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Abstract. Proving the unconditional security of quantum key distribution
(QKD) is a highly challenging task as one needs to determine the most efficient
attack compatible with experimental data. This task is even more demanding for
continuous-variable QKD as the Hilbert space where the protocol is described
is infinite dimensional. A possible strategy to address this problem is to
make an extensive use of the symmetries of the protocol. In this paper, we
investigate a rotation symmetry in phase space that is particularly relevant to
continuous-variable QKD, and explore the way towards a new quantum de
Finetti theorem that would exploit this symmetry and provide a powerful tool
to assess the security of continuous-variable protocols. As a first step, a single-
party asymptotic version of this quantum de Finetti theorem in phase space is
derived.

5 Author to whom any correspondence should be addressed.

New Journal of Physics 11 (2009) 115009

1367-2630/09/115009+12$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:anthony.leverrier@enst.fr
http://www.njp.org/


2

Contents

1. Introduction and motivation 2
2. Role of symmetry in the security proofs 4
3. Phase-space symmetry for continuous-variable QKD 6

3.1. Brief summary of the theoretical analysis of continuous-variable QKD . . . . . 6
3.2. Rotation symmetries for continuous-variable QKD . . . . . . . . . . . . . . . 6

4. Invariant states under orthogonal transformations in phase space 7
4.1. Single party case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2. An asymptotic quantum de Finetti theorem for orthogonally invariant states . . 8
4.3. Bipartite case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Conclusion and perspectives 11
Acknowledgments 11
References 12

1. Introduction and motivation

The greatest novelty brought by quantum key distribution (QKD) is that, for the first time, a
secret key agreement scheme can be proven unconditionally secure, that is, without making any
assumptions about the power of an adversary.

Even if this claim has been made repeatedly since the proposal of the first QKD protocol in
1984 [1], it is only recently that complete proofs of security have been rigorously established.
Proving the security of a scheme without making any simplifying assumptions is indeed quite
challenging: the legitimate parties, Alice and Bob, need to infer what is the most efficient attack
that an eavesdropper, Eve, could perform. This can be achieved by considering all bipartite
states, ρAB, compatible with Alice and Bob’s data, but this quickly becomes almost untractable
since the dimension of the Hilbert space,H⊗n, relevant to describe ρAB grows exponentially with
the number, n, of quantum signals exchanged during the protocol. As a consequence, security
proofs were often derived while restricting the adversary to the so-called collective attacks. In
such attacks, the state ρAB is supposed to be independent and identically distributed (i.i.d.),
meaning that there exists a state σAB ∈H such that ρAB = σ⊗n

AB . As a consequence, the Hilbert
space needed to analyze the protocol becomesH instead ofH⊗n: no need to emphasize that this
‘small’ assumption considerably simplifies the analysis!

The question then is to know whether such a hypothesis limits the power of the adversary
in a non-trivial way, or, said otherwise, whether this leads to an unreasonably optimistic view of
the security of QKD. Fortunately, this is not the case as collective attacks were recently proven
asymptotically optimal against protocols described with a finite-dimensional Hilbert space [2].
The main tool used to answer this problem was a quantum de Finetti theorem, which means,
roughly speaking, that a certain class of states in H⊗n, namely symmetric states, can be well
approximated by mixtures of i.i.d. states. From a cryptographic point of view, this means that
general symmetric attacks are almost the same as collective attacks. The last step to complete
the proof is to show that a symmetric attack is optimal for the eavesdropper, or, equivalently,
that the state ρAB can safely be assumed symmetric, which is indeed the case for most QKD
protocols.
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The quantum de Finetti theorem is thus quite powerful as it allows us to derive the security
of a QKD scheme against arbitrary attacks as soon as it is proven. Moreover, the full security
is obtained almost for free, in the sense that the decrease of key size caused by allowing the
adversary to perform any non-collective attack is negligible, at least in an asymptotic regime.
In a finite size scenario, however, the impact on the key size could be significant, although it
should be compared with other finite-size effects such as the precision of parameter estimation
or the efficiency of error correction [3, 4]. In this context, alternatives to the de Finetti theorem
might also be worth investigating as they can lead to improved bounds [5].

Unfortunately, the application of the quantum de Finetti theorem, that was presented in [2],
is restricted to QKD schemes that are described in a finite-dimensional Hilbert space. Apart
from the fact that describing any protocol in the finite-dimensional Hilbert space is nothing less
than an approximation (even though quite a reasonable one for protocols involving qubits), it
is clear that it does not apply to protocols genuinely described in infinite-dimensional Hilbert
spaces, such as protocols explicitly built on the continuous amplitude components of the light
field (see [6] and references therein). The reason for this is that the quantum de Finetti theorem
fails as soon as the dimension, d, of the Hilbert space H is not small compared to the number n
of subsystems considered, which is obviously the case if d is infinite. Moreover, not only is the
present version of the quantum de Finetti theorem limited to low dimensional Hilbert spaces,
but counter-examples have been exhibited that demonstrate that a dimension-independent de
Finetti theorem cannot exist [7].

Nevertheless, the impossibility of a general dimension-independent theorem does not rule
out the possibility of more restricted versions of the theorem, which may still be highly relevant
to prove the security of QKD schemes. In particular, the quantum de Finetti theorem of [2] is
concerned with (permutation) symmetric states in H⊗n, that is, states that are invariant under
arbitrary permutations of their n subsystems. The only approach that has been pursued to date,
in order to extend the range of application of this theorem to the infinite-dimensional Hilbert
spaces, has consisted in restricting the set of states in such a way that a finite-dimension theorem
can be applied [8]–[10], [12]. In particular reference [10], the quantum de Finetti theorem of [2]
has been applied to infinite-dimensional quantum systems conditioned on certain measurement
results. The main consequence is to rigorously justify the assumption of a finite-dimension
theorem in the context of QKD protocols using attenuated coherent pulses as the support
for qubits. The theorem can then be used to derive the security of some continuous-variable
schemes [11], as long as the energy of the signal states is not too important. The main drawback
is that some experimental conditions need to be checked, which was not the case for finite-
dimensional protocols.

In this paper, we explore a radically different approach, which might greatly simplify the
security proofs of continuous-variable QKD. The idea is to derive a new quantum de Finetti
theorem corresponding to symmetry classes other than permutations of the subsystems. Our
main insight is to describe the protocol in a phase space instead of Fock representation, and
to study a symmetry group that is specific to the phase space. This choice features several
advantages. First, the phase space representation is the natural choice for the analysis of
continuous-variable QKD, where the information is typically encoded onto the quadratures of
the light field (see [6]). Moreover, if collective attacks are indeed asymptotically optimal, as
they generally are for discrete-variable QKD, it would be useful to have an interpretation of
this result using covariance matrices. It should be pointed out that when restricted to collective
attacks, the security of the protocol is completely characterized by the covariance matrix of the
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system shared by Alice and Bob [13, 14]. Last but not least, the phase space representation
has the remarkable property to be finite dimensional: by trading a discrete description in the
infinite-dimensional Hilbert space (the Fock representation) for a continuous description in the
finite-dimensional real space.

Interestingly, in a classical setting, versions of the de Finetti theorem that apply to
orthogonally invariant continuous probability distributions have been known for a long
time [15]. Here, we make the first steps towards the generalization of this theorem to a
quantum setting. Obviously, since a general dimension-independent quantum de Finetti theorem
is impossible, we cannot hope to establish one by switching between an infinite-dimensional
state-space representation and a finite-dimensional phase-space representation. The idea is that
the symmetry hypotheses, needed for the phase-space de Finetti theorem, are stronger than the
ones used in the previous quantum versions of the de Finetti theorem. We will show that these
stronger symmetry hypotheses are, however, perfectly compatible with the continuous-variable
QKD protocols.

The outline of the paper is as follows. In section 2, we explicitly make the link between
symmetry properties and security proofs. In section 3, we present continuous-variable QKD and
introduce a new symmetry for such protocols. This symmetry is then presented in more details
in section 4, where we make the preliminary steps towards the derivation of a new quantum de
Finetti theorem for continuous variables. Finally, the conclusions are drawn in section 5.

2. Role of symmetry in the security proofs

The goal of this section is to explain how symmetry considerations can simplify the theoretical
analysis of quantum cryptography. In particular, we would like to provide a theoretical
justification to the common attitude of considering the state ρAB shared by Alice and Bob as
being symmetric. Note that a more mathematical argument can be found in [5].

As we mentioned previously, applying the de Finetti theorem to prove the security of
QKD protocols works if one can first assume, without loss of generality, that the state ρAB

is symmetric, that is invariant under any permutation of its n subsystems. Here, we show that
this assumption is justified, but that one is actually not limited to considering the action of this
particular symmetry group Sn (one can also consider larger symmetry groups). Basically, the
idea is that by assuming any symmetry, Alice and Bob will always underestimate the secret key
rate they can extract from their data.

The secret key rate for a particular instance of a QKD protocol is a function of the state
ρAB shared by the legitimate parties, Alice and Bob. The eavesdropper, Eve, is assumed to
have the maximal information compatible with ρAB meaning that her state ρE is such that
ρE = trAB(|�ABE�) where |�ABE� is any purification of ρAB. Note that all purifications are
equivalent up to an unitary operation applied on system E . More precisely, ρAB represents the
knowledge that Alice and Bob have about the quantum state they share. For this reason, ρAB

is subjective and inevitably depends on the assumptions made by Alice and Bob. It must be
emphasized that this cannot be avoided by performing a quantum tomography of the state, since
the latter is also subject to hypotheses, namely that one has access to an arbitrary large number
of independent and identical copies of a single state. The exponential version of the quantum de
Finetti theorem as derived in [2] gives a partial answer to this problem: if ρAB is invariant under
permutations of its subsystems, then it can be well approximated by a mixture of i.i.d. states, so
quantum tomography is therefore justified.
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A crucial observation is that Alice and Bob would like to ignore or forget the properties of
ρAB they are not interested in, typically possible correlations between the n subsystems of their
state, hence obtaining ρAB = σ⊗n

AB for some prototype state σAB ∈H. Unfortunately, this action
of forgetting comes at a price, namely erasing some potentially useful information. The first idea
to make the argument more rigorous is that Alice and Bob can actually enforce the symmetry
they want. Let us, for instance, consider symmetry under permutations of the subsystems of
ρAB which is the symmetry commonly used in various QKD security proofs (with the notable
exception of protocols such as the differential phase shift (DPS) [16] or the coherent one-way
(COW) [17]). This symmetry can be enforced in the following way: Alice and Bob can perform
the same random permutation π over their respective state, with π being chosen uniformly over
the symmetric group Sn. This operation transforms ρAB into

1
n!

�

π∈Sn

πρABπ † ⊗ |π��π |C ,

where π is the unitary operator implementing the permutation π to both systems A and B,
{|π�}π is an orthogonal family of vectors and C is a classical auxiliary space whose sole purpose
is to store the information concerning the permutation π that was applied. Then, tracing over
system C (or equivalently giving this system to Eve), Alice and Bob obtain the state ρ̄AB, which
is symmetric by construction. Obviously, for any practical purpose, applying such a procedure
is out of the question as it would at least involve a quantum memory in order to store each
subsystem while Alice and Bob wait for the total state ρAB. One may object, however, that
applying such a permutation π to ρAB is equivalent to merely relabeling the indices of Alice
and Bob’s data, which is much simpler to implement. The key is that both procedures are
indistinguishable, which is a clear consequence of the fact that the permutation of subsystems
commutes with the measurement procedure and classical post-processing. This is true for most
protocols, such as BB84 or continuous-variable protocols, but not for DPS or COW as explained
below. In order for the two procedures to be completely equivalent, Alice and Bob should
completely forget which particular permutation was performed. A second crucial point is that,
in reality, Alice and Bob do not even need to permute the labels of their data. What is really
necessary is that they should never use any information related to the order of their data (the
labeling of their data) when they extract the key.

It must be realized that enforcing such a symmetry can only decrease the secret key rate,
since Alice and Bob give additional information to Eve, or, equivalently, forget some a priori
available information. On the other hand, while they are only throwing information that they
do not use in practice (the labeling of their data), the impact of this symmetrization step to
the key rate is actually negligible. Note that nothing forbids one to use such a technique in the
study of the DPS and COW protocols. However, correlations between different subsystems are
essential for these protocols to work and no key could be extracted if one was forgetting them.
In principle, any symmetrization is applicable to any QKD protocol, but some symmetrization
procedures essentially erase all the relevant information and are consequently useless for
the study of such protocols. Other symmetries have been investigated in the literature, for
instance random bit-flip or phase-flip applied simultaneously by Alice and Bob, and have led to
simplifications in the analysis of some protocols [18].

The above reasoning can easily be generalized to other symmetries. Let G be a symmetry
group in H⊗n. Alice and Bob can perform a random g drawn from G and later forget about g,
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thus transforming ρAB into

ρ̄GAB = trC

�
1

#G

�

g∈G
g ρAB g† ⊗ |g��g|C

�

,

where #G is the cardinal of G. The group G can even be continuous (albeit compact), in which
case the discrete sum should simply be replaced by an integral over the Haar distribution of G.
This is actually what we will do for continuous-variable protocols.

3. Phase-space symmetry for continuous-variable QKD

3.1. Brief summary of the theoretical analysis of continuous-variable QKD

We rapidly describe continuous-variable protocols, as a more detailed presentation can be found
in [6]. Continuous-variable QKD comes with two flavors depending on whether the quantum
state shared by Alice and Bob is characterized by a quantum bit error rate (QBER) or by a
covariance matrix. In the first category lie protocols where the quadratures of the light field
are just the support for encoding bits. Such protocols usually use postselection to improve
their QBER [19]. Then, the analysis is somewhat similar to that of discrete-variable protocols.
In the second category of protocols, such as [20], with which we are only concerned here,
the quantum state shared by Alice and Bob is characterized by its covariance matrix. This
means that the continuous-variable approach is used even for the description of the state,
and not only as a means to carry information over quantum channels. On the positive side,
these protocols, and in particular their security, are easier to study. However, this approach
suffers an important drawback, namely that postselection is a priori impossible: one must keep
all data. This is particularly damaging during the classical post-processing of the protocol
where one now has to deal with real random variables instead of binary random variables.
The main implication is that the reconciliation step, which roughly corresponds to correcting
discrepancies between Alice and Bob’s classical data, becomes a task that is much more
involved than correcting errors between two binary strings. The error rate may indeed be much
higher as the protocols with continuous variables may tolerate very low signal-to-noise ratio.
The classical problem of reconciliation was until recently limiting the range of continuous-
variable QKD protocols [21]. However, simpler discrete modulation schemes can help dealing
with the reconciliation problem [11].

3.2. Rotation symmetries for continuous-variable QKD

One of the nice features of continuous-variable QKD is that the security against collective
attacks is entirely characterized by the covariance matrix of ρAB [13, 14]. As we restrict our
analysis to collective attacks, one has ρAB = σ⊗n

AB , and the covariance matrix � of σAB is usually
assumed to be of the form:

�sym =
�

X12 Zσz

Zσz Y 12

�
, (1)

where σz = diag(1, −1), and X , Y and Z are real numbers referring to Alice’s variance, Bob’s
variance, and the covariance between Alice and Bob, respectively. Note that this form can easily
be understood from an experimental point of view since the quantum channel is not supposed to
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induce correlations between different quadratures, for instance, but no theoretical justification
has been given so far. Here, we use the ideas explained in the previous section to prove that �
can indeed take this simple form.

Since we make the assumption of a collective attack, the covariance matrix � is well
defined and can be estimated by Alice and Bob. The most general form for � is

� =





X11 X12 Z11 Z12

X12 X22 Z21 Z22

Z11 Z21 Y11 Y12

Z12 Z22 Y12 Y22



. (2)

The idea is that Alice and Bob can perform some symmetrization operation, which transforms
� into �sym. First, note that their classical data are two strings x, y ∈ Rn, which correspond to
the results of homodyne measurements of the various quadratures of ρAB. The reconciliation
is always optimized for a Gaussian channel, meaning that the random variable y is modeled
as y = t x + z [21], where t is a transmission factor and z is a random variable modeling the
added noise and characterized by its variance σ 2. Therefore, the reconciliation procedure would
not be affected if Alice and Bob both performed the same random orthogonal transformation
R ∈ O(n) to their respective data, since one would then have Ry = t Rx + z�, where z� is a
rotated noise with the same variance σ 2. If Alice and Bob apply such a random orthogonal
transformation and forget which one has been performed, their data becomes ‘symmetric’ in the
sense that the matrix � takes the form of �sym, where X = (X11 + X22)/2, Y = (Y11 + Y22)/2 and
Z = (Z11 − Z22)/2. The fact that the covariance matrix �sym features Zσz instead of Z12 simply
reflects the fact that �sym is not the covariance matrix of the classical data of Alice and Bob in the
prepare-and-measure scenario, but the covariance matrix of ρAB in the equivalent entanglement-
based scenario. In the latter case, Alice and Bob would actually apply conjugate orthogonal
transformations to their respective share of the state instead of the same transformation. By
conjugate transformation, we mean the transformation whose corresponding 2n × 2n matrix
in phase space is obtained from the original one by flipping the sign of all rows whose label
corresponds to a p quadrature and then flipping the sign of all columns whose label corresponds
to a p quadrature. This can be understood by considering a two-mode squeezed vacuum, which
is the state characterizing the inherent symmetry of continuous-variable QKD: this state has
a covariance matrix �sym where Y = X and Z =

√
X 2 − 1, and is invariant under conjugate

orthogonal transformations performed by Alice and Bob.
As we will see, this new symmetrization (based on orthogonal transformations in phase

space instead of permutations in state space) has several crucial consequences. First, it allows
us to rigorously prove that Alice and Bob can safely assume their covariance matrix to
have a simple structure, characterized by only three parameters which are easily estimated
experimentally (this was done until now with no firm theoretical justification). The second
consequence, which we will study in the next section, is that it gives a simple structure to the
state ρAB which enables us to investigate the unconditional security using a de Finetti approach.

4. Invariant states under orthogonal transformations in phase space

The goal of this section is to give some insights on the structure of the states which are invariant
under orthogonal transformations in phase space. More precisely, if Alice and Bob perform n
homodyne measurements on ρAB (Alice and Bob are assumed to measure the same quadrature
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since they discard the data corresponding to measurements of incompatible quadratures), they
obtain two random vectors x, y ∈ Rn. We are interested in unitary transformations whose effect
on ρAB is described by an orthogonal transformation on the probability distributions of x
and y. As these probability distributions are completely characterized by the Wigner function
of ρAB, the states of interest are simply those whose Wigner function is invariant under such
transformations.

Before describing the bipartite case, it is useful to consider first the single-party case, where
the state of Bob is traced out.

4.1. Single party case

Here, we are interested in generalizing the concept of orthogonally invariant probability
distributions to the quantum setting, that is, to Wigner functions. A n-mode state ρ(n) is termed
orthogonally invariant in phase space if it is invariant under the action of any n-mode Gaussian
unitary operator corresponding to an orthogonal transformation in the 2n-dimensional phase
space of ρ(n). Physically, this means that ρ(n) remains unchanged after being processed via
any n-mode passive linear interferometer (the orthogonal transformations that are not in the
special orthogonal subgroup are irrelevant in the single-party case). The set of such orthogonally
invariant states is convex and is, therefore, characterized by its extremal points, namely the states

σ
(n)
k = 1

an
k

�

k1 ...kn
s.t.

�
i ki =k

|k1 . . . kn��k1 . . . kn|,

where |k1 . . . kn� is the n-mode Fock state with ki photons in mode i and an
k =

�n+k−1
n−1

�
.

Physically, these extremal states are (proportional to) the projectors onto the different
eigenspaces of the total number operator n̂ = n̂1 + · · · n̂n labeled with the integer parameter k,
corresponding to the total number of photons distributed over the n modes. The normalization
constant an

k simply counts the number of ways of distributing k photons into n modes. These
extremal states σ

(n)
k form a discrete infinite set of mixed states. Importantly, any pure eigenstate

chosen in the eigenspace corresponding to a given total photon number k is generally not
orthogonally invariant; only the uniform mixture of them fulfils this invariance (Schur’s lemma),
which is why the extremal states σ

(n)
k are mixed for n > 1. Finally, any state ρ(n) that is invariant

under orthogonal transformations in phase space can be written as

ρ(n) =
∞�

k=0

ckσ
(n)
k ,

where the weights ck satisfy 0� ck � 1 and
�

k ck = 1.

4.2. An asymptotic quantum de Finetti theorem for orthogonally invariant states

Let us now introduce a classical de Finetti theorem for continuous variables. An infinite
sequence of real-valued random variables X1, . . . , Xn, . . . is called orthogonally invariant
if, for every n, the probability distribution of X1, . . . , Xn is invariant under all orthogonal
transformations of Rn. It was proven in [22, 23] that orthogonally invariant distributions are
exactly mixtures of i.i.d. normal distributions.
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This result holds only approximately for finite sequences: if the probability distribution of
X1, . . . , Xn is invariant under orthogonal transformations of Rn, then there exists a mixture
of i.i.d. normals such that its variation distance to the marginal law of the first k coordinates of
X1, . . . , Xn is bounded by O(k/n) for k � n [15]. This cannot be directly applied to quantum
systems, however, since Wigner functions are not necessary legitimate probability distributions
(they can be negative). Here, we prove that this generalization is nevertheless correct in the
asymptotic regime. In particular, we prove that an orthogonally invariant state tends to a mixture
of multimode thermal states, which are products of n thermal states with the same mean photon
number.

Let us consider an n-mode state ρ(n) which is orthogonally invariant in phase space. For
any N > n, ρ(n) is the partial trace over (N − n) modes of an N -mode orthogonally invariant
state ρ(N ). As stated above, ρ(N ) is a convex mixture of the states σ

(N )
k . Therefore, it is enough

to prove that the trace over (N − n) modes of σ
(N )
k becomes asymptotically close (for the trace

distance) to a multimode thermal state as N tends to infinity. Since the state of interest trN−n σ
(N )
k

as well as the ‘target’ n-mode thermal state ρ
(n)
th with k/n photons per mode are orthogonally

invariant, they can both be written as mixtures of σ
(n)�

l s

trN−n σ
(N )
k =

k�

l=0

f (l)σ (n)
l , ρ

(n)
th =

∞�

l=0

g(l)σ (n)
l

with

f (l) =
an

l aN−n
k−l

aN
k

, g(l) = an
l

(k/N )l

(1 + (k/N ))n+l
.

Note that f and g also depend on k, n and N , but we do not mention these parameters explicitly
in order to simplify the notations. The trace distance between the two states is given by the
variation distance between the two classical probability distributions f and g

� trN−n σ
(N )
k − ρ

(n)
th �1=

∞�

l=0

| f (l) − g(l)|.

It can be bounded from above as

∞�

l=0

| f (l) − g(l)| =
∞�

l=0

����
f (l)
g(l)

− 1
���� g(l) = 2

∞�

l=0

�
f (l)
g(l)

− 1
�+

g(l),

� 2
�

sup
l

f (l)
g(l)

− 1
�

where the last inequality follows from the triangle inequality, and (x)+ stands for x if x ≥ 0 and 0
if x < 0. Let us introduce the notation

h(l) ≡ f (l)
g(l)

=
aN−n

k−l

aN
k

× (1 + (k/N ))n+l

(k/N )l
.

The rest of the proof consists in approximating sup h in the asymptotic regime. This is done
by using the asymptotic approximation of ayn

xn with n → ∞ resulting from Stirling’s formula,
namely

ayn
xn ∼

�
1 + y/x

nx
2y n G(x/y),
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where G(z) = (z + 1) log2(z + 1) − z log2(z) is the von Neumann entropy of a thermal state
with z photons. Let us introduce the reduced variables x = k/N , y = n/N , z = l/N and
t = (1 − y)/(x − z). We can approximate the function of interest h(l) as

h(zN ) =
aNt (x−z)

N (x−z)

aN
x N

(1 + x)N (y+z)

x N z
∼ A2N B,

where

A =

�
x(1 + t)

(x − z)(1 + 1/x)
=

�
t x(1 + t)

(1 − y)(1 + 1/x)

and

B = (1 − y)G(1/t) − G(x) + (y + z) log(1 + x) − z log(x).

Deriving B with respect to z, one has

∂ B
∂z

= − log(1 + t) + log(1 + 1/x).

Therefore, B is extremal for t = 1/x , that is z = xy, giving B � 0. As a result, one has

sup
l

h(l) = sup
z

h(zN ) ∼ 1√
1 − y

∼ 1 +
n

2N
for n � N .

Hence, �trN−n σ
(N )
k − ρ

(n)
th �1 → 0 for N → ∞, which proves the quantum continuous-variable

version of the de Finetti theorem for orthogonally invariant states in the asymptotic regime. Note
that the technique of this proof is very similar to that used to establish a de Finetti theorem for
Werner states in [7] (theorem III.7).

4.3. Bipartite case

So far, we only discussed single-partite orthogonally invariant states. Obviously, in order to use
this approach to the study of QKD security, one needs a bipartite generalization. Let us consider
the case of a 2n-mode bipartite state ρAB, meaning that Alice and Bob each have n modes. Such
a state ρAB is termed invariant under conjugate orthogonal transformations in phase space if,
for any Gaussian unitary operation U corresponding to an orthogonal transformation in Alice’s
2n-dimensional phase space, it satisfies

U ⊗ U ∗ ρAB U † ⊗ U T = ρAB,

where U ∗ is the Gaussian unitary operation corresponding to the conjugate orthogonal
transformation in Bob’s phase space. Physically, this invariance means that ρAB remains
unchanged when Alice processes her n modes into any passive linear interferometer while
Bob processes his n modes into the passive linear interferometer effecting the conjugate
orthogonal transformation in phase space (the orthogonal transformations that are not in the
special orthogonal subgroup should be applied at the measurement outcomes, not at the level of
quantum states).

New Journal of Physics 11 (2009) 115009 (http://www.njp.org/)

http://www.njp.org/


11

Ideally, one should have a quantum de Finetti theorem for bipartite orthogonally in-
variant states since this is the case which is directly relevant for proving the security of
continuous-variable QKD. The reason is that, following the arguments in section 2, Alice and
Bob can indeed assume their bipartite state ρAB to be invariant under conjugate orthogonal
transformations. Thus, a bipartite quantum de Finetti theorem would rigorously prove that
ρAB is ‘close to’ a product of Gaussian states. Note, however, that an exponential version of
the theorem would actually be required to address the security of continuous-variable QKD,
meaning that it is enough to trace over only a negligible number of modes in order to get an
exponentially good approximation by a Gaussian state. Then, such a Gaussian state would
actually be the product of n i.i.d. Gaussian states, and the security against collective attacks
would, therefore, imply the security against arbitrary attacks.

Finding a bipartite version of this quantum de Finetti theorem is the subject of further work.
Although we do not have a rigorous proof yet, the fact that a bipartite version of the theorem
holds is very likely. In particular, both partial traces ρA = trB ρAB and ρB = trA ρAB are single-
partite orthogonally invariant states, for which the theorem applies. Hence, locally, we already
know that a state ρAB that is invariant under conjugate orthogonal transformations in phase space
becomes asymptotically Gaussian. One only needs to prove that the correlations between Alice
and Bob also behave according to the bipartite version of the theorem.

5. Conclusion and perspectives

We have discussed the role of symmetries in the security analysis of QKD, and introduced a new
symmetry that is especially suited to continuous-variables schemes. This rotation symmetry,
which can be spelled out in the phase space representation, encompasses the usual symmetry
under permutations in state space that have been considered so far in the context of discrete-
variable QKD. We then derived an asymptotic quantum de Finetti theorem for orthogonally
invariant states in phase space, and showed that Gaussian states play a role similar to that of
i.i.d. states in the usual de Finetti theorem. More precisely, any orthogonally invariant state can
be shown to be asymptotically close to a mixture of product Gaussian (thermal) states. This first
application of a symmetry in phase space to the QKD security analysis seems very promising
as Gaussian states have been known to play a fundamental role in the analysis of continuous-
variable QKD.

The perspectives of this work towards proving the unconditional security of continuous-
variable QKD are twofold. A first approach would be to study the generalization of our
(asymptotic) continuous-variable quantum de Finetti theorem in phase space to the bipartite
scenario, and then investigate whether an exponential version can be derived. The second option
would be to see if the techniques recently introduced in [5] can be generalized to continuous-
variable QKD.
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