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Tripartite entanglement in parametric
down-conversion with spatially structured pump
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Most investigations of multipartite entanglement have been concerned with temporal modes of the electromag-
netic field and have neglected its spatial structure. We present a simple model which allows us to generate
tripartite entanglement between spatial modes by parametric down-conversion with two symmetrically tilted
plane waves serving as a pump. The characteristics of this entanglement are investigated. We also discuss the
generalization of our scheme to 2N+1 partite entanglement using 2N symmetrically tilted plane pump waves.
Another interesting feature is the possibility of entanglement localization in just two spatial modes. © 2010
Optical Society of America
OCIS codes: 270.5585, 270.6570.
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. INTRODUCTION
ultipartite entanglement, as the name suggests, is the

ntanglement between more than two parties. The exis-
ence of this type of entanglement for both discrete and
ontinuous quantum variables is one of the most striking
redictions of quantum mechanics and is very unusual
rom the point of view of classical physics. It is, therefore,
ot surprising that nowadays multipartite entanglement

s a very active research area of quantum optics and
uantum information. The interest in multipartite en-
anglement is motivated not only by its fundamental na-
ure but also by its potential for applications in quantum
ommunication technologies.

Numerous theoretical publications have addressed the
haracterization of multipartite entanglement. Coffman,
undu, and Wootters [1] have established for a three-
ubit system and conjectured for N-qubit systems the so-
alled monogamy of quantum entanglement, constraining
he maximum entanglement between partitions of a mul-
iparty system. Since then, Adesso and Illuminati [2–5]
ave introduced the continuous-variable tangle as a mea-
ure of multipartite entanglement for continuous variable
CV) multimode Gaussian states and have demonstrated
hat it satisfies the Coffman–Kundu–Wootters monogamy
nequality. The conjecture of Ref. [1] has been proven by
sborne and Verstraete [6]. The corresponding proof for
aussian states is in Hiroshima, Adesso, and Illuminati

7].
Among the potential applications of CV multipartite

ntanglement, let us mention quantum teleportation net-
orks, quantum telecloning, controlled quantum dense

oding, and quantum secret sharing [8].
Several generation schemes for CV multipartite en-

anglement have been proposed in the literature theoreti-
ally and realized experimentally in recent years. Among
he first ones was the “passive” optical scheme using
0740-3224/10/030447-5/$15.00 © 2
queezed states mixed with beam splitters [9]. Then came
he “active” schemes in which multipartite entanglement
s created as a result of parametric interaction of several
ptical waves such as cascaded/concurrent [10–12], inter-
inked [13,14], or consecutive parametric interactions
15]. All of these schemes for generation of CV multipar-
ite entanglement are considering the temporal modes of
he electromagnetic field, and they neglect its spatial
tructure. The question arises on whether the spatial
odes can also serve for the creation of CV multipartite

ntanglement [16–19]. In Ref. [3], a physical implementa-
ion is given in terms of 2N−1 beam splitters and 2N
ingle-mode squeezed input states, itself based on a pre-
ious work [20].

In this paper we propose a simple scheme that corre-
ponds to the “active” creation of tripartite entanglement
etween spatial modes of the electromagnetic field in the
rocess of parametric interaction. We create spatial tri-
artite entanglement by pumping a nonlinear parametric
edium by a coherent combination of several tilted-plane
onochromatic waves, which we call a spatially struc-

ured pump. Since the pump photon can be extracted
rom any of these waves, and the pair of down-converted
hotons emitted in different directions according to the
hase-matching condition, our scheme allows for the cre-
tion of tripartite entanglement between spatial modes of
he down-converted field. An interesting feature of our
cheme is the possibility of localizing the created spatial
ripartite entanglement in just two well-defined spatial
odes formed as a linear combination of all the modes

articipating in the down-conversion process.
In Section 2, we shall consider explicitly the case of tri-

artite entanglement, which is produced by parametric
own-conversion with two symmetrically tilted plane
aves serving as a pump. The genuine tripartite en-

anglement is analyzed in Subsection 2.A, and its local-
010 Optical Society of America
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zation on two modes is studied in Subsection 2.B. We
hen discuss in Section 3 a generalization of our scheme
o 2N+1 partite entanglement using 2N symmetrically
ilted pump waves and draw some conclusions.

. SPATIAL TRIPARTITE ENTANGLEMENT
. Parametric Down-conversion with Two
ymmetrically Tilted Plane Waves
he scheme of parametric down-conversion used here is
hown in Fig. 1.

We consider two plane pump waves with wave vectors
p�±q0� where ±q0 are the pertaining transverse compo-
ents (which are vertical on Fig. 1) at the input to the
rystal. The pump field then reads

Ep�x� = ��eiq0x + e−iq0x�, �1�

ith � the amplitude of the pump, chosen as a real num-
er in our case. We shall denote the corresponding spatial
ourier components of the corresponding field operators
s follows:

â�z,q� � â0�z�,

â�z, ± q0 + q� � â±�z�. �2�

hese modes are depicted in Fig. 1: the long (blue) arrows
ertains to â±�0�, the short one to â0

†�0�.
Due to the parametric interaction in the nonlinear me-

ium, these operators are coupled and obey the following
quations in the rotating wave approximation [21]:

d

dz
â0 = ���â+

† + â−
†�ei�z,

d

dz
â+ = ��â0

†ei�z,

ig. 1. (Color online) Scheme for generating tripartite entangle-
ent between spatial modes. The tilted pumps have wave vec-

ors kp�±q0�. The transverse (vertical) components are ±q0.
d

dz
â− = ��â0

†ei�z, �3�

here � is the coupling constant and � is the phase mis-
atch.
The solution to this set of equations for the fields at the

utput of the crystal, z= l, can be written analytically as
ollows:

â+�l� =
1

2
�U�l� + 1�â+�0� +

1

2
�U�l� − 1�â−�0� +

1

�2
V�l�â0

†�0�,

â−�l� =
1

2
�U�l� − 1�â+�0� +

1

2
�U�l� + 1�â−�0� +

1

�2
V�l�â0

†�0�,

â0�l� = U�l�â0�0� +
1

�2
V�l��â+

†�0� + â−
†�0��, �4�

ith the functions

U�z� = ei�z/2�cosh��z� − i
�

2�
sinh��z�� ,

V�z� = ei�z/2
�2��

�
sinh��z�, �5�

here �=�2�2�2−�2 /4. We shall be concerned, for sim-
licity, with the case of zero phase mismatch, �=0, and
ill be considering only the zeroth spatial Fourier compo-
ents of the field, q=0. Physically, this corresponds to
hotodetection of the light field by a single large photode-
ector without spatial resolution. In this case, we have
�l�=cosh r and V�l�=sinh r, with r=�2��l being the

queezing parameter.
When the input states of the three interacting modes

re vacuum states, the output states remain Gaussian.
ence, they are completely described by the output cova-

iance matrix � associated with the following quadrature
omponents:

x̂0��� � 2 Re â0���,

p̂0��� � 2 Im â0���,

x̂±��� � 2 Re â±���,

p̂±��� � 2 Im â±���. �6�

ts matrix elements read

�ij = Tr�����̂i��̂j + ��̂j��̂i�/2�, �7�

here � is the output density matrix and ��̂i= �̂i− 	�̂i
�

ith �̂i the ith component of the vector �̂
�x̂0��� , p̂0��� , x̂+��� , p̂+��� , x̂−��� , p̂−����. Taking the solution

4) into account, the covariance matrix at the output of
he crystal reads explicitly
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� =�
cosh�2r� 0

sinh�2r�

�2
0

sinh�2r�

�2
0

0 cosh�2r� 0 −
sinh�2r�

�2
0

− sinh�2r�

�2

sinh�2r�

�2
0 cosh2 r 0 sinh2 r 0

0 −
sinh�2r�

�2
0 cosh2 r 0 sinh2 r

sinh�2r�

�2
0 sinh2 r 0 cosh2 r 0

0 −
sinh�2r�

�2
0 sinh2 r 0 cosh2 r

� . �8�
w
t
s
t

w

w
t

T
m
s
t

otice that this matrix is bisymmetric as it is invariant
nder the permutation of the quadratures pertaining to
he modes � and 	: x̂+��� , p̂+���↔ x̂−��� , p̂−���. Hence, it
as the tripartite entanglement structure of covariance
atrices associated to bisymmetric �1+2� mode Gaussian

tates considered in Ref. [3]. Actually, we can show that
he output state obtained here exhibits genuine tripartite
ntanglement in the sense of Ref. [20]. For that purpose,
e have to verify that the following condition on covari-
nce matrix elements is violated:

C ��x̂0��� −
x̂+��� + x̂−���

�2 �2�
�

+�p̂0���

+
p̂−��� + p̂−���

�2 �2�
�



1

2
. �9�

rom (8) one deduces that

C = 4�cosh�2r� − sinh�2r�� = 4e−2r, �10�

hich is smaller than 1/2 if the squeezing parameter r
3/2 ln 2. Recalling that r=�2��� therefore entails that

he output state � produced by the above parametric
own-conversion process with two symmetrically tilted
lane waves exhibits genuine tripartite entanglement
hen the pump amplitude �, the coupling parameter �,
nd the crystal length � are such that

��� �
3 ln 2

2�2
� 0.735. �11�

. Two-Mode Entanglement Localization
e shall show that the tripartite entanglement generated

y the above process can be concentrated on two modes by
ocal unitary transformations as was discovered by Se-
afini, Adesso, and Illuminati [3]. Let us consider the fol-
owing quadratures:

x̂0���� � x̂0���, p̂0���� � p̂0���,
x̂1���� �
x̂+��� + x̂−���

�2
, p̂1���� �

p̂+��� + p̂−���

�2
,

x̂2���� �
x̂+��� − x̂−���

�2
, p̂2���� �

p̂+��� − p̂−���

�2
, �12�

hich are obtained from the previous ones by a unitary
ransformation corresponding to the action of a beam-
plitter. Accordingly, the output covariance matrix � is
hus transformed by congruence,

�� = ST�S, �13�

here S is the following symplectic transformation,

S = I1 ��
1

�2
0

1

�2
0

0
1

�2
0

1

�2

1

�2
0 −

1

�2
0

0
1

�2
0 −

1

�2

� , �14�

ith I1 the 2�2 identity matrix. The new covariance ma-
rix reads then

�� = �
cosh�2r� 0 sinh�2r� 0

0 cosh�2r� 0 − sinh�2r�

sinh�2r� 0 cosh�2r� 0

0 − sinh�2r� 0 cosh�2r�
� � I1.

�15�

he separability of the pertaining state �� can be deter-
ined by considering a partition of the system in two sub-

ystems and investigating the positivity of the partially
ransposed matrix �̃ , obtained upon transposing the vari-
�
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bles of only one of the two subsystems. The positivity of
artial transposition (PPT) is a necessary condition for
he separability of any bipartite quantum state [22,23]. It
s also sufficient for the separability of �1+n� mode Gauss-
an states [24,25].

The covariance matrix �̃� of the partially transposed
tate �̃� with respect to one subsystem is obtained [24] by
hanging the signs of the quadratures p̂i belonging to that
ubsystem. Here, because of the block-diagonal structure
f ��, we can restrict the analysis to the first block and
onsider the transposition of the mode 1, i.e., change the
ign of p̂1�,

�̃� = �
cosh�2r� 0 sinh�2r� 0

0 cosh�2r� 0 sinh�2r�

sinh�2r� 0 cosh�2r� 0

0 sinh�2r� 0 cosh�2r�
� � I1.

�16�

he symplectic eigenvalues �̃i� of the covariance matrix
� are ̃±=e±2r and 1. The necessary and sufficient PPT
ondition for the separability of the state �� amounts to
aving ̃i
1 for all i. We can therefore focus on the small-
st eigenvalue ̃−. The extent to which the separability of
he state is violated, is measured by EN���, the logarithmic
egativity of ��, defined as the logarithm of the trace
orm of �̃�,

EN���� = ln��̃��1 = max�0,− ln ̃−�. �17�

sing the calculated symplectic eigenvalues �̃i� we ob-
ain a very simple expression for the logarithmic negativ-
ty,

EN���� = 2r. �18�

his implies that the central mode 0 is entangled with the
ode 1, which is precisely the combination of modes �

nd 	 that was used in the condition (9) in order to show
he existence of genuine tripartite entanglement.

. DISCUSSION AND CONCLUSION
ur scheme can be generalized to multipartite entangle-
ent localization using 2N symmetrically tilted plane
aves as pump modes in the parametric down-conversion
rocess. An illustration is provided in Fig. 2 for the cases
=2 and 4, which correspond to 4 and 8 pump waves.

ig. 2. (Color online) Generalization of the scheme for 2N sym-
etrically tilted pump waves with N=2 and 4. The little circles

epresent the projections of the pump wave vectors in the xy
lane of the crystal entering face.
The projections of the pump wave vectors in the xy
lane of the crystal entering face are depicted as little
ircles. In this case, the system contains 2N+1 coupled
odes which are described by equations similar to (3). We

an solve them in the rotating wave approximation and
nvestigate the properties of the multipartite entangle-

ent in this case (the details will be provided in a forth-
oming publication). The covariance matrix � at the out-
ut of the crystal is again bisymmetric as those
onsidered in Ref. [3]. By an orthogonal transformation of
he field operators, which generalizes the one achieved in
he tripartite case, the covariance matrix � can be
rought to a form similar to Eq. (15), namely, the tensor
roduct of a 4�4 covariance matrix and a 2�2N−1�
2�2N−1� identity matrix. The 4�4 covariance matrix

as exactly the same form as the one in Eq. (8) with r re-
laced by �Nr. Hence, it corresponds to that of two en-
angled modes with the squeezing parameter enhanced by
N and 2N−1 modes in the vacuum state. For the loga-
ithmic negativity, we indeed obtain EN����=2�Nr. Physi-
ally, this means that by mixing different spatial modes
ith beam splitters, we can “localize” the entanglement
istributed initially among all the 2N+1 spatial modes in
nly two well-defined modes, formed by the linear combi-
ations of the initial ones. Interestingly, this entangle-
ent localization results in an enhancement of the en-

anglement by a factor �N.
To conclude, our “active” optical scheme relies on the

se of a spatially structured pumping of the parametric
edium. It provides a realistic proposal for the experi-
ental realization of multipartite entanglement as well

s its localization. The possibility of entanglement local-
zation was predicted mathematically in Ref. [3], and a
hysical implementation was also given in terms of 2N
1 beam splitters and 2 N single-mode squeezed inputs

20]. We have also established the scaling behavior of the
ogarithmic negativity with the number of modes. Note
hat, due to the asymmetric coupling between the modes
n our scheme, this scaling is a relatively slowly growing
unction of the number of modes. An interesting matter is
o determine the ultimate rate at which the logarithmic
egativity may grow with the number of modes. This sub-

ect will be addressed elsewhere.
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