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ABSTRACT

In the space of mixed states the Schrödinger-Robertson uncertainty relation holds though it can never be sat-
urated. Two tight extensions of this relation in the space of mixed states exist; one proposed by Dodonov
and Man’ko, where the lower limit on the uncertainty depends on the purity of the state, and another where
the uncertainty is bounded by the von Neumann entropy of the state proposed by Bastiaans. Driven by the
needs that have emerged in the field of quantum information, in a recent work we have extended the purity-
bounded uncertainty relation by adding an additional parameter characterizing the state, namely its degree of
non-Gaussianity. In this work we alternatively present a extension of the entropy-bounded uncertainty relation.
The common points and differences between the two extensions of the uncertainty relation help us to draw more
general conclusions concerning the bounds on the non-Gaussianity of mixed states.
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1. INTRODUCTION

More than 80 years have been passed from the first inception of the Heisenberg’s principle, one of the fundamental
ideas in quantum mechanics. Using his famous microscope,1 Heisenberg argued that the uncertainty in localizing
a particle is related to the uncertainty of its momentum in the following way:

ΔxΔp ≈ h̄ (1)

where (Δx)2 =
〈
x2

〉 − 〈x〉2.
Since its first formulation and up to our days, a lot of work have been dedicated to the extension and alterna-

tive formulation,2 conceptual3 and practical interpretation4 of the uncertainty principle. The first refinement on
Heisenberg’s uncertainty relation (see2 for a more detailed review) came shortly after by Kennard5 and Weyl,6

who formally derived the exact inequality
ΔxΔp ≥ h̄/2. (2)

employing the canonical commutation relation of the conjugate variables. Contrary to the initial formulation
due to Heisenberg, Eq.(2) does not carry any information about simultaneous measurement on the position and
momentum of a particle and only tells us that it is impossible to prepare states in which position and momentum
are simultaneously arbitrarily well localized.4

A few years later the relation Eq.(2) was generalized by Scrödinger and Robertson7 independently, for arbi-
trary observables (Hermitian operators) A and B to the following one

ΔAΔB ≥ h̄ |〈[A,B]〉| /2. (3)

We should note here that the uncertainty relation Eq.(2) for the canonically conjugated variables of position and
momentum can be easily extended to a more general form that takes into account the existence of correlations
between two variables, √

(Δx)2 (Δp)2 − (Δxp)2 ≥ h̄/2 (4)
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where Δxp = 1
2 〈xp + px〉−〈x〉 〈p〉. The inequality Eq.(4) is largely known nowadays as the Scrödinger-Robertson

uncertainty relation and its lower bound is reached exclusively by the so-called Gaussian pure states, i.e., the
states with Wigner function8 of Gaussian form. The Gaussian set is composed by all coherent and squeezed-
displaced states which are often encountered in the field of quantum optics.

Apart from the uncertainty relation where the uncertainty, “spread”, is quantified by the standard deviation
there is another family of uncertainty relations where the spread is characterized by different kind of entropies.
Such inequalities are generally named as entropic uncertainty relations and have regained interest in the context
of quantum information.9 However in this work we are going to confine ourselves to the “standard” uncertainty
relations.

One important question that arises is how the Schrödinger-Robertson uncertainty relation is modified for
mixed states. This question has been answered by Bastiaans10 and Dodonov-Man’ko11 by identifying a relation
between the lower limit of the uncertainty, Eq.(4), and the degree of mixedeness of a state. Bastiaans has
employed as a measure of mixedeness the von Neumann entropy, while Dodonov-Man’ko the purity of the
state. Both extensions exhibit similar behavior; the lower limit in the uncertainty is increasing as the degree of
mixedeness is increasing. However, concerning the states which saturate the inequalities, so-called minimizing
states2(MS) there is a striking difference. The extended relation built on the measure of the von Neumann
entropy, the so-called entropy-bounded uncertainty relation,10 is minimized by Gaussian mixed states (thermal
states) and while the purity-bounded uncertainty relation11 is minimized by non-Gaussian states.

In a recent work12 we have further extended the purity-bounded uncertainty relation by adding one extra
parameter characterizing the mixed state namely its degree of non-Gaussianity. The idea of constructing uncer-
tainty relations depending on several parameters characterizing the state is not new, however with our choice
we arrive to some interesting results. Among these is an uncertainty relation for pure states that depends on
the degree of non-Gaussianity and which is saturated, among others, by all number states. In addition this, as
we call it, non-Gaussianity bounded uncertainty relation, can be employed to derive bounds on the degree of
non-Gaussianity for mixed states with Wigner functions without negative domain.13

In this work after we introduce in Sec. 2 the needed quantities, we present in Sec. 3, in parallel, the extensions
of the purity and entropy bounded uncertainty relations and we express them in a compact way using parametric
relations. In Sec. 4 following similar steps as in,12 we further extend the entropy-bounded uncertainty relation
adding one more degree of freedom which characterizes the deviation of the state from a reference Gaussian
state. In the last section, Sec. 5, we compare the new obtained results with those in12 and we conclude.

2. QUANTITIES AND MEASURES

Let us start with a general density matrix ρ̂ defining a quantum mixed state. To quantify the degree of mixedeness
of the state ρ̂ one may employ its purity μ = Tr

(
ρ̂2

)
. The range of values for μ is [0, 1], where the value 1

corresponds to pure states the value 0 to totally mixed ones. In a equivalent way, one may use the von Neumann
entropy of the state, S = −Tr (ρ̂ ln ρ̂) which can be seen as an extension of Shannon’s entropy. The entropy S
takes the value 0 for pure states and it tends to ∞ for totally mixed states. Throughout this work we consider
quantum systems with only one pair of conjugate variables, like one-particle systems or one-mode states in
quantum optics. In this particular case there is a relation connecting the von Neumann entropy with the purity
of the state,

S =
1 − μ

2μ
ln

(
1 + μ

1 − μ

)
− ln

(
2μ

1 + μ

)
. (5)

In the figures presented in this work we employ the quantity exp [−S] instead of S, since this is bounded between
0 and 1.

A second basic characteristic of the state ρ̂ that we would like to introduce is the covariance matrix γ of the
state ρ̂ defined as

γij = Tr({(r̂i − di), (r̂j − dj)}ρ̂) (6)
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where r̂ is the vector of the canonically conjugated observables position and momentum (or quadrature operators
in quantum optics) r̂ = (x̂, p̂)T , d =Tr(r̂ρ̂) is the displacement vector, and {·, ·} is the anticommutator. We can
put the displacement vector to zero with no loss of generality since the purity (as well as the quantities we will
be interested in) is invariant with respect to d.

The importance of the covariance matrix stems from the fact that it is measurable experimentally and that
it is tightly connected, as we show below, with the uncertainty relation. Since we consider here one-dimensional
quantum systems the covariance matrices we are dealing with are 2 × 2. The covariance matrix of ρ̂ uniquely
determines a Gaussian state ρ̂G which henceforth will refer as the reference Gaussian state for the state ρ̂. The
purity μG of ρ̂G, exactly defines the inverse of the “uncertainty” of the state (the left-hand side of Eq.(4)) as,

μG = 1/

√
γ11γ22 − |γ12|2. (7)

More precisely
√

(Δx)2 (Δp)2 − (Δxp)2 = 1/2μG and in this work, we often abbreviate the uncertainty by the
quantity μG which is bounded between the values 0 and 1.

A third quantity that is needed for our purposes is a measure of non-Gaussianity. The problem of character-
izing the non-Gaussianity of a state strongly resembles an older one, namely that of quantifying the non-classical
character of a state.14 In analogy with the common definitions of non-classicality,15 the non-Gaussianity of a
pure state is to be defined as the minimum of the distance from the given state to all Gaussian states. The em-
ployed measure of distance can be any construction that satisfies the usual requirements of a distance16 and, in
addition, that is invariant under symplectic (Gaussian) transformations. However, when looking at a computable
measure of non-Gaussianity, this definition, even if correct, is not easily applicable.

In this work we choose to use as a measure of non-Gaussianity simply the deviation of the state from its
reference Gaussian state. This can be quantified in different ways, and the simplest one is by the trace overlap
of the states ρ̂ and ρ̂G, Tr (ρ̂ρ̂G). If a state is Gaussian then Tr (ρ̂ρ̂G) = μ = μG, while for non-Gaussian states
it can be larger or smaller than this value. Using the Cauchy-Schwarz inequality and the expression of the trace
overlap in Wigner representation

Tr (ρ̂ρ̂G) = 2π
∫ ∫

W (x, p) WG (x, p) dxdp, (8)

one may show17 that the upper, not-necessarily reachable, limit is
√

μμG. The lower limit of the trace overlap
has been shown to be 0 and it is reached by states with “spread” tending to infinity. However the exact reachable
limits of Tr (ρ̂ρ̂G) for different values of μ and μG is within the objectives of this work.

Furthermore, the trace overlap can be employed together with μG, μ for evaluating a recently suggested
measure of non-Gaussianity, the normalized Hilbert-Schmidt distance,2,18

δ =
1
2μ

Tr
(
(ρ̂ − ρ̂G)2

)
=

μG + μ − 2Tr (ρ̂ρ̂G)
2μ

. (9)

This measure has the main properties of the distance, it takes the value 0 for the thermal states and while its
maximum value is 1/2.12

Finally we note that for the rest of this work we set h̄ = 1.

3. PURITY- AND ENTROPY- BOUNDED UNCERTAINTY RELATIONS FOR
MIXED STATES

In this section we derive the purity- and entropy-bounded uncertainty relations in a unified framework and we
express them using compact parametric relations. The steps of derivation can be easily generalized to the case
where a higher number of parameters is employed to characterize the mixed state.

The objective is to identify the lower bounds on the uncertainty
√

(Δx)2 (Δp)2 − (Δxp)2 ( upper limits for
μG, Eq.(7)) given the degree of mixedeness of the state ρ̂, as well as, the mixed states which reach the limits (MS).
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Without loss of generality we assume that the covariance matrix γ of ρ̂ is diagonal (Δxp = 0) and symmetric
in the variables x and p (Δx = Δp). This can be easily achieved by applying symplectic transformations on a
state ρ̂. Such transformations do not alter the degree of mixedeness (eigenvalues) of the state.

We have an extremization problem to solve under specific constraints, and the natural method to apply is
that of Lagrange multipliers. Within this method the solution is identical if the quantity to be extremized is
exchanged with one of the constraints. In view of this statement, the constraints that we impose are summarized
below,

1. The state is normalized
Tr (ρ̂) = 1. (10)

2. The reference Gaussian state is a thermal non-displaced one,

Tr (ρ̂x̂) = Tr (ρ̂p̂) = Tr (ρ̂x̂p̂) = 0 (11)

and its purity (or uncertainty) is fixed

Tr (ρ̂ (2n̂ + 1)) =
1

μG
. (12)

The quantity to be extremized is the degree of mixedeness quantified by the purity μ = Tr
(
ρ̂2

)
or the von

Neumann entropy S = −Tr (ρ̂ ln ρ̂). In the first case, the extremum solution we obtain after differentiation is
of the form,

ρ̂exP = α0 + α1x̂ + α2p̂ + α3x̂p̂ + α4n̂ (13)

and in the case of the entropy
ρ̂exS = exp[b0 + b1x̂ + b2p̂ + b3x̂p̂ + b4n̂]. (14)

For these solutions, the constraints Eqs.(11) can be only satisfied if α1,2,3 = 0 and b1,2,3 = 0, implying that
the extremum solution for both problems is diagonal in the eigenbasis of the harmonic oscillator. We proceed
by working in the number state basis to identify the exact coefficients of the solutions Eqs.(13) and (14).

3.1 Purity-bounded uncertainty relation

According our argument above, we may confine ourselves to states which are finite convex combinations of the
number states

ρ̂ =
N∑

n=0

Pn|n〉〈n|. (15)

The quantity which we would like to extremize is the purity,

N∑

n=0

P 2
n = μ , (16)

under the constraints of normalization
N∑

n=0

Pn = 1 (17)

where 0 ≤ Pn ≤ 1, and uncertainty,
N∑

n=0

Pn(n + 1/2) = 1/2μG . (18)

The Lagrange multipliers method provide the following solution, (see Eq.(13)),

P ex
n = A1 + A2n (19)
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where A1and A2 are to be determined by the conditions Eqs.(17) - (18). However the parameter N , the upper
limit in the summation, remains undetermined and to resolve this ambiguity we introduce a continuous parameter
y that satisfies

A1 + A2y = 0. (20)

This additional equation permits us to define N as the integer part of y, N = 	y
.
We employ the conditions, Eqs. (17) and (20) to express A1and A2 in terms of N and y. We substitute the

resulting expressions into Eqs.(16),(18), thus obtaining a parametric relation for the extremal solution,

μex
G = 3(N−2y)

N(5+4N)−6(1+N)y , (21)

μex =
2(N+2N2−6Ny+6y2)

3(1+N)(N−2y)2
. (22)

where N = 	y
 and y ∈ [1,∞). Moreover, by setting N = y one can arrive to an approximate formula

μex =
8μex

G

9 − (μex
G )2

that reproduces the curve of Eqs.(21)-(22) in very good approximation when 0 ≤ μG ≤ 3/5. For the rest of the
region, 3/5 ≤ μG ≤ 1, one should better employ the exact solution

μN=1 =
1 − 4μG + 5μ2

G

2μ2
G

. (23)

The obtained results Eqs.(21)-(22) give the lower extreme bound (see Fig.1(a)) on the plane μG and μ and are
equivalent to the expressions derived in.11 In their derivation, the aim is to obtain a function of the uncertainty
μG in terms of the purity. This requires an inversion step that is valid under specific constraints and what the
authors obtain is sequence of functions each one valid, for a different N (segment of μ). This inversion step in
our case would mean to solve Eq.(22) for y and substitute the result into Eq.(21).

The states which minimize (MS) this extended uncertainty relation can be easily derived,

ρ̂ex (y) =
N∑

n=0

(
2(n − y)

(1 + N) (N − 2y)

)
|n〉〈n| (24)

where N = 	y
 and y ∈ [1,∞).

3.2 Entropy-bounded uncertainty relation

As in the previous case, we express the trial solution in the number states basis

ρ̂ =
N∑

n=0

Pn|n〉〈n| (25)

and we impose the constraints
N∑

n=0

Pn = 1 (26)

and
N∑

n=0

Pn(n + 1/2) = 1/2μG . (27)

The quantity to extremize now is the von Neumann entropy
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−
N∑

n=0

Pn ln Pn = S . (28)

After differentiation, the solution that we obtain is

P ex
n = exp (B1 + B2n) . (29)

Contrary to the case of the purity, the coefficients P ex
n we obtain are positive for every n and therefore the

upper limit of summation, N , should be taken to ∞. In other words, in this case, there is no need for an ansatz
i.e. introduce the variable y, since the obtained solution corresponds always to a positive density matrix. Here,
though, one should take care so that the matrix obtained is normalizable and for this to be true, the values
of B′s in Eq.(29) should both be negative. After substituting Eq.(P ex

n ) into the Eqs.(26)-(27) we obtain the
following indirect relations

eB1

1 − eB2
= 1 (30)

eB1
(
1 + eB2

)

(1 − eB2)2
= 1/μG (31)

−eB1
(
B1 + eB2 (B2 − B1)

)

(1 − eB2)2
= S. (32)

We use the Eq.(30) to express B1 in terms of B2, thus obtaining the following indirect extreme relation
between the uncertainty and the von Neumann entropy

μex
G = (1−e−B)2

(1−e−2B)
, (33)

Sex =
BeB−(1−e−B) ln(1−e−B)

1−e−B . (34)

where B ∈ (0,∞). The states which extremize the entropy bounded uncertainty relation are thermal states,

ρ̂ex =
∞∑

n=0

(
1 − e−B

)
exp (−Bn) |n〉〈n| (35)

where B ∈ (0,∞) has the role of the inverse temperature β.

In Fig.1 we present the dependence of the uncertainty of a mixed state on the degree of mixedeness, quantified
by the measures of purity and von Neumann entropy. The two curves exhibit the same behavior, that is the
uncertainty is getting larger as the degree of mixedeness is increasing. This similar behavior is justified by the
monotonic relation between the entropy and the purity given by the Eq.(5). On the other hand the MS for
the two relations are not the same even though they have some similar features. Being mixtures of the number
states, both classes of MS are phase-independent in the phase-space representation. In addition, both have
Wigner representation strictly positive.2 However for the purity-bounded uncertainty relation the MS are not
Gaussian states, as it is the case for pure states and the entropy-bounded uncertainty relation. Gaussian states
tend to be considered extremal within all continuous variable states if one imposes constraints on the covariance
matrix.19 The purity-bounded uncertainty relation can be considered as a counter-example to this statement.
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Figure 1. a) The purity-bounded uncertainty relation provides a lower bound on the determinant of the covariance matrix
of a state (upper bound on μG Eq.(7)) as a function of its purity μ. (b) The entropy-bounded uncertainty relation, where
the upper bound on μG depends on the von Neumann entropy S of the state.

4. EXTENDING FURTHER THE ENTROPY-BOUNDED UNCERTAINTY
RELATION

In a recent work12 we have extended the purity-bounded uncertainty relation by adding one more parameter
characterizing the state namely the degree of non-Gaussianity quantified by δ Eq.(9). The motivation behind
that work was to extend in a parallel way, to the space of mixed states, two basic theorems of quantum mechanics
which for pure states bare a striking similarity, the Hudson’s theorem and the uncertainty principle. According
to Hudson’s theorem the only pure states with everywhere positive Wigner function are the Gaussian ones.
These are also the states which minimize the Schrödinger-Robertson uncertainty relation Eq.(4).

More explicitly, in17 we have formulated an extension of Hudson’s theorem, by identifying the maximum
degree of deviation from a Gaussian state which can be reached by a mixed state with positive Wigner function,
given its purity and its uncertainty. This problem does not have a simple solution and in17 we have only
identified the bounds for any continuous classical distribution which may not necessarily correspond to a valid
Wigner function, and therefore the bounds are not tight for the set of quantum states. In 12 we have extended
the purity-bounded uncertainty so that we are able to draw more complete conclusions on the overlap between
states minimizing that uncertainty relation and the set of states with positive Wigner function.13 According to
our results the overlap of the two sets is maximal for the Gaussian states and as the degree of non-Gaussianity
is increasing the overlap is gradually decreasing and after some certain degree, the two sets have no overlap at
all.

In this work, we want to investigate how a similar extension for the entropy-bounded uncertainty relation
stands and we follow similar steps, as in,12 to derive it. However employing the entropy, we are confined to
work with the quantity of trace overlap Tr (ρ̂ρ̂G) that is not a measure of non-Gaussianity in a formal sense.
Furthermore, as we are going to show that contrary to the extension in,12 the solution to this problem, in order
to be visualized, requires numerical methods.

To derive the extended relation we simply add the constraint of fixed trace overlap Tr (ρ̂ρ̂G) to the extrem-
ization problem analysed in Sec. 3. Given that, up to a normalization factor, ρ̂G = exp (Fn̂), the additional
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constraint can be simply expressed as
Tr (ρ̂ exp (Fn̂)) = Ov. (36)

The inverse temperature F of the reference Gaussian state ρ̂G is related to the purity μG Eq.(12) with a relation
that we derive below. For simplicity reasons and without any effect on the solution, we also omit the constraint
of normalization Eq.(10) on the state ρ̂.

Under the two constraints, Eqs.(12), (36) the extremization procedure on the quantity of von Neumann
entropy Eq.(28) provides a solution of the form

ρ̂ex = exp[An̂ + B exp (Fn̂)] (37)

Obviously the solution is diagonal in the number state representation. We express Eq.(37) in this basis and we
include the normalization to arrive to,

ρ̂ex =
∑∞

n=0 exp[An + B exp (Fn)]|n〉〈n|
∑∞

n=0 exp[An + B exp (Fn)]
. (38)

Let us now, impose the constraints Eqs.(12), (36) to identify the coefficients A, B and F .

In view of Eq.(38), the constraint Tr (ρ̂ (2n̂ + 1)) = 1
µG

becomes

∑∞
n=0 2n exp[An + B exp (Fn)]

∑∞
n=0 exp[An + B exp (Fn)]

+ 1 =
1

μG
. (39)

The corresponding, normalized now, Gaussian state is

ρ̂G =
∑∞

n=0 exp[Fn]|n〉〈n|
∑∞

n=0 exp[Fn]
, (40)

It should have the same covariance as ρ̂,

Tr (ρ̂G (2n̂ + 1)) =
∑∞

n=0 2n exp[Fn]
∑∞

n=0 exp[Fn]
+ 1 =

2
1

e−F − 1
+ 1 = 1

µG
. (41)

From Eqs.(39) and (41), we conclude that
∑∞

n=0 n exp[An + B exp (Fn)]
∑∞

n=0 exp[An + B exp (Fn)]
=

1
e−F − 1

. (42)

Similarly, the overlap constraint Tr (ρ̂ exp (Fn̂)) = Ov, with the help of Eq.(38), is re-expressed as

(
1 − eF

)
∑∞

n=0 exp[Fn] exp[An + B exp (Fn)]
∑∞

n=0 exp[An + B exp (Fn)]
= Ov (43)

and the von Neumann entropy S = −Tr (ρ̂ ln ρ̂) as

−
∞∑

m=0

exp[Am + B exp (Fm)]
∑∞

n=0 exp[An + B exp (Fn)]
ln

(
exp[Am + B exp (Fm)]

∑∞
n=0 exp[An + B exp (Fn)]

)
= S. (44)

Then Eqs.(42),(43) and (44), permit us to connect the quantities of interest : uncertainty, overlap and entropy
via the three parameters A, B and F . The range of the parameters though, is not arbitrary. The solution,
Eq.(37), always corresponds to a positive matrix but to be a normalizable one, a constraint A < 0 should be
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Figure 2. (a) Lower bound on the trace overlap Tr (ρ̂ρ̂G) projected on the plane uncertainty-entropy (μG − e−S). This
bound correpond to B > 0. (b) The upper bound on the trace overlap that is obtained for B < 0. The points have
been obtained by numerical solving the Eq.(42) for the parameter F . We have used the first 100 terms of the series in
Eqs.(42),(43) and (44).

imposed. For the reference Gaussian state, Eq.(40) to be normalizable we need F < 0, while there is no constraint
on the parameter B. Since B = 0 simply gives the Gaussian solution i.e. the extreme line on the plane S − μG

(von Neumann entropy- uncertainty), we expect that one B−branch corresponds to a maximum solution for the
overlap Tr (ρ̂ρ̂G) and the other to a minimum extremum solution.

Finally, one may observe that the form of the solution does not accommodate solutions which are pure states,
apart from the trivial solution |0〉. On the other hand all the number states |n〉 are approachable in specific
limits of the parameters A, B and F .

In Fig. 2 we present the bounds on the overlap Tr (ρ̂ρ̂G) that we obtain by numerically solving the Eq.(42)
for the parameter F . Then, with the help of Mathematica package we have created a projection of the bounds on
the plane uncertainty-entropy using the indirect parametric plot relating the quantities S and μG, Eqs.(44),(42).
We observe that the lower bound has very similar structure to the one obtained using the purity μ12 instead
of the entropy. The picks appearing on the e−S = 1 axe (pure states) correspond, in the limit, to the number
states as in.12 In addition, as in12 an area on the plane μG − e−S remains uncovered implying the existence of
a degenerate solution that cannot be identified by imposing variational methods on the density matrix.

As we have mentioned the Cauchy-Schwarz inequality gives us an upper estimation for the trace overlap that
is

√
μGμ. This extremum value is not necessarily reachable since during the derivation of it the condition that

ρ̂ possess the same covariance matrix as ρ̂G have not been taken into account. In Fig. 2(b) we depict the strict
upper bound on Tr (ρ̂ρ̂G) if the entropy and the uncertainty of the state are given. As is the case of the lower
bound, the upper bound does not cover all the allowed in principle parametric area S and μG.
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5. CONCLUSIONS

In conclusion we have derived tight upper and lower bounds on the trace overlap of a mixed state ρ̂ with a
reference Gaussian state ρ̂G defined by the covariance matrix of ρ̂, given the entropy S and the uncertainty of
the state. These bounds are expressed in terms of series including three parameters that indirectly connect the
three quantities of interest, Tr (ρ̂ρ̂G), S and μG (inverse uncertainty). These bounds are of fundamental interest
since they connect three basic characteristics of a mixed state. Given the need of construction of non-Gaussian
states in the field of quantum information these bounds may be of practical interest as well.

In12 we have accomplished a similar derivation characterizing mixedeness, by the purity μ. The bounds
obtained in this work and in12 have similar structure. In both cases the bounds are realized by states which
are mixtures of the number states and as a consequence of this the only pure states saturating the extended
uncertainty relations are the number states. By employing the purity we arrive to simpler expressions where
only two parameters are involved. On the other hand the entropy extended uncertainty relation provides an
upper bound on the trace overlap a task that cannot be achieved if the purity is used instead of the entropy.
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