2.102)
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where p(x, y) = Pr{X = x, Y = y}, x ∈ A1, y ∈ A2, is their joint probability
distribution.

Sometimes, the knowledge of the value taken by the variable X provides
some information about the possible values of Y and reduces the uncer-
tainty on Y . The average uncertainty we have about Y when X is known is
quantified by the conditional entropy

H(Y |X) =
∑

x∈A1

p(x)H(Y |X = x)

= −
∑

x∈A1

∑

y∈A2

p(x, y) log p(y|x). (2.103)

Another useful quantity is the relative entropy which quantifies the dis-
tance between the two probability distributions p(x) and q(x) on the alpha-
bet A

D(p ‖ q) =
∑

x∈A

p(x) log
p(x)

q(x)
. (2.104)

Finally, the possibility for the entropy and the conditional entropy of
the random variable Y to have different values, i.e. H(Y ) 6= H(Y |X),
suggests that the variable X contains some information about Y . This
common information shared by X and Y can be quantified by the difference
H(Y ) −H(Y |X) and is known as the mutual information

I(X : Y ) = −
∑

x∈A1

∑

y∈A2

p(x, y) log
p(x, y)

p(x)p(y)
(2.105)

= D(p(x, y) ‖ p(x)p(y)). (2.106)

The mutual information measures in bits the amount of classical correlations
between the variables X and Y .

All the quantities introduced in this subsection are closely connected.
One can easily verify that they satisfy

H(X,Y ) = H(X) +H(Y |X) (2.107)

= H(Y ) +H(X|Y ), (2.108)

I(X : Y ) = H(X) −H(X|Y ) (2.109)

= H(Y ) −H(Y |X) (2.110)

= H(X) +H(Y ) −H(X,Y ), (2.111)

as graphically illustrated in the Venn diagram of Fig.2.4.
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H(X,Y)

H(Y)

I(X:Y)H(X|Y) H(Y|X)

H(X)

Figure 2.4: Graphical representation of the various entropies

The quantities introduced in this subsection can be easilly used to answer
questions related to the transmission of information. For example, the max-
imal rate at which classical information can be reliably transmitted through
a noisy channel T is known as the channel capacity C[T ], and is given by

C[T ] = max
p(x)

I(X : Y ) (2.112)

where the maximum is taken over all input distributions p(x) for X, for one
use of the channel, and Y is the corresponding induced random variable at
the output of the channel.

2.3.2 Quantum Information Theory

Suppose now that the source is no longer classical but emits quantum states
chosen from an ensemble {|x〉} with probability p(x). This can be denoted
as {|x〉 , p(x)}. The state emitted by the source is described by the mixed
state

ρ =
∑

x

p(x)|x〉〈x|, (2.113)

and we can introduce its quantum, or von Neumann, entropy

S(ρ) = −Tr(ρ log ρ) (2.114)

where the logarithm is again taken in base 2. If ρ is diagonal in some eigen-
basis {|i〉}, then the von Neumann entropy is the Shannon entropy of the
eigenvalues λi, i.e. S(ρ) = H(λ). As a consequence, the von Neumann en-
tropy of a pure state is null, while it is maximum for a maximally mixed
state. This makes the von Neumann entropy an interesting tool for quan-
tum information theory, and for the theory of entanglement in particular.

35



CHAPTER 2. All you Need to Know About...

As an example, consider a bipartite pure state ρAB. If ρAB is maximally
entangled, then the reduced state ρA = TrB ρAB is maximally mixed and
S(ρA) is maximum. If ρAB is a product state, however, ρA is a pure state
and S(ρA) = 0. As previously mentionned, the entanglement of a bipartite
pure state is completely characterized by the von Neumann entropy of any
one of its reduced state.

Naturally, for a bipartite quantum system with density matrix ρAB , one
can also define the joint entropy S(A,B)

S(ρAB) = −Tr(ρAB log ρAB), (2.115)

which enables the definition of the conditional entropy S(A|B)

S(A|B) = S(A,B) − S(B). (2.116)

In contrary to the classical case, the conditional entropy can be negative [22].
This indicates the presence of entanglement as for systems with S(A|B) < 0,
the uncertainty about the whole system is less than the uncertainty of one
of its constituents.

In analogy with Eq. (2.111), the definition of the joint entropy provides
a definition of the quantum mutual information [22]

S(A : B) = S(A) + S(B) − S(A,B) , (2.117)

and we can also introduce the relative entropy

D(ρ ‖ σ) = Tr(ρ log ρ) − Tr(ρ log σ), (2.118)

which provides a useful measure of the distance between the two quantum
states ρ and σ.

To conclude this section, we note that there exists various quantum
capacities, depending on the information one tries to maximise and the
ressources and protocols allowed for. For example, the classical informa-
tion capacity C[T ] of a channel T is the asymptotically achievable number
of classical bits that can be reliably transmitted per use of the quantum
channel. One can also define the quantum capacity Q[T ], i.e., the num-
ber of qubits that can be reliably transmitted through the channel, or the
entanglement-assisted classical and quantum capacities CE[T ] and QE[T ],
i.e., the rate at which bits or qubits can be transmitted when an infinite
amount of entanglement is shared between the sender and receiver [20].
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Testing Quantum Nonlocality

3.1 Introduction

One of the principal features of quantum mechanics is the impossibility to
know simultaneously the value of certain physical quantities with unlimited
precision. This limitation does not result from our inability to measure
these properties properly, because of the current state of technology for
example, but is a consequence of the laws of quantum mechanics themselves.
As demonstrated in Sec. 2.1.2, when two quantities are described by non-
commuting observables, the perfect knowledge of one precludes the perfect
knowledge of the other.

Many physicists of the early days of quantum mechanics were greatly
puzzled by such a counterintuitive aspect of the theory. Einstein, in par-
ticular, considered this as a witness of the incompleteness of the theory. In
1935, together with Podolski and Rosen, he advocated his point of view in
a seminal paper entitled “Can Quantum Mechanical Description of Phys-
ical Reality Be Considered Complete?” [34]. Their argument, sometimes
referred as the EPR paradox, was the following. In every complete theory,
there should be a variable corresponding to an element of reality (a phys-
ical quantity that is possible to predict with certainty without disturbing
the system). As mentionned above, quantum mechanics precludes the joint
knowledge of two non-commuting observables such as the position and mo-
mentum of a particle. Hence, either the description of reality given by quan-
tum theory is incomplete, or these two non-commuting observables cannot
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have simultaneous reality. Considering a special bipartite entangled state
known has an EPR pair (equivalent to the maximally entangled two-mode
squeezed vacuum of Sec. 2.2.5), and the predictions one can make about
the second system of this state based on the measurement of the first, they
proved that assuming quantum theory to be complete, i.e., rejecting the
first proposition, one could nevertheless assign elements of reality to both
non-commuting observables, i.e., one must also reject the second proposi-
tion. Their conclusion is thus that one’s only choice is to accept the first
proposition, and accept that the description of reality given by quantum
theory is not complete.

To solve the apparent incompleteness of quantum theory, Einstein, Podol-
ski and Rosen introduced the idea of local hidden variables. Their interpre-
tation of quantum mechanics, known as Local Realism or the Local Hid-
den Variable (LHV) model of quantum mechanics, assumes the existence of
variables corresponding to all elements of reality, even if some of these vari-
ables are inaccessible to measurement. Interestingly, by reintroducing some
classical intuition into the description of physical reality, they provided an
explanation to the counterintuitive aspects of quantum mechanics such as
entanglement and the probabilistic nature of the theory. For many years,
depending on their philosophical background or personal beliefs, physicists
around the globe argued about the Local Realistic Vs. Quantum Mechanical
description of nature.

In 1964, this debate and the EPR argument gained a renewed attention
due to the work of John Bell. Assuming local realism to be true, Bell derived
his now famous inequality which must be satisfied within the framework of
any local realistic theory [7]. Interestingly, this inequality is a relation be-
tween conditional probabilities and therefore has a priori nothing to do with
quantum mechanics. However, Bell predicted a violation of his inequality by
considering the probabilities resulting from local measurements on a max-
imally entangled state. By doing so, he strikingly refuted the possibility
to explain quantum mechanics in terms of a local hidden variable model.
But the real merit of his work lied somewhere else. After 30 years of philo-
sophical debate, Bell provided a definitive argument in favor of the nonlocal
interpretation of quantum mechanics which could be tested in a laboratory.
Ironically, Bell’s inequality was called ”the most profound discovery of sci-
ence“ [94] although it is not obeyed by the experimental facts.

Since 1972 and the first experimental violation of a Bell inequality [42],
a great variety of Bell tests have been performed based on various quantum
systems. In every experiment, a local realistic description of the experi-
mental results is incompatible with the actual observations. Unfortunately,
regardless of the success of these experiments, the local description of nature
favored by Einstein has not yet been ruled out completely as all the experi-
ments performed to date suffer from so-called loopholes. These conceptual
loopholes, exploiting experimental limitations, force us to rely on supple-
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mentary assumptions in order to reject local realism, thereby weakening the
strength of Bell’s argument.

The emergence of quantum information science, and the related discov-
ery that entanglement and nonlocal correlations could be useful ressources
[9, 31], naturally triggered the quest for a Bell test free of loopholes. Since
Artur Ekert’s “Quantum Cryptography Based on Bell’s Theorem“ [31], re-
jecting local realism and understanding the nonlocal nature of physical re-
ality has left the area of fundamental questions for theoretical physicists, to
become an essential ingredient for the development of future technologies
and applications. However, the lack of a true loophole free Bell test strongly
questions the operational use of Bell inequalities in quantum information.
If a set of experimental data violates a Bell inequality, can one really con-
clude that the state under measurement is non local when the detectors are
inefficient?

In this chapter, we will contribute to this fascinating quest by considering
for the first time m-partite Bell inequalities based on quadrature measure-
ments of the electromagnetic field. Due to the high performances of homo-
dyne detection, such systems are known to possibly close two of the main
loopholes simultaneously. In particular, we will prove that it is always pos-
sible to maximally violate the m-partite Mermin-Klyshko inequality based
on such system, thereby opening a new road towards an experimental test of
local realism that could tolerate the inevitable experimental imperfections.

3.2 Bell Tests and Related Loopholes

3.2.1 The CHSH inequality

Let us first introduce an inequality which is, in its spirit, similar to the
one initially derived by Bell. There exists infinitely many Bell inequalities,
but the well-known CHSH inequality introduced by John Clauser, Michael
Horne, Abner Shimony and Richard Holt in 1969 [24] is certainly the most
intuitive one.

To fix the rules of the game, consider the following experiment. Suppose
that Alice and Bob, who are spatially separated, receive a box from their
friend Charles. They can perform measurements on their box, and each
must independently choose between two possible measurements, either A1

or A2 for Alice, and B1 or B2 for Bob. These measurements have only
two possible outcomes ±1, which are denoted by a1 or a2, and b1 or b2
respectively. Now assume, as Bell did, that the boxes obey to the local
realism of Einstein, Podolski and Rosen. Realism means that the properties
measured by Alice and Bob have definite values a1, a2, b1 and b2 which exist
independently of the act of observation. Locality, on the other hand, imposes
that Alice’s choice of measurement and outcome does not influence the result
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of Bob’s measurement (and vice versa). It follows that the measurement
results satisfy

a1(b1 + b2) + a2(b1 − b2) = ±2 (3.1)

This is so because either b1 + b2 = 0 and b1 − b2 = ±2 or b1 − b2 = 0
and b1 + b2 = ±2. However, it is important to note that this identity
corresponds to four different tests that cannot be performed simultaneously,
some of them are counterfactual [84]. Nevertheless, the meaning of the
identity is guaranteed by the assumptions of realism and locality; realism
ensures that all the quantities involved in (3.1) have a simultaneous meaning,
while locality is necessary to obtain the value of ±2 on the right hand side.
If we now perform many runs of this experiment, we can compute the value
of (3.1) on average, which easily leads to the well-known CHSH inequality

|〈a1b1〉 + 〈a1b2〉 + 〈a2b1〉 − 〈a2b2〉| ≤ 2 (3.2)

where 〈aibj〉 = P (ai = bj) − P (ai 6= bj) is the average value, or the correla-
tion coefficient, for the measurement of Ai by Alice and Bj by Bob. Recall
that (3.2) was derived only assuming locality and realism, i.e., it has to be
satisfied by any local realistic theory.

Now suppose that the boxes given to Alice and Bob contain a quantum
system. In particular, suppose that the boxes contain each one half of the
maximally entangled singlet state

|Ψ−〉 =
1√
2
(|0〉A|1〉B − |1〉A|0〉B) (3.3)

and that the possible measurement settings available to Alice and Bob cor-
respond to

A1 = σx

A2 = σz

B1 =
1√
2
(σx + σz)

B2 =
1√
2
(σx − σz)

where σx and σz are the standard Pauli operators [78], and |0〉 and |1〉 are
the eigenvectors of σz. Quantum mechanics does not allow the simultane-
ous consideration of the results of measurements of non-commuting observ-
ables, hence for quantum mechanical boxes the identity (3.1) is meaningless.
However, quantum mechanics allows the calculation of average values. In
particular, we can calculate the average value of the Bell operator

S = A1 ⊗B1 +A1 ⊗B2 +A2 ⊗B1 −A2 ⊗B2 (3.4)
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B1 (B2)  A1 (A2)

a1 (a2) b1 (b2)

Figure 3.1: Schematic of a Bell test with two parties and two settings

for a given quantum state. When the boxes are described by the state |Ψ−〉,
a few lines of calculation show that the Bell factor

B = |〈S〉| = |〈A1 ⊗B1〉 + 〈A1 ⊗B2〉 + 〈A2 ⊗B1〉 − 〈A2 ⊗B2〉|
= 2

√
2 (3.5)

which exceeds the maximum of 2 allowed by Eq. (3.2). Remarkably, quan-
tum mechanics predicts a violation of the CHSH inequality of around 41%.

3.2.2 Detector Efficiency and Locality Loophole

One should not forget that quantum mechanics is a theory about experi-
mental facts. Ultimately, rejecting local realism will have to be done based
on experimental data gathered in a laboratory. But experiments are never
perfect. They suffer from errors, imperfections, and technological limita-
tions. In order to successfully show that the results of an experiment cannot
be explained by a local hidden variable theory, one has to include all these
experimental parameters in the local realistic model of the experiment.

Following Freedman and Clauser remarkable experiment in 1972 [42],
many Bell tests confirmed the violation of Bell inequalities by quantum
mechanics (see e.g. Aspect’s experiments [3, 4, 5]). All these early attempts
were based on the polarization degree of freedom of photons as it was, for
many years, the only known way to generate the necessary entanglement
between two distant location. Unfortunately, detecting a photon is a difficult
task, and photon detectors are known to suffer from low efficiencies (today
typically around 10% [63]). As first noted in [83], this low efficiency can be
exploited to explain the observed violation of a Bell inequality with a local
hidden variable model. To avoid this problem, one has to make an additional
assumption; namely that the registered pairs of photons form a fair sample
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of the emitted pairs. This is the so-called detector efficiency loophole. From
a logical point of view, none of the experiments based on photon pairs have
successfully succeeded in ruling out local realism.

This loophole was finally closed a few years ago [90, 73], using an en-
tangled pair of trapped ions. The benefit of this novel approach is the high
efficiency of the ion state detection. Unfortunately again, entangling ions
over large distances is extremely challenging. In the experiments mentioned
above, the ions were maintained only several micrometers and one meter
apart respectively. So close that the measurement events could not be con-
sidered truly space-like separated as required by a local realistic model. This
is known as the locality loophole.

So far, no experimental test has succeeded in closing both loopholes
simultaneously.

3.3 Bell Tests and Continuous Variables

3.3.1 Bell Tests Based on Quadrature Measurements

There is a large variety of quantum systems for which a test of local re-
alism may be envisaged. However, the quest for a loophole free Bell test
has recently focused the research towards experiments involving propagat-
ing light modes measured with homodyne detectors [76, 102, 44, 45, 77].
The advantage of this approach is twofold. On the one hand, light modes
can easily be sent to space-like separated detectors thereby avoiding the lo-
cality loophole. On the other hand, the current technology of homodyne
detectors achieves a degree of detection efficiency high enough to close the
detection efficiency loophole. Unfortunately, the use of continuous variables
with homodyne detection also implies drawbacks whose resolution is chal-
lenging. The main issue is that the homodyne measurement of a state with
a positive Wigner function can always be described with a local hidden vari-
able model. Thus, in order to avoid a local hidden variable description of
the measured correlations, one has to perform the test with a state endowed
with a non-positive Wigner function. In particular, the easily generated
two-mode squeezed state of the EPR argument cannot be directly employed
as its positive Wigner function provides a local realistic model explaining
all correlations between quadrature measurements.

Several theoretical work have recently demonstrated the possibility to
violate a Bell inequality by measuring the quadratures of specifically tai-
lored entangled non-Gaussian states of light. These tests generally involve
the following scenario. Two parties perform spacelike separated homodyne
measurements by randomly choosing between two settings, thus measuring
two quadratures of the incoming electromagnetic fields. The collected data,
which are distributed in a (approximately) continuous range, are discretized
in a procedure called the binning process, and the violation of the CHSH
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inequality is then tested [24]. Interestingly, these tests can be divided in two
categories depending on the magnitude of the predicted violation and the
feasibility of the envisioned experimental setup.

Large violation: In [76], Munro identified what ideal correlated photon
number state is required to maximally violate the CHSH inequality when
homodyne detection is used in combination with a simple binning based on
the sign of the measured quadrature. More specifically, he considers the
state

|Ψ〉 =

∞
∑

n=0

cn |n〉 |n〉 , (3.6)

where |n〉 is a Fock state, and optimizes over both the quadrature angles
of the measurement and the coefficients cn of the state. This leads to a
maximal violation of B ≈ 2.076 1.

Furthermore, it was later shown in [102] that one can even reach the
maximal possible value of B = 2

√
2 by measuring conjugated quadratures

of states of the form

|Ψ〉 =
1√
2
(|f〉 |f〉 + eiθ |g〉 |g〉) , (3.7)

where f and g are appropriately chosen wave functions, and a special binning
based on the roots of the f anf g functions is applied. This will be explained
and further extended in Sec. 3.4.2. Unfortunately, the experimental gen-
eration of these two types of states is extremely challenging, clearly out of
reach of present day technology.

Experimentally feasible: Along a different line of thought, two recent
proposals [44, 77] predicted the violation of local realism by considering a
state closer to an experimental realization. The state in question is a two-
mode squeezed vacuum to which photons have been subtracted. Given the
recent sucessful photon subtraction experiments [81, 82], this state is clearly
within the reach of present technology. However, the achievable violation
with such a photon subtracted squeezed vacuum is so low, around 2, 2%,
that the inevitable experimental imperfections have so far been sufficient to
discourage experimentalists from carrying out the experiment.

3.3.2 Multimode Nonlocality

The proposals for loophole free Bell tests relying on homodyne detection
have, so far, considered only two parties and the CHSH inequality. This is

1If we restrict to positive cn’s as will be seen in Sec. 3.4.1
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the simplest scenario, both conceptually and experimentally. However, there
exist multipartite Bell inequalities testing the local realism of m-partite en-
tangled states. One such inequality is the Mermin-Klyshko (MK) inequality
[74, 67], a generalization to m parties of the CHSH inequality. Interestingly,
quantum mechanics predicts an exponentially increasing violation of this in-
equality with the number of parties involved, i.e., for m parties the maximal
violation is [49]

Bm = 2(m+1)/2 (3.8)

while local realism remains bounded by 2.

We note that multipartite settings with continuous variable states have
already been considered, but relying on measurement strategies other than
homodyne detection. In Ref. [97] for example, a test based on the measure-
ment of the light field parity is envisaged. It is found that the violation
does not increase exponentially, as one would have hoped, but this could
be due to the fact that no optimization over the possible measurement set-
tings was performed [37]. In Ref. [23] instead, a maximal violation of the
Mermin-Klyshko inequality is found for continuous variable states, consid-
ering the measurement of a special class of operators which can be seen
as the continuous-variable analogue of the spin operator. However, both
of these approaches deal with non-Gaussian measurements described by a
non-positive Wigner function. Such measurements are far from the reach of
current detection technology.

We note also that very recently, a new approach was introduced which
does not rely on the use of inequalities for discrete outcomes, thus avoiding
the need of a binning procedure [19]. The authors found that the violation
of the local realistic bound is exponential in the number of parties involved,
but a possible experimental implementation is still very challenging as it
would require at least ten space-like separated homodyne measurements. It
is then unclear if such a novel approach can give advantages, from a practical
perspective, over the non-locality tests involving binning strategies presented
in the next section.

3.4 Multimode Nonlocality using Homodyne De-

tection

Given this previous work, we ask the following question: Is it possible to
have an exponential increase of the violation of local realism in a test involv-
ing quadrature measurements of m modes and considering Mermin-Klyshko
inequalities?
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3.4.1 Correlated Photon Number states

Before we start, let us recall the general form of the Mermin-Klyshko Bell
inequalities. As for the CHSH inequality, we consider two dichotomic ob-
servables Ot and O′

t for each party t. The Mermin-Klyshko inequalities are
then based on the following recursive definition of the Bell operator:

Bt ≡
1

2

[

Ot +O′
t

]

⊗Bt−1 +
1

2

[

Ot −O′
t

]

⊗B′
t−1 , (3.9)

where B1 = 2O1, B
′
1 = 2O′

1, and B′
t denotes the same expression as Bt but

with all the Ot’s and O′
t’s exchanged [49]. The Mermin-Klyshko inequality

for m parties then reads

Bm ≡ |〈Bm〉| ≤ 2 . (3.10)

Let us now consider a generic photon number correlated state of m
bosonic modes

|Ψ〉 =
∞
∑

n=0

cn |n〉1 |n〉2 ... |n〉m , (3.11)

with
∑

n |cn|2 = 1. This is the generalization to m modes of the state
considered in Ref. [76]. There, two quadratures of the electromagnetic field
X(θt) and X(θ′t) (corresponding to two angles θ and θ′) are chosen as the
two observable Ot and O′

t to be measured. Recall that the quadrature X(θt)
of each mode t can be measured via homodyne detection.

If we introduce the notation Xt (X ′
t) for the quadrature X(θt) (X(θ′t)),

and xt (x′t) for the outcome of its measurement, the joint probability to
obtain the results x1, ..., xm by measuring the quadraturesX1, ...,Xm is given
by

P(x1, ..., xm) = |1〈x1| ...m〈xm|Ψ〉|2

=
∞
∑

n,s=0

cn c
∗
s

eiφ(n−s)

(π2n+sn!s!)m/2
×

m
∏

t=1

e−x2
tHn(xt)Hs(xt) ,

where φ = θ1 + ... + θm, Ht(x) is the t-th degree Hermite polynomial, |xt〉
are the eigenvectors of the quadrature operator Xt, and we have used the
coordinate representation of the Fock states Eq. 2.57.

Consider now a simple binning strategy, the so called sign binning : when
the result of a quadrature measurement falls in the domain R

+
0 , we associate

to it the value +1, when it is in R−, we give it the value −1. Based on this
binning, we can calculate the probability P+1,...,+1 that a “+1” result is
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observed in all the measuring sites:

P+1,...,+1 =

∫ ∞

0
dx1...

∫ ∞

0
dxmP(x1, ..., xm)

=
∞
∑

n,s=0

cn c
∗
s

eiφ(n−s)

(π2n+sn!s!)m/2
×

m
∏

t=1

∫ ∞

0
dxte

−x2
tHn(xt)Hs(xt) .

(3.12)

The integrals above can be evaluated recalling the following properties of
Hermite polynomials for n 6= s,

∫ ∞

0
dxte

−x2
tHn(xt)Hs(xt) =

π2n+s

n− s
[F (n, s) − F (s, n)] , (3.13)

where we defined F (n, s) as

F (n, s)−1 = Γ

(

1

2
− 1

2
n

)

Γ

(

−1

2
s

)

, (3.14)

with Γ being the gamma function. For n = s one has instead

∫ ∞

0
dxte

−x2
tH2

n(xt) = 2n−1n!
√
π . (3.15)

Defining the functions

G(φ,m) =
∑

n>s

2Re(cnc
∗
s)gn,s(φ,m) ,

gn,s(φ,m) =

(

π2n+s

n!s!

)m/2 [
F (n, s) − F (s, n)

n− s

]m

× cos[φ(n− s)] , (3.16)

one obtains

P+1,...,+1 =
1

2m
+ G(φ,m) . (3.17)

The other probabilities can be obtained in a similar way. Let us define the
multi-index d = (d1, ..., dm), with dt = ±1 denoting the measurement result
obtained for mode t after the binning. Then, the joint probability for a
generic collection d of measurement results will be indicated by Pd and it
can be obtained as above by recalling that an Hermite polynomial of even
(odd) degree is an even (odd) function. An explicit formula for the generic
probability Pd can then be calculated:

Pd =
1

2m
+ σ(d)G(φ,m) , (3.18)

where σ(d) =
∏m

t=1 dt.
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Now we are in the position to calculate the generic correlation func-
tion between the measurement results E(φ,m). Notice that the correlation
depends only on the sum of the angles φ. By definition we have that

E(φ,m) =
∑

d

σ(d)Pd , (3.19)

where the sum goes over all the possible collection of measurement results.
Since the number of possible measurement results for which σ(d) = 1 is equal
to that for which σ(d) = −1 one finally has, by substituting Eq. (3.18) into
Eq. (3.19), that

E(φ,m) = 2mG(φ,m) . (3.20)

Let us show that we can reach an exponential violation with a simple
analytical manageable example. For the simple case of three parties (m = 3),
the Mermin-Klyshko inequality then reads B3 ≡ |〈B3〉| ≤ 2, with

B3 = O1 ⊗O2 ⊗O′
3 +O1 ⊗O′

2 ⊗O3 +O′
1 ⊗O2 ⊗O3 −O′

1 ⊗O′
2 ⊗O′

3 .
(3.21)

Considering a tripartite GHZ state [55],

|GHZ3〉 =
1√
2
(|000〉 + |111〉) , (3.22)

we have c0 = c1 = 2−1/2 and cr≥2 = 0, so that

G(φ, 3) = g1,0(φ, 3) = (2π)−3/2 cos(φ)

and Eq. (3.20) becomes

E(φ, 3) = 23G(φ, 3) =

(

2

π

)3/2

cos(φ). (3.23)

The GHZ-like angles (θ1 = 0, θ2 = π/6, θ3 = 2π/6, and θ′i = θi + π/2), give
the maximum violation of the inequality, namely

B3 = |3E(π, 3) − E(0, 3)|

= 4

(

2

π

)3/2

≃ 2.032 . (3.24)

Now, consider the multipartite generalization of the GHZ state

|GHZm〉 =
1√
2
(|0...0〉 + |1...1〉) , (3.25)
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Figure 3.2: Coefficients cn for the optimal state |Ψ〉 in the case of m = 3,
d = 20 (with GHZ-like measurement angles). The Bell factor is B3 ≃ 2.204.

and Eq. (3.20) becomes

E(φ,m) =

(

2

π

)m/2

cosφ . (3.26)

The dependence on the angle φ of the above correlations is the same as
the one appearing in a standard spin-like test for a multipartite GHZ state,
namely E(φ) = cos(φ). In that case, it is known that the choice of GHZ-like
angles

θk = (−1)m+1π(k − 1)/(2m) (3.27)

θ′k = θk + π/2, (3.28)

gives the highest value of the Bell factor, namely 2(m+1)/2 [49]. Therefore,
using the same angles, the corresponding Bell factor reads

Bm =
√

2

(

4

π

)m/2

, (3.29)

giving rise to an exponential violation of local realism.

Apart from this simple analytical example, one can use a numerical ap-
proach to show the exponential violation of local realism as the formula
(3.20) is easily amenable to perform numerical calculations for a fixed num-
ber of parties m. In order to find the state |Ψ〉 (coefficients cn’s) that
maximally violates the Mermin-Klyshko inequality, one has to evaluate the
corresponding Bell factor Bm for a given configuration of measuring angles.
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Figure 3.3: Coefficients cn for the optimal state |Ψ〉 in the case of m = 2,
d = 30. The Bell factor is B2 ≃ 2.1.

The Bell factors are expressed in general by a linear combination of cor-
relation functions given each by Eq. (3.20), with the prescription given in
Eq. (3.9).

Let us search the state which maximizes the violation of the Mermin-
Klyshko inequality for the particular GHZ-like choice of angles. For three
modes (m = 3), defining the (infinite dimensional) real symmetric matrix
B3 as

[B3]n,s = 23 (3gn,s(π, 3) − gn,s(0, 3)) , (3.30)

where the diagonal elements are set to zero, we note that the Bell factor
can be re-expressed as B3 = C†B3C, where the elements of the vector C are
given by the coefficients of the input state, i.e. [C]n = cn. Consequently,
the maximal violation of the Mermin-Klyshko inequality is simply given by
the maximal eigenvalue of the matrix B3, while the optimal input state is
determined by its corresponding eigenvector. In order to perform a numeri-
cal analysis, one has to truncate the Hilbert space dimension of |Ψ〉 to some
arbitrary d. For example, for d = 2 the optimal choice turns out to be
the GHZ state (3.22), giving a violation of B3 = 2.032. By increasing the
dimension d, the asymptotic violation is given by B3 ≃ 2.205. In Fig. 3.2,
we show the coefficients cn for the optimal state |Ψ〉 in the case d = 20, for
which the Bell factor is B3 ≃ 2.204.

The same procedure can be applied for any number of parties. In the
case of two parties (m = 2), one recovers the results given by Munro in
Ref. [76] provided that the constraint cn > 0 is taken into account, namely
B2 ≃ 2.076. Interestingly, a higher violation can be achieved if we consider
negative coefficients for |Ψ〉. As an example, we report in Fig. 3.3 the coef-
ficients cn for the optimal state in the case d = 30, for which the Bell factor
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rises up to B2 ≃ 2.100 (recall that the Bell factor can be written in this case
as B2 = 3E(φ) − E(3φ), where we have chosen φ = π/4, as in [76]).

3.4.2 Maximal Violation

Let us now see whether we can find a class of states and a binning strategy
that allows for a maximal violation of the Mermin-Klyshko inequality for
any number of parties m. Recall that quantum mechanics is bounded by
Eq. (3.8). Inspired by the results of Ref. [102], we introduce the state

|Ψ〉 =
1√
2
(|f〉⊗m + eiθ|g〉⊗m) , (3.31)

where f is a real and even function of some quadrature x, while g is real
and odd. The two functions are orthogonal and normalized to unity. Note
that because f(x) is real and even, it has a real and even Fourier transform
f̃(p), while g(x) has an imaginary Fourier transform ih̃(p), with h̃(p) real
and odd.

Suppose that each party t chooses to measure one of two conjugated
quadrature via homodyne detection, either X(0) = X or X(π/2) = P , and
obtains a continuous variable xt or pt depending on his choice of measure-
ment setting. When the k first parties measure the X quadrature, while the
remaining m− k measure the conjugate quadrature P , the joint probability
that they obtain the results x1, ..., xk , pk+1, ..., pm is given by

P(x1, ..., xk , pk+1, ..., pm) = |〈x1|...〈xk|〈pk+1|...〈pm|Ψ〉|2

=
1

2

(

f2(x1)...f
2(xk)f̃

2(pk+1)...f̃
2(pm)

+ g2(x1)...g
2(xk)h̃

2(pk+1)...h̃
2(pm)

+ 2 cos(θ + (m− k)
π

2
) × f(x1)g(x1)...f(xk)g(xk)

× f̃(pk+1)h̃(pk+1)...f̃(pm)h̃(pm)
)

. (3.32)

To exploit the parity properties of f ang g, we introduce the root binning
defined in Ref. [102]. This binning depends on the roots of the known
functions f and g. If party t measures the X quadrature, the result will
be interpreted as a “+1” if the measured value xt lies in the interval where
f(xt) and g(xt) have the same sign, and “−1” if their signs are opposite,
i.e., we consider the following domains

D+
x = {x ∈ R|f(x)g(x) ≥ 0}

D−
x = {x ∈ R|f(x)g(x) < 0} . (3.33)

We can similarly define the domains D+
p and D−

p associated to the measure-
ment of the quadrature P . For the choice of measurement settings defined
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above, we can thus calculate 2m probabilities Pd corresponding to the obser-
vation of a given collection d of binary results. For example, the probability
P+1,...,+1 that each party observes a “+1” result reads

P+1,...,+1 =

∫

D+
x

dx1...

∫

D+
x

dxk

∫

D+
p

dpk+1...

∫

D+
p

dpm

× P(x1, ..., xk, pk+1, ..., pm) . (3.34)

We are now in the position to calculate the correlation function
E(X1, ...,Xk , Pk+1, ..., Pm). Note that since f and g (f̃ and h̃) are even and
odd respectively, f2 and g2 (f̃2 and h̃2) are even functions. Hence the first
two terms of the right hand side of (3.32) are even functions also, and their
contribution to the correlation function will vanish. We thus obtain the
remarkably simple expression

E(X1, ...,Xk, Pk+1, ..., Pm) = V kWm−k cos
[

θ + (m− k)
π

2

]

, (3.35)

where

V =

∫ ∞

−∞
|f(x)g(x)|dx (3.36)

W =

∫ ∞

−∞
|f̃(p)h̃(p)|dp . (3.37)

Interestingly, the correlation function (3.35) only depends on the number of
sites where X and P are measured. One can easily check that all correlation
functions corresponding to k measurements of the X quadrature and m− k
measurements of the P quadrature are equal. We will denote them E(k,m−
k) to emphasize this property.

Let us illustrate the power of this compact notation with an example.
For m = 3, the Bell factor reads

B3 =|E(X1,X2, P3) + E(P1,X2,X3) +E(X1, P2,X3) − E(P1, P2, P3)|
=|3E(2, 1) − E(0, 3)|
=|3V 2W cos(θ +

π

2
) −W 3 cos(θ + 3

π

2
)| . (3.38)

We see that the maximal violation, i.e. Bmax
3 = 4, can be reached with a

state |Ψ〉 such that sin(θ) = ±1 and V = W = 1. Although such a state
is quite unrealistic, one can define a family of physical states that approxi-
mates it arbitrarily well. The corresponding f ang g functions are trains of
gaussians, and V,W → 1 as the number of peaks goes to infinity. We refer
the reader to Ref. [102] for their exact analytical expression.
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Let us now try to generalize this result for an arbitrary m. First note
that the Bell factor (3.10) can be written as

Bm =
1

2
|〈XmBm−1〉 + 〈PmBm−1〉 + 〈XmB

′
m−1〉 − 〈PmB

′
m−1〉| , (3.39)

with B1 = 2X1 and B′
1 = 2P1. In order to benefit from our compact

notation, we explicitly develop the expectation values of Bm−1 and B′
m−1 in

terms of correlation functions

〈Bm−1〉 =

m−1
∑

k=0

αkE(k,m− 1 − k)

〈B′
m−1〉 =

m−1
∑

k=0

αkE(m− 1 − k, k) (3.40)

where the αk’s are some known coefficients. When m− 1 = 3 for example,
we have α1 = 3, α3 = −1, and α0 = α2 = 0. As the correlation functions
only depend on the number of X and P measurements, the average values
of the four operators of (3.39) can be easily calculated from 〈Bm−1〉 and
〈B′

m−1〉. Suppose Bm−1 has a term proportional to the X1...XkPk+1...Pm−1

operator, which leads to the correlation function E(k,m−1−k). The oper-
ator XmBm−1 will thus have a term proportional to XmX1...XkPk+1...Pm−1

leading to the correlation function E(k + 1,m − 1 − k), i.e. at the level of
correlation functions we only need to replace k by k+1 as the X quadrature
is measured at one additional site. A similar argument for the expectation
values of PmBm−1, XmB

′
m−1 and PmB

′
m−1 leads to

Bm =
1

2
|
m−1
∑

k=0

αk

(

E(k + 1,m− 1 − k) + E(k,m− k)

+E(m− k, k) − E(m− k − 1, k + 1)
)

| (3.41)

To maximize this expression, we note that for two and three parties the
maximum violation is reached for a state with V = W = 1. It is thus
reasonable to assume that this property remains true for an arbitrary m.
Recall that we know how to choose f and g such as to reach these values.
When V = W = 1, we have

E(k,m− k) = cos
[

θ + (m− k)
π

2

]

, (3.42)

and (3.40) becomes

〈Bm−1〉 =

m−1
∑

k=0

αk cos
[

θ + (m− 1 − k)
π

2

]

(3.43)

〈B′
m−1〉 =

m−1
∑

k=0

αk cos
[

θ + k
π

2

]

(3.44)
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Introducing Eq. (3.42) in Eq. (3.41), combined with some well known trigono-
metric formulas, the Bell factor simplifies to

Bm = | cos(θ +m
π

4
) + sin(θ +m

π

4
)| × |

m−1
∑

k=0

αk cos
[

(m− 2k)
π

4

]

| . (3.45)

Maximizing the violation of local realism boils down to finding the optimal
phase θm such that the first factor of the right hand side is maximum. This
term achieves its maximum of

√
2 for a value of the phase

θm = (1 −m)
π

4
(3.46)

We also note that

(m− 2k)
π

4
= θm−1 + (m− 1 − k)

π

2
(3.47)

hence the maximum value of the Bell factor can be finally written as

Bmax
m =

√
2|

m−1
∑

k=0

αk cos
[

θm−1 + (m− 1 − k)
π

2

]

| (3.48)

=
√

2 Bmax
m−1 (3.49)

where we have identified the summation of Eq. (3.48) with Eq. (3.43) at
the optimal angle θm−1. Introducing now the maximum value obtained in
Ref. [102] for the two party case, Bmax

2 = 2
√

2, we obtain by recursion

Bmax
m = 2(m+1)/2 (3.50)

which is the known maximal bound imposed by quantum mechanics. Re-
markably, the state |Ψ〉 defined in (3.31) combined with homodyne detection
and a binning strategy called root binning allows for a maximal violation of
the MK inequality. This result shows that even if the binning process dis-
cretizing the result of the homodyne detection discards some information, it
does not prevent to maximally violate tests of local realism based on discrete
variables.

3.4.3 Noise Effects

As shown in the previous sections, the search of loophole-free Bell tests could
benefit from an increased number of parties involved in the experiment.
The signature of this improvement lies in the exponential increase of the
Bell factor with the number of parties m. However, what makes a Bell test
challenging in practice is not the magnitude of the violation, but rather
the inevitable noise associated with any real experiment. In many cases,
this noise is sufficient to hide the nonlocal correlations one tries to observe.
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When the number of parties involved in a Bell test increases, so does the
fragility of the state used in the experiment. The risk is thus to rescale the
violation so that no benefit of a larger m is witnessed in practice. One can
therefore correctly argue that an increased violation of local realism is only
significant if accompanied by a comparable improvement of the robustness
to noise of the test. After all, Bell tests have to be verified in a lab, not on
paper.

In a discrete variable setting, the question of the tolerance to noise of a
Bell test is often investigated introducing the noise fraction [68]. The noise
fraction quantifies the maximum amount of depolarizing noise one can add
to an entangled state and still detect non-local correlations. The depolar-
izing noise is characterized by the state 1/d, where d is the dimension of
the Hilbert space. However, in the continuous variable regime, the Hilbert
space under consideration is infinite dimensional and the noise model under-
lying the noise fraction is irrelevant. Even if we deal with a finite number of
photons, such as with the truncated photon number correlated states, the
Hilbert space under consideration remains infinite dimensional. Hence the
appropriate base is the infinite photon number base and operators propor-
tional to the identity 1 have no physical meaning. To adopt an objective
measure of the magnitude of the violation of local realism, one must thus
introduce an appropriate CV noise model.

The noise we will consider in this section is called probabilistic erasure2.
Consider the following scenario: with a probability p, the system of a random
party is erased, otherwise his state is untouched. This noise acts indepen-
dently on each site and transforms an initial state |Ψ〉 to

ρ = (1 − p)m|Ψ〉〈Ψ| + p(1 − p)m−1{
m
∑

t=1

Trt(|Ψ〉〈Ψ|) ⊗ |0〉t〈0|}

+ ...+ pm|0〉1〈0| ⊗ ...⊗ |0〉m〈0| . (3.51)

Probabilistic erasure is known to appear in, e.g. atmospheric transmissions,
and has recently been studied in Ref. [104]. This noise will also be considered
in Chapter 7.

Let us first consider the photon number correlated states of subsection
3.4.1, and concentrate on the second term of Eq. (3.51). Each element of
the sum corresponds to the erasures of one of the subsystems, so suppose
for example that the state of party m has been erased and replaced by
vacuum while distributing |Ψ〉. The corresponding state shared between the

2Note that in a real experiment, the most probable sources of noise will be losses and
the inefficiency of homodyne detection. Probabilistic erasure is chosen because it can be
easily treated analytically.
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m parties reads

ρ1,m = Trm(|Ψ〉〈Ψ|) ⊗ |0〉m〈0| (3.52)

=
∞
∑

n=0

|cn|2|n〉1〈n| ⊗ ...⊗ |n〉m−1〈n| ⊗ |0〉m〈0| .

This state is diagonal in the photon number bases, hence the results of all
possible measurements are equiprobable, i.e. ∀θ1, ..., θm, P (x(θ1), ..., x(θm)) =
cst, and all correlation coefficients vanish. This was to be expected from
photon correlated states as their entanglement is truly m-partite; tracing
out one subsystem makes the state become separable. Thus, this property
also holds for the other noisy terms of (3.51), so that only the erasure-free
|Ψ〉〈Ψ| will contribute to the Bell factor. We obtain

Bρ = (1 − p)mBm (3.53)

To illustrate this result, consider the m-partite GHZ state (3.25). The
noisy Bell factor reads

Bρ = (1 − p)m
√

2(
4

π
)m/2 , (3.54)

hence the maximum probability of erasure pmax such that nonlocal correla-
tions can be detected is

pmax = 1 −
√
π

2
21/2m . (3.55)

This value exponentially tends towards 1−√
π/2 as m goes to infinity, and

we observe the desired increased robustness to noise as m becomes large.
Finally, consider now the states of Section 3.4.2. First note that 〈f |g〉 =

0, hence in the {|f〉, |g〉} bases, these states look like GHZ states. We thus
expect their robustness to noise to behave like the photon correlated number
states. Indeed, going through the calculation, one finds that for every noisy
term of (3.51), and for every choice of measurement setting the probability
is an even function of the results. For example, if party m looses its mode,
the probability P (x1, ..., xm) to obtain x1, ..., xm given that X1, ...,Xm is
measured is an even function. As a result, none of the noisy terms contribute
to the correlation coefficients, and the noisy Bell factor is again given by
(3.53) as expected. As a conclusion, with respect to probabilistic erasure,
more parties means more robustness.

3.5 A Three-Partite Candidate for a Loophole Free

Bell Test

Let us now see how the results of the previous section can be exploited to
individuate multipartite states such that, on the one hand, they exhibit a
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significantly high violation of local realism and, on the other hand, they
may be generated with near future technology. In particular, we will fo-
cus on a class of three-party state whose generation involves four so-called
optical “Schrödinger-cat” states, that is four single mode superpositions of
coherent states [81]. We note that a natural candidate to reach our goal
could have been the generalization of the photon-subtracted state discussed
in Refs. [44, 77]. However, due to symmetry reasons combined with the use
of the sign binning, the generalization to three party (actually to any odd
number of parties) of the strategy adopted in Refs. [44, 77] is not effective.

In Ref. [102], the authors propose to use a superposition of Gaussians to
implement the functions f and g of Eq. (3.31). In particular, in the case of
only two Gaussians they considered the family of states defined by

f(x) = 〈x| [c+(|α〉 + |−α〉)] , (3.56a)

g(x) = 〈x| [c−(|α〉 − |−α〉)] , (3.56b)

where

c2± = 1/[2(1 ± e−2|α|2)]. (3.57)

Given these functions, one can then calculate the corresponding V and W
coefficients using Eq. Eq. (3.36). For large amplitudes |α| → ∞, this gives
V = 1 and W ≃ 0.64. As noticed in Ref. [102], with two parties no violation
is possible, i.e B2 ≃ 1.90.

However, as can be seen in Eq. (3.38), considering three parties already
enables a violation as large as B3 ≃ 2.23. The corresponding state reads

|Ψ3〉 =
1√
2

[

c3−(|α〉 − |−α〉)⊗ 3 + c3+(|α〉 + |−α〉)⊗ 3
]

, (3.58)

where we have put θ = 0.

Since the maximum violation is achieved for large amplitudes, we con-
sider the following simpler state:

∣

∣Ψ′
3

〉

= c′ [|α,α, α〉 + |α,−α,−α〉 + |−α,α,−α〉 + |−α,−α,α〉] , (3.59)

where

c′2 = 1/[4(1 + 3e−4|α|2)] . (3.60)

Notice that |Ψ′
3〉 coincides with |Ψ3〉 when |α| → ∞. In order to obtain the

Bell factor B3 corresponding to such a state, we calculate the probabilities
of the binned outcomes using Eq. (3.56) to define the roots, in combination
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Figure 3.4: Bell factor B3 for the state |Ψ′
3〉 as a function of the amplitude

|α|.

with Eqs. (3.32) and (3.34). Specifically, we consider the domains D±
x and

D±
p inherited by the state |Ψ3〉:

D+
x = {x ∈ R|x ≥ 0} (3.61a)

D−
x = {x ∈ R|x < 0} (3.61b)

D+
p = {p ∈ R| − cos(pα) sin(pα) ≥ 0} (3.61c)

D−
p = {p ∈ R| − cos(pα) sin(pα) < 0} . (3.61d)

The Bell coefficient B3 calculated with such a procedure is shown in
Fig. 3.4. One can see that for amplitudes as small as |α| ≃ 1.1, the state
|Ψ′

3〉 already gives values above the local bound. We note that in this regime
of small amplitudes, |Ψ′

3〉 6= |Ψ3〉 and the domains defined in Eqs. (3.61)
might be non-optimal. As α is increased, a violation around 10% of the MK
inequality is rapidly achieved.

Now let us describe how the state |Ψ′
3〉 may be conditionally generated

by using linear optics and superpositions of coherent states (SCS) of the
form:

|SCS〉 = c+(|α〉 + |−α〉). (3.62)

Consider the scheme depicted in Fig. 3.5. Two copies of the state |SCS〉 in
mode a0 and a1 are mixed in a balanced beam splitter. The same action is
performed on modes a2 and a3. Note that mixing two copies of |SCS〉 on a
balanced beam splitter gives

|SCS〉 |SCS〉 −→ c2+[
∣

∣

∣

√
2α, 0

〉

+
∣

∣

∣
0,
√

2α
〉

+
∣

∣

∣
0,−

√
2α
〉

+
∣

∣

∣
−
√

2α, 0
〉

]

(3.63)
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Figure 3.5: Schematic of a possible way to conditionally generate the state
|Ψ′

3〉 of Eq. (3.59): (|SCS〉) superposition of coherent states [see Eq. (3.62)];
(BS) balanced beam splitter; (D) homodyne detector.

Then modes a′1 and a′2, as well as a′0 and a′3 are respectively mixed by
means of two other beam splitters. As a last step mode a′′0 is measured
via a homodyne detector. One can easily show that when the measurement
outcome −α is obtained, then the conditional state of the remaining modes
coincides (approximately) with |Ψ′

3〉.

To conclude this section, let us note that generating four states |SCS〉
is experimentally demanding. However, the generation in traveling light
modes of such Schrödinger-cat state has been recently reported by many
groups (see e.g.[81]). One may thus envisage the possibility to implement
the whole scheme described in Fig.3.5 in the near future.

3.6 Conclusion

The developpement of QIS has seen an increasing interest towards the char-
acterization and understanding of nonlocal correlations and entanglement.
The main tool to verify the existence of such nonlocal correlations between
space-like separated locations is to check that the collected data violate a
Bell inequality. Unfortunately, technological limitations and imperfections
open so-called loopholes, which have to be closed in order to satisfactorily
establish the nonlocal nature of quantum mechanics. To date, no experi-
mental Bell test has succeeded in closing these loopholes simultaneously.

Optical continuous variables, combined with the fast and efficient ho-
modyne detection, are an interesting candidate for the experimental im-
plementation of a loophole free Bell test. In theory, they enable to close
the detection and locality loophole simultaneously. However, the difficulty
to generate non-Gaussian states efficiently makes this approach experimen-
tally challenging, and the proposals closer to an experimental realization
predict only a small violation of Bell inequalities, whereas the higher viola-
tions involve states whose generation is currently out of experimental reach.

In this chapter, we opened a new road in this fascinating quest by in-
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vestigating the possibility to increase the number of parties involved in a
Bell test based on such quadrature measurements of light modes. Our re-
sults show that the violation of the m-partite Mermin-Klyshko inequality
grows exponentially with the number of parties involved in the test when
one uses photon correlated number states combined with a simple binning
strategy. Furthermore, by tailoring the state and the binning procedure ap-
propriately, we have proven the possibility to reach maximal violation. The
possibility to obtain a maximal violation of the Mermin-Klyshko inequality
based on quadrature measurements is non-trivial, since (i) they represent
a small subset of all possible measurements and (ii) the binning procedure
may cause an irreversible loss of information. As we have shown, such a loss
is not crucial if suitable binning procedures are used, properly adapted to
the states under investigation.

Our most promising result is illustrated by introducing a three-mode
state example achieving 10% violation of the local bound while being, at
the same time, implementable with near future technologies.
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4
Nonlocality without Entanglement

4.1 Introduction

One of the most intriguing features of quantum mechanics is entanglement.
As seen in the previous chapter, entanglement can give rise to nonlocal cor-
relations (or nonlocality), namely the fact that spatially separated systems
may behave in a way that cannot be explained by any local theory [34].
This nonlocality, although it does not violate causality, may nevertheless
be verified experimentally as one can write a Bell inequality that must be
obeyed by any local realistic model but is violated by quantum mechanics.

Interestingly, there also exist other types of nonlocal behaviors which
go beyond entanglement. In 1990, Peres and Wootters investigated a set of
three correlated product states which required what they called a combined
measurement, one that interacted with both particles together, to be opti-
mally discriminated [86]. More precisely, they considered two noninteracting
spin-1/2 particles prepared with the same polarization, either along the z
direction, or in the x-z plane tilted at 120 or -120 degrees from the z axis.
Surprisingly, they found that more information could be extracted from this
set by considering it as a whole rather than acting on both systems sepa-
rately, and this in spite of the fact that the systems are in a product state.
Inspired by this nonlocal effect manifested by correlated but non-entangled
states, Bennett et al. discovered in 1998 a set of nine orthogonal product
states in 3⊗3 dimensions that could not be perfectly distinguished when the
two parties are restricted to use a class of operations known as Local Op-

61



CHAPTER 4. Nonlocality without Entanglement

erations and Classical Communications (LOCC) [11]. Yet, as the states are
orthogonal and product, they can be perfectly discriminated by a separable
operator. They named this bizarre phenomenon Nonlocality without Entan-
glement (NLWE) since it is a truly nonlocal behavior while entanglement is
used neither in the preparation of the states, nor in the joint measurement
that discriminates them perfectly.

But in what sense exactly is this nonlocality without entanglement non-
local? Clearly not in the usual sense of being incompatible with a local
hidden variable (LHV) description. However, as noted in [11], an essential
feature of classical mechanics, often omitted in LHV discussions, is the fact
that variables corresponding to physical properties are not hidden, but in
principle measurable. One could thus say that classical mechanical systems
admit a description in terms of local unhidden variables. In this chapter,
we will see that the sets exhibiting NLWE can be considered nonlocal in
the sense that there is no local unhidden variable description of their be-
havior, i.e., a measurement of the whole reveals more than any sequence of
measurement of their parts.

Irrespective of these conceptual issues, the possibility to observe nonlocal
effects without the use of entangled states raises some interesting questions.
It is a new clear evidence of the nonequivalence between quantum entan-
glement and quantum nonlocality. Until recently, these two ressources, at
the heart of quantum information for the last 25 years, where thought to be
two different manifestations of a single characteristic of quantum mechanics.
Werner strongly questionned this simple picture by showing that entangle-
ment does not necessarily imply nonlocality in the sense of producing data
that are incompatible with local realism [103]. This new type of nonlocality,
that should be understood as the advantage of a joint measurement with
respect to all LOCC strategies rather than as the incompatibility with local
realism, implies that the converse does not hold either. But if

Entanglement ; Nonlocality

Entanglement : Nonlocality

(4.1)

what is then the nature of the relation between these two essential ressources?
Furthermore, if an operation such as perfectly distinguishing a set of or-

thogonal product states proves to be impossible when restricted to LOCC,
one may wonder what kind of global operations can or cannot be performed
using LOCC operations only? This question has attracted a lot of attention
over the recent years as it underpins the use of entanglement as a resource
in QIS. In particular, this question arises naturally in the hot topic of en-
tanglement distilation, where two parties try to extract a highly entangled
state from a collection of weakly entangled mixed states by means of LOCC
only (see Appendix E for an example).
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4.2 The Domino States

Puzzled by the findings of Peres and Wootters [86], Bennett and co-workers
began investigating the distinguishability of unentangled states. Interest-
ingly, the discovery of the well known quantum teleportation [9] grew out
of an attempt to identify what ressources, other than actually being in the
same place, would enable two parties to make an optimal measurement of
the Peres and Wootters states [11]. Besides this famous result, their work
also led to the discovery of a set of 9 orthogonal states which exhibited a
form of nonlocality qualitatively much stronger than that of Peres and Woot-
ters. While the Peres-Wootters states need an entangled measurement to be
optimally distinguished, the discovered set could be perfectly distinguished
by a separable operator. They called this set the domino states because of
its graphical representation as a set of dominoes (see Fig. 4.1).

The domino states are the following 9 orthogonal product states in 3⊗3
dimension

|Ψ1〉 = |1〉a|1〉b
|Ψ2〉 = |0〉a|0 + 1〉b
|Ψ3〉 = |0〉a|0 − 1〉b
|Ψ4〉 = |2〉a|1 + 2〉b
|Ψ5〉 = |2〉a|1 − 2〉b (4.2)

|Ψ6〉 = |1 + 2〉a|0〉b
|Ψ7〉 = |1 − 2〉a|0〉b
|Ψ8〉 = |0 + 1〉a|2〉b
|Ψ9〉 = |0 − 1〉a|2〉b

(4.3)

To gain some intuition on why this set is special, suppose Alice and Bob,
located at A and B, receive one of these 9 states and must determine which
one with certainty, i.e., they must return the value of the index i. If they
try to achieve this goal using von Neumann (projective) measurements, they
will never succeed with unit probability. This can be understood easily by
looking at Fig. 4.1. Every measurement, represented by a dotted line,
cuts a domino in two hence leaving two states of the set indistinguishable.
Suppose for example that Alice tries to discriminate between {|0〉a} and
{|1〉a, |2〉a}. Her measurement cuts |Ψ8〉 and |Ψ9〉, hence it makes these two
states indistinguishable by randomly projecting them on either |0〉a|2〉b or
|1〉a|2〉b. One could imagine that Bob makes a measurement first in order
to warn Alice to discriminate rather between {|0〉a, |1〉a} and {|2〉a} if, for
example, he measures {|2〉b}. But then his measurement will make |Ψ4〉 and
|Ψ5〉 indistinguishable.

63



CHAPTER 4. Nonlocality without Entanglement

1

2,3

8,9

4,5

6,7

2

0

1

2

0 1
A

B

Figure 4.1: Graphical depiction of the domino states

Going one step further, because Alice and Bob have access to the entire
set of LOCC operations, they can use much more subtle strategies involving
many rounds of measurements and POVMs. Nevertheless, as shown in [11],
no such strategies will allow to discriminate between the states with cer-
tainty. In the language of quantum information theory, this translates into
the impossibility to extract all the information from the set. As expected,
Bennett and collaborators proved that the maximum mutual information
attainable by LOCC was bounded, i.e.

I(i : MLOCC) ≤ I(i : Mjoint) − ∆ (4.4)

where the deficit ∆ is small but finite (∆ = 0.00000531), and MLOCC and
MJoint denote the optimal LOCC and joint strategy respectively.

4.3 The Asymmetry of Local Distinguishability

Even if the domino states are orthogonal, they do not appear orthogonal as
seen from Alice and Bob alone. Could this simple fact be at the origin of
their local indistinguishability? The question of the local distinguishability
of a set of states has attracted a lot of attention since the discovery of NLWE.
Remember that a set of states, shared between two parties, is exactly locally
distinguishable if there exists some sequence of local operations and classical
communications that will determine with certainty which state they own. In
[100], Walgate et al. have shown that any two orthogonal quantum states,
entangled or not, can be reliably distinguished using LOCC. Two years later,
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Walgate and Hardy [99] established the necessary and sufficient conditions
for a general set of 2 ⊗ 2 quantum states to be locally distinguishable, and
for a general set of 2⊗ n quantum states to be distinguished given that the
qubit is measured first. All these results reveal a fundamental asymmetry
inherent to local distinguishability. To illustrate the asymmetric behavior
of local distinguishability, consider the following set

|Ψ1〉 = |0〉a|0〉b
|Ψ2〉 = |0〉a|1〉b
|Ψ3〉 = |1〉a|0 + 1〉b (4.5)

|Ψ4〉 = |1〉a|0 − 1〉b

where {|0〉, |1〉} is called the Computational Basis (CB) while {|0 ± 1〉} =
{ 1√

2
(|0〉 ± |1〉)} stands for the Dual Basis (DB). This set of bipartite or-

thogonal product states cannot be reliably distinguished locally if Bob is
to go first and only one-way communication from him to Alice is allowed.
On the other hand, it can easily be distinguished if Alice performs the first
measurement and shares her result with Bob.

As conjectured by Groisman and Vaidman, this asymetry of local dis-
tinguishability is at the origin of NLWE. In [56], they studied the one-way
indistinguishability exhibited by the simple set (4.5), and used it to construct
an alternative proof of the NLWE of the domino states. Their key idea was
to realize that what is really at issue with NLWE is not the kind of LOCC
protocols employed by Alice and Bob, but rather the asymmetric properties
of the subsets of the states as seen from Alice and Bob’s point of view. In the
following section, we will further investigate this close connection between
NLWE and one-way indistinguishability. For now, we only note that the set
(4.5) can be easily constructed by applying a simple 2-qubit quantum gate
to the four states of the computational basis. This quantum gate, called
the control-Hadamard (control-H), applies a Hadamard transform to one of
the qubits conditioned on the other qubit being in the appropriate state of
the CB (in our case |1〉). Interestingly, it transforms a locally distinguish-
able set to a one-way indistinguishable one, i.e., it creates asymmetric local
indistinguishability.

4.4 The SHIFT Ensemble

4.4.1 A Circuit Based Picture

In addition to the domino states, Bennett and collaborators discovered
another set of states conjectured to exhibit nonlocality without entangle-
ment. This less-known set of 8 orthogonal three-qubit product states, called
SHIFT, has some interesting features. In particular, it allows for an under-
standing in term of a simple quantum circuit. The SHIFT ensemble is the
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CHAPTER 4. Nonlocality without Entanglement

following set of states

|Ψ1〉 = |0〉a|0〉b|0〉c
|Ψ2〉 = |0 + 1〉a|0〉b|1〉c
|Ψ3〉 = |0〉a|1〉b|0 + 1〉c
|Ψ4〉 = |0〉a|1〉b|0 − 1〉c
|Ψ5〉 = |1〉a|0 + 1〉b|0〉c
|Ψ6〉 = |0 − 1〉a|0〉b|1〉c
|Ψ7〉 = |1〉a|0 − 1〉b|0〉c
|Ψ8〉 = |1〉a|1〉b|1〉c (4.6)

As often with distinguishability issues, the problem is best formulated as a
simple game. Suppose an external party randomly chooses a number be-
tween 1 and 8, and accordingly prepares the corresponding quantum state
|Ψi〉. He then sends the shares of this state to Alice, Bob, and Charles, who
are located at A, B, and C respectively. The challenge for them is to identify
the state they have received with certainty, i.e. to perfectly determine the
value of the label i. Recall that Alice, Bob, and Charles know the precise
form of the states of the set but ignore which one has been prepared, and are
restricted to LOCC, i.e., they are only allowed to perform sequences of local
operations on their respective shares of the state and communicate their
results to the other players through a classical channel. In particular, they
cannot perform a joint measurement or communicate through a quantum
channel. As for the domino states, in such a scenario the players are never
able to perfectly distinguish between the 8 possible states [11]. Although
the set is made of orthogonal product states, which are distinguishable and
can be prepared locally, it has the unexpected property of being locally in-
distinguishable1.

It is interesting to investigate the implementation of the joint measure-
ment which perfectly discriminates between the states of the set. For-
mally, it is a projective measurement based on the 8 separable projectors
Πi = |Ψi〉〈Ψi|. Consider the 3-qubit unitary operation U , which transforms
the 8 states of the CB onto the SHIFT ensemble {|Ψi〉}. The knowledge of
this joint unitary operation U gives a simple strategy to perform the joint
measurement: first apply the joint unitary operation U † followed by a local
measurement by Alice, Bob, and Charles in the computational basis. In-
terestingly, the unitary U can be implemented by a simple quantum circuit
made of 3 identical control-Hadamard gates. As seen in Fig. 4.2, this gate is
a tripartite gate which applies a Hadamard transform onto one of the qubits

1Throughout this chapter, indistinguishable will mean not perfectly distinguishable. It
should not be confused with “indistinguishable” used in the sense that no information at
all on the identity of the state can be extracted.
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A

B

C H

H

H

Figure 4.2: Quantum circuit generating the SHIFT ensemble from the com-
putational basis. The empty and filled circles correspond to a control con-
dition of |0〉 and |1〉, respectively. For example, the first gate applies a
Hadamard to Charles’ qubit if Alice’s qubit is |0〉 and Bob’s qubit is |1〉.

conditioned on the other two being in the appropriate product state |0〉|1〉.
More precisely, in case the Hadamard acts on Charles’ qubit, this control-H
gate performs the operation

|i〉a|j〉b|k〉c −→
{

|i〉a|j〉bH|k〉c if i = 0 ∧ j = 1
|i〉a|j〉b|k〉c otherwise

with H|0〉 = |0 + 1〉 and H|1〉 = |0 − 1〉. Because of the cyclic control
conditions, the 3 gates appearing in the circuit U are exclusive, i.e., one
can easily check that if the control conditions are satisfied for one of the
gates, they cannot be satisfied for the two others. A direct consequence
of this exclusivity property is that the gates are commuting. Consider the
first and second gates of the circuit for example. Expressing the Hadamard
as H = exp(iG) with G = (π/2)(1 − H), these two gates can be written
respectively as exp(iA) and exp(iB) with

A =
1

4
(1+ σz) ⊗ (1− σz) ⊗G

B =
1

4
(1− σz) ⊗G⊗ (1+ σz)

We deduce from these expressions that AB = BA = 0 since it contains the
product (1 + σz)(1 − σz) = 0, which translates the exclusivity property.
Hence, [A,B] = 0, and the Baker-Campbell-Hausdorff formula gives

eiAeiB = ei(A+B)e−[A,B]/2

= ei(A+B)e[A,B]/2

= eiBeiA
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CHAPTER 4. Nonlocality without Entanglement

which proves the commutation between the first and second gates of the
circuit. The same reasoning trivially holds for any pair of gates.

4.4.2 Understanding the Circuit

Consider first the ensemble constructed by applying only the first control-H
(the one that acts on Charles’ qubit) on the states of the CB. As shown
in [99, 56], this ensemble is indistinguishable if Charles is forced to perform
the first non-trivial step of the measurement strategy, or equivalently if he is
restricted to one-way classical communication towards Alice and Bob. This
is obvious as his share of the state could either be in the computational or
in the dual basis, and any non-trivial measurement (one that will gain some
information about one of these basis) will always irreversibly loose some in-
formation about the conjugate basis. Of course, if Alice and Bob start while
Charles is allowed to delay his measurement, then the set appears perfectly
distinguishable. Alice and Bob should simply measure in the CB and then
inform Charles about the basis he should use. This is the asymmetry of
local distinguishability introduced in Sec. 4.3.

Next, let us play the same game but using a quantum circuit made of
the first two control-H gates (those acting on Charles’ and Bob’s qubits).
The fact that the two gates are commuting (or exclusive) guarantees that
no entanglement will be created when the 8 sates of the CB are processed,
i.e., the product states of the CB transform into another set of product
states. This time, the ensemble appears indistinguishable to both Charles
and Bob as their shares of the states are made of non-orthogonal, hence
indistinguishable, states. This is obvious if we adopt a measurement point
of view. The second gate tells us that Bob cannot start. But, since the gates
commute, the second gate can be interchanged with the first, leading to the
similar conclusion that Charles cannot start. Thus, in order to perfectly
distinguish the states locally, neither Bob nor Charles may start. Again, if
it is Alice who goes first, then the ensemble becomes locally distinguishable.
She simply measures her share of the state in the CB: if she gets a |0〉 she
knows that Bob’s share should be measured in the CB, and the outcome of
Bob’s measurement determines which basis Charles should use. A |1〉 simply
interchanges Charles’ and Bob’s roles. In short, this ensemble is locally
indistinguishable if Charles or Bob are forced to start, but distinguishable
if Alice goes first.

Finally, consider the entire circuit of Fig. 4.2, that is, the circuit made of
the 3 control-H gates and the SHIFT ensemble that it generates. According
to the two previous examples, each player now sees an indistinguishable
subset created by the Hadamard gate acting on his qubit (this gate can
be placed last in the circuit). Consequently, in this last scenario nobody
wants to start. Because in every LOCC strategy, someone has to start,
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Figure 4.3: In the first game (left), Charles needs information from both
Alice and Bob to make the set distinguishable. In the second game (mid-
dle), Bob needs to receive information from Alice and transmit information
to Charles, or the reverse, depending on Alice’s measurement. In the third
scenario (right), even if the players have access to all possible classical com-
munication protocols, the set remains locally indistinguishable (NLWE).

the ensemble is locally indistinguishable. This simple understanding of the
NLWE of the SHIFT ensemble can be summarized as follows:

1. In every LOCC strategy, someone has to start

2. The last gate implies that Alice cannot start

3. The gates commute and can thus be interchanged

4. By (2) and (3), nobody wants to start

5. (1) and (4) are incompatible

The three scenarios presented above and their corresponding LOCC strate-
gies can be nicely illustrated with the diagrams of Fig. 4.3. The arrows
represent the minimum amount of communication required to make the en-
semble locally distinguishable. This intuitive picture will be translated into
a rigorous proof in the next section.

4.5 Multipartite Nonlocality Without Entanglement

in Arbitrary Dimension

4.5.1 More Parties and More Dimensions

The intuition gained from the circuit clearly shows that what is really at is-
sue in NLWE is not the kind of LOCC protocols employed by the parties, nor
the content of their communication, but rather the asymmetry of local dis-
tinguishability encapsulated in the states themselves. Indeed, it is because
each player does not know which of the two conjugated basis he should use
to measure his share of the state (the set is indistinguishable from his point
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CHAPTER 4. Nonlocality without Entanglement

of view) and because all players are in this same situation (the gates com-
mute) that the ensemble is locally indistinguishable as a whole. Note that,
so far, all we have used is the possibility, for each player, to have a state
belonging to two conjugate basis. We may therefore extend our construc-
tion to systems of arbitrary dimension instead of qubits. Given the central
role played by the control-H gate, which creates this local indistinguisha-
bility, we may replace it with a d-dimensional quantum Discrete Fourier
Transform (DFTd). This yields a simple strategy to construct an ensemble
made of orthogonal tripartite product states of arbitrary dimensions that
exhibits NLWE. Note that by changing the control conditions of the gates
while maintaining their exclusivity, we can define a whole family of NLWE
ensembles with equivalent properties. Furthermore, there is no need to re-
strict the circuit to a tripartite scenario. Knowing that the key ingredient
is a sequence of control-DFT gates that are exclusive (hence commuting),
we can further generalize the method and increase the number of parties.
The quantum circuit will now be made of n control-DFT gates, one acting
on each player, and we require these gates to be exclusive to make sure
that the resulting ensemble is made of product states. This imposes some
constraint on the dimensions of the players’ shares. A simple way to satisfy
this exclusivity condition is to require that each player has a Hilbert space
large enough to accommodate n− 1 gates with a different control state. We
can therefore state the following sufficient condition

dj ≥ n− 1 , (4.7)

where dj is the dimension of Hj, the Hilbert space of player j, and n is
the total number of players. We thus have established a generic method
to construct some n-partite ensembles of product states exhibiting NLWE
using systems of arbitrary dimension. These ideas can be formalized with
the following lemma:

Lemma 4.5.1 If we have n ≥ 3 parties working in respective Hilbert spaces
Hj of dimension dj ≥ n − 1, a quantum circuit can be defined, based on n
control-DFT gates, which generates a set {|Ψi〉} made of

∏

j dj orthogonal
product states that form a basis of

⊗

j Hj and exhibit Nonlocality Without
Entanglement.

4.5.2 A Lengthy but Generic Proof

Let us denote the CB of player j by {|0〉, · · · |dj − 1〉}. We consider the
ensemble generated from the CB of all players by applying the unitary

U =

n
∏

j=1

eiAj (4.8)
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Figure 4.4: Nonlocality without entanglement in 3⊗ 3⊗ 3⊗ 3. The first gate
applies a Discrete Fourier Transform in dimension 3 to Damian’s qutrit if
Alice’s state is a |0〉, Bob’s state a |1〉 and Charles’ state a |2〉.

with A1 =
⊗n−1

j=1 |j − 1〉〈j − 1| ⊗G, A2,3,···n are cyclic permutations of A1,
and G is defined so that exp[iG] applies a Discrete Fourier transform. In
the simplest case, each party has a dimension dj = n−1, saturating relation
(4.7), but this is not necessary for the proof to hold. As an example, we show
in Fig. 4.4 the circuit generating the simplest ensemble exhibiting NLWE for
a quadripartite scenario in which all parties hold a qutrit, i.e., in a Hilbert
space of total dimension 3 ⊗ 3 ⊗ 3 ⊗ 3.

Let us prove now that the ensemble generated by the unitary (4.8) ex-
hibits NLWE. Suppose Alice has a share of dimension d and performs the
first step of the measurement procedure. We will show that, under the sim-
ple constraint of not allowing her operation to lead to a situation in which
it has become impossible in principle to perfectly distinguish between the
initial states |Ψi〉, then she cannot gain any information. First, let us rewrite
the states of the ensemble as |Ψi〉 = |φi〉A ⊗ |ϕi〉B where |φi〉 is Alice’s share
and |ϕi〉B is the state held by all the other players. We describe Alice’s
measurement in two stages: first, her share of the state and the measuring
device evolve unitarily under the action of some unitary operator UA; sec-
ond, some outcome k is read out. The unitary evolution of Alice’s share and
the measuring device can be described by:

UA : |φi〉A|A〉 −→
∑

k

αik|ωik〉 (4.9)

where |A〉 is the initial state of the measuring device, and |ωik〉 is the joint
state of Alice’s share and the measuring device corresponding to a particular
outcome k. Without restriction, we can choose αik to be real and non-
negative. Importantly, the states |ωik〉 with different k must be orthogonal as
they correspond to different outcomes of the macroscopic measuring device.
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Note that Alice only sees 2d distinct states |φi〉A, the d states of the CB
and the d states of the DB. Thus, for each k, it is sufficient to introduce 2d
couples {αik, |ωik〉}, and we can write the action of the unitary operation
UA on these 2d different states |φi〉A as

|m〉A ⊗ |A〉 UA−→
∑

k

αmk|ωmk〉

‖m〉A ⊗ |A〉 UA−→
∑

k

α′
mk|ω′

mk〉 (4.10)

with k labeling the different outcomes, m = 0, . . . , d− 1, and ‖m〉 denoting
the states of the DB.

Next, we must impose some constraints on Alice’s possible operations.
On the one hand, she has to distinguish between the d states that are in the
DB at her side since these states appear identical to the other parties. On
the other hand, there are also states that are in the CB but are only distin-
guishable by Alice as they appear nonorthogonal to the other parties [e.g.,
the states |Ψ3〉 and |Ψ8〉 of the ensemble (4.6), or the states |0〉A|2〉B |2〉C |2〉D
and |1〉A|2〉B |2〉C |2〉D in the example of Fig. 4.4]. For those states, which
she sees as orthogonal, she must maintain perfect distinguishability whatever
action she performs and for every value of the outcome k. In other words,
her measurement must either distinguish these states outright or leave them
orthogonal, i.e., we must impose for every k and for all m 6= n = 0, 1, ..., d−1

αmkαnk〈ωmk|ωnk〉 = 0 (4.11a)

α′
mkα

′
nk〈ω′

mk|ω′
nk〉 = 0 . (4.11b)

In addition to these d(d−1) constraints, we also need to consider the relations
between the possible initial states at Alice’s site. More precisely, we know
that the CB and DB are related by the quantum Fourier Transform :

‖n〉 =
1√
d

d−1
∑

l=0

exp

[

i
2π

d
nl

]

|l〉

|m〉 =
1√
d

d−1
∑

l=0

exp

[

−i2π
d
ml

]

‖l〉 . (4.12)

The unitary evolution UA must conserve these relations, and, since |ωmk〉
with different k are orthogonal, we can write 2d relations of the form

α′
lk|ω′

lk〉 =
1√
d

d−1
∑

j=0

exp

[

i
2π

d
jl

]

αjk|ωjk〉 (4.13)

αlk|ωlk〉 =
1√
d

d−1
∑

j=0

exp

[

−i2π
d
jl

]

α′
jk|ω′

jk〉 , (4.14)
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for each outcome k, with l = 0, . . . , d− 1. Consider the d relations of (4.14).
If we take the scalar product of two of them and reorganize appropriately
the different terms of the sums, we obtain

αlkαl′k〈ωlk|ωl′k〉 =
1

d

(

d−1
∑

j=0

exp

[

−i2π
d
j(l − l′)

]

α
′2
jk

+ 2
d−1
∑

j=0

∑

j′>j

cos

[

2π

d
(lj − l′j′)

]

α′
jkα

′
j′k〈ω′

j′k|ω′
jk〉
)

(4.15)

If we now choose l = l′, it follows

α2
lk =

1

d

(

d−1
∑

j=0

α
′2
jk (4.16)

+ 2
d−1
∑

j=0

∑

j′>j

cos

[

2π

d
l(j − j′)

]

α′
jkα

′
j′k〈ω′

j′k|ω′
jk〉
)

.

By the second condition of (4.11), all the terms of the second sum of the
right-hand side are trivially equal to zero. Since the remaining term does not
depend on the value of l, we conclude that, for each value of the outcome k,
all the αlk’s are equal. Similarly, from the d relations of (4.13), we conclude
that for all k the α′

lk’s must be equal and equal to the αlk’s. It follows
that if k is a possible outcome for one particular initial state |ψi〉 , then k
is a possible outcome for all the initial states (with the same probability).
In addition, for all such outcomes k the distinguishability condition (4.11)
becomes the true orthogonality condition

〈ωmk|ωnk〉 = 0 ∀m 6= n ∈ {0, 1, · · · d− 1} (4.17a)

〈ω′
mk|ω′

nk〉 = 0 ∀m 6= n ∈ {0, 1, · · · d− 1} (4.17b)

To summarize, after a measurement procedure which produced the outcome
k, the set of possible initial states of Alice’s share together with the mea-
suring device have evolved into a set of states which is isomorphic to the
initial set, i.e., no information can be gained and communicated to the other
players from the value of k. Thus, in order to perfectly distinguish between
the states, Alice cannot start. In view of the commutation of the gates,
similar arguments can be used to show that the other players face the same
dilemma of either gaining some useful information at the cost of irreversibly
loosing perfect distinguishability, or not gaining any information at all. This
completes the proof. �

4.5.3 Concluding Remark

First, let us note that the sets we have constructed so far are not the most
general ones. Indeed, for d > 2 the size of the local Hilbert space allows for

73



CHAPTER 4. Nonlocality without Entanglement

�
�
�
�

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

3DFT

DFT

DFT

DFT

3

3

3

Figure 4.5: By concatenating this circuit to the one of Fig. 4.4, one gets
another ensemble exhibiting NLWE in dimension 3 ⊗ 3 ⊗ 3 ⊗ 3. The first
gate applies a Discrete Fourier Transform in dimension 3 to Damian’s qutrit
if Alice’s state is a |0〉, Bob’s state a |2〉 and Charles’ state a |1〉.

the introduction of more gates without loosing the exclusivity (or commu-
tation) condition. For instance, a gate triggered by |0〉A|2〉B |1〉C and acting
on Damian’s qutrit can be added at the end of the circuit of Fig. 4.4 while
conserving the commutation condition. The set constructed with the circuit
of Fig. 4.4 supplemented with this gate and its 3 cyclic permutations (as
shown on Fig. 4.5) exhibits NLWE while it is qualitatively distinct from the
set of Fig. 4.4. In particular, it has more shares in the dual bases, so we
conjecture that it should be “more nonlocal” in this respect. Finally, note
also that although our method as it is fails to create bipartite NLWE, the 9
bipartite domino states of [11] do fit into our picture of commuting control
gates. We can associate to this set a quantum circuit made of 4 control-
gates, two for each player, where the exclusivity of the gates requires the
Fourier Transform to act on 2-dimensional subspaces of HA and HB.

4.6 From Discrete to Continuous Variables

This dissertation is mainly concerned with continuous variables. After all,
the reason we investigated the SHIFT ensemble was to understand and ex-
tract the mechanisms underlying NLWE, hoping that they could be trans-
lated to infinite dimensional Hilbert spaces. This fruitful approach resulted
in a simple recipe to create sets of arbitrary dimension exhibiting NLWE.
We thus ask the following question: can our recipe be adapted to construct
sets of continuous variable product states exhibiting nonlocality without en-
tanglement? We will answer this question by the affirmative, and give the
explicit construction of a set of continuous variable product states with the
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desired property. However, the states of this set are unphysical as they are
the eigenstates of the position and momentum operators. We nevertheless
recall that they can be approximated as perfectly as needed by the family of
squeezed states with finite squeezing (see 2.2.3), and we will briefly discuss
the issue of a physical realization of this ensemble at the end of the section.

4.6.1 Unphysical Proof of Principle

The recipe introduced in Sec. 4.5 takes the form of a simple quantum cir-
cuit acting on a base of locally distinguishable product states. This circuit
has two essential features, or two ingredients: first it creates for each party
locally indistinguishable subsets of the states, and second it ensures that no
entanglement is produced during this process. Let us now see how these
properties translate in the language of continuous variables. To have indis-
tinguishable subsets, we can choose the states to be locally eigenstates of
two canonically conjugated observables such as x̂ and p̂. In analogy with the
discrete case, we thus choose our input set to be products of the eigenstates
of the position operator x̂. Now that we have the structure of the states,
we must determine the number of players involved in the game. Our recipe
tells us that we can create a set exhibiting NLWE with n players, provided
that the local Hilbert space of each party Hi is large enough to satisfy the
exclusivity condition di ≥ n−1 (with n greater or equal to 3). With contin-
uous variables, this condition is always satisfied, hence simplicity suggests
to choose n = 3. The quantum circuit will therefore be made of three gates,
each gate applying a Fourier Transform to one of the modes, locally turning
eigenstates of the position operator |x〉 into eigenstates of the momentum
operator |p〉. Finally, we need to condition this local transformation on the
other modes. Because we want a condition which has at least two outcomes,
we will locally rotate the states of one mode according to the sign of the
other two modes.

Let us summarize our protocol. We have a circuit that takes as input
three position eigenstates |xa〉A, |xb〉B and |xc〉C , and the circuit applies a
Fourier Transform (rotation of π/2 in phase space) to one of these modes
according to the following rules:

xa ≥ 0, xb < 0 ⇒ π/2 rotation of xc

xb ≥ 0, xc < 0 ⇒ π/2 rotation of xa (4.18)

xc ≥ 0, xa < 0 ⇒ π/2 rotation of xb

This joint operation can be associated to the unitary operator

U = Ua Ub Uc (4.19)

75



CHAPTER 4. Nonlocality without Entanglement

where

Uj = exp
[

i
π

2
n̂j θ(xk) θ(−xl)

]

{j, k, l} = {a, b, c}
(4.20)

and θ is the Heaviside step function, which is 1 if the argument is positive
and null elsewhere. To emphasize the analogy with the SHIFT ensemble of
2⊗2⊗2, the set constructed by acting with U on the eigenstates of x̂Ax̂B x̂C

can be structured in the following 8 different classes:

ψ1 |x+
a 〉A |x+

b 〉B |x+
c 〉C

ψ2 |x+
a 〉A |x−b 〉B |p−c 〉C

ψ3 |x+
a 〉A |x−b 〉B |p+

c 〉C
ψ4 |x−a 〉A |x−b 〉B |x−c 〉C
ψ5 |x−a 〉A |p−b 〉B |x+

c 〉C
ψ6 |x−a 〉A |p+

b 〉B |x+
c 〉C

ψ7 |p−a 〉A |x+
b 〉B |x−c 〉C

ψ8 |p+
a 〉A |x+

b 〉B |x−c 〉C
where |x+〉 (|x−〉) denotes an eigenstate of the position operator with pos-
itive (negative) eigenvalue, and similarly for |p±〉. To prove that this set
exhibits NLWE, we use the same reasoning as in the discrete case, i.e., we
show that if we impose on Alice’s measurement the constraint that it cannot
lead into some irreversible loss of information, then her measurement can-
not gain any information at all. Note that this argument strongly relies on
the notion of perfect distinguishability which is relevant for the unphysical
eigenstates of x̂ and p̂, but not for their physical approximation the squeezed
state of finite variance.

The main steps of the argument are the following: define again Alice’s
measurement procedure as a unitary evolution U of her state and measuring
device followed by a “collapse” (real or virtual) after which an outcome x′

is read:

U : |φi(x)〉|A〉 −→
∫

dx′fi(x, x
′)|ωi(x, x

′)〉 i = x, p (4.21)

where |A〉 is the initial state of Alice’s measuring device, |ωi(x, x
′)〉 is the

quantum state of Alice’s particle and measuring devices corresponding to a
particular outcome x′, the coefficients fi are chosen to be real and nonnega-
tives and we integrate over all possible outcomes x′. Impose the constraint
that the measurement must either distinguish outright the states that she is
the only one able to perfectly distinguish, or if it doesn’t then it must leave
them orthogonal, i.e.,

fx(x, x
′)fx(y, x′)〈ωx(x, x′)|ωx(y, x′)〉 = f2

x(x, x′)δ(x − y)

fp(x, x
′)fp(y, x

′)〈ωp(x, x
′)|ωp(y, x

′)〉 = f2
p (x, x′)δ(x− y) . (4.22)
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Remember that the two types of states, (infinitely) squeezed in x and (in-
finitely) squeezed in p, are related by a Fourier Transform and that the
unitary evolution U keeps these relations, in particular for every value of
the outcome x′. For example, we can write

fp(x, x
′)|ωp(x, x

′)〉 =
1√
2π

∫

dze−ixzfx(z, x
′)|ωx(z, x′)〉 . (4.23)

We have a set of similar conjugated relations linking the x and the p bases.
If we take the norm of all such relations we get

f2
p (x, x′) =

1

2π

∫ ∫

dzdz′e−ix(z−z′)fx(z, x
′)fx(z

′, x′)〈ωx(z′, x′)|ωx(z, x′)〉

=
1

2π

∫

dzf2
x(z, x′) (4.24)

where we have introduced the constraint (4.22) to get the second relation.
Because the right hand side is independent of the value of x, it follows that
all the fp coefficients are equal for a given outcome x′. A similar calculation
for the conjugated relation imposes that all the fx coefficients are equal and
equal to the fp coefficients. Hence, as in the case of qudits, we conclude
that under the constraint (4.22), no information can be gained by Alice and
transmitted to the other players.

4.6.2 Unproved Physical Example

Let us conclude this section by briefly discussing a possible physical real-
ization of the set considered above. The eigenstates of the position and
momentum operators can be physically approximated by squeezed states
along the x and p quadratures with a finite variance σ2. The input set will
thus be made of product of squeezed states in x whose center are distributed
according to a Gaussian distribution of variance Σ2 = 1

σ2 − σ2. This latter
condition ensures that each party sees locally a thermal state of variance
1
σ2 . Note that because finitely squeezed states are not orthogonal to each
other, our input set is not perfectly distinguishable to start with. It follows
that imposing constraints such as (4.22) does not make any sense. On the
other hand, those relations reflect some general principle that still applies
when the squeezing is finite. What (4.22) really says is that Alice’s oper-
ations must either gain some information about the x quadrature, or leave
the states squeezed in the x quadrature as distinguishable as they where
before her measurement. The second relation says the same about the p
quadrature. Hence, we could restate these distinguishability conditions as

”the measurement performed by Alice must either gain some information
about the x quadrature or leave the accessible information in that quadrature
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unaltered, and either gain some information about the p quadrature or leave
the accessible information in that quadrature unaltered”.

Because x and p do not commute, the only way for Alice to fulfil both
requirements simultaneously is by not gaining any information at all. This
argument is quite general and suggests that this physically relevant set does
exhibit NLWE. However, although intuitive, the argument does not replace
a quantitative proof 2. Finally, we note that even if we turn to physical
states with finite squeezing, the unitary operator (4.19) needed to make (or
measure) the states requires an Hamiltonian that is cubic in the quadratures,
making an experimental realization quite challenging.

4.7 Conclusions

Nonlocality without entanglement is a fascinating phenomenon. It is a strik-
ing evidence of the many mysteries quantum mechanics still has to reveal.
Our investigation of this recently discovered peculiarity of the quantum the-
ory highlighted the essential role played by a simple quantum gate, the
control-Hadamard, as a source of local indistinguishability. The introduc-
tion of this gate enables a circuit-based approach of this new form of nonlo-
cality, easily generalizable both in the number of parties and in the dimen-
sion of their respective spaces. We therefore presented the first method to
construct n-partite d-dimensional product bases which cannot be perfectly
distinguished by LOCC. For example, in Fig. 4.4 we display a quantum cir-
cuit generating nonlocality without entanglement with 4 qutrits. To our
knowledge, this is the first example of this nonlocality in 3 ⊗ 3 ⊗ 3 ⊗ 3.

Adapting our method to the regime of continuous variables, we derived
an infinite set of 3-modal states with the desired behavior. However, this
set is unrealistic as it relies on infinitely squeezed states of the position and
momentum quadratures. It is nevertheless a valid set, and it can therefore
be considered as a proof of principle of the existence of nonlocality without
entanglement in the continuous variable regime.

The approach developed in this chapter shed some light on the mech-
anisms underlying the origin of nonlocality without entanglement, and we
believe that it is a new tool to improve our understanding of the complex
relation between nonlocality and entanglement. However, the benefits of
our work go beyond the sole understanding of this new type of nonlocality.
It is known for example that nonlocality without entanglement is connected
to other recently discovered peculiarities of the quantum world known as
unextendible product bases (UPB) and bound entanglement (BE). Under-
standing and characterizing the latter has been at the center of attention

2Note that in the spirit of Bennnett et.al. original paper, we have tried to place a
bound on the mutual information obtainable by LOCC but did not succeed.
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for the past 5 years, and we show in Appendix A and B that our circuit
based approach enables the first generic construction of a large family of
unextendible product bases and their related bound entangled states.

Finally, we note that contrary to the original work on the domino states
[11], we did not place a bound on the mutual information attainable through
LOCC. Instead, we adopted a simpler strategy and proved that such a non-
trivial bound necessarily exists3. Nonetheless, a method to calculate this
bound for a given set is highly desirable as it would enable a quantitative
comparison of nonlocality without entanglement.

3Strictly speaking, we did not ruled out the possibility that the resulting gap becomes
infinitely small as the number of LOCC rounds goes to infinity. However, various reasons
suggest that, as proved in [11] for the domino states and the SHIFT ensemble, it is not
the case and this gap is always finite.
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5
Nonlocality Without Squeezing

5.1 Introduction

Nonlocality is a versatile ressource. One can for example establish useful
nonlocal correlations between two distant locations by distributing entan-
gled states. In such a scenario, the nonlocality arises when one performs local
measurement on both parts of an entangled state. This is the nonlocality
considered in Chapter 3. But nonlocality goes beyond entanglement. The
nonlocality without entanglement investigated in Chapter 4 shows that one
can also witness a truly nonlocal behavior from a set of orthogonal product
states. This weaker form of nonlocality arises when one applies a joint, yet
not entangled, measurement to a set of product states. But is this picture
complete? Have we characterized all possible manifestations of nonlocality
yet? Clearly, these two different types of nonlocal behavior suggest a third
and intermediary form of nonlocality, one that would arise from a joint and
entangled measurement performed on a set of product states (note that by
an entangled measurement, we mean a measurement whose eigenvectors are
entangled). Remarkably, this is the nonlocality that was conjectured by
Peres and Wootters in [86], and led to the discovery of nonlocality without
entanglement. This unexpected property, exhibited by identical particles,
has now been rigorously demonstrated. In [72], Massar and Popescu con-
sidered a set of N identically prepared spin-1/2 particles pointing in an
arbitrary direction, and showed that the optimal strategy to identify that
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direction required an entangled measurement. In a sense, this third kind
of nonlocal behavior can be considered as the dual of that manifested by
entangled systems: entangled states must be prepared jointly but exhibit
anomalous correlations when measured locally; these sets of identical states
can be prepared locally but exhibit anomalous properties when measured
jointly with an entangled measurement.

Interestingly, both of these nonlocality illustrate the rich nature of en-
tanglement. In the first one, entanglement, in the form of a state, is used as
a medium to establish nonlocal correlations. In the second, entanglement,
in the form of a measurement, takes profit of purely classical correlations to
provide a better access to the information encoded in a product state. Puz-
zled by this latter ability of entanglement to exploit classical correlations,
Gisin and Popescu discovered yet another surprising property of quantum
mechanics. In [50], they surprisingly proved that more information could
be extracted from a pair of anti-parallel spins than from a pair of identical
ones. Unexpectedly, some classical correlations perform better than others
when one uses entanglement to extract information from a set of classically
correlated product states.

For us, interested in continuous variables, it is naturally tempting to ask
whether similar quantum effects may be observed with CV product states.
Although not complete, the previous chapter demonstrated the existence of
nonlocality without entanglement in the continuous regime. We are thus
tempted to conjecture the existence of nonlocal effects when product states
are detected with an entangled measurement. This conjecture will be proven
in the following sections. First, we will understand that the difference be-
tween pairs of parallel and antiparallel spins observed by Gisin and Popescu
lies in an impossibility of quantum mechanics called spin-flipping. The exis-
tence of an analog impossibility in the continuous regime, called phase con-
jugation, will guide us towards the discovery of an ensemble of classically
correlated product coherent states that can be better discriminated with an
entangled measurement than separately (LOCC). This may be viewed as a
nonlocal effect without squeezing, and is in a sense the continuous variable
analog of the nonlocality conjectured by Peres and Wootters. We will call
this property Nonlocality Without Squeezing in reference to the well-known
nonlocality without entanglement of Chapter 4. Remarkably, our findings
can be experimentally demonstrated, and at the end of this chapter we will
briefly report on an experiment performed in collaboration with the group
of U.L. Andersen of the Technical University of Denmark1.

1Part of this experimental work was performed at the Max-Planck Institute for Optics,
Information and Photonics of the University of Erlangen.
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5.2 Parallel and Antiparallel Spins

Consider the following problem. Suppose Alice wants to communicate a
direction −→n to Bob, and she can send him two (unentangled) spin-1/2 par-
ticles. She has to choose between two possible strategies, she can either
send two identical particles polarized along the direction −→n or two particles
polarized along the opposite directions ±−→n , i.e., she sends the states |−→n ,−→n 〉
or |−→n ,−−→n 〉 where

|−→n 〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉
| − −→n 〉 = sin(θ/2)|0〉 − eiφ cos(θ/2)|1〉 . (5.1)

Bob’s task is to measure the two spins and make a guess −→n g of the direction
he believes Alice is trying to communicate. Depending on the situation, he
has access to two different measuring strategies. He can either measure the
two particles separately (the local strategy), or he can act on both particles
jointly (the joint strategy).

We thus consider four different protocols, i.e., two encoding strategies for
Alice and two measuring strategies for Bob. To compare the performances
of these protocols, we introduce the average fidelity

F =

∫

d−→n p(−→n )
∑

g

P (−→n g|−→n )
1 + −→n−→n g

2
, (5.2)

where −→n−→n g is the scalar product between the true and the guessed direction,
p(−→n ) is the probability that Alice chooses the direction −→n and P (−→n g|−→n )
is the probability that Bob guesses −→n g when the true direction is −→n . Note
that we assume the direction −→n to be chosen at random and uniformly dis-
tributed over the unit sphere.

When Alice prepares identical spins, the optimal measurement was found
by Massar and Popescu [72]. It is an entangled measurement described by
an operator A whose four eigenvectors |φj〉 are

|φj〉 =

√
3

2
|−→n j,

−→n j〉 +
1

2

∣

∣Ψ−〉 , (5.3)

where |Ψ−〉 is the maximally entangled singlet state defined in Eq. (3.3),
and the vectors −→n j point to the vertices of the tetrahedron

−→n 1 = (0, 0, 1),

−→n 2 =
(

√
8

3
, 0,−1

3

)

,

−→n 3 =
(−

√
2

3
,

√

2

3
,−1

3

)

, (5.4)

−→n 4 =
(−

√
2

3
,−
√

2

3
,−1

3

)

.
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Note that the phase used in the definition of |−→n j〉 is such that the four states
|φj〉 are orthogonal. When Bob measures |φj〉, he guesses the direction −→n j

and this optimal strategy leads to a fidelity of

F⇈
Joint =

3

4
(5.5)

Finally, one can prove that no local strategy can reach this value, which is
sufficient to prove the conjecture of Peres and Wooters. Note that when Al-
ice sends N identical particles, the optimal joint strategy leads to F = N+1

N+2 .

When Alice sends antiparallel spins however, Gisin and Popescu proved
that the joint measurement whose four eigenvectors are

|ϕj〉 = α |−→n j,−−→n j〉 − β
∑

k 6=j

|−→n k,−−→n k〉 , (5.6)

with α = 13/(6
√

6 − 2
√

2) and β = (5 − 2
√

3)/(6
√

6 − 2
√

2), leads to a
fidelity of [50]

F⊥
Joint =

5
√

3 + 33

3(3
√

3 − 1)2
≈ 0.789 . (5.7)

This fidelity was later shown to be optimal in connection with cloning trans-
formations [38]. Surprisingly, parallel and antiparallel spins are not equiva-
lent. To conclude this section, let us note that when Bob is restricted to local
operations, both parallel and antiparallel spins will lead to the same optimal
fidelity. This is so because for every optimal strategy for |−→n ,−→n 〉, there is
a corresponding optimal strategy for |−→n ,−−→n 〉. One can thus summarize
these results as

F⇈
Local = F⊥

Local < F⇈
Joint < F⊥

Joint (5.8)

5.3 Spin Flipping and Phase Conjugation

How does quantum mechanics make pairs of parallel and antiparallel spins
behave differently? At first sight, it seems that by simply flipping the second
spin, we should be able to go from one situation to the other. If, for ex-
ample, Bob knows how to optimally measure identical particles but receives
antiparallel ones, he should just flip the second qubit and then applies his
optimal measurement. One would expect these two strategies to give ex-
actly the same fidelity. And indeed, they would... except that quantum
mechanics precludes the perfect flipping of an unknown particle [18]. That
is, there is no physical operator Θ such that

Θ |−→n 〉 = |−−→n 〉 (5.9)
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p

x

p

−p

x

Figure 5.1: The Phase conjugation operator flips the sign of the p̂ quadrature
while keeping quadrature x̂ unchanged

The reason behind such an impossibility lies at the very heart of quantum
mechanics; the flipping operator Θ is antiunitary while quantum mechanics
only allows unitary operations.

Remarkably, this simple impossibility enables the existence of the pe-
culiar effect witnessed by Gisin and Popescu. However, while it explains
why parallel and antiparallel particles are not equivalent, it does not give an
explanation for the superiority of the antiparallel case. The reason for this
superiority can be found by considering the Hilbert spaces in which these
two sets belong. Parallel spins lie in the 3-dimensional subspace of sym-
metric states, while antiparallel spins span the entire 4-dimensional Hilbert
space of spin-1/2 particles. One can thus exploit this additional dimension
by tuning the measurement and improving the fidelity.

Interestingly, there is a well-known continuous analog of the spin flipping
operation, called phase conjugation. The phase conjugation operator flips
the sign of the p̂ quadrature while keeping quadrature x̂ unchanged. It
therefore sends a coherent state centered on α = 1√

2
(x + ip) to a coherent

state centered on α∗ = 1√
2
(x− ip), that is

|α〉 =

∣

∣

∣

∣

x+ ip√
2

〉

−→ |α∗〉 =

∣

∣

∣

∣

x− ip√
2

〉

(5.10)

Like the spin flip for spin-1/2 particles, the phase conjugation operator is
antiunitary. One can easily check that it does not preserve the commutator
of the creation and anihiliation operators â and â†. If b̂ = â† is the resulting
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mode of the conjugation, the new commutator is

[b̂, b̂†] = [â†, â] (5.11)

= −[â, â†] (5.12)

= −1 (5.13)

instead of 1 as required by quantum mechanics. Nevertheless, one can al-
ways approximate the conjugation of coherent states. Interestingly, the cor-
responding optimal protocol is classical as one has to classically conjugate
the result of an optimal heterodyne measurement of the x̂ and p̂ quadrature
[21]. This strategy yields a fidelity of 1/2, which is equal to the fidelity of the
optimal discrimination of coherent states with an heterodyne measurement.

5.4 Superiority of Entangled Measurement over

All Local Strategies for the Estimation of Prod-

uct Coherent States

We now turn to the main result of this chapter. Inspired by the impossi-
bility to perfectly conjugate an unknown coherent state, we introduce the
following two ensembles: according to a bivariate Gaussian probability dis-
tribution P (α), a preparator draws a random complex number α and pre-
pares one of two states, either |α〉 |α〉 or |α〉 |α∗〉. Depending on the scenario,
he thus prepares one of two ensembles denoted by E(α,α) = {P (α), |α〉|α〉}
or E(α,α∗) = {P (α), |α〉|α∗〉}. This latter ensemble was first introduced in
the context of the optimal phase-conjugation transformation [21]. Alice and
Bob, who receive the unknown state, agree on some measurement proto-
col and must return a state ρ as close as possible to |α〉〈α|. Their action
is called a measure-and-prepare strategy, and the relevant figure of merit,
used to estimate the quality of a particular scenario, is therefore the average
fidelity. When the state prepared is drawn from E(α,α∗) for example, this
fidelity reads

F = sup
My

sup
ρy

∑

y

∫

dαP (α) 〈α| 〈α∗|Ey |α〉 |α∗〉 〈α| ρy |α〉 , (5.14)

where Ey are the positive operators defining the measurement applied by
Alice and Bob,

∑

y Ey = 1, and ρy are states prepared according to the
measurement results y.

Our aim is to show that Alice and Bob can better discriminate between
the states of E(α,α∗) when they have access to joint, or global, operations
than when they are restricted to LOCC, i.e., we want to prove that F ∗

Local <
F ∗

Joint when F ∗
Local and F ∗

Joint denote the optimal fidelities for local and joint
measurement on |α〉|α∗〉 respectively. The proof can be decomposed in three
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steps. We will first show that the optimal LOCC strategies on |α〉|α∗〉 and
|α〉|α〉 yield equal fidelities. We will next prove that the optimal measure-
and-prepare strategy on identical copies of |α〉 is achieved by a local strategy.
Note that this result shows that identical copies of a coherent state do not
show any nonlocality, in contrast with the situation for identical copies of
a qubit. Finally, we will exhibit a joint measurement on phase-conjugate
states, conjectured to be optimal, which gives a higher fidelity than the
optimal strategy on two identical copies. We will thus prove that

F ∗
Local = FLocal = FJoint < F ∗

Joint , (5.15)

where FJoint and F ∗
Joint (FLocal and F ∗

Local) denote the optimal fidelities for
global (local) measurements on |α〉|α〉 and |α〉|α∗〉 respectively.

5.4.1 The Optimal Local Fidelity for |α〉 |α∗〉 and |α〉 |α〉 Are

Equal

First recall that any LOCC strategy consists of a sequence of correlated
measurements plus a decision strategy depending on the observed statistics.
The relevant probabilities after n round of measurements can be written as

Pr(β) = Tr{(Aβ ⊗Bβ) |α〉〈α| ⊗ |α∗〉〈α∗|} , (5.16)

with the positive operators Aβ and Bβ defined as

Aβ = An
rn

(r1, r2, . . . , rn−1) × . . .×A3
r3

(r1, r2) ×A1
r1

Bβ = Bn−1
rn−1

(r1, r2, . . . , rn−2) × . . .×B2
r2

(r1)

In this expression, ri is the outcome of the i-th measurement, and the upper
index stands for its order in the sequence of measurements. These operators
depend on the decision strategy, and are constrained by the measurement
normalization conditions

∑

ri

Ai
ri

(ri−1, . . . , r1) = 1

∑

ri

Bi
ri

(ri−1, . . . , r1) = 1 (5.17)

Now, suppose that a particular LOCC strategy is optimal for |α〉|α∗〉 and
gives the fidelity F ∗

Local. We can easily map this optimal strategy into an
optimal LOCC strategy for |α〉|α〉. Because the trace of Hermitian operators
is invariant under complex conjugation, we note that

Tr{Aβ |α〉〈α| ⊗Bβ|α∗〉〈α∗|} = Tr{Aβ|α〉〈α| ⊗B∗
β |α〉〈α|},

hence replacing Bβ by B∗
β one defines another LOCC sequence of measure-

ments that achieves the same fidelity F ∗
Local for |α〉|α〉, i.e. F ∗

Local = FLocal.
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5.4.2 The Optimal Measure-and-Prepare Strategy on |α〉|α〉
is Local

Next, let us prove that the optimal measure-and-prepare strategy on |α〉|α〉
is a local strategy, i.e., FJoint = FLocal. We note that this result is al-
ready known for a distribution of infinite width [95], using the variances of
the estimated quadratures as a figure of merit. Here, however, we prove
a much more powerful result: we consider the realistic case of finite dis-
tributions, and do not make any assumption on the measurement nor the
reconstruction. Actually, we prove the more general result that the opti-
mal measure-and-prepare strategy for the discrimination of N copies of a
coherent state distributed according to a Gaussian of variance 1/λ yields a
fidelity FN satisfying

FN ≤ N + λ

N + λ+ 1
. (5.18)

This upper bound is exactly the fidelity achieved by N independent het-
erodyne measurements and preparation of a coherent state centered on

1
N+λ

∑N
i=1 αi (with αi being the result of the i-th measurement), hence the

optimal strategy is local.

Before we carry on with proving this statement, we may reformulate
and simplify the problem. The first simplification comes from noting that
without loss of generality, we can restrict our optimization to measurements
consisting of projectors |Φy〉〈Φy| and preparation of pure states |χy〉. This is
easily seen by noting that we can always decompose the POVM elements as
Ey =

∑

a |my,a〉〈my,a| and the states as ρy =
∑

b λ
2
y,b|ry,b〉〈ry,b|. Absorbing

the redundant parameter a and b into y, and identifying λy,b |my,a〉 and |ry,a〉
with |Φy〉 and |χy〉 respectively, one can check that the value of the average
fidelity does not change while the strategy has the desired properties. For
the input states |α〉⊗N distributed with the Gaussian distribution P (α) =
λ
π exp

[

−λ|α|2
]

, the fidelity we want to optimize therefore reads

F =
∑

y

∫

dα P (α)|〈α⊗N |Φy〉|2|〈α|χy〉|2. (5.19)

We can further simplify the problem by noting that the N modes in state
|α〉⊗N can be concentrated into one single mode in state |

√
Nα〉 by mean of

beam splitters. This operation is unitary and completely reversible, hence
will not change the fidelity. We write

F =
∑

y

∫

dαP (α)|〈
√
Nα|φy〉|2|〈α|χy〉|2 . (5.20)
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This expression can be bounded and rewritten more compactly as

Fmax ≤ sup
φy , χy

∑

y

〈χy|Aφy
|χy〉 (5.21)

= sup
φy

∑

y

‖Aφy
‖∞ (5.22)

after introduction of the operators

Aφy
=

∫

dαP (α)|〈
√
Nα|φy〉|2|α〉〈α| (5.23)

The last equality (5.22) is trivial as it is indeed best to prepare the eigen-
state of Aφy

associated to the largest eigenvalue for a given outcome y.

We can now turn to the core of the optimization. The method exploits
a trick introduced in the context of the additivity of output purities of
bosonic channels [48]. This trick was later used in [58] to calculate the
optimal fidelity of all measure-and-prepare strategies on a single copy of
a coherent state |α〉 distributed according to P (α). First, we prove the
following theorem for the operator Aφy

:

Theorem 5.4.1 For all states |φ〉 and all p-norms ‖Aφ‖p = (Tr{|Aφ|p})1/p,

‖Aφ‖p ≤ N + λ

[(N + λ+ 1)p − 1]1/p
‖Aφ‖1 . (5.24)

Proof The properties of the Trace allow us to write

‖Aφ‖p
p = Tr{Ap

φ} =

∫∫

dα1 . . . dαp P (α1) . . . P (αp)

× |〈φ|
√
Nα1〉|2 . . . |〈φ|

√
Nαp〉|2

× Tr{|α1〉〈α1|α2〉 . . . 〈αp−1|αp〉〈αp|}
= Tr{|φ〉〈φ|⊗pB}, (5.25)

‖Aφ‖p
1 = Tr{Aφ}p = Tr{|φ〉〈φ|⊗pC}, (5.26)

where we have defined the operators B and C has

B =

∫∫

dα1 . . . dαp P (α1) . . . P (αp)〈α1|α2〉 . . . 〈αp|α1〉

× |
√
Nα1〉〈

√
Nα1| ⊗ . . .⊗ |

√
Nαp〉〈

√
Nαp| ,

C =

p
⊗

i=1

∫

dαiP (αi)|
√
Nαi〉〈

√
Nαi| . (5.27)

These two operators commute and can be diagonalized in the same basis.
A unitary transformation turns them into tensor product of unnormalized

89



CHAPTER 5. Nonlocality Without Squeezing

thermal states, which are diagonal in the corresponding Fock state basis.
One finds

B =
λp

(N + λ+ 1)p − 1

p
⊗

i=1

∞
∑

ni=0

(

N

N + λ+ 1 − di

)ni

|ni〉〈ni|

C =
λp

(N + λ)p

p
⊗

i=1

∞
∑

ni=0

(

N

N + λ

)ni

|ni〉〈ni| , (5.28)

where di are the eigenvalues of a unitary matrix with |di| = 1. Next
we express the product state |φ〉⊗p in this Fock state basis, i.e., |φ〉⊗p =
∑

{nj} c{nj}|n1, . . . , np〉, and introduce this expression into the traces (5.25)

and (5.26). Remembering that Tr{|φ〉〈φ|⊗pB} ≥ 0, one finds that

Tr{|φ〉〈φ|⊗pB} =
λp

(N + λ+ 1)p − 1
×

∣

∣

∣

∣

∣

∣

∞
∑

{nj}=0

|cn1,...,np |2
p
∏

i=1

(

N

N + λ+ 1 − di

)ni

∣

∣

∣

∣

∣

∣

≤ λp

(N + λ+ 1)p − 1
×

∞
∑

{nj}=0

|cn1,...,np|2
p
∏

i=1

∣

∣

∣

∣

N

N + λ+ 1 − di

∣

∣

∣

∣

ni

≤ λp

(N + λ+ 1)p − 1
×

∞
∑

{nj}=0

|cn1,...,np|2
p
∏

i=1

(

N

N + λ

)ni

≤ (N + λ)p

(N + λ+ 1)p − 1
× Tr{|φ〉〈φ|⊗pC} (5.29)

The p-th root of this expression directly gives relation (5.24). �

Proving Eq. (5.18) is now really easy. First consider the limiting case
p → ∞ of Theorem 5.4.1. Next sum over all possible results y and remem-
ber that the measurement normalization condition

∑

y |φy〉〈φy| = 1 implies
∑

y ‖Aφy
‖1 = 1.

5.4.3 A Better Measurement on Phase-Conjugate Coherent

States

To conclude this section, let us prove the existence of a joint measurement
on phase-conjugate coherent states that yields a higher fidelity than (5.18)
for N = 2. One such measurement is already known and was introduced
in [21], where it is shown that the |α〉|α∗〉 encoding outperforms |α〉|α〉 in
the case λ = 0. The measurement strategy is the following. First, the two
modes are sent on a Beam Splitter (BS), which outputs two coherent states
displaced along the x and p axis respectively, i.e.,

|α〉|α∗〉 → |xα〉|ipα〉, (5.30)
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α α α α *

X PP

X

Figure 5.2: Measurement scheme of the optimal measure-and-prepare strat-
egy for the discrimination of |α〉 |α〉 (left) and |α〉 |α∗〉 (right).

Recall that α = (xα + ipα)/
√

2. Next, the appropriate quadratures are
measured on the two output ports, and some state |fβ〉 is reconstructed
according to the measurement outcomes (see Fig. 5.2 right).

That this strategy outperforms the optimal measurement on identical
copies has an intuitive explanation. Suppose we apply this BS strategy
to the |α〉|α〉 case. Then, the two modes are concentrated on one output
port, so that only heterodyning can extract information about x and p
simultaneously, that is, we need to combine the state with vacuum at another
BS, introducing extra noise. Nevertheless, according to the previous section,
this strategy is optimal. Applying this same strategy to the |α〉|α∗〉 state,
we can directly access the entire information by homodyning each of the two
output modes of the BS. Since we do not introduce vacuum in this setup
while detecting the same mean signal, we have less noise and can therefore
expect a greater fidelity (see Fig. 5.2).

In order to calculate this fidelity and easily compare it with Eq. (5.18),
suppose that we have at our disposal N coherent states made of N/2 pairs
|α〉|α∗〉, or equivalently one pair |

√

N/2 α〉|
√

N/2 α∗〉. The corresponding
fidelity reads

F ∗N
BS =

∫∫

dx dp dαP (α) P
(

x, p|xα, pα

)

|〈fβ|α〉|2 ,

where

P (x, p|xα, pα) =
1

π
exp

[

− (x−
√
Nxα)2 − (p −

√
Npα)2

]

(5.31)
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is the probability to measure (x, p) by homodyning on |
√

N/2 xα〉|
√

N/2 pα〉.
Introducing β = (x+ ip)/

√
2 and the positive semi-definite Hermitian oper-

ator

Ôβ =

∫

dα exp
[

− (2N + λ)|α|2 + 4
√
Nℜ(β∗α)

]

|α〉〈α| (5.32)

the fidelity simplifies to

F ∗N
BS = 2

λ

π2

∫

dβe−2|β|2〈fβ|Ôβ |fβ〉 . (5.33)

Optimization of this fidelity with respect to the reconstructed state boils
down to finding the largest eigenvalue µ1(Ôβ) of this operator Ôβ. To cal-
culate this value, consider the following positive operator and its expansion
in the Fock state basis [15]

P̂ =

∫

dαe−(2N+λ)|α|2 |α〉〈α| (5.34)

= π

∞
∑

n=0

(2N + λ+ 1)−n−1|n〉〈n| . (5.35)

Clearly

µ1(P̂ ) =
π

2N + λ+ 1
. (5.36)

Now consider the displaced operator

Q̂β = D̂

(

2
√
N

2N + λ
β

)

P̂ D̂†
(

2
√
N

2N + λ
β

)

= exp[− 4N

2N + λ
|β|2] Ôβ , (5.37)

where D̂ is the displacement operator introduced in 2.2.3, from which we
deduce

〈fβ|Ôβ|fβ〉 ≤ exp[+
4N

2N + λ
|β|2] π

2N + λ+ 1
. (5.38)

Introducing this value in the fidelity, one finds after integration

F ∗N
BS ≤ 2N + λ

2N + λ+ 1
. (5.39)

Equality is achieved and the fidelity is optimized by reconstructing the state

|fβ〉 = D̂

(

2
√
N

2N + λ
β

)

|0〉 = | 2
√
N

2N + λ
β〉. (5.40)
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Clearly, (5.39) is larger than (5.18) for any N . Because the optimal global
strategy can only improve this fidelity, we conclude that FN < F ∗N

BS ≤ F ∗N ,
where F ∗N is the optimal fidelity of a global strategy onN/2 phase-conjugate
pairs2.

Interestingly, F ∗N
BS = F 2N , that is, this global strategy on |α〉|α∗〉 is

exactly as efficient as the optimal strategy on 4 copies of the coherent state
|α〉. Again, this has an intuitive explanation. Consider the input state |α〉⊗4.
It can be concentrated using two BS, namely, |α〉⊗4 → |

√
2α〉⊗2. Because

dual homodyning on |
√

2α〉|
√

2α〉 or |xα〉|pα〉 gives identical statistics, the
corresponding fidelities are equal.

5.5 Experimental Demonstration

Remarkably, the measurement strategies described in the previous sections
can be implemented experimentaly. It follows that the nonlocality without
squeezing exhibited by the ensemble {P (α), |α〉|α∗〉} can be demonstrated in
the lab. The experiment was performed in 2006 at the Technical University
of Denmark in collaboration with the group of Professor Ulrik L. Andersen.

5.5.1 Sideband Encoding

In the following experiment, the information will be encoded at a frequency
sideband of a carrier frequency. In addition to a high degree of purity, this
sideband encoding also holds the advantage of allowing for easy low-voltage
control of the amplitudes via simple electro-optic modulators operating at
the sideband frequency [1].

The sideband model works as follows. The field mode â under consid-
eration is decomposed into a bright carrier component at frequency ω and
two sideband modes placed symmetrically around the carrier at frequencies
ω + Ω and ω − Ω respectively, i.e.,

â = α exp[iωt] + δâ+ exp[i(ω + Ω)t] + δâ− exp[i(ω − Ω)t] , (5.41)

where the amplitude of the carrier α is assumed to be real, and δâ± are the
single-mode field operators at the frequencies ω±Ω. It follows that the only
significant contribution to the signal at frequency Ω comes from the beating
of these three modes. In particular, if we perform a direct photodetection
of mode â

n̂ = â†â

= α2 + α(δâ+ exp[iΩt] + δâ− exp[−iΩt] + δâ†+ exp[−iΩt] + δâ†− exp[iΩt])

+ (|δâ+|2 + |δâ−|2 + 2ℜ(δâ+δâ
†
− exp[2iΩt])), (5.42)

2Note that if we consider the optimal measurement of |α〉N |α∗〉N with respect to the
noise variance, instead of the fidelity, this strategy can be shown to be optimal [21].
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a spectral analysis of the resultant photocurrent at the sideband frequency
Ω will give information about the amplitude quadrature

δX̂Ω
a = δâ+ exp[iΩt] + δâ− exp[−iΩt] + δâ†+ exp[−iΩt] + δâ†− exp[iΩt].

(5.43)

Note that δX̂Ω
a contains contributions from both sidebands. As the charac-

terization of an optical CV system requires a pair of canonically conjugated
variables, one may also define a phase quadrature by introducing a phase
shift of π/2 between the carrier and the sidebands

â = α exp[iωt+ π/2] + δâ+ exp[i(ω + Ω)t] + δâ− exp[i(ω − Ω)t]. (5.44)

Direct photodetection will then provide information about the phase quadra-
ture

δŶ Ω
a = −δâ+ exp[iΩt] − δâ− exp[−iΩt] + δâ†+ exp[−iΩt] + δâ†− exp[iΩt].

(5.45)

5.5.2 The Setup

The laser used in the experiment is a monolithic Nd:YAG laser producing
a field at 1064 nm, which is split into two parts and subsequently directed
into the coherent state preparation stage (see Fig. 5.3). To ensure that the
information is encoded as pure coherent states, the states are assumed to be
residing at a radio frequency sideband defined within a certain bandwidth of
the laser beam. Note therefore that the two beams are bright although the
particular sidebands in question are vacuum states before the encoding. The
production of the two phase conjugate coherent states, |α〉 and |α∗〉, is then
performed by displacing the vacuum sidebands using an amplitude modu-
lator (AM) and a phase modulator (PM) in each arm as shown in Fig. 5.3.
The two states are prepared by using the same signal generator, that is by
communicating classically correlated information between the two prepara-
tion stations. The relative phase shift of π between the phase quadratures
was established by adjusting the cable lengths appropriately.

First, the prepared states are characterized by measuring the two copies
individually. This is done by successive use of a heterodyne detector yield-
ing information about the amplitude and phase quadratures simultaneously.
The coherent state is combined with a phase stabilized auxiliary beam at a
50:50 beam splitter with a π/2 relative phase shift and balanced intensities.
They interfere with a contrast of 99% and the two output beams are de-
tected with high quantum efficiency (95%) photodiodes. Subsequently the
photocurrents are subtracted and added which provides information about
the phase and amplitude quadratures, respectively. Finally the spectral den-
sities of the quadratures are recorded on a spectrum analyzer. Using the fact
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Figure 5.3: Schematic of the experimental setup. The diagrams show the
phase space contours of |α〉 (upper diagram) and |α∗〉 (lower diagram). The
states are measured using a) a local strategy and b) a joint or global strategy.
AM: Amplitude modulator, PM: Phase modulator.

that the heterodyne detector projects the signal under investigation onto a
vacuum state, the spectral densities of the prepared copies is easily infered.
Furthermore the measurements have also been corrected to account for the
detection losses and electronic dark noise in order to avoid an erroneous
underestimation. The inferred results for the spectral densities are shown
by the solid horizontal lines in Fig. 5.4.

5.5.3 Local Measurement Strategy

These measurements for characterization of the prepared copies are in fact
identical to the measurements associated with an optimal local estimation
strategy. However, in contrast to the characterization, for the estimation
of unknown coherent states the results are not corrected for detector losses
and electronic dark noise. The individual spectral densities for local mea-
surements of |α〉 and |α∗〉 are shown in column a) and c) of Fig. 5.4. From
these measurements the added noise is found to be ∆x = ∆p = 1.12 ± 0.04
for the amplitude and phase quadratures. Assuming a flat distribution of
coherent states, the fidelity is given by

F =
2

√

(2 + ∆x)(2 + ∆p)
(5.46)

and calculated to

FLocal = 64.0 ± 1 (5.47)

This is close to the theoretical maximum of 2/3.
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Figure 5.4: Spectral power densities (normalized to the quantum noise level)
of the local and joint strategies. The resolution bandwidth is 100kHz and the
video bandwidth is 30Hz.

5.5.4 Joint Measurement Strategy

Recall that this strategy is to combine the two copies at a 50:50 beam splitter
and subsequently measure the amplitude quadrature in one output and the
phase quadrature in the other output port of the beam splitter. Such a
strategy measures the combinations x̂1 + x̂2 and p̂1 − p̂2 where the indices
refer to the two input modes. This combination can, however, be accessed
using an experimentally simpler approach since the information is encoded
onto sidebands of two equally intense bright beams (with the power 60 µW ).
The two classically correlated copies are carefully mode-matched (∼99%)
at a 50:50 beam splitter and actively locked to have balanced intensities
at the outputs of the beam splitter. Directly measuring the two outputs
yield the quadrature combinations î1 = (x̂1 + x̂2 + p̂1 − p̂2)/2 and î2 =
(x̂1 + x̂2− p̂1 + p̂2)/2, and by adding and subtracting these two contributions
we obtain the required combinations x̂1 + x̂2 and p̂1 − p̂2. The spectral
densities of these measurements are shown in column b) and d) of Fig. 5.4.

The upper traces in Fig. 5.4 correspond to the coherent amplitudes of
the input states and of the joint estimates, whereas the lower traces are
the powers associated with the noise levels, all of which are at the shot
noise level. The signal-to-noise ratio of the estimate is clearly larger than
that of the prepared states; the coherent amplitudes of the amplitude and
phase quadratures are increased by 3.0 dB and 2.9 dB, respectively, which
effectively correspond to noise equivalent power of ∆x = 0.51 ± 0.02 and
∆p = 0.52±0.02 shot noise units. Using Eq. (5.46), the fidelity is calculated
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to be

F ∗
BS = 79.5 ± 0.7 (5.48)

thus clearly surpassing the classical local fidelity of 2/3 and close to the
theoretical value 4/5.

5.6 Conclusion

In this chapter, we have successfuly investigated a peculiar form of nonlo-
cality which arises when classically correlated product states are measured
with an entangled measurement. In particular, we have proven that a set of
phase-conjugated pairs of coherent states can be better discriminated with
an entangled measurement than with any sequence of local operations and
classical communications. This is, to our knowledge, the first example of
such a nonlocal behavior based on continuous variables.

Remarkably, the relative simplicity of the preparation and manipulation
of coherent states enabled an experimental demonstration of this peculiar
property based on the side-band encoding of a modulated laser beam. Be-
cause our experimental setup is free of squeezing, we called this nonlocal
property of continuous variable product states Nonlocality Without Squeez-
ing. Like nonlocality without entanglement, this new form of nonlocality
should not be understood as an incompatibility with local-hidden-variable
models (unlike the case of Bell tests), but rather as the manifestation of an
inherently global property. We note that the performed experiment nicely
illustrates the power of continuous variables when it comes to physically
verifying theoretical ideas. Although Peres and Wootters conjectured the
existence of a similar nonlocal behavior for qubits in 1991, the superior dis-
crimination of product states of two photons via entangled measurements
was verified experimentally only very recently [88, 65].

To conclude this chapter, it is interesting to make a parallel between
the different relations proved in Section 5.4 for coherent states, and their
counterpart for spin-1/2 particles. For discrete and continuous variables
respectively, these relations read

F⊥
Local = F⇈

Local < F⇈
Joint < F⊥

Joint

F ∗
Local = FLocal = FJoint < F ∗

Joint

Surprisingly, these two chains of relations are not equivalent. The main dif-
ference lies in whether a joint strategy is necessary to optimally discriminate
pairs of identical states. While for qubits the optimal strategy is joint and
entangled as demonstrated by Massar and Popescu, for coherent states the
optimal strategy is local and classical as demonstrated by Eq. (5.18). In a
sense, one can thus say that pairs of identical coherent states do not show
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any quantumness. However, introduce a more powerful correlation, such
as phase conjugation, and the quantumness of product coherent states is
strikingly revealed again. This is a nice illustration of the particular nature
of coherent states that lie at the border of the classical and the quantum
world, and justifies their appellation of quasi-classical states.
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6
Gaussian Error Correction

6.1 Introduction

Quantum information processing based on continuous variables offers many
interesting possibilities. One can for example use continuous variables to
investigate fundamental issues of the quantum theory. This was the focus of
the first part of this dissertation. In Chapters 4 and 5 for example, we con-
sidered two special nonlocal effects known for discrete variables and proved
their existence in the continuous regime. Interestingly enough, continuous
variables are not just a mere equivalent of discrete variables; they are often
much easier to implement. This is particularly true when the quadratures
of the electromagnetic field are used to carry the information. In Chapter 3
we took advantage of optical continuous variables to derive experimentally
feasible loophole free Bell tests. However, the benefit of this experimental
simplicity was made strikingly obvious with the nonlocality without squeez-
ing addressed in Chapter 5. While the Peres-Wootters nonlocality waited 14
years for an experimental demonstration, our continuous counterpart could
be tested almost immediately!

Interestingly, the reason of this latter success can be summed up in
a single word: Gaussian. Among all the operations one can apply to an
optical CV state, a large class of operations, known as the Gaussian oper-
ations, maintain the Gaussian character of Gaussian states. Remarkably,
they can all be implemented by combining passive and active linear optical
components such as beam splitters, phase shifters and squeezers, supple-
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mented with homodyne detection followed by classical communications, i.e.,
all elements that are, up to some degree of accuracy, readily accessible in
today’s optical labs! Recalling that basic Gaussian states can be easily gen-
erated with a laser, one notes that Gaussian protocols (Gaussian states +
Gaussian operations) are approximately those that can be relatively easily
implemented in an optical lab. Indeed, the experiment described in Chap-
ter 5, which involved two coherent states, a beam splitter and homodyne
detection, is nothing but a Gaussian protocol. This combination of Gaus-
sian states and Gaussian operations has recently enabled many important
quantum information primitives such as teleportation [43], quantum key
distribution [57] and quantum cloning [1].

However, manipulating Gaussian states with Gaussian operations has
also some theoretical limitations. Probably the most significant is the known
impossibility to distill entanglement from Gaussian entangled states with
local Gaussian operations and classical communications [35, 39, 46]. It fol-
lows that some important quantum primitives, such as quantum repeaters
for example, cannot be implemented within the easily accessible Gaussian
regime but require the use of hard to achieve non-Gaussian ressources like
photon-subtracted states [81] or de-gaussification operations [36]. One may
therefore question what are the other tasks central to QIS that are not
achievable with Gaussian operations only. Identifying these limitations of
the Gaussian regime is of great importance as it underpins the use of optical
continuous variables in short term quantum communication and quantum
information protocols.

In the remaining part of this dissertation, we will consider one such im-
portant primitive called error correction. Clearly, the ability to transmit,
store and manipulate quantum information without errors is prerequisite for
the realization of most quantum information protocols. However, errors are
inherent to any realistic implementation, and Gaussian errors in particular
model many physical processes such as the transmission of light through
a lossy optical fiber. In this chapter, we will thus try to answer the fol-
lowing question: Can we detect and correct Gaussian errors with Gaussian
operations only?

6.2 Preliminaries

Gaussian Error Correction

Building a quantum computer or a quantum communication network is a
difficult task. The main obstacle is the coupling of the information car-
rier with the environment. These effects, known as decoherence or noise,
rapidly destroy quantum superpositions and cause information losses. Error
correction is therefore a protocol used to suppress and undo the effect of
these errors. In classical information theory, the main tool is redundancy
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Figure 6.1: Schematic of a Gaussian error correction protocol G(n,E,D) for
a Gaussian channel T . E and D are n-mode unitary Gaussian operations.

as one can copy the information and transmit a sufficiently large number of
copies to enable successful majority voting. In quantum information theory,
however, information cannot be copied (see Sec. 2.1.2) but states can be
entangled. By cleverly distributing the information over a multipartite en-
tangled state, one can send quantum information “nonlocaly” and protect
it from local errors.

Error correction is generally achieved in two steps. An encoding step
where the input state is converted into a multipartite entangled state, and
a decoding step where the output state is extracted from the received noisy
entangled state. In this chapter, we will particularly focus on Gaussian er-
ror correction. This means that the coupling to the environment, known
as the channel, the encoding and the decoding steps are modeled by Gaus-
sian operations. In particular, we define a Gaussian Error Correcting Code
(GECC) for the Gaussian channel T as a finite number n−1 of ancillaes in a
known quantum state |0〉, two Gaussian unitary operations E and D acting
on n modes, and n use of the channel T as depicted in Fig. 6.1. We denote
this code by G(n,E,D) to emphasize its characteristics, and note that its
overall effect is to turn the Gaussian channel T with matrices M and N into
the Gaussian channel TGC with matrices MGC and NGC .

The Gaussian Formalism

As already mentionned in Chapter 2, Gaussian states and Gaussian opera-
tions are not only (relatively) simple to manipulate experimentally, they also
benefit from an attractive mathematical framework known as the Gaussian
formalism. This formalism is essential for the following sections, hence we
briefly recall some of its main elements.
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A single-mode Gaussian state ρ with vector of quadratures r̂ = (x̂, p̂)
is fully characterized by its vector of mean values dj = 〈r̂j〉 and the 2 × 2
covariance matrix γij = 〈r̂ir̂j + r̂j r̂i〉 − 2didj.

A Gaussian channel, on the other hand, is a trace-preserving completely
positive map

T : ρin → ρout = T [ρin] , (6.1)

which transforms Gaussian states into Gaussian states. It is completely
characterized by its action on d and γ, and at the level of covariance matrices,
the channel is represented by two matrices M and N

γ →MγMT +N , (6.2)

where M is real and N is real and symmetric. In this chapter, we will only
consider single-mode channels. In such cases, the condition of complete
positivity (2.97) simplifies to

detN ≥ (detM − 1)2, (6.3)

i.e., any map γ → MγMT can be approximately realized provided that
sufficient noise is added.

6.3 On the Impossibility of Gaussian Error Cor-

rection

The main result of this chapter takes the form of a no-go theorem. More
precisely, we will prove in the following section that a new intrinsic property
of Gaussian channels, named the Entanglement Degradation, cannot be re-
duced by Gaussian operations only. Although quite simple, the proof of our
theorem is greatly simplified by introducing two convenient lemmas.

6.3.1 Error Correction and Entanglement Distillation

For discrete systems, there is an interesting known connection between error
correction and entanglement distillation. In particular, it is proven in [13]
that every error correcting code is equivalent to a one-way entanglement
distillation protocol. The link between these two protocols is provided by
quantum teleportation (see Sec. 2.1.3). Distillation means that one can use
the resulting maximally entangled state to perfectly teleport an unknown
input state, i.e., effectively accomplishing error correction. Error correction
means that one can perfectly distribute a maximally entangled state, i.e.,
effectively realizing entanglement distillation.

For continuous variables on the other hand, the relation is not as straight-
forward. The main reason being that CV maximally entangled states are an
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Figure 6.2: From a GECC to a Gaussian Entanglement Distillation protocol.
m: Bell measurement, d: displacement

unphysical ressource, hence one needs to quantify the entanglement of the
physical states involved in the distillation process. Nevertheless, one can use
a similar argument to prove the following lemma:

Lemma 6.3.1 If |φr〉 is a two-mode squeezed vacuum with squeezing pa-
rameter r, the Gaussian error correcting code G(n,E,D) transforming the
Gaussian channel T into the Gaussian channel TGC is equivalent to a one-
way protocol transforming n copies of the state χ = limr→∞ 1⊗ T (|φr〉〈φr|)
into one copy of the state ρd = limr→∞ 1⊗ TGC(|φr〉〈φr|) by local Gaussian
operations only.

Proof Our main tool is the well-known isomorphism between CP maps and
positive operators [64]. In particular, to any Gaussian CP map T acting on
a one mode Hilbert space H, we can associate a Gaussian positive operator
χ on H⊗H defined as

χ = lim
r→∞

1⊗ T (|φr〉〈φr|), (6.4)

where

|φr〉 =

√

1 − tanh2(r)
∑

n

tanhn(r)|n, n〉

is a two mode squeezed vacuum. Acting with map T on a Gaussian state
ρ can now be seen as teleporting ρ through the quantum gate defined by
the ressource state χ [46]. It follows that the n uses of the channel involved
in the GECC can be replaced by n teleportations through the quantum
channel χ. Note that the operations involved in the teleportation, that
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is Bell measurement, one-way classical communications and displacement
maintain the overall Gaussian character of the scheme. If the input of the
GECC is now chosen to be one-half of a two mode squeezed vacuum, the
GECC is turned into a one-way local Gaussian protocol which transforms
n copies of the (Gaussian) state χ into one copy of the Gaussian state ρd =1 ⊗ TGC(|φr〉〈φr|). The protocol is the following: Alice prepares the state
|φr〉 and n−1 ancillae, then applies the Gaussian operation E on the ancillae
and one half of the entangled state. She next performs n Bell measurements
using the n copies of the ressource state χ, and communicates the results
to Bob. Bob displaces his n shares of the ressource state accordingly, and
applies the Gaussian operation D. Alice and Bob now share one copy of
the state ρd. In particular, if Alice prepares the maximally entangled state
limr→∞ |φr〉〈φr|, the state they share is ρd = limr→∞ 1⊗ TGC(|φr〉〈φr|). �

6.3.2 Entanglement Degradation of a Channel

The preceding lemma does not say anything about the entanglement of the
ressource sate χ and the transformed state ρd. This is the reason why we
referred to a one-way local protocol and not to a one-way entanglement dis-
tillation protocol. For the protocol to truly distill entanglement, one has to
show that it increases the entanglement, i.e., that E[ρd] > E[χ] for some
entanglement measure E. This is addressed in the following lemma.

Lemma 6.3.2 Given a Gaussian channel T of matrices M and N , acting
on one-half of the maximally entangled state ρin = limr→∞ |φr〉〈φr|, the
entanglement of the output state ρout = limr→∞ 1⊗T (|φr〉〈φr|) is completely
characterized by the Entanglement Degradation of the channel

ED[T ] = min{ detN

(1 + detM)2
, 1}. (6.5)

In particular, the logarithmic negativity of ρout is the decreasing function of
ED

EN [ρout] = −1

2
logED[T ]. (6.6)

Proof Let us first assume that detM ≥ 0. Without restriction, we can
choose M = η1 with η real. This is so because the channel can always
be transformed into another Gaussian channel with M ′ = SVMU and
N ′ = SV NV TS by adding two phase shifts of symplectic matrices U and
V at the input and output respectively, followed by a single mode squeezer
of matrix S at the end. Note that these operations are local, hence they
do not change the entanglement properties of the channel. By the Singular
Value Decomposition, U and V can be chosen such that VMU is diagonal,
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and tuning the squeezing appropriately will make M ′ proportional to the
identity, i.e., M ′ = η1. Importantly, the determinant of symplectic matrices
being equal to unity, we have detM ′ = detM and detN ′ = detN .

Let us now consider the action of the channel T on one-half of a two-
mode squeezed vacuum |φr〉〈φr| with covariance matrix γ

(r)
in . Recall that

covariance matrices of two-mode Gaussian states can be decomposed in four
2 × 2 blocks. Introducing this decomposition, we easily find the input and
output covariance matrices to be

γ
(r)
in =

(

Ar Cr

Cr Ar

)

−→ γ
(r)
out =

(

Ar ηCr

ηCr η2Ar +N

)

(6.7)

with

Ar = cosh(2r)

(

1 0
0 1

)

Cr = sinh(2r)

(

1 0
0 −1

)

.

Interestingly, the entanglement of a two-mode Gaussian state ρ with covari-
ance matrix

γ =

(

A B
BT C

)

is fully characterized by the smallest symplectic eigenvalue ν− of the partial
transposed state ρ̃ [20]. In particular, the logarithmic negativity is the
decreasing function

EN = max{0,− log ν−}, (6.8)

and ν− can be calculated from γ according to

2ν2
− = ∆̃ −

√

∆̃2 − 4 det γ , (6.9)

where

∆̃ = detA+ detC − 2 detB. (6.10)

For the output state ρ
(r)
out = 1 ⊗ T (|φr〉〈φr|) of covariance matrix γ

(r)
out, the
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two symplectic invariants ∆̃ and det γ
(r)
out read

∆̃ = detAr + det(η2Ar +N) − 2 det ηCr

= cosh2(2r) + (η4 cosh2(2r) + η2 cosh(2r)TrN + detN)

+ 2η2 sinh2(2r)

= cosh2(2r)(1 + η2)2 + cosh(2r)η2 TrN + (detN − 2η2)
(6.11)

det γ
(r)
out = detAr det(η2Ar +N − η2CrA

−1
r Cr)

= cosh2(2r) det(N +
η2

cosh(2r)
1)

= cosh2(2r)(
η4

cosh2(2r)
+

η2

cosh(2r)
TrN + detN)

= cosh2(2r) detN + cosh(2r)η2 TrN + η4 (6.12)

where we have used some known rules for the determinant of block matrices,
and the relation det(A+ λ1) = detA+ λTrA+ λ2 which is valid for 2 × 2
matrices.

We are now in the position to characterize the entanglement of ρout =
limr→∞ 1⊗ T (|φr〉〈φr|). We first calculate

lim
r→∞

2ν2
− = lim

r→∞
∆̃ −

√

∆̃2 − 4 det γ
(r)
out

= lim
r→∞

∆̃
(

1 −

√

1 − 4
det γ

(r)
out

∆̃2

)

= lim
r→∞

∆̃
(

1 − (1 − 2
det γ

(r)
out

∆̃2
)
)

= lim
r→∞

2
det γ

(r)
out

∆̃

= 2
detN

(1 + η2)2
(6.13)

by introduction of (6.11) and (6.12), and using
√

1 − x ≈ 1 − x/2 when
x≪ 1. Next we recall that detM = η2 and obtain the logarithmic negativity
of ρout

EN [ρout] = −1

2
log
(

min{ detN

(1 + detM)2
, 1}
)

. (6.14)

To conclude this proof, we must also consider channels characterized by
detM < 0. An example of such channel is the approximated unphysical
phase conjugation map used in Chapter 5. Using the same arguments as
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before, it is easy to show that we can restrict our attention to M = ηΛ,
where

Λ =

(

1 0
0 −1

)

. (6.15)

The two symplectic invariants can again be easily calculated, and while
det γout is the same as in (6.12), now ∆̃ = cosh2(2r)(1− η2)2 +O(cosh(2r)).
Remembering that detM = −η2, the symplectic eigenvalue reads again

lim
r→∞

2ν2
− = 2

detN

(1 + detM)2
. (6.16)

However, combining this expression with the condition of complete positivity
(6.3), one finds that for channels with detM < 0, the output state ρout can
never be entangled, i.e.,

detM < 0 ⇒ ν− ≥ 1

⇒ EN [ρout] = 0. (6.17)

These channels are called entanglement breaking channels as it is impossible
to use them to distribute entanglement. �

Let us briefly comment this second Lemma. First, we note that ρout is
entangled provided that ED < 1, i.e.,

EN [ρout] > 0 ⇔ detN

(1 + detM)2
< 1. (6.18)

For example, if we consider an attenuating channel (η < 1), one realizes that
for fixed attenuation the noise cannot be too large, while for fixed noise the
attenuation cannot be too strong in order to distribute entanglement across
the channel. However, for a purely lossy fiber (M = η1, N = (1 − η2)1),
ED is always less than one and the entanglement never vanishes, i.e. it is
always possible to distribute some entanglement across a lossy fiber.

Second, ED is an intrinsic property of channels which can be used to
compare their entanglement properties. As an example, consider two chan-
nels T1 and T2. The entanglement of their output states ρi

out = limr→∞ 1⊗
Ti(|φr〉〈φr|) with i = 1, 2 relate as

EN [ρ1
out] ≥ EN [ρ2

out] ⇔ ED[T1] ≤ ED[T2]. (6.19)

The latter property will prove very useful in the demonstration of the next
theorem.
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6.3.3 A No-Go theorem

Theorem 6.3.3 Given a Gaussian channel T of matrices M and N , it is
impossible to find a GECC that will transform T into a Gaussian channel
TGC of matrices MGC and NGC with smaller Entanglement Degradation,
i.e., such that

detNGC

(1 + detMGC)2
< min{ detN

(1 + detM)2
, 1} . (6.20)

Proof We will prove the theorem by contradiction. Suppose that there
exists the GECC of Fig. 6.1 whose overall effect is to transform T into TGC ,
and such that the corrected channel satisfies (6.20). By Lemma 6.3.1, there
exists the one-way local Gaussian protocol of Fig. 6.2 which transforms n
copy of the state χ into the state ρd = limr→∞ 1 ⊗ TGC(|φr〉〈φr|). Lemma
6.3.2 combined with condition (6.20) shows that E[ρd] > E[χ], hence the
one-way local protocol is a true entanglement distillation protocol based on
Gaussian operations only. This is in clear contradiction with the known
impossibility to distill entanglement from Gaussian states with Gaussian
operations. We conclude that such a GECC does not exist. �

6.4 Applications

6.4.1 Important Examples of Gaussian Channels

Lossy channel

The lossy channel Tη is characterized by M = η1 and N = (1 − η2)1 with
η < 1. It is the prototype for optical communication through a lossy fiber,
and can be modelled by a beam splitter of transmittance η. For a given
channel, the entanglement degradation

ED[Tη] =
(1 − η2)2

(1 + η2)2
< 1 (6.21)

is a decreasing function of η, hence by (6.20) it is impossible to find a GECC
that will turn a lossy channel into another lossy channel with less losses. One
could nevertheless hope to reduce the attenuation factor into η < ηGC < 1,
at the expense of an increasing noise NGC . By (6.20), this noise must satisfy

detNGC ≥ (1 + η2
GC)2

(1 + η2)2
(1 − η2)2. (6.22)

Amplification channel

The amplification channel is the same as the lossy channel with η > 1. In
particular, (6.21) holds, but now ED is an increasing function of η, i.e., it
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is impossible to make ηGC < η. Again, one can reduce the amplification,
for example by combining the amplification channel with a lossy channel, at
the expense of an increased noise.

Classical noise channel

The classical noise channel TN only adds Gaussian classical noise to a state,
i.e., M = 1 and N > 0. Its entanglement degradation is

ED[TN ] = min{detN

4
, 1}, (6.23)

and our theorem states that detNGC ≥ min{detN, 4}, i.e. it is impossible
to reduce the noise when detN < 4, or it is impossible to reduce the noise
under 4 when detN > 4. Note that this limit of 4 can always be reached
as the number of ancilae goes to infinity. The protocol is the following:
Alice measures the input state and prepares an infinite number of copies
that she sends to Bob. Bob measures the received states and prepares a
state centered on the average value of his measurement. This strategy is
equivalent to a measure-and-prepare (MP) strategy with detNMP = 4.

Arbitrary channel

Consider a Gaussian channel T with matrices M and N , and entanglement
degradation ED[T ] < 1. Furthermore, suppose that we wish to transform
this channel into a classical noise channel TGC , i.e., we would like MGC = 1.
The corrected channel will be characterized by a noise matrix NGC satisfying

detNGC ≥ 4

(1 + detM)2
detN, (6.24)

and our criteria provides a lower bound on the noise of the accessible chan-
nels.

6.4.2 Quantum Capacity

Interestingly, the entanglement degradation is connected to the quantum
capacity. Let us recall that the quantum capacity of a channel is defined
as the rate at which quantum states, qubits in particular, can be perfectly
transmitted through the channel (see 2.3.2). More precisely, the quantum
capacity Q[T ] of a channel T is the supremum c ≥ 0 such that for all ǫ,
δ > 0 there exist n, m, encoding E and decoding D with

∣

∣

∣

n

m
− c
∣

∣

∣
< δ, ‖1⊗n

2 −DT⊗mE‖cb < ǫ , (6.25)

where the norm of complete boundness ‖.‖cb is defined as

‖T‖cb = supn‖1n ⊗ T‖ (6.26)
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with ‖T‖ = supX‖T (X)‖1/‖X‖1. Although the quantum capacity is hard
to compute for most channels, Werner and Holevo introduced in [60] a com-
putable upper-bound known as QΘ. This capacity-like quantity, defined in
terms of the transpose operation, has some remarkable properties. In par-
ticular, it is known that QΘ[T ] can equivalently be defined as the maximal
entanglement, as measured by the logarithmic negativity, of states trans-
mitted through the channel T [60], i.e., states of the form 1⊗ T [ρ]. If T is
a single-mode Gaussian channel, we therefore deduce the following property
of the entanglement degradation

Corollary 6.4.1 Given a Gaussian channel T with entanglement degrada-
tion ED[T ], the quantum capacity Q[T ] of the channel is bounded by

Q[T ] ≤ −1

2
logED[T ] . (6.27)

Proof This result directly follows from the definition of QΘ and ED. �

Given how closely connected ED and Q are, the hope is now to use The-
orem 6.3.3 to prove a similar theorem for the quantum capacity. Such a
theorem would, in essence, state that the quantum capacity of a Gaussian
channel can never increase by means of Gaussian encoding and decoding
operations only. Although we have not succeeded yet, let us note the follow-
ing interesting comment. Intuitively, the quantum capacity of a channel T
gives the maximal rate at which T can be used to simulate the ideal chan-
nel 1. In particular, if T can never approximate 1, i.e., even if an infinite
number of instances of T , plus arbitrary encoding and decoding, does not
simulate 1, the quantum capacity Q[T ] is zero. Now, noting that ED[1] = 0,
and recalling that Theorem 6.3.3 states that ED can never be decreased by
Gaussian error-correction, one concludes that for a Gaussian channel T with
ED[T ] > 0, one will never find a GECC such as to approximate the ideal
channel, i.e., the encoding (E) and decoding (D) used in the definition of
the quantum capacity Eq. (6.25) are necessarily non-Gaussian.

6.5 Conclusion

The entire set of Gaussian operations can be implemented by combining
passive and active linear optical components such as beam splitters, phase
shifters and squeezers, with homodyne detection followed by classical com-
munications. This makes the Gaussian operations very attractive, since all
these elements can be found in most optical labs.

In this chapter, we investigated the feasibility of Gaussian error-correction,
i.e., the possibility to correct Gaussian errors on Gaussian states with Gaus-
sian operations only. Exploiting a connection between error-correction and
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entanglement distillation, we have proven that an intrinsic quantity of Gaus-
sian channels, called the entanglement degradation, could never be reduced
by Gaussian operations only. As a consequence, the encoder and decoder of
any efficient error correction scheme must be non-Gaussian when Gaussian
states are transmitted through a Gaussian channel. This result, combined
with the known impossibility to distil entanglement from Gaussian states
with Gaussian operations, shows the limitations of the experimentally fea-
sible Gaussian operations.

Finally, the entanglement degradation is shown to be related to the quan-
tum capacity. In particular, it can be used to easily compute a simple upper-
bound for the quantum capacity of a single-mode Gaussian channel. This
connection, combined with the demonstrated no-go theorem for the entan-
glement degradation, opens the possibility of a similar no-go theorem for
the quantum capacity of Gaussian channels.
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7
Experimentally Feasible Quantum

Erasure-Correcting Code

7.1 Introduction

Transmitting, storing or manipulating quantum information without errors
is prerequisite to the realization of most quantum information protocols. As
seen in the previous chapter, when Gaussian errors affect Gaussian states,
the easily accessible Gaussian toolbox made of beam splitters, phase shifters,
squeezers and homodyne detection is not sufficient to enable successful error
correction. This important result unfortunately shows that one needs non-
Gaussian operations to efficiently detect and correct Gaussian errors. These
non-Gaussian operations, such as photon subtraction for example [81], are
typically hard to achieve experimentally. Are the perspectives of experi-
mental continuous variable error correction doomed yet? Clearly not as one
can always escape the Gaussian paradigm of Gaussian error and Gaussian
correction by considering non-Gaussian errors corrected by Gaussian oper-
ations. Recently, this approach attracted a lot of attention and resulted
in the development of several methods to fight non-Gaussian noises in the
transmission of continuous variable Gaussian states. These schemes include
the purification of coherent states [2] and squeezed states [59, 41] from single
or several noisy copies, or the filtering of vacuum noise from an arbitrary
set of coherent states [104].

In this chapter, we will attack this problem from a slightly different
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perspective, considering schemes to eliminate losses instead of noise. More
presicely, we will consider the transmission of coherent states through a
channel, known as the erasure channel, which either transmits the informa-
tion perfectly, or erases it completely with a given probability pe, i.e., the
channel acts on a coherent state as

|α〉 → T [|α〉] = (1 − pe)|α〉〈α| + pe|0〉〈0|. (7.1)

This non-Gaussian channel is known to occur in realistic situations, e.g., re-
sulting from time jitter or beam pointing noise in atmospheric transmissions
[104].

As we will see, if one can detect whether an erasure has occurred, the
Gaussian toolbox (beam splitters and a feedforward loop based on homo-
dyne detection in this case) allows one to transmit Gaussian information
almost perfectly. Furthermore, we will show that even when errors cannot
be probed, replacing feedforward by postselection enables one to filter er-
rors efficiently. The experimental feasibility of the proposed protocols will
be addressed at the end of the chapter.

7.2 An Erasure Correcting Code for Discrete Vari-

ables

For qubits, the erasure channel was first considered by Grassl, Beth and
Pelizzari. In [54], they show how to protect one qubit from erasure by
encoding in a four-qubit entangled state. Although the corresponding code
is of minimal length, i.e., at least a four-qubit entangled state is needed to
efficiently fight one erasure, their code can tolerate an extra input qubit at
no cost. The encoding of their two-to-four one-error correcting code is

|00〉 → (|0000〉 + |1111〉)/
√

2

|01〉 → (|0110〉 + |1001〉)/
√

2

|10〉 → (|1010〉 + |0101〉)/
√

2 (7.2)

|11〉 → (|0011〉 + |1100〉)/
√

2,

and it has since then been used in various schemes such as the proposal for
an all-optical quantum memory [47].

This encoding can be achieved by the simple circuit depicted in Fig. 7.1,
where

∣

∣φ+
〉

= (|00〉 + |11〉)/
√

2 (7.3)

is a maximally entangled state, and the control-Not (CNOT) gate is a quan-
tum gate that flips the target qubit if the control qubit is one, i.e.,

|i〉c |j〉t → |i〉c |j ⊕ i〉t , (7.4)
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φ+

|b >

|a >

Figure 7.1: Encoding circuit for the qubit erasure-correcting code. |a〉, |b〉:
input qubit, |φ+〉: maximally entangled state used as ressource

with i, j = 0, 1 and addition is modulo 2.
Notice that the main ressource of the code is a maximally entangled

state used to delocalize the quantum information.

7.3 A Deterministic Protocol: Erasure Correction

7.3.1 The Optical Setup

Protecting the information: the Encoder

Can we adapt the circuit of Fig. 7.1 to the transmission of, e.g., coherent
sates? This circuit uses two different elements; a maximally entangled state
and four CNOT gates. Clearly, |φ+〉 has a direct continuous analog, namely
the EPR pair (a two-mode squeezed vacuum in practice). Furthermore, the
CNOT gate can be easily translated to the continuous variable regime. In
[6], its action on the canonical position and momentum operators is defined
as

x̂t = x̂t + x̂c x̂c = x̂c

p̂t = p̂t p̂c = p̂c − p̂t , (7.5)

where the indices c and t denote the control and target modes respectively.
However, in the continuous regime the CNOT gate is not its own inverse,
hence we must also introduce the CNOT† gate

x̂t = x̂t − x̂c x̂c = x̂c

p̂t = p̂t p̂c = p̂c + p̂t. (7.6)

Combining all these elements leads to the quantum circuit depicted in Fig.
7.2a. Remarkably, one can protect two coherent states from erasure by
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Figure 7.2: a) Encoding circuit for the CV quantum erasure-correcting code;
b) Optical implementation of the encoder using a two-mode squeezed vacuum
as ressource (EPR)

mixing them with an EPR pair through a quantum circuit made of two
CNOT and two CNOT† gates.

Unfortunately, there is no physical interaction between light modes which
is described by Eqs. (7.5) and (7.6). As a consequence, these two gates
cannot be easily implemented optically (see e.g. [106]), and the circuit
of Fig. 7.2.a cannot be realized directly. Nevertheless, this circuit can be
translated into an experimentally feasible optical setup using Bloch-Messiah
reduction theorem. This well known theorem of quantum optics states that
a multimode evolution with linear Bogoliubov transformation

b̂j =
∑

k

(Ajkâk +Bjkâ
†
k) + βj , (7.7)

where âj , b̂j are bosonic annihilation operators, may be decomposed into a
multi-port linear interferometer, followed by the parallel application of a set
of single mode squeezers, followed yet by another multi-port linear inter-
ferometer [17]. Recalling that any linear interferometer can be realized as
an array of beam splitters and phase shifters [89], one concludes that the
encoder of Fig. 7.2.a can be implemented by combining passive and active
linear optical components only, i.e. it is a Gaussian operation. A few simpli-
fications leads to the circuit depicted in Fig. 7.2.b. Protecting two coherent
states from erasure simply boils down to mixing the two input states with
a two-mode squeezed vacuum at two balanced beam splitters.

We note that a subpart of this circuit, where a coherent state is mixed
with one-half of an EPR pair, has been introduced in the context of CV
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quantum secret sharing. This connection between erasure-correction and
secret sharing is further explored in Appendix C.

Recovering the information: the Decoder

Let us now prove that we can correct losses provided that we monitor the
occurrence of erasures. Depending on the channel, this monitoring may be
achieved, e.g., by sending a probe pulse in an orthogonal mode, like another
polarization, another spatial, or another frequency mode.

Suppose for example that we loose mode A during the transmission (see
Fig. 7.2.b). We can recover the input coherent state |β〉 by mixing modes
C and D on a balanced beam splitter, thus effectively completing a Mach-
Zehnder interferometer. The other output port of the interferometer yields
one half of the EPR pair. The recovery of the other state |α〉 is a little
more demanding as the information has been attenuated and polluted by
quantum noise. However, this noise is exactly correlated with the other half
of the EPR pair, so that one can partly recover |α〉 by amplifying mode B in
a phase-insensitive amplifier of gain 2, using the second output port of the
Mach-Zehnder interferometer as the idler input of the amplifier. Remark-
ably, such an optical amplifier can be implemented using only linear optics,
homodyne detection, and feedforward, as demonstrated in [66]. The decoder
that corrects the loss of A based on this amplifier without nonlinearity is
depicted in Fig. 7.3.a.

However, to have a practical protocol, the decoding should work regard-
less the location of the erasure. This is made possible by noticing first that
the amplifier of Fig. 7.3.a treats both input ports of BS1 on the same foot-
ing. Thus, if we connect A to the empty input of BS1 and adapt the sign of
the electronic gains of the feedforward, the circuit can correct both erasures
of A or B. Next, notice that BS1 now plays the same role for A and B as
BS2 does for C and D. We thus find the decoding optical circuit shown in
Fig. 7.3.b.

7.3.2 Performances

Let us characterize our erasure-correction protocol. For two input modes
characterized by the conjugate quadrature operators (x̂in1, p̂in1) and (x̂in2, p̂in2),
and an EPR pair corresponding to

∆

(

x̂E3 − x̂E4√
2

)

= ∆

(

p̂E3 + p̂E4√
2

)

= e−2r, (7.8)

the two output modes can be written as

x̂out1(2) = x̂1(2) + gx
1(2) x̂m ,

p̂out1(2) = p̂1(2) + gp
1(2) p̂m , (7.9)
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Figure 7.3: a) Correction of an erasure of mode A via the phase-insensitive
amplification of mode B realized with homodyne detection and feedforward;
b) Decoding circuit correcting an erasure of any of the four modes.

where (x̂1, p̂1) and (x̂2, p̂2) are the upper and lower output modes just be-
fore displacement, (x̂m, p̂m) are the measured quadratures, and the gains are
given in Table 7.1.
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√
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Table 7.1: Electronic gains for different loss locations.

To verify these relations, suppose that mode A is lost during the trans-
mission. The upper mode before displacement is given by

x̂1 =
1√
2
x̂v +

1

2
x̂in1 −

1

2
x̂E3 ,

p̂1 =
1√
2
p̂v +

1

2
p̂in1 −

1

2
p̂E3 , (7.10)

where (x̂v, p̂v) refers to the vacuum mode introduced by the loss of A. The
measured quadratures are given by

x̂m =
1

2
x̂v −

1

2
√

2
x̂in1 +

1

2
√

2
x̂E3 −

1√
2
x̂E4 ,

p̂m =
1

2
p̂v −

1

2
√

2
p̂in1 +

1

2
√

2
p̂E3 +

1√
2
p̂E4 , (7.11)
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so that Eq. 7.9 yields

x̂out1 = x̂1 −
√

2 x̂m = x̂in1 − (x̂E3 − x̂E4) ,

p̂out1 = p̂1 −
√

2 p̂m = p̂in1 − (p̂E3 + p̂E4) . (7.12)

The performances of the protocol can now be easily evaluated using the
fidelity. While the lower input is perfectly recovered, i.e.,

Fβ = 1, (7.13)

the upper input will be recovered with the fidelity

Fα =
1

1 + e−2r
. (7.14)

7.3.3 Comments

To conclude this section, let us first note that the two fidelities can be
symmetrized by mixing the input modes entering the encoder and unmixing
them at the output of the decoder. This will effectively distribute the added
noise on both output modes, leading to

Fα = Fβ =
1

1 + 1
2e

−2r
. (7.15)
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Second, the fidelity (7.14) – or its symmetrized version – is independent of
the input coherent states, hence our erasure-correcting scheme is universal.
Finally, as seen on Fig. 7.4, the decoder becomes perfect at the limit of
infinite squeezing (r → ∞), and our protocol enables perfect transmission
of coherent states over the erasure channel.

7.4 A Probabilistic Protocol: Erasure Filtration

7.4.1 From Feedforward to Postselection

In a realistic experiment, probing erasure without loosing information, a
protocol known as a Quantum Non-Demolition (QND) measurement, is a
difficult task. While such QND measurement exist for single photons [47],
none is explicitly known for optical continuous variable states1. Unfortu-
nately, when erasure cannot be probed, we no longer know which set of
gains to choose from Table 7.1 and cannot correct errors. In addition, we
must consider multiple erasures, a possibility that was implicitly ignored in
the previous section. In such a realistic scenario, can we nevertheless use
our protocol to improve the transmission of coherent states over the erasure
channel?

Surprisingly, the answer turns out to be yes and can be summarized in
a single word: postselection. The key idea is to note that if the measured
quadratures are close to zero, then the output states do not need to be
displaced regardless of the location of the erasure, i.e., all 4 lines of Table 7.1
imply the same action. If they are far from zero, we discard the output
states, effectively replacing the feedforward loop by postselection.

The scheme is depicted in Fig. 7.5, and its underlying mechanism can be
easily understood. Suppose for example that no erasure occurs during the
transmission. The two detectors will receive squeezed states centered on zero
whose variances depend on the squeezing of the EPR pair, i.e., measuring the
appropriate quadrature will give zero on average. In the case of an erasure,
however, these squeezed states will be polluted and displaced according to
the intensity of the input states, i.e., the measured values will no longer
be centered around zero and the error can be detected. This probabilistic
protocol can thus be viewed as an erasure filter [51], which excludes the
output states that have been affected by an erasure during transmission.

1We note that a CV QND measurement was experimentally demonstrated very recently
[106].
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Figure 7.5: Schematic of the Erasure Filter.

7.4.2 Evaluating the Performances

In order to investigate our erasure filter, we introduce the Wigner function
of the two input modes together with the two modes of the EPR pair,

Win(r) =
1

π4
√

detγin
exp[−(r − din)γ−1

in (r − din)] , (7.16)

where r = (x1, p1, ..., x4, p4) is the vector of quadrature components, din is
the vector of first moments, and γin is the covariance matrix. According
to our protocol, this 4-mode state is processed through two parallel (lossy)
Mach-Zehnder interferometers, then modes 3 and 4 are mixed on a balanced
beam splitter and measured. Just before measurement, the 4-mode state
will have evolved into a non-Gaussian mixture of Gaussian states, whose
Wigner function can be written as

Wout(r) =
16
∑

i=1

piW
(i)
out(r) , (7.17)

whereW
(i)
out is the output Wigner function corresponding to one of the sixteen

events that can occur during transmission. These events range from no
erasure, with a probability of (1−pe)

4, to the erasure of all four modes, with
a probability of p4

e. Next, the p quadrature of mode 3 and x quadrature of
mode 4 are measured. If the outcomes are (xm, pm), the Wigner function of
the remaining modes reads

Wout(r
′|xm, pm) =

∫∫ −∞

−∞
dx3dp4Wout(r

′, x3, pm, xm, p4)

=

16
∑

i=1

piW
(i)
out(r

′|xm, pm) , (7.18)
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with r′ = (x1, p1, x2, p2). To calculate these sixteen Wigner functions, we
first partition each covariance matrix γ(i), i = 1, .., 16, of the output Wigner

functions W
(i)
out before the measurement (see e.g. [46])

γ(i) =

(

γ′ A
AT B

)

(7.19)

where B is the covariance matrix of the (traced over) quadratures x3 and
p4. We further partition the inverse of the covariance submatrix γ′ as

(γ′)−1 =

(

(γ′′)−1 E
ET D

)

, (7.20)

so that its block γ′′ contains the second moments of the remaining modes
after measurement. After some calculations (see Appendix D for more de-
tails), we obtain

W
(i)
out(r

′|xm, pm) =
1

π3
√

detγ′
exp[−δTFδ] × exp[−(r′ − d′)Tγ′′−1(r′ − d′)]

(7.21)

where δ is the vector of difference between the measured values (xm, pm) in
modes 3 and 4 and the corresponding mean values before measurement, dr

is the coherent vector of modes 1 and 2 before displacement, and

F = D − ETγ′′E (7.22)

d′ = dr − γ′′Eδ. (7.23)

We now introduce the threshold condition. If we decide to keep the
output states provided that

|xm| ≤ Xth

|pm| ≤ Pth, (7.24)

the resulting unnormalized Wigner function reads

Wth(r′) =

16
∑

i=1

pi

∫

th
dxm dpmW

(i)
out(r

′|xm, pm) , (7.25)

and the probability to keep the output state is

Ps =

∫

d4r′Wth(r′) , (7.26)

where the integration runs over the entire phase space of the two output
modes.
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Figure 7.6: Fidelity F (left) and success probability Ps (right) versus the era-
sure probability pe for various degrees of squeezing r and |Ψin〉 = |4+i4√

2
〉|0〉.

The dashed line is the fidelity without erasure filtration. All curves are plot-
ted with Xth = Pth = e−r, ηHD = 0.9 and ne = 0.

To evaluate the quality of the protocol, we calculate the fidelity of one
of the output mode, say for example mode 1,

Fps = (2π/Ps)

∫

d2r′1W
1
th(r′1)Wα(r′1) , (7.27)

where Wα is the Wigner function of the coherent state at input 1 and

W 1
th(r′1) =

∫

d2r′2Wth(r′). (7.28)

We then compare this fidelity to that resulting from the same state being
sent directly to the erasure channel, i.e.,

Fref = (1 − pe) + pe × 2π

∫

d2r′1W0(r
′
1)Wα(r′1) (7.29)

where W0 is the Wigner function of the vacuum.

7.4.3 Results

The formulas introduced in the previous section, (7.26) (7.27) and (7.29) in
particular, can be evaluated numerically with mathematical softwares like
Matlab. In order to properly simulate the results of an experiment, one has
to model imperfect homodyne detectors. This is achieved by adding a beam
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splitter with the desired transmitivity in front of a perfect detector.

The performances of the protocol are illustrated in Fig. 7.6 for the input
state

|ψin〉 = |4 + i4√
2

〉|0〉 (7.30)

and various degrees of squeezing. As expected, the fidelity improves with
squeezing, and we can achieve high fidelities while maintaining acceptable
probabilities of success. For example, with 6dB of squeezing (r = 0.69) and
an erasure probability of 0.2, we observe a fidelity of 0.97 and a success
probability above 33%.

We note that there is a trade-off between the fidelity and the probability
of success, tuned by the chosen threshold window. Indeed, a tight condition
will filter most errors but also discards acceptable output states, i.e. the
fidelity is high but the probability of success is low, while a loose condition
will keep most output states but tolerate a large number of errors, i.e. the
probability of success is high but the fidelity is low. Numerical simulations
suggest to choose Xth = Pth ≃ e−r, which corresponds to one standard-
deviation of the Gaussian squeezed state that should be detected in the
case of no errors. With perfect detectors and an erasure-free channel, this
condition already reject around 30% of the output states.

However, in contrary to the deterministic protocol, the probabilistic er-
ror filter is state-dependent since the ability of the protocol to detect an
erasure depends on the intensity of the input states. We note that it is also
affected by the squeezing parameter r (available entanglement and threshold
condition), but in practical applications r will be fixed as one will always
chose the maximum available entanglement. The dependence of the fidelity
with respect to the input intensities is investigated in Fig. 7.7 for a fixed
squeezing parameter. We note that this dependence is only significant at low
intensities and the protocol can be considered almost universal otherwise.
Note that the definition of “low” depends of the chosen r. For example,
with 6dB of squeezing and an erasure probability of 0.2 as above, increasing
the intensity of the first and/or second input of |4+i4√

2
〉|0〉 does not change

the fidelity by more than 1% (see Fig. 7.7).
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Figure 7.7: Left: Fidelity F versus the erasure probability pe for various
intensity of the first input state and r = 6dB, i.e. |ψin〉 = |α〉 |0〉 with
α = (2+ i2)/

√
2(lower dash), (4+ i4)/

√
2 (solid), and (100+ i100)/

√
2 (up-

per dash). Right: Fidelity F versus the erasure probability pe for various in-
tensity of the second input state and r = 6dB, i.e. |ψin〉 =

∣

∣(4 + i4)/
√

2
〉

|β〉
with β = 0 (solid), (4 + i4)/

√
2 (lower dash), and (100 + i100)/

√
2 (upper

dash).
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|α >

Figure 7.8: Simple setup to improve the transmission of coherent states over
the erasure channel.

7.4.4 A Simpler Setup

Interestingly, when no squeezing is used and one of the input state is the
vacuum, i.e., r = 0 and |β〉 = |0〉, our scheme boils down to a very simple
setup: the input coherent state is split on a balanced beam splitter, the two
resulting modes are sent through the channel and interfere at the reception
station. One of the two output beams is then heterodyne measured, and the
other is kept conditionally on the outcomes being close to zero (see Fig. 7.8).
As shown by the 0dB curve of Fig. 7.6, and further detailed in Fig. 7.9,
this strikingly simple protocol is sufficient to improve the transmission of
coherent states over the erasure channel.

7.5 Experimental Realization

Remarkably, the simplicity of our protocols allows for an experimental test.
This test is currently being implemented by the group of Dr. Ulrik L. An-
dersen of the Technical University of Denmark, and the first results are
expected for september 2008. In the following section, we will briefly foresee
this experimental realization and address its feasibility.

The efficiency of our protocols basically falls back on the quality of the
entanglement source. Gaussian entanglement can be produced through the
interference of two Gaussian, single-mode squeezed states generated either
using optical parametric oscillators [14] or single-mode fibers [52]. To enable
high efficiency and self-locked interference between the two modes, a system
where the two squeezed modes are produced in the same squeezing device
but in orthogonal polarization modes is envisaged. By using two orthogo-
nally orientated nonlinear crystals inside a single cavity, the two polarization
modes will be independently squeezed, have a relative phase which is inher-
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ently stable, and excite the same spatial mode as supported by the cavity
[71]. Using such a scheme, 6dB two-mode squeezing should be feasible. The
outputs of the entanglement source must then interfere with two coherent
states that can be defined as frequency sideband modes in a frequency range
in which the entanglement is most pronounced (see Sec. 5.5.1 for more de-
tails about the sideband encoding). The resulting four beams are then mixed
on three beam splitters. The spatial and temporal mode overlap at these
beam splitters can be almost ideal by using a continuous-wave light source
in a single spatial mode and a cavity based squeezing source.

For the measurement of modes 3 and 4, one should use high efficiency
and low noise homodyne detectors. To avoid the use of two separate local
oscillators (one for each homodyne detector) a simpler scheme relying solely
on two high sensitivity detectors can be employed, as discussed in [66]. The
measurement efficiency ηHD can then easily exceed 90%. Furthermore, the
electronic noise ne of the detectors and the associated feedforward electronics
should be kept low. Electronic noise 2-3 orders of magnitude smaller than
the shot noise is attainable [66].

In the deterministic scheme, the photocurrents must drive modulators
traversed by auxiliary beams which subsequently are mixed with the output
states 1 and 2 at very asymmetric beam splitters, thereby accomplishing a
clean and near loss free displacement [43, 96, 66]. In the probabilistic scheme,
the analog outputs of the measurement devices should be digitized with a
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high-resolution analog-digital converter, providing fast measurements even
when the success rate is low. The resulting outcome (xm, pm) is compared
with the threshold values and the two output states are either selected or
discarded. This selection process can be done electro-optically requiring fast
real-time feedforward and fast amplitude modulators or, alternatively, pure
electronically by selecting the digitized outcomes of the homodyne detectors
used to characterize the scheme.

7.6 Conclusion

In this chapter, we have shown how to exploit the feasible Gaussian op-
erations in order to protect Gaussian states from non-Gaussian errors. In
particular, we considered the transmission of coherent states through the
erasure channel, and designed a deterministic protocol based on feedforward
enabling a recovery of the input states with very high fidelities. The main
ingredient of this erasure-correcting code is an entangled state which permits
a “nonlocal” transmission of information robust to local erasures. The qual-
ity of the scheme only depends on the quality of the entangled ressource. In
particular, when highly entangled states are available, our protocol enables
the perfect transmission of coherent states over the non-Gaussian erasure
channel.

When errors cannot be probed, our erasure-correcting code can be trans-
formed into an efficient probabilistic error filter. To do so, we simply re-
placed the feedforward loop by postselection. The resulting protocol en-
ables a transmission of coherent states through the erasure channel with
high fidelities and at an acceptable rate. Remarkably, entanglement is no
longer necessary, and our filter is shown to work when entanglement is not
available.

The strength of our two protocols lies in the extreme simplicity of the
corresponding optical setup. A few beam splitters, a two-mode squeezed
vacuum, and two homodyne detectors are sufficient to implement the en-
tire scheme, thanks to the experimental simplicity of Gaussian operations
with optical continuous variables. Our proposed setup is currently being
demonstrated experimentally by the group of Dr. Ulrik L. Andersen.

We note that the protocols presented in this chapter are not restricted
to complete losses and coherent states. Partial losses can be corrected or
filtered as well, and the scheme applies to other Gaussian states, e.g. to the
transmission of squeezed states over the erasure channel.

Finally, erasure-correction is connected to other interesting primitives
of quantum information theory such as secret sharing and entanglement
distillation. In Appendix C, we show how to understand our scheme as the
first (3,4)-threshold CV quantum secret sharing protocol, and in Appendix
E, we investigate the possibility to use our simple optical setup to distil CV
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entanglement. We therefore expect our protocol to play an important role
in the rapidly developing field of continuous variable quantum information
and communication.
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8
Conclusion

Nearly a century after its discovery, quantum mechanics continues to be a
fascinating theory. Thanks to the introduction of information theoretic as-
pects, the advent of quantum information science has seen our view of some
of the most controversial aspects of quantum mechanics change from bizarre
properties of the theory to cherished ressources enabling a variety of proto-
cols. Quantum entanglement and quantum nonlocality are, unarguably, the
most emblematic symbols of this renewal. Understanding, characterizing,
and, most importantly, exploiting them to achieve e.g. secure communica-
tions or efficient computation has been at the center of quantum informa-
tion science for the past 25 years. In this dissertation, we investigated the
possibilities offered by a novel approach of quantum information based on
continuous variables of the electromagnetic field. The high performances
of homodyne detection, combined with the tractability of the generation of
Gaussian states, makes the use of such optical continuous variables partic-
ularly suitable for practical applications. Our work can be divided in two
complementary parts. In Chapters 3, 4, and 5, oriented towards fundamen-
tal issues, we investigated the peculiar relation between entanglement and
nonlocality. In Chapters 6 and 7, oriented towards practical applications,
we focused on an important primitive of quantum communications, namely
quantum error-correction.

Entanglement can give rise to nonlocal correlations. The main tool to
verify the existence of such nonlocal correlations between space-like sepa-
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rated locations is to check that the collected data violate a Bell inequality.
In Chapter 3, we advantageously exploited optical continuous variables
in order to design proposals for loophole-free Bell tests. Our main con-
tribution is the proof that it is always possible to maximally violate the
multipartie Mermin-Klyshko inequality based on quadrature measurements
of light modes. This result is highly non-trivial since the Mermin-Klyshko
inequality is in essence discrete. It follows that a Bell test of this kind based
on continuous variables requires one to discretize the continuous outcome
of the quadrature measurements, thereby discarding some information. Our
result shows that this loss is not crucial if one uses a suitable binning pro-
cedure, properly adapted to the states under investigation. Furthermore,
by allowing for a greater freedom in the search for a feasible multipartite
state that can tolerate experimental noise, our work confirms optical contin-
uous variables as a strong candidate for the experimental loophole-free Bell
test that physicists have long waited for. However, even if it was proven to
be unnecessary in theory, a truly continuous Bell test, i.e., one that does
not require a binning process, remains desirable as it would probably en-
able to fully exploit the potential of optical continuous variables. So far, all
proposed Bell tests relying on quadrature measurements of the field suffer
from a tradeoff between the magnitude of the violation and the experimen-
tal feasibility of the test. One can hope that such a novel approach will
not suffer from the same limitations, thereby enabling larger violations with
experimentally feasible states. While some preliminary results in that di-
rection have been recently obtained [19], we nevertheless note that, in the
present state of knowledge, our proposed noise-resistant multipartite Bell
test is probably the best candidate for an experiment based on homodyne
detection.

The relation between entanglement and nonlocality is known to be of
a complex nature. However, the relative simplicity, both theoretically and
experimentally, of the optical continuous variable approach makes it an in-
teresting framework to obtain new insight into these two essential ressources
of quantum information. In Chapters 4 and 5, we investigated the possibil-
ity to witness nonlocal effects based on continuous-variable product states.
In Chapter 4, in particular, we focused on nonlocality without entangle-
ment, namely the local indistinguishability that can be sometimes exhibited
by a set of locally prepared orthogonal product states. By introducing a
circuit-based picture of the phenomenon, we discovered a simple method
to generate this peculiar nonlocal effect from the computational basis of a
given multipartite d-dimensional Hilbert space. Increasing the dimension
towards infinity naturally led to the discovery of a set of continuous variable
product states exhibiting the desired behavior. However, the discovered set
is unrealistic as it relies on infinitely squeezed states of the electromagnetic
field. It is nevertheless a valid set, and can be considered as a proof of
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principle of the existence of nonlocality without entanglement in the contin-
uous variable regime. In order to show that the sets considered in Chapter
4 exhibit nonlocality without entanglement, we used a practical approach,
i.e., we simply proved that they could not be perfectly distinguished locally.
We note that a method to compute by how much these states fail to be
locally distinguishable, according to some figure of merit such as the mutual
information used in [11], is still missing. Such a method would enable an in-
teresting quantitative characterization of nonlocality without entanglement.
One could for example rank different sets of product states according to their
degree of this new nonlocality. Nonetheless, our work provides new tools to
tackle the questions raised by nonlocality without entanglement. For ex-
ample, one may wonder if this subtle nonlocal effect can be tested in the
laboratory, using some operational witness similar to the Bell inequalities
for standard nonlocality. Furthermore, since entanglement cannot increase
by LOCC, but nonlocality without entanglement proves that some separable
superoperators cannot be implemented by LOCC, one can ask whether some
separable superoperators can increase entanglement? We believe that our
work will help answer these questions in the near future. As an example, in
Appendices A and B we show how our results can be exploited to tackle
the related problems of unextendible product basis and bound entanglement
in arbitrary dimensions.

In Chapter 5, we considered another peculiar nonlocal behavior exhib-
ited by sets of classically correlated product states. Again, the nonlocal-
ity of the states is revealed by the measurement which discriminates them
best; although the states are product, this measurement is joint and entan-
gled. This is yet another illustration of the richness of entanglement, as it
can be used to efficiently extract information from purely classical corre-
lations. The main result of this chapter is the proof that such a nonlocal
effect can be witnessed in the continuous variable regime. The states con-
sidered are coherent states of the electromagnetic field, and the classical
correlation used is phase-conjugation, i.e., our ensemble is made of pairs of
phase-conjugated coherent states. We called this new phenomenon nonlo-
cality without squeezing. Surprisingly, identical copies of coherent states
do not exhibit this nonlocality, which is in clear opposition with the sim-
ilar effect known for discrete variables. Furthermore, since the considered
states and the optimal local and joint measurement strategies are all Gaus-
sian, the nonlocality without squeezing exhibited by our product coherent
states could be successfully demonstrated experimentally. This nicely illus-
trates the power of optical continuous variables. While the discrete counter-
part of our nonlocality waited 14 years for an experimental demonstration
[72, 88], nonlocality without squeezing could be tested immediately. How-
ever, we must note that the experiment performed was only a confirmation
of the theoretical predictions, not an operational test of nonlocality without
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squeezing. The existence of such a test remains an interesting open question.
Finally, the first part of the dissertation can be concluded by the following
comment. The nonlocal behaviors investigated in Chapters 4 and 5 show
that the information-theoretic content of some ensembles of product states
is larger when considered jointly than locally. Can this benefit be exploited
advantageously? Can we, for example, improve quantum communications
by using the domino states, or phase-conjugated coherent states? While
we do not have the answer, we note that such an application would make
our understanding of these two peculiar nonlocal effects change from bizarre
properties of quantum mechanics to true ressources that can be used effi-
ciently... a little like entanglement and nonlocality did 40 years ago.

The second part of this dissertation aimed at exploiting the experimen-
tal advantages of the optical continuous variable approach. The problem
we considered specifically is that of quantum error correction. In Chap-
ter 6, we investigated error correction from a Gaussian perspective since,
on the one hand many quantum channels can be modeled by a Gaussian
operation, and on the other hand the states and the operations that are ex-
perimentally feasible are mostly Gaussian. The main result of this chapter,
which takes the form of a no-go theorem, is the proof that Gaussian error-
correction is, unfortunately, strongly limited. In particular, we introduced
a new intrinsic quantity of (single-mode) Gaussian channels, called the En-
tanglement Degradation, and proved that this quantity can never decrease
if one is restricted to Gaussian operations. As a consequence, the encoder
and decoder of any efficient error correction scheme must be non-Gaussian
when Gaussian states are transmitted through a Gaussian channel. Our
new theorem, which nicely complements the known impossibility to distil
entanglement from a Gaussian state using local Gaussian operations only,
shows the need for efficient and reliable non-Gaussian operations. One such
operation has already been experimentally demonstrated, namely photon-
subtraction, but remains technically challenging. Although Gaussian oper-
ations (beam splitters, phase shifters, squeezers, etc) enable many quantum
information protocols such as quantum key distribution, teleportation, or
cloning, the future of optical continuous variables strongly relies on our
ability to masterize some non-Gaussian operations and their related non-
Gaussian states. To conclude, we note that our theorem is based on the
newly introduced entanglement degradation. However, a related impossi-
bility based on a well-known quantity could make our theorem a key tool
in the study of (single-mode) Gaussian channels. Interestingly, the entan-
glement degradation can easily be related to the quantum capacity, hence
we believe that our theorem can be extended to this widely used quantity.
Some preliminary results have already been obtained in this direction.

Despite the limitations demonstrated in the previous chapter, we proved
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in Chapter 7 that it is nevertheless possible to exploit the feasibility of op-
tical Gaussian operations in order to achieve efficient error-correction. The
trick we used to avoid the necessary non-Gaussian step is to consider the
transmission of Gaussian states through a non-Gaussian channel, i.e., the
non-Gaussian operation is accomplished by the noisy channel himself. In
particular, we considered the erasure channel which either transmits infor-
mation perfectly or erases it with a given probability. Remarkably, we have
shown that coherent states can be perfectly protected from such errors pro-
vided that the occurrence of erasure can be probed and highly entangled
two-mode squeezed vacuum can be prepared. These two requirements be-
ing experimentally challenging, we have also shown how to transform this
erasure-correcting code into an erasure-filter based on postselection. Our
filter can efficiently detect and discard polluted output states, and is shown
to be very performant with currently available two-mode squeezed vacuum.
Furthermore, since error-correction is known to be connected with entan-
glement distillation, we explored in Appendix E the possibility to convert
our error-filter into an experimentally feasible distillation protocol. The pre-
liminary results are very encouraging, but we have yet to rigorously prove
that our proposed protocol increases entanglement. Nevertheless, the intro-
duction of feasible protocols to distribute continuous-variable entanglement
over (large) distances, using either error-correction or entanglement distil-
lation, is an important step towards the realization of an efficient quantum
communication network based on optical continuous variables. Our results
demonstrate that such network can greatly benefit from the experimen-
tal simplicity of Gaussian operations. However, many natural decoherence
processes are Gaussian, hence restricting communications to non-Gaussian
channels is a strong limitation. We thus conclude this second part by noting
that the great potential of optical continuous variables will only be fully
realized the day we masterize efficiently (and at a low cost) a few key non-
Gaussian operations.
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A
N-Partite Unextendible Product

Bases

A.1 From Nonlocality Without Entanglement to

Unextendible Product Bases

Consider a n-partite quantum system belonging to H = ⊗n
i=1Hi, with the

local Hilbert spaces of respective dimensions di. An Unextendible Product
Basis, or UPB in short, is an incomplete orthogonal product basis whose
complementary subspace contains no product state (see Fig. A.1).

Interestingly, Unextendible Product Bases are closely connected to non-
locality without entanglement. More precisely, it is shown in [12, 27] that
the members of a UPB cannot be perfectly distinguished if one is restricted
to LOCC only, i.e. they exhibit nonlocality without entanglement. On the
other hand, a necessary and sufficient condition for the extendibility of a
product basis is also known, and this condition can be used to construct a
UPB from a complete product basis exhibiting NLWE. Starting from the
SHIFT ensemble (4.6) for example, one can use this method to construct
the following UPB [12, 29]

|Ψ4〉 = |0〉a|1〉b|0 − 1〉c
|Ψ6〉 = |0 − 1〉a|0〉b|1〉c
|Ψ7〉 = |1〉a|0 − 1〉b|0〉c
|Ψst〉 = |0 + 1〉a|0 + 1〉b|0 + 1〉c (A.1)
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UPB

H

ρ

no product states

Figure A.1: Representation of an unextendible product bases in a Hilbert
space H, and the associated bound entangled state ρ.

where the extra state |Ψst〉 is the stopper state whose role will be explained
later on. Interestingly, our systematic method of creating product bases
exhibiting NLWE can be easily transformed into a systematic construction
of UPBs based on the quantum circuits introduced in Sec. 4.5. This circuit
based approach probably does not account for the construction of all possible
UPB, but it nevertheless enables the construction of a large family of UPBs
in a variety of scenarios.

A.2 Examples

Let us illustrate this construction with a simple example. Consider the
quadripartite circuit of Fig. 4.4 and suppose Alice, Bob, Charles, and Damian
hold systems of dimension da, db, dc, and dd, respectively. This circuit gen-
erates an ensemble {|Ψi〉} made of dadbdcdd orthogonal product states ex-
hibiting NLWE. To construct an UPB out of {|Ψi〉}, we extract the da − 1
states in which Alice’s share is any state of the DB except the last one, the
db−1 states in which Bob’s share is any state of the DB except the last one,
the dc − 1 states in which Charles’ share is any state of the DB except the
last one, and the dd − 1 states in which Damian’s share is any state of the
DB except the last one. We complete these

∑4
i=1(di − 1) states by adding a

proper stopper state, so as to force the unextendibility of the set. Note that
the number of states m in a UPB is known to verify [12]

m ≥
n
∑

i=1

(di − 1) + 1 (A.2)
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so that the above construction yields a minimal UPB. More specifically, the
UPB consists of the following states

|Ψ0
1〉 = |0〉a|1〉b|2〉cF |0〉d

...

|Ψdd−2
1 〉 = |0〉a|1〉b|2〉cF |dd − 2〉d

|Ψ0
2〉 = |1〉a|2〉bF |0〉c|0〉d

...

|Ψdc−2
2 〉 = |1〉a|2〉bF |dc − 2〉c|0〉d

|Ψ0〉
3 = |2〉aF |0〉b|0〉c|1〉d

...

|Ψdb−2
3 〉 = |2〉aF |db − 2〉b|0〉c|1〉d

|Ψ0
4〉 = F |0〉a|0〉b|1〉c|2〉d (A.3)

...

|Ψda−2
4 〉 = F |da − 2〉a|0〉b|1〉c|2〉d

|Ψst〉 = F |da − 1〉aF |db − 1〉bF |dc − 1〉F |dd − 1〉

where F |i〉 is the Discrete Fourier Transform of |i〉. To understand why this
set is unextendible, suppose we want to add a new product state that is
orthogonal to it. Clearly, because of the da − 1 states that are in the DB
for Alice together with the stopper sate, we cannot find a state orthogonal
to Alice’s share (this subset of da states span her entire subspace). So, we
should try to look for a product state that is orthogonal to this set within
Bob’s, Charles’ or Damian’s subspaces. But the same argument holds for
their subspaces too, hence no product state can be found that is orthogonal
to all the states, i.e. the set is unextendible.
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B
N-partite Bound Entangled States

Interestingly, unextendible product bases are connected to another impor-
tant quantum property called Bound Entanglement. A Bound Entangled
(BE) state is an entangled mixed state from which no pure entanglement
can be distilled [61, 62]. The role of bound entanglement in nature, and its
yet-to-find possible use for quantum information processing has attracted a
lot of attention lately. Although the construction of bound entangled states
has proven to be a difficult task, it was recently realized that the state cor-
responding to the uniform mixture on the subspace orthogonal to an UPB
{|ψ̃i〉, i = 1, · · ·m}, namely

ρ̂ =
1

D −m

(

1 −
m
∑

i=1

|ψ̃i〉〈ψ̃i|
)

(B.1)

is a bound entangled state [12], where D is the total dimension of the Hilbert
space. This is one of the only known generic method to construct bound
entangled states. The quantum circuit formalism introduced in Chapter 4
provides a simple strategy to construct a large number of UPBs, hence it also
provides a simple method to construct a large number of BE states. As an
example, consider the quadripartite UPB defined in Appendix A (Eq. (A.3)).
By definition, the space complementary to this UPB contains no product
states, hence ρ̂ is entangled. We can use the partial transposition to show
that every partitioning of the parties is PPT: indeed, the identity is invari-
ant under partial transposition and the product states |ψ̃i〉 of the UPB are
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mapped onto other product states. Thus, no entanglement can be distilled
across any bipartite cut. In addition, note that if some pure global entangle-
ment could nevertheless be distilled, it could be used to create entanglement
across a bipartite cut; hence no entanglement at all can be distilled and the
state is indeed bound entangled.

In the special case where the exclusivity condition Eq. (4.7) is saturated,
i.e., when n = d+1 parties hold each a system of dimension d, we can prove
the following theorem:

Theorem B.0.1 When d+1 parties each hold a system of dimension d, the
BE state produced by our method has zero entanglement across any d ⊗ dd

cut.

Note that this result, already known for the special case of the SHIFT en-
semble [12], is stronger than the nondistillability of bipartite entanglement
across any d⊗ dd cut.

Proof We first explicitly separate Alice from the other parties and rewrite
the d2 states of the UPB as

|Ψ1,i〉 = |0〉|ai〉, |ai〉 = |1, 2, . . . , d− 2, F (i)〉
|Ψ2,i〉 = |1〉|bi〉, |bi〉 = |2, . . . , d− 2, F (i), 0〉

...

|Ψd,i〉 = |d− 1〉|ei〉, |ei〉 = |F (i), 0, . . . , d− 3〉
|Ψd+1,i〉 = |F (i)〉|f〉, |f〉 = |0, . . . , d− 1〉

|Ψst〉 = |F (d − 1)〉|g〉, |g〉 = |F (d− 1), . . . , F (d − 1)〉

where i = 0, . . . , d− 2, and F (i) means F |i〉.
Next, we note that |f〉 and |g〉 span a Hilbert space S =span(f ,g)

of dimension 2, and that all the states in this space are orthogonal to
{|ai〉, |bi〉, . . . , |ei〉}. We thus define the Hilbert space S′ = H(dd)/S of di-
mension dd − 2 such that (i) all the states in this space are, by construction,
orthogonal to |f〉 and |g〉; and (ii) all the states {|ai〉, |bi〉, . . . , |ei〉} are in
S′. We can therefore find an ensemble of dd − d − 1 orthogonal vectors
|a⊥k 〉 such that every |a⊥k 〉 belongs to S′ and is orthogonal to all the |ai〉,
i.e. {|ai〉, |a⊥k 〉} is an orthogonal basis of S′. We repeat that procedure
for the {|bi〉} and define dd − d − 1 vectors |b⊥k 〉 in S′, until we have de-
fined the last dd − d − 1 vectors |e⊥k 〉 associated to the states {|ei〉}. In
addition, we can also define |f⊥〉 and |g⊥〉 in S, orthogonal to |f〉 and |g〉
respectively. We can now use all these new vectors to complete the origi-
nal UPB and make it a full dd+1-dimensional product basis between A and
BC...E. This is done by adding the d(dd − d− 1) + (d− 1) + 1 = dd+1 − d2
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new states {|0〉|a⊥k 〉, |1〉|b⊥k 〉, . . . , |d−1〉|e⊥k 〉, |F (i)〉|f⊥〉, |F (d−1)〉|g⊥〉}. This
shows that with respect to the cut A and BC...E, the set is completable by
product states and the mixed state ρ̂ is therefore not entangled. Because
the state is symmetric, this argument also applies to the other d⊗ dd splits
which completes the proof, i.e., our generic bound entangled state contains
no entanglement across any such cuts. �
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C
CV Secret Sharing

In classical cryptography, secret sharing refers to a method for distributing
a secret amongst a group of n players, each of which is allocated a share of
the secret. The shares are chosen in such a way that any group of t (for
threshold) or more players can together reconstruct the secret but no group
of fewer than t players can. Such a system is called a (t, n)-threshold secret
sharing scheme. A typical application of secret sharing consist of a boss
and three untrusted employees. The boss wants his employees to access the
voucher of the company provided that two or mode collaborate.

The quantum version of secret sharing uses quantum states to encode
the message [25, 53]. In contrary to classical secret sharing, quantum secret
sharing is constrained by the no-cloning theorem, i.e. in any (t, n)-threshold
quantum secret sharing scheme, t > n/2. Interestingly, there is a connection
between quantum secret sharing an quantum erasure correction. Indeed, any
erasure correcting code is a quantum secret sharing protocol where the secret
is distributed using the encoder, and can be decoded using the decoder. As
an example, consider the erasure-correcting scheme presented in Sec. 7.3.
The secret, the input coherent states |ψsec〉 = |α〉 |β〉, can be distributed
to the four players using the circuit of Fig. 7.2.b . As the protocol can
tolerate one erasure, every group of three player can recover the secret using
the circuit depicted in Fig. 7.3.b, and our erasure correcting code is the
first (3,4)-threshold CV quantum secret sharing protocol. We note that a
(2,3)-threshold CV quantum secret sharing protocol which resemble ours
was proposed in [96] and later demonstrated experimentally [69]. However,

147



CHAPTER C. CV Secret Sharing

in their implementation, the message was recovered up to an unfeasible
unitary operation. As our protocol can be fully implemented with nowadays
technology, it is thus the first truly experimentally feasible CV quantum
secret sharing protocol.

148



D
Manipulating Wigner functions

D.1 Partial Trace

Consider a bipartite gaussian state ρAB of displacement vector and covari-
ance matrix dAB and γAB respectively. In phase-space representation, trac-
ing mode B corresponds to integrating the Wigner function WAB over the
quadratures (xB , pB). However, this operation can be achieved much easily
at the level of characteristic functions. If ρAB has a characteristic function
χAB(ξA, ξB), ρA = TrB(ρAB) has a characteristic function

χA(ξA) = TrA[ρADA(ξA)] (D.1)

= TrA[TrB(ρAB) DA(ξA)] (D.2)

= TrA[TrB[ρAB DA(ξA) ⊗ 1B ]] (D.3)

= TrAB[ρAB DA(ξA) ⊗DB(0)] (D.4)

= χAB(ξA, 0). (D.5)

Using the relation (2.82) for the characteristic function of a gaussian state,
one concludes that ρA is a gaussian state of covariance matrix γA, where γA

is the diagonal block of γAB corresponding to mode A

γAB =

(

γA C
CT γB

)

−→ γA, (D.6)

and displacement vector dA, with

dAB = (dA, dB) −→ dA. (D.7)
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D.2 Conditional measurement

Consider a two-mode gaussian state ρAB with Wigner functionWAB(rA, rB),
and a measurement of the quadrature xB with an ideal homodyne detector.
If the result is xm, the Wigner function of mode A after the measurement is

WA(rA|xm) =

∫

dpBWAB(rA, xm, pB). (D.8)

Recalling the result of the previous section, we partition the covariance
matrix γAB with respect to the traced over quadrature pB

γAB =

(

γ′ B
BT b

)

(D.9)

and write the Wigner function as

WA(rA|xm) =

√

det(γ′)−1

π3/2
exp[−(r′ − d′)T (γ′)−1(r′ − d′)] , (D.10)

where r′ = (rA, xm) and d′ = (dA, dxB
). To isolate the quadratures of the

remaining mode A, we further partition γ′ with respect to the measured
quadrature xB

(γ′)−1 = Γ′ =

(

Γ′′ E
ET e

)

. (D.11)

The Wigner function simplifies to

WA(rA|xm) =
1

π3/2

√

det Γ′

det Γ′′ exp[−δxB
FδxB

]

×
√

det Γ′′

π
exp[−(rA − d′A)T Γ′′(rA − d′A)] (D.12)

after the introduction of

δxB
= xm − dxB

(D.13)

F = d−ET (Γ′′)−1E (D.14)

d′A = dA − (Γ′′)−1EδxB
(D.15)

In other words, mode A is a gaussian state of covariance matrix γ′A = (Γ′′)−1

and displacement vector d′A. Note that d′A depends on the measured value
xm, while γ′A does not, and that the Wigner function (D.12) is not normal-
ized. The probability to measure xm is

P (xm) =

∫

drA WA(rA|xm). (D.16)
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D.3 Single-mode Fidelity

Suppose we have two single-mode gaussian states with Wigner functions

W1(r) =

√
det Γ1

π
exp[−(r − d1)

tΓ1(r − d1)] (D.17)

W2(r) =

√
det Γ2

π
exp[−(r − d2)

tΓ2(r − d2)] (D.18)

where r = (x, p), and Γi = γ−1
i is the inverse of the covariance matrix of

mode i. Their fidelity reads

F = 2π

∫

dr W1(r)W2(r) (D.19)

=
2
√

det Γ1Γ2

π

∫

dr exp[−(r − d1)
tΓ1(r − d1) − (r − d2)

tΓ2(r − d2)]

=
2
√

det Γ1Γ2

π
exp[∆(d1,Γ1, d2,Γ2)]

∫

dr exp[−(r − d′)t(Γ1 + Γ2)(r − d′)]

(D.20)

after the introduction of

d′ = (Γ1 + Γ2)
−1(Γ1d1 + Γ2d2) (D.21)

∆(d1,Γ1, d2,Γ2) = d′t(Γ1 + Γ2)d
′ − (dt

1Γ1d1 + dt
2Γ2d2). (D.22)

Now, remember that Wigner functions are normalized. It follows that the
integral of (D.20) yields

∫

dr exp[−(r − d′)t(Γ1 + Γ2)(r − d′)] =
π

√

det(Γ1 + Γ2)
(D.23)

from which we deduce

F = 2

√

det Γ1Γ2

det(Γ1 + Γ2)
exp[∆(d1,Γ1, d2,Γ2)]. (D.24)

Note that ∆(d1,Γ1, d2,Γ2) = 0 when d1 = d2, hence for two gaussian state
with same center in phase-space, the fidelity simplifies to

F = 2

√

det Γ1Γ2

det(Γ1 + Γ2)
. (D.25)
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E
Entanglement Distillation

E.1 Introduction

Entanglement is a key ressource for many quantum information protocols.
The teleportation of quantum states, for example, requires Alice and Bob
to share an entangled state, and the performances of the protocol strongly
rely on the quality of this entangled pair. In practice, the transmission
channel between Alice and Bob is always noisy and imperfect, hence the
entanglement they can share is limited and polluted. Fortunately, fighting
these imperfections and nevertheless establish a good entangled pair over
the noisy channel is made possible by a technique called entanglement dis-
tillation.

The idea of entanglement distillation is to extract from a large number
of weakly entangled mixed state a smaller number of highly entangled al-
most pure states. Recall that Alice and Bob are spatially separated, hence
the operations allowed in the protocol are restricted to local operations and
classical communications only (LOCC). Regardless of the importance of en-
tanglement distillation for the future of QIS, only a few experimentally fea-
sible protocols are known in the continuous variable regime, and none has
been succesfuly demonstrated yet. This is a direct consequence of the fa-
mous no-go theorem for Gaussian entanglement distillation. This theorem,
established simultaneously in [35, 39, 46], states the impossibility to distil
Gaussian entangled states with local Gaussian operations only. Recall that
we used this theorem to establish the no-go theorem for gausssian error-
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Figure E.1: Experimentally feasible distillation protocol. BS: Beam splitter,
EPR: two-mode squeezed vacuum.

correction introduced in Chapter 6

To avoid the use of experimentally hard non-Gaussian operations such as
in [36], but nevertheless distil entanglement with Gaussian operations only,
research has recently focused on non-Gaussian channels. In [41, 40], the
authors exploit the known connection between error correction and entan-
glement distillation to transform a purification protocol for phase-diffused
squeezed states into an experimentally feasible entanglement distillation
protocol. Inspired by this result, we are tempted to convert the erasure-
correcting code presented in chapter 7. In particular, we will concentrate
on the probabilistic protocol of Sec. 7.4 as it is closer from a realistic imple-
mentation.

E.2 Optical Setup

Let us first note that our erasure-correcting code can improve the distribu-
tion of entanglement as one can use it to distribute and protect one-half of
an entangled two-mode squeezed state. Second, at least in theory, it can
be transformed into an entanglement distillation protocol according to the
scheme of Fig. 6.2. However, this latter scheme is far from an experimentally
feasible setup.

To obtain a protocol that is feasible with today’s technology, we intro-
duce the optical setup of Fig. E.1 which uses four noisy entangled states
to possibly produce two more entangled ones. We thus call this protocol
a (4 → 2)-entanglement distillation protocol. The distillation works as fol-
lows. A preparator, located between Alice and Bob, prepares four two-mode
squeezed vacuum and distributes them through the erasure channel. After
reception of the modes, Alice and Bob share four weakly entangled non-
gaussian states. To distil entanglement, they both mix their four modes
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EPR

EPR

☎ ☎

Bob

❊ ❊

Alice

Figure E.2: Experimentally feasible distillation protocol, a simpler version.
BS: Beam splitter, EPR: two-mode squeezed vacuum.

using three balanced beam splitters, then measure the x and p quadrature
of modes 2 and 3 respectively. Next, Alice and Bob compare their values,
and keep the two remaining output states according to some threshold con-
dition. When their measurement result is (xA

m, p
A
m) and (xB

m, p
B
m) for Alice

and Bob respectively, the chosen condition reads

|xA
m − xB

m| < Xth

|pA
m + pB

m| < Pth. (E.1)

Remarkably, considering the simplified erasure-filter of Fig. 7.8 as our start-
ing point, we can also introduce an even simpler distillation setup in which
Alice and Bob receive two noisy entangled states, mix their shares at a
balanced beam splitter, measure both conjugate quadratures of one of the
output mode (heterodyne detection), and post-select the output state ac-
cording to the threshold condition (E.1). This (2 → 1)-entanglement distil-
lation protocol is illustrated in Fig. E.2. Interestingly, it is equivalent to the
protocol introduced in [40], up to the detection scheme; our protocol uses
heterodyne detection, while theirs is based on homodyne detection.

E.3 Performances

The entanglement of the initial Gaussian two-mode squeezed vacuum is fully
quantified by the EPR variance

∆EPR = 〈(∆x−)2〉 + 〈(∆p+)2〉 (E.2)

where

x− = (xA − xB)/
√

2 (E.3)

p+ = (pA + pB)/
√

2 (E.4)
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Figure E.3: Performances of the (4 → 2)-entanglement distillation protocol
for various degrees of entanglement of the input two-mode squeezed vacuum.
Left: EPR variance as a function of the erasure probability. Right: Probabil-
ity of success as a function of the erasure probability. All curves are plotted
with Xth = Pth = e−r, ηHD = 0.9 and ne = 0.

are two commuting quadratures of the bipartite state. When the state is
entangled, these two quadratures are squeezed and

∆EPR < 1. (E.5)

Strictly speaking, the EPR variance is not an entanglement measure for non-
Gaussian states. Nevertheless, the criterion (E.5) is a necessary condition
of entanglement [30], which quantifies the amount of nonlocal correlations
between the two modes of the state. With respect to a true entanglement
measures such as the logarithmic negativity, the EPR variance holds the
advantage of being easily measured experimentally, and easily computable
theoretically based on the Wigner function.

The performances of the (4 → 2)-entanglement distillation protocols are
illustrated in Fig. E.3. Note that, as for the erasure-filter of chapter 7,
imperfect detectors have been simulated by a beam splitter preceding an
ideal detector, and the chosen threshold condition is Xth = Pth = e−r where
r is the squeezing parameter of the input two-mode squeezed vacuum. As
expected, we clearly observe a decrease of the EPR variance for three differ-
ent input entanglement. We note that the (2 → 1)-entanglement distillation
protocol exhibits very similar performances, except from a slightly lower
probability of success.
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However, in order to rigorously prove that our two protocols increase
entanglement, the entanglement should be quantified by a proper entan-
glement measure such as the logarithmic negativity (2.25). Unfortunately,
this calculation has to be done based in the Fock state basis as computing
the logarithmic negativity of a state requires the knowledge of its spectrum.
This makes the numerical simulations much more complicated, and we have
not succeeded in this last step yet.

E.4 Conclusion

The erasure-filter introduced in chapter 7 can be easily converted into an
experimentally feasible entanglement distillation protocol. According to the
EPR variance, the resulting protocol does improve the distribution of en-
tanglement over the erasure-channel. However, the EPR variance is not a
proper entanglement measure for non-Gaussian states, hence future work
should consider a true entanglement measure such as the logarithmic nega-
tivity in order to rigorously demonstrate the benefit of our proposed optical
setup. Furthermore, we have not yet considered iterative procedures, nei-
ther did we characterized the purity of the output entangled states. All
these questions should be addressed in order to seriously evaluate the per-
formances of the proposed entanglement distillation protocols.
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