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Spatial multipartite entanglement and localization of entanglement
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We present a simple model together with its physical implementation which allows one to generate multipartite
entanglement between several spatial modes of the electromagnetic field. It is based on parametric down-
conversion with N pairs of symmetrically tilted plane waves serving as a pump. The characteristics of this
spatial entanglement are investigated in the cases of zero as well as nonzero phase mismatch. Furthermore, the
phenomenon of entanglement localization in just two spatial modes is studied in detail and shown to result in an
enhancement of the entanglement by a factor

√
N .
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I. INTRODUCTION

The existence of entanglement between more than two
parties for discrete or continuous quantum variables is one
of the most striking predictions of quantum mechanics. At the
fundamental level, characterizing multipartite entanglement
has raised much interest since the pioneering work of Coffman
et al. [1] for qubit systems. The case of continuous-variable
multimode Gaussian states has been addressed by Adesso et al.
[2–5]. The interest in multipartite entanglement is motivated
not only by fundamental questions, but also by its potential
for applications in quantum communication technologies.
Possible applications of continuous-variable (CV) multipar-
tite entanglement include quantum teleportation networks,
quantum telecloning, controlled quantum dense coding, and
quantum secret sharing (see Ref. [6] and references therein).

A number of schemes to generate CV multipartite en-
tanglement have been proposed theoretically and realized
experimentally in recent years. There were first the passive
optical scheme using squeezed states mixed with beam splitters
[7]. Squeezing using cascaded nonlinearity was observed
experimentally by Kasai et al. [8]. Then came the active
schemes in which multipartite entanglement is created as
a result of parametric interaction of several optical waves
such as cascaded or concurrent [9–11], interlinked [12,13],
or consecutive parametric interactions [14]. These schemes
generally neglect the spatial structure of the electromagnetic
field, which is of importance. Transverse momenta are another
way of defining an image, and the quantum properties of
parametric down-converted images have been extensively
investigated (see Refs. [15,16] and references therein).

It is natural to investigate whether the spatial modes can
also serve for the creation of CV multipartite entanglement.
Entangling the spatial properties of laser beams has been
achieved by Wagner et al. [17]. The multimode quantum
properties of a perfectly spatially degenerate (self-imaging)
optical parametric oscillator have been studied by Lopez
et al. [18]. A beautiful experiment applying spatial degrees of
freedom, although not by structuring the pump as in quantum
images, to quantum key distribution is described in Ref. [19].
The generation of entanglement among three bright beams
of light of different wavelengths has also been demonstrated
[20]. A simple active scheme for the creation of tripartite
entanglement between spatial modes of the electromagnetic
field has been proposed in Ref. [21]. It consists in pumping

a nonlinear parametric medium by a coherent combination
of several tilted plane monochromatic waves which is called
a spatially structured pump. Since the pump photons can
be extracted from any of these waves and the pair of
down-converted photons can be emitted in different directions
according to the phase-matching condition, that scheme allows
for the creation of tripartite entanglement between spatial
modes of the down-converted field.

The aim of this paper is to generalize the results of Ref. [21]
to the generation of spatial multipartite entanglement. For
that purpose, we present a scheme with an arbitrary number
2N of tilted plane waves pumping a parametric medium. An
interesting feature of this realistic proposal is the possibility of
localizing the created spatial multipartite entanglement in just
two well-defined spatial modes formed as a linear combination
of all the modes participating in the down-conversion process.
The possibility of entanglement localization was introduced
by Serafini et al. [3] and a physical implementation was also
given in terms of 2N − 1 beam splitters and 2N single-mode
squeezed inputs based on Ref. [22]. The localization of entan-
glement is also considered, in a different context, in Ref. [23].
The paper is organized as follows. Section II is devoted to
spatial multipartite entanglement. We present the process of
parametric down-conversion with a spatially structured pump
consisting of N pairs of symmetrically tilted plane waves
in Sec. II A. The evolution equations for the field operators
are given and solved in the rotating wave approximation for
possibly nonzero constant phase mismatch. The inseparability
property of the generated state is then studied In Sec. II B.
Section III is dedicated to the phenomenon of entanglement
localization. It is presented explicitly in Sec. III A and
a quantitative characterization of the spatial entanglement
generated by this process is given in Sec. III B. The scaling
with N as well as the dependence on the phase mismatch are
explicitly provided. Conclusions are drawn in Sec. IV.

II. SPATIAL MULTIPARTITE ENTANGLEMENT

A. Parametric down-conversion with spatially structured pump

We consider a system of pumps which consists of N pairs
of symmetrically tilted plane waves

Ep(r) = α

4π2

N∑
d=1

(eiqd ·r + e−iqd ·r), (1)
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FIG. 1. (Color online) Scheme for the generation of spatial
multipartite entanglement with 2N symmetrically tilted pump waves
(illustrated for N = 2 and 4). The little circles represent the
projections of the pump wave vectors in the xy plane of the crystal
entering face.

with r = (x,y), the vector of coordinates in the plane of the
crystal entering face, and q = (kx,ky), the projection of the
three-dimensional wave vector k in that plane. Its Fourier
transform in the xy plane of the (infinite) crystal (entering
face) corresponds to Dirac delta’s centered in qd and −qd

Ep(q) = α

N∑
d=1

[δ(q − qd ) + δ(q + qd )] . (2)

This scheme is illustrated in Fig. 1 for N = 2 and 4. The little
circles represent the projections of the pump wave vectors in
the xy plane of the crystal entering face. The plane depicted in
Fig. 2 is the one going through one of the N pairs of opposed
pumps on Fig. 1, for example the yz plane.

The evolution of the annihilation and creation operators
â and â† associated to the propagation and diffraction of
the quantized electromagnetic field through the nonlinear
parametric medium is described by [24]

∂

∂z
â(z,q) = λ

∫
dq′Ep(q − q′)â†(z,−q′)ei�(q,−q′)z. (3)

FIG. 2. (Color online) The plane depicted is the one passing
through one of the N pairs of opposed pumps on Fig. 1 (e.g., the
yz plane). The tilted pumps have wave vectors kp(±qn) with
n ranging from 1 to N . The transverse (vertical) components of these
wave vectors are denoted ±qn [see below (1) for a definition].

Here z is the longitudinal coordinate and � is the phase
mismatch defined as

�(q,−q′) = kz(q) + kz(−q′) − kpz(q − q′), (4)

where kz(q) and kz(−q) are the longitudinal components of
the two incoming wave vectors and kpz is the longitudinal
component of the pump wave vector. The conservation of
energy and momentum imply that we have to consider a
set of 2N + 1 coupled equations, obtained upon substitution
of (2) into (3), for the waves exiting the crystal with wave
vector transverse components q, qj − q, and −qj − q with
j = 1, . . . ,N :

∂

∂z
â(z,q) = αλ

N∑
d=1

{â†(z,qd − q)ei�(q,qd−q)z

+ â†(z, − qd − q)ei�(q,−qd−q)z},
∂

∂z
â(z,±qj + q)

= αλ

N∑
d=1

{â†(z,qd ∓ qj − q)ei�(q,qd∓qj −q)z

+ â†(z, − qd ∓ qj − q)ei�(q,−qd∓qj −q)z}.

(5)

In the second equation, the phase mismatch is higher for the
contributions with d �= j , which shall therefore be neglected.
This corresponds to the usual rotating wave approximation.
The other phase mismatches are all taken equal to �, which
amounts to imposing some symmetries on �(±q,± qd ± q).
One may introduce a renormalized phase mismatch δ and a new
relevant variable r̃ which combines the interaction strength αλ

and the longitudinal coordinate z

δ ≡ �

2
√

2αλ
,

(6)
r̃ ≡

√
2αλz.

We shall use the following notation:

a0(r̃) ≡ â(z,q),
(7)

an± (r̃) ≡ â(z,±qn + q), n = 1, . . . ,N,

and shall consider only the zeroth spatial Fourier components
of the field q = 0. Physically, this corresponds to photodetec-
tion of the light field by a single large photodetector without
spatial resolution. These modes are depicted in Fig. 2: the
long (blue) arrows pertain to ân± (0), the short ones to â

†
0(0).

Strictly speaking, these modes represent a continuum of modes
and cannot be treated in a general situation as plane waves.
However, here we shall make the approximation of discrete
plane waves. A discussion on the precision to which the wave
vectors are defined can be found in Ref. [18]. In this setting,
one can then rewrite (5) as

d

dr̃
â0 = e2iδr̃

√
2

N∑
d=1

(â†
d+ + â

†
d− ),

(8)
d

dr̃
ân± = e2iδr̃

√
2

â
†
0, n = 1, . . . ,N.
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We may solve this set of equations and obtain for the fields at
the output of the crystal, r = r̃|z=�,

â0(r) = U (r)â0(0) + V (r)√
2N

N∑
d=1

{â†
d+ (0) + â

†
d− (0)},

(9)

ân± (r) = ân± (0) + U (r) − 1√
2N

N∑
d=1

{âd+ (0) + âd− (0)}

+ V (r)√
2N

â
†
0(0), n = 1, . . . ,N.

The functions U (r) and V (r), which satisfy |U (r)|2 −
|V (r)|2 = 1, are given by

U (r) = eiδr

(
cosh(

√
Nγ r) − i

δ√
Nγ

sinh(
√

Nγ r)

)
(10)

V (r) = eiδr 1

γ
sinh(

√
Nγ r),

where γ depends on the reduced phase mismatch δ,

γ =
√

1 − δ2

N
. (11)

In the next section we shall characterize these solutions for the
fields at the output of the crystal.

B. Multipartite entanglement

The parametric down-conversion process preserves the
Gaussian character of incoming modes. Hence the outgo-
ing modes are Gaussian states which are thus completely
characterized by the covariance matrix associated with their
quadrature components

x̂0(r) ≡ 2Re â0(r),

p̂0(r) ≡ 2Im â0(r),
(12)

x̂n± (r) ≡ 2Re ân± (r),

p̂n± (r) ≡ 2Im ân± (r), n = 1, . . . ,N.

From the solution (9) one obtains

x̂0(r) = Re U (r)x̂0(0) − Im U (r)p̂0(0) +
N∑

d=1

{
Re V (r)

x̂d+(0) + x̂d− (0)√
2N

+ Im V (r)
p̂d+(0) + p̂d− (0)√

2N

}
,

p̂0(r) = Im U (r)x̂0(0) + Re U (r)p̂0(0) +
N∑

d=1

{
Im V (r)

x̂d+(0) + x̂d− (0)√
2N

− Re V (r)
p̂d+(0) + p̂d− (0)√

2N

}
,

(13)

x̂n± (r) = Re V (r)√
2N

x̂0(0) + Im V (r)√
2N

p̂0(0) + x̂n± (0) +
N∑

d=1

{
(Re U (r) − 1)

x̂d+ (0) + x̂d− (0)

2N
− Im U (r)

p̂d+(0) + p̂d−(0)

2N

}
,

p̂n±(r) = Im V (r)√
2N

x̂0(0) − Re V (r)√
2N

p̂0(0) + p̂n± (0) +
N∑

d=1

{
Im U (r)

x̂d+(0) + x̂d− (0)

2N
+ (Re U (r) − 1)

p̂d+ (0) + p̂d− (0)

2N

}
.

We can now determine the covariance matrix elements σij ≡
〈(�ξ̂i�ξ̂j + �ξ̂j�ξ̂i)/2〉 of the output state ρ with 〈·〉 ≡
Tr(ρ.) and �ξ̂i ≡ ξ̂i − 〈ξ̂i〉 where ξ̂i is some component of the
vector ξ̂ = (x̂0,p̂0,x̂1+ ,p̂1+ ,x̂1− ,p̂1− ,x̂2+ ,p̂2+ , . . . ,x̂N− ,p̂N−).
Taking into account that all inputs are vacuum states we obtain
from (13)

〈[x̂0(r)]2〉 = 〈[p̂0(r)]2〉 = a,

〈[x̂n± (r)]2〉 = 〈[p̂n± (r)]2〉 = 1 + a − 1

2N
,

〈x̂n± (r)x̂d±(r)〉 = 〈x̂n± (r)x̂d∓(r)〉 = a − 1

2N
,

〈p̂n± (r)p̂d±(r)〉 = 〈p̂n± (r)p̂d∓(r)〉 = a − 1

2N
, (14)

〈x̂0(r)x̂n±(r)〉 = −〈p̂0(r)p̂n±(r)〉 = b√
2N

,

〈x̂0(r)p̂n±(r)〉 = 〈p̂0(r)x̂n±(r)〉 = c√
2N

,

〈x̂0(r)p̂0(r)〉 = 〈x̂n± (r)p̂d±(r)〉 = 〈x̂n± (r)p̂d∓(r)〉 = 0,

for n,d = 1, . . . ,N, with

a ≡ |U |2 + |V |2,
b ≡ 2(Re U Re V − Im U Im V ), (15)

c ≡ 2(Re U Im V + Im URe V ).

Ordering the lines and columns according to
x̂0,p̂0,x̂1+ ,p̂1+ ,x̂1− ,p̂1− ,x̂2+ ,p̂2+ , . . . ,x̂N− ,p̂N− , the covariance
matrix reads then

σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A D D D · · · D D D

D B C C · · · C C C

D C B C · · · C C C

D C C B · · · C C C

...
...

...
...

. . .
...

...
...

D C C C · · · B C C

D C C C · · · C B C

D C C C · · · C C B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)
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where A, B, C, and D are the following 2 × 2 matrices:

A = aI2, B = 1 + a − 1

2N
I2, C = a − 1

2N
I2,

(17)

D = 1√
2N

(
b c

c −b

)
, I2 =

(
1 0

0 1

)
.

Its symplectic eigenvalues {νi} are
√

a2 − b2 − c2 (with a
fourfold degeneracy) and 1 (with a 2N − 3 degeneracy). Not-
ing that b2 + c2 = 4|U |2|V |2 implies that

√
a2 − b2 − c2 = 1.

The product of symplectic eigenvalues is thus unity and as
expected for a unitary evolution, the output state remains
pure.

The covariance matrix (16) is bisymmetric [i.e., it is in-
variant under the permutation of quadratures x̂n± (r),p̂n±(r) ↔
x̂d± (r),p̂d±(�) or x̂d∓ (r),p̂d∓(�)]. As a consequence, it has the
multipartite entanglement structure of covariance matrices
associated to bisymmetric (1 + 2N )-mode Gaussian states
considered in Ref. [3]. We now show that the output state
obtained here exhibits multipartite entanglement in the sense of
Ref. [22] (i.e., is fully inseparable). For that purpose, we have
to verify that the following condition on covariance matrix
elements is violated

Q ≡
〈(

x̂0(r) − 1√
2N

N∑
n=1

{x̂n+ (r) + x̂n− (r)}
)2〉

+
〈(

p̂0(r) + 1√
2N

N∑
n=1

{p̂n+ (r) + p̂n− (r)}
)2〉

� 1

2N
.

(18)

From (14) and (15) one deduces that

Q = 4(a − b) (19)

= 4{[Re U (r) − Re V (r)]2 + [Im U (r) + Im V (r)]2}.
When the phase matching condition is satisfied δ = 0,
one deduces from (10) that U (r) = cosh

√
Nr and V (r) =

sinh
√

Nr . It follows that (19) reduces to

Q = 4[cosh(
√

Nr) − sinh(
√

Nr)]2 = 4e−2
√

Nr . (20)

This quantity is smaller than 1/2N if the squeezing parameter
r satisfies

r =
√

2αλ� >
ln(8N )

2
√

N
. (21)

Under this condition on the pump amplitude α, the coupling
parameter λ, and the crystal length �, the output state ρ

produced by the above parametric down-conversion process
with 2N symmetrically tilted plane waves therefore exhibits
multipartite entanglement. This generalizes the result ob-
tained in Ref. [21] in the case of tripartite entanglement
(N = 1).

For a small nonzero phase mismatch, we can expand (19)
around δ = 0, which yields

Q = 4e−2
√

Nr + δ2

N
[(3 − 4Nr2)e−2

√
Nr + 4(2

√
Nr − 1)

+ (2
√

Nr − 1)2e2
√

Nr ] + O(δ4). (22)

Owing to the last term, this quantity increases exponentially
with

√
Nr . As a consequence, Q remains smaller than

1/2N only for low values of the phase mismatch. This
suggests that the multipartite entanglement, at least when it
is estimated with the criterion (18) is very sensitive to δ. This
situation is in contrast with the phenomenon that we study
in the next section, namely the localization of entanglement,
which will be shown to be robust with respect to the phase
mismatch. It probably indicates that (18) is not appropriate
to witness all the entanglement existing in the previously
generated state since this criterion is simply sufficient but not
necessary.

III. LOCALIZATION OF ENTANGLEMENT

A. Beam splitting the output state

It has been shown [3] that the entanglement of bisymmetric
(m + n)-mode Gaussian states is unitarily localizable (i.e., that
through local unitary operations it may be fully concentrated
in a single pair of modes). We shall study explicitly this
phenomenon here. For that purpose we shall perform the
following unitary transformation based on discrete Fourier
series

â′
0(r̃) = â0(r̃),

â′
k(r̃) = 1√

N

N∑
n=1

ân+ (r̃) − e−πikân− (r̃)√
2

e−πi(k−1) n−1
N , (23)

k = 1, . . . ,2N.

Physically, this corresponds to beam splitting the quantized
fields at the output of the crystal. Indeed, it has been shown [25]
that any unitary matrix can be implemented as an optical
multiport by a triangular array of beam splitters. Notice that
the fraction on the second line of (23) corresponds to the
output of a balanced beam splitter. The summation over n

then corresponds to the action of an N × N unitary matrix
which can be implemented by (N2 ) = N(N−1)

2 appropriate beam
splitters acting on every pair of modes [25]. Hence the
transformation (23) requires N balanced beam splitters and
N (N − 1) specific ones, that is, a total of N2 beam splitters.
For example, for N = 3, in addition to the three balanced
beam splitters, there is another set of four beam splitters with
transmittance 1/2 (one of them with a phase equal to π ) and
two with transmittance 1/3.

As a consequence of (23), one deduces from (9) that the
new fields at the output of the crystal are transformed to the
following ones:

â′
0(r) = U (r)â′

0(0) + V (r)â′
1
†(0),

â′
1(r) = U (r)â′

1(0) + V (r)â′
0
†(0), (24)

â′
k(r) = â′

k(0), k = 2, . . . ,2N,

Accordingly, the quadratures are now given by

x̂ ′
0(r) = Re U (r)x̂ ′

0(0) − Im U (r)p̂′
0(0)

+ Re V (r)x̂ ′
1(0) + Im V (r)p̂′

1(0),

p̂′
0(r) = Re U (r)p̂′

0(0) + Im U (r)x̂ ′
0(0)

− Re V (r)p̂′
1(0) + Im V (r)x̂ ′

1(0),
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x̂ ′
1(r) = Re U (r)x̂ ′

1(0) − Im U (r)p̂′
1(0) (25)

+ Re V (r)x̂ ′
0(0) + Im V (r)p̂′

0(0),

p̂′
1(r) = Re U (r)p̂′

1(0) + Im U (r)x̂ ′
1(0)

− Re V (r)p̂′
0(0) + Im V (r)x̂ ′

0(0),

x̂ ′
k(r) = x̂ ′

k(0),

p̂′
k(r) = p̂′

k(0), k = 2, . . . ,2N.

Hence the covariance matrix elements associated to the density
matrix ρ ′ are

〈[x̂ ′
0(r)]2〉 = 〈[p̂′

0(r)]2〉 = 〈[x̂ ′
1(r)]2〉 = 〈[p̂′

1(r)]2〉 = a,

〈x̂ ′
0(r)x̂ ′

1(r)〉 = −〈p̂′
0(r)p̂′

1(r)〉 = b,
(26)〈x̂ ′

0(r)p̂′
1(r)〉 = 〈p̂′

0(r)x̂ ′
1(r)〉 = c,

〈[x̂ ′
k(r)]2〉 = 〈[p̂′

k(r)]2〉 = 1, k = 2, . . . ,2N,

and the other ones are zero. Ordering the lines and columns
according to x̂ ′

0,p̂
′
0,x̂

′
1,p̂

′
1,x̂

′
2,p̂

′
2, . . . ,x̂

′
2N,p̂′

2N , the covariance
matrix reads

σ ′ =

⎛
⎜⎝

a 0 b c

0 a c −b

b c a 0
c −b 0 a

⎞
⎟⎠ ⊕

I2(2N−1), (27)

where Ik is the k × k unity matrix. Its symplectic eigenvalues
{ν ′

i} are the same as those of σ as σ ′ is obtained by congruence

σ ′ = STσS, (28)

where the elements of the symplectic transformation S

are given by (23). In the next section, we investigate the
nonseparability properties of the pertaining state ρ ′.

B. Logarithmic negativity

The covariance matrix (27) is bisymmetric (i.e., the local
exchange of any pairs of modes within its two diagonal blocks
leaves the matrix invariant [3]). Notice that here the unitary
transformation (23) is such that the covariant matrix σ ′ is
block-diagonal and invariant under the exchange of modes 0
and 1.

The separability of the state ρ ′ can be determined as in
Ref. [3] by (i) considering a partition of the system in two
subsystems and (ii) investigating the positivity of the partially
transposed matrix ρ̃ ′ obtained upon transposing the variables
of only one of the two subsystems. The positivity of partial
transposition (PPT) is a necessary condition for the separability
of any bipartite quantum state [26,27]. It is also sufficient for
the separability of (1 + n)-mode Gaussian states [28,29]. The
covariance matrix σ̃ ′ of the partially transposed state ρ̃ ′ with
respect to one subsystem is obtained [28] by changing the
signs of the quadratures p′

j belonging to that subsystem.
Here because of the block-diagonal structure of σ ′, we

can restrict the analysis to the first block and consider the
transposition of mode 1 (i.e., change the sign of p′

1)

σ̃ ′ =

⎛
⎜⎝

a 0 b c

0 a −c b

b −c a 0
c b 0 a

⎞
⎟⎠ ⊕

I2(2N−1). (29)

Its symplectic eigenvalues {ν̃ ′
j } are 1 and

ν̃ ′
± ≡ a ±

√
b2 + c2 = (|U | ± |V |)2. (30)

The necessary and sufficient PPT condition for the separability
of the state ρ ′ amounts to having ν̃ ′

j � 1∀j . We can therefore
focus on the smallest eigenvalue ν̃ ′

−. The extent to which this
criterion is violated is measured by EN (ρ ′), the logarithmic
negativity of ρ ′ defined as the logarithm of the trace norm
of ρ̃ ′

EN (ρ ′) = ln ||ρ̃ ′||1 = max(0, − ln ν̃ ′
−), (31)

where ν̃ ′
− is obtained explicitly from (30) and (10) as

ν̃ ′
− = 1

γ 2

(√
1 − δ2

N cosh2(
√

Nγ r)
cosh(

√
Nγ r)

− sinh(
√

Nγ r)

)2

. (32)

We first consider the case of zero phase mismatch δ = 0,
for which (31) reduces to

ν̃ ′
− = [cosh(

√
Nr) − sinh(

√
Nr)]2

= e−2
√

Nr . (33)

The logarithmic negativity is thus positive and furthermore
scales quadratically with the number of modes

EN (ρ ′) = 2
√

Nr. (34)

Note that the covariance matrix (27) is block-diagonal since
(15) entails that a = cosh(2

√
Nr), b = sinh(2

√
Nr), and c =

0. It is readily recognized that its nontrivial part pertains to
two entangled modes with a squeezing parameter 2

√
Nr and

the remainder to 2N − 1 modes in the vacuum state. This is
one instance of the localization of entanglement as introduced
in Ref. [3]. The result (34) generalizes the one obtained in
Ref. [21] for a single pair of tilted pump (N = 1) and shows
that the effective squeezing is enhanced by a factor

√
N .

When the phase mismatch takes on some finite values, the
logarithmic negativity (31) features the smallest symplectic
eigenvalue (30). It is instructive to obtain a more explicit
expression for a small phase mismatch by expanding around
the case δ = 0,

EN (ρ ′) = 2
√

Nr − δ2r√
N

(
1 − tanh

√
Nr√

Nr

)
+ O(δ4). (35)

The correction is of second order in δ and negative. It is a
bounded function of N whose magnitude decreases for large
N . The positivity of the logarithmic negativity implies that the
central mode is entangled with the uniform superposition of
the tilted modes. This entanglement localization only slowly
decreases when the phase mismath δ increases. This confers
some robustness to the entanglement localization process and
is somehow in contrast with the multipartite entanglement
(18) which seems more sensitive to the phase mismatch.
Recalling that the squeezing parameter r = √

2αλ�, Eq. (35)
also quantifies explicitly the entanglement localization in terms
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of the pump amplitude α, the coupling parameter λ, the crystal
length �, and provides the scaling with N .

IV. CONCLUSION

We have presented a simple active optical scheme for the
generation of spatial multipartite entanglement. It consists
in using 2N symmetrically tilted plane waves as pump
modes in the spatially structured parametric down-conversion
process taking place in a nonlinear crystal. We have found
the analytical solution of the corresponding model in the
rotating wave approximation for arbitrary N and possibly
nonzero phase mismatch. We have quantitatively studied the
entanglement of the 2N + 1 coupled modes obtained at the
output of the crystal. When the phase matching condition is
satisfied, the system exhibits multipartite entanglement. It has
also been shown to subsist for nonzero values of the phase
mismatch.

In addition, our scheme provides a realistic proposal for
the experimental realization of entanglement localization. By
mixing different spatial modes with beam splitters, we can
localize the entanglement distributed at the output of the
crystal among all the 2N + 1 spatial modes in only two
well-defined modes, formed by the linear combinations of
the initial ones. Interestingly, this entanglement localization
results in an enhancement of the entanglement by a factor√

N . Moreover, this process has been shown to be robust with
respect to the phase mismatch.
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