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The information transmission is studied for quantum channels in which the noise includes dissipative

effects, more specifically, nonunitality. Noise is usually a nuisance but can sometimes be helpful. For these

channels, the communication capacity is shown to increase with the dissipative component of the noise

and may exhibit transitions beyond which it increases faster. The optimal states are constructed analyti-

cally as well as the pertaining ‘‘phase’’ diagram.
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A fundamental issue of quantum information theory
concerns the capacities of a quantum channel. They specify
the largest amount of information that can be reliably
transmitted per use of the noisy channel. The coding and
decoding required to achieve these maximal transmission
rates are such that the probability of errors goes to zero for
increasing number of parallel and independent uses of the
channel. Early works on this topics were mainly devoted to
memoryless unital channels for which consecutive signal
transmissions through the channel are not correlated, and
which preserve the identity [1–4]. Recently, much attention
was given to unital quantum channels with memory in
order to increase the rate of classical or quantum informa-
tion by entangling multiple uses of the channel [5–8].

The focus is here on the transmission of classical infor-
mation through memoryless channels with a general type
of noise (namely nonunital channels, to be defined below),
which, in particular, include dissipative effects. Nonunital
channels have been considered in the pioneering work by
Fuchs [9] who showed that the states maximizing the
classical information capacity can be nonorthogonal,
which is somehow counterintuitive since nonorthogonal
states cannot be distinguished with perfect reliability.
Schumacher and Westmoreland [10] have shown that the
optimal states of the amplitude damping channel, a para-
digm for the description of energy dissipation, also share
that property. Finally, examples have been given of non-
unital qubit channels that require three [11] or four [12]
input states to achieve the Holevo capacity.

In this Letter, we first evaluate analytically the Holevo
capacity and the states which are optimal for the coding of
classical information in a class of qubit nonunital channels
which is sufficiently large to include most channels con-
sidered in these early works. Second, we show that for
some memoryless nonunital channels, there are transitions
between different types of optimal states for the coding
when the parameter controlling the nonunitality is in-
creased while all other channel parameters are kept fixed.
Moreover, we obtain that the capacity increases with the
nonunitality of the channel, and even faster after each
transitions. The pertaining ‘‘phase’’ diagram is constructed
analytically. The dissipative component of the noise there-

fore effectively reduces the noise for some states that are
then optimal for the information transmission. This can be
viewed as one instance of fighting noise with (dissipative)
noise, which has been used in quantum cryptography [13].
The maximal amount of classical information which can

be extracted from an ensemble of states �i occurring with
probabilities pi is given by [1]

�ðfpi; �igÞ ¼ H

�X
i

pi�i

�
�X

i

piHð�iÞ; (1)

where Hð�Þ ¼ �Trð�log2�Þ is the von Neumann entropy.
For a quantum communication channel E, one can define
the Holevo capacity as the largest value of � over all
ensembles of input states �i and probabilities pi

�E ¼ sup
pi;�i

�ðfpi; Eð�iÞgÞ: (2)

It represents the maximal amount of classical information
which can be transmitted over a quantum channel when the
codewords used for data transmission are composed of
tensor products of the optimal signal states and probabil-
ities, i.e., when they are not entangled over multiple uses of
the channel. Clearly, the � quantity would be the largest if
for some optimal set, the term H½PipiEð�iÞ� can be equal
to its maximum log2d (for qdits) while the termP

ipiH½Eð�iÞ� is as small as possible. There exist channels
for which the relation �E ¼ log2d� inf�i

H½Eð�iÞ� is

known to hold. These are channels which preserve the
identity (unital or doubly stochastic channels). For qubits,
all unital channels have that property [2], whereas for qdits,
it holds for some unital channels [3] and is known not to
hold for some others [4]. For channels which do not
preserve the identity (nonunital channels), this relation
need not hold. The optimal states are thus a compromise
between the two terms as was first observed by Fuchs [9].
Here, we shall restrict ourselves to the qubit case.
A qubit transmission channel is described by a com-

pletely positive linear map which converts an input state �
to an output state Eð�Þ that will be denoted �0 for brevity.
An arbitrary density matrix � for a mixed state qubit may
be expressed in terms of its Bloch vector r as � ¼ 1

2 �ðI þ r:�Þ where r ¼ ðx; y; zÞ is real and such that jrj � 1,
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with equality for pure states, and� ¼ colð�x; �y; �zÞ is the
vector of Pauli matrices. The channel can be written ex-
plicitly in terms of the Bloch vectors as

E : r ! r0 ¼ rMþ �; (3)

where the matrix M and vector � fully characterize the
noise properties of the channel in an alternate but equiva-
lent way as the Kraus representation. Here, we consider a
diagonal matrix M ¼ diagða; a; bÞ which contracts Bloch
vectors equally with a factor 0 � a � 1 along the x and y
directions and possibly with a different factor 0 � b � 1
along the z direction. If � ¼ ð0; 0; 0Þ, the channel maps the
identity to the identity (unital channel). We shall investi-
gate the case of nonunital channels for which � ¼ ð0; 0; cÞ.
Without loss of generality, we shall take c � 0 so that the
effect of the channel is to contract the Bloch sphere and
shift it toward the north pole (0, 0, 1) by a distance c. Given
a and b, there is a maximum value of c such that the unit
sphere is mapped by the channel into itself,

M ¼ diagða; a; bÞ 0 � a; b � 1

� ¼ ð0; 0; cÞ 0 � c � cmax;
(4)

where cmax ¼ 1� b if a � ffiffiffi
b

p
and f1þ b2 � a2 � b2

a2
g1=2

otherwise.
The Holevo capacity is determined by the states and

probabilities which maximize the difference Hð ��0Þ �P
ipiHð�0

iÞ, where �� � P
ipi�i and the prime indicates

the image under E. It is well known that the von Neuman
entropy of a qubit state �0 only depends on the length

jr0j � ‘ of its Bloch vector: Hð�0Þ ¼ � 1þ‘
2 log2

1þ‘
2 �

1�‘
2 log2

1�‘
2 ¼ Sbinð1þ‘

2 Þ � Sð‘Þ. In addition, since 0 �
‘ � 1, Sð‘Þ is decreasing with L.

The rotation symmetry of the problem is such that to any
state, one can associate another one such that the entropy
Hð ��0Þ is higher than if a single element of the pair were
considered while the value of

P
ipiHð�0

iÞ is unchanged.

Indeed, since �‘ ¼ fa2 �x2 þ a2 �y2 þ ðb�zþ cÞ2g1=2, the first
two terms of the square root vanish if for every state there is
another one occurring with the same probability but with

opposite values for the x and y components. Hence, �‘
reduces to jb�zþ cj. On the other hand, taking the same
value for the z components yields output Bloch vectors
which have the same length and therefore the same indi-
vidual output entropy. It follows that the optimal states will
necessarily come in the form of such pairs.

Specifically, we consider a first pair of states �1 and �2

occurring with probabilities p1 ¼ p2 ¼ pþ
2 and whose

Bloch vectors are r1 ¼ ðx; y; �þÞ and r2 ¼ ð�x;�y; �þÞ
with �þ � 0. The second pair of states is �3, �4 with

probabilities p3 ¼ p4 ¼ 1�pþ
2 and Bloch vectors r3 ¼

ðx; y;���Þ and r4 ¼ ð�x;�y;���Þ with �� � 0. The
output Bloch vectors have lengths ‘1 ¼ ‘2 ¼ ‘ð�þÞ � ‘þ
and ‘3 ¼ ‘4 ¼ ‘ð���Þ � ‘�, respectively, with ‘� ¼
fa2 þ c2 � 2bc�� þ ðb2 � a2Þ�2�g1=2. Note that the par-
ticular values of the x and y components are irrelevant

since they do not enter �‘ or ‘�. The optimization is thus
carried over pþ, �þ, and �� for fixed channel parameters
a, b, c,

�E ¼ sup
pþ;�þ;��

fSð �‘Þ � pþSð‘þÞ � ð1� pþÞSð‘�Þg: (5)

We first consider the following quantity,

@�

@pþ
¼ �bð�þ þ ��Þarctanh‘

ln2
þ Sð‘�Þ � Sð‘þÞ; (6)

which, when set to 0, can be regarded as an equation for pþ
since this latter only enters ‘. The optimal probability
can be given in terms of the function gð�þ; ��Þ �
tanhf½Sð‘�Þ � Sð‘þÞ� ln2=bð�þ þ ��Þg according to the
following expression which specifies when the zero of (6)
yields a well-defined probability.

pþð�þ;��Þ ¼
8><
>:
0 g� c<�b��
g�cþb��
bð�þþ��Þ �b�� � g� c<b�þ
1 g� c� b�þ

: (7)

To determine the optimal values of the z components�� of
the optimal states, we consider the following quantity and
cast it into the form

@�

@��
¼ � bp�

ln2
farctanh �‘� arctanhfð���Þg; (8)

where we introduce the function fð�Þ � tanhf½cþ ðb2 �
a2Þ�=b�arctanh‘ð�Þ=‘ð�Þg. The right-hand side of (8)
vanishes for p� ¼ 0 and possibly for values of �� such

that �‘ ¼ f. One also has to consider the case �þ ¼ �� ¼
� for which the Eqs. (8) are replaced by @�

@� ¼ @�
@�þ

þ @�
@��

.

Depending on the channel parameters a and b and the
nonunital parameter c, the optimal states may combine
nontrivial values of the occurrence probability pþ and/or
nontrivial values of the z components �� as we now
describe. For a > b, there is one pair of optimal states
(labeled A), the northern states �1 and �2, each occurring
with a probability 1=2 and characterized by a nontrivial
positive z component

A: pþ ¼ 1; �þ ¼ �A ’ f0 � c

b� f1
: (9)

In the unital case, the characterization (9) of the optimal
states reduces to pþ ¼ 1 and �A ¼ 0 which indeed speci-
fies the optimal set obtained for a > b and c ¼ 0. It
corresponds to a pair of states, diametrically opposed, on
the equator of the Bloch sphere. The generalization of
theses states to the nonunital case leads to pþ ¼ 1 and a
nontrivial z component �A > 0. The optimal states �1 and
�2 are therefore no longer on a single diameter of the Bloch
sphere (see Fig. 1), and are thus nonorthogonal (their scalar
product is precisely equal to �2

A). This observation was
already made in Ref. [9] on the basis of a particular
example. In the notation of (3) and (4), this example cor-

responds to M ¼ diagð1=3; 1= ffiffiffi
3

p
; 0Þ and � ¼ ð1=3; 0; 0Þ.

Actually, as far as the optimal states are concerned, it is

strictly equivalent to the case M ¼ diagð1= ffiffiffi
3

p
; 1=

ffiffiffi
3

p
; 1=3Þ

PRL 102, 180503 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
8 MAY 2009

180503-2



and � ¼ ð0; 0; 1=3Þ which is of the form of (4). The ana-
lytical formula (9) given here yields arccos�A ’ 1:5211
in excellent agreement with the numerical value 1.5218
provided in Ref. [9]. In this formula, f0 �
tanhðcarctanh‘0=‘0Þ and f1 � ð1� f20Þfa2ðb2 �
l20Þarctanh‘0=b‘0 þ bc2=ð1� ‘20Þg=‘20 with ‘0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þc2

p
.

It is worth mentioning that expression (9) is nonperturba-
tive in c. Indeed, it is not obtained by expanding fð�AÞ
around c ¼ 0 but through an expansion around �A ¼ 0.
This latter expansion is a priori expected to be good since
in the expression for the output length ‘ð�AÞ, the term
resulting from the nonunital shift toward the north pole
of the Bloch sphere (linear in �A), partially compensates
the term which arises because of the difference in contrac-
tion rates along the z axis and in the x-y plane (quadratic in
�A). The Holevo capacity (5) is then

�A
E ¼ Sðb�A þ cÞ � S½‘ð�AÞ�: (10)

For a > b, there may be another type of optimal states
(labeled T) depending on the value of the nonunital pa-
rameter c (to be specified below). This set consists of three
states: the state strictly pointing north (�1 � �2) which
occurs with a probability pþ and a pair of states pointing
south (�3 and �4) with a nontrivial z component and
occurring each with a probability ð1� pþÞ=2,

T: pþ ¼ pT � 1

2
þ gT � cþ b�T

bð1þ�TÞ �� ¼ �T

�þ ¼ 1;
(11)

with gT ¼ gð1; �TÞ as given explicitly above (7) and 0 �
�T � 1. A nontrivial value of �T corresponds to a zero of
(8), i.e., satisfies gT ¼ fð��TÞ. Examples of such states
have already been given in Ref. [11] through numerical
calculations in the case where c is kept fixed to its maximal
value cmax ¼ 1� b. If c is too low, then there is no such
zero of (8) and the optimal set corresponds to the state
pointing north and a pair of opposite state on the equator of
the Bloch sphere (�T ¼ 0). On the other hand, when c
increases, the optimal value �T increases until it reaches
unity, in which case the three states become two as we shall
see below. See Fig. 1 for an illustration. The Holevo

capacity (5) pertaining to the three states (11) is

�T
E ¼ SðgTÞ � pTSðbþ cÞ � ð1� pTÞS½‘ð��TÞ�: (12)

Finally, for a < b, the optimal states (labeled B) are the
state strictly pointing north (�1 � �2) which occurs with a
probability pþ and the state strictly pointing south (�3 �
�4) occurring with a probability 1� pþ,

B: pþ ¼ pB � 1

2
þ gB � c

2b
; �� ¼ 1; (13)

with gB ¼ tanhf½Sðb� cÞ � Sðbþ cÞ�=2blog2eg. Indeed,
there is no extremal value of �� since @�

@��
> 0 for any

value of c. It follows that �� ¼ 1 is the supremum of �
while the optimal probability pþ is given by the second

line of (7). Note that the average output length �‘ ¼ gB. The
Holevo capacity (5) is then

�B
E ¼1� log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�g2B

q
�b�c

2b
SðbþcÞ�bþc

2b
Sðb�cÞ:

(14)

The states B provide a nontrivial generalization of the
optimal states occurring in the unital case when b is the
largest channel parameter (hence, the label B). Indeed, for
c ¼ 0, one recovers pþ ¼ 1=2 and �� ¼ 1 whereas �B

E
reduces to 1� SðbÞ. For c > 0, we deduce from (13) that
the occurrence probability of the northern state in the
optimal coding is the largest one (pþ > 1=2) and such
that the length of the output average Bloch vector is larger

than the nonunital shift ( �‘B > c). This is illustrated in
Fig. 1.
Having described the three types of optimal sets, we now

specify which one occurs for given shrinking factors a and
b and nonunital parameter c. The surfaces delimiting the
three types of optimal states can be determined analytically
and allow us to construct a ‘‘phase’’ diagram. First, note
that the three states of the optimal set T merge with the two
states of set B when �T approaches 1. From (8), we may
deduce that this transition occurs when a is given by the
following exact expression

aTBðb; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� cÞ

�
bþ Sðb� cÞ � Sðbþ cÞ

2arctanhðb� cÞlog2e
�s
: (15)

This function is equal to b in the unital case and increases
monotonically with c. The nonunitality can thus be seen as
giving rise to a larger effective value of b since the domain
where the type B states are optimal extends with c. Second,
in a similar vein, one can give an approximate expression
for the transition surface aATðb; cÞ between the A and T
types of optimal states from the requirement that �T

vanishes.
A cut in the ‘‘phase’’ diagram is displayed in Fig. 2 for

b ¼ 1=2. For a < aTBðb; cÞ, the optimal states are of type
B. They are of type T for aTBðb; cÞ< a< aATðb; cÞ. For
a > aATðb; cÞ, the optimal states are of type A. Notice from
Fig. 2 that the transition lines increase with c. For c ¼ 0,

−1 0 1
−1

0

1

r
2

r
1

A

−1 0 1
−1

0

1

r
4

r
3

r
1

T

−1 0 1
−1

0

1

r
3

r
1

B

FIG. 1 (color online). Optimal states (solid line) for a ¼ 0:53,
b ¼ 0:5, and, respectively, c ¼ 0:3, c ¼ 0:34, and c ¼ 0:4. The
unit circle is the intersection of the Bloch sphere with an
arbitrary plane containing the (vertical) z axis. It is mapped by
the nonunital channel onto the inner ellipse. The crosses corre-
spond to the image of the optimal states and the triangle to the
image of their average.
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they merge, entailing that in the unital case there is no
optimal states of type T and that the transition between
types A and B occurs for a ¼ b as is well known for Pauli
channels.

When the parameter c controlling the nonunitality is
varied, there can be transitions between the different types
of optimal states for given contraction rates a and b. This is
illustrated in Fig. 2 and detailed in Fig. 3 for a ¼ 0:53 and
b ¼ 0:5. The occurrence probability of each optimal state
and their z component are depicted in the lower panels.
Notice that the Holevo capacity (upper panel) increases
with the nonunitality, and even faster after each transition.

To conclude, the states achieving the Holevo capacity
and their transitions have been derived analytically for a
class of dissipative channels which is sufficiently large to
include the amplitude damping channel [10] as well as
other nonunital channels considered in the literature [9–
11]. Here, we consider a possibly variable dissipative

component of the noise and may regard it as an added
noise which allows one to obtain more efficient optimal
states for the coding than in its absence. This situation is
somehow analogous to a scheme introduced in quantum
cryptography where the performance of some protocols is
increased if one of the parties adds noise to the measure-
ment data before the error correction [13].
Actual physical systems typically involve both dissipa-

tive effects modeled through nonunitality, as studied here,
and a memory effect between successive uses of the chan-
nels [5–8,14]. Another application is to enhance the fidelity
of quantum teleportation. Indeed, it has been shown to
increase by subjecting one of the parties to an amplitude
damping channel [15,16]. The dissipative channels studied
here are more general and will thus also lead to, at least,
such a fidelity enhancement.
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FIG. 2 (color online). Types of optimal states as a function of a
and c for b ¼ 0:5. The boundaries of this ‘‘phase’’ diagram are
determined analytically [cf. below (4) and (5)].
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FIG. 3 (color online). Holevo capacity (�E), total probability
of occurrence of the pair of northern states (p), and z component
of their Bloch vector (�) as a function of c for a ¼ 0:53, b ¼
0:5. The corresponding analytical expressions are given by (9)–
(14). The dotted lines are displayed to help visualize the cross-
over between the optimal states of type A and B.

PRL 102, 180503 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
8 MAY 2009

180503-4


