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Résumé

Cette thèse étudie deux aspects d’interaction entre deux joueurs dans le modèle du calcul et
de la communication quantique.

Premièrement, elle étudie deux primitives cryptographiques quantiques, des briques de base
pour construire des protocoles cryptographiques complexes entre deux joueurs, comme par
exemple un protocole d’identification.

La première primitive est la “mise en gage quantique”. Cette primitive ne peut pas être
réalisée de manière inconditionnellement sûre, mais il est possible d’avoir une sécurité lorsque
les deux parties sont soumises à certaines contraintes additionnelles. Nous étudions cette
primitive dans le cas où les deux joueurs sont limités à l’utilisation d’états et d’opérations
gaussiennes, un sous-ensemble de la physique quantique central en optique, donc parfaitement
adapté pour la communication via fibres optiques. Nous montrons que cette restriction ne
permet malheureusement pas la réalisation de la mise en gage sûre. Pour parvenir à ce résultat,
nous introduisons la notion de purification intrinsèque, qui permet de contourner l’utilisation
du théorème de Uhlman, en particulier dans le cas gaussien.

Nous examinons ensuite une primitive cryptographique plus faible, le “tirage faible à
pile ou face”, dans le modèle standard du calcul quantique. Carlos Mochon a donné une
preuve d’existence d’un tel protocole avec un biais arbitrairement petit. Nous donnons une
interprétation claire de sa preuve, ce qui nous permet de la simplifier et de la raccourcir
grandement.

La seconde partie de cette thèse concerne l’étude de méthodes pour prouver des bornes
inférieures dans le modèle de la complexité en requête. Il s’agit d’un modèle de complexité
central en calcul quantique dans lequel de nombreux résultats majeurs ont été obtenus. Dans
ce modèle, un algorithme ne peut accéder à l’entrée uniquement qu’en effectuant des requêtes
sur chacune des variables de l’entrée. Nous considérons une extension de ce modèle dans lequel
un algorithme ne calcule pas une fonction, mais doit générer un état quantique.

Cette généralisation nous permet de comparer les différentes méthodes pour prouver des
bornes inférieures dans ce modèle. Nous montrons d’abord que la méthode par adversaire “mul-
tiplicative” est plus forte que la méthode “additive”. Nous montrons ensuite une réduction de
la méthode polynomiale à la méthode multiplicative, ce qui permet de conclure à la supériorité
de la méthode par adversaire multiplicative sur toutes les autres méthodes.

Les méthodes par adversaires sont en revanche souvent difficiles à utiliser car elles nécessitent
le calcul de normes de matrices de très grandes tailles. Nous montrons comment l’étude des
symétries d’un problème simplifie grandement ces calculs.

Enfin, nous appliquons ces formules pour prouver la borne inférieure optimale du problème
Index Erasure, un problème de génération d’état quantique lié au célèbre problème Iso-
morphisme de Graphes.
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Abstract

This dissertation studies two different aspects of two-player interaction in the model of quantum
communication and quantum computation.

First, we study two cryptographic primitives, that are used as basic blocks to construct
sophisticated cryptographic protocols between two players, e.g. identification protocols.

The first primitive is “quantum bit commitment”. This primitive cannot be done in an
unconditionally secure way. However, security can be obtained by restraining the power of the
two players. We study this primitive when the two players can only create quantum Gaussian
states and perform Gaussian operations. These operations are a subset of what is allowed by
quantum physics, and plays a central role in quantum optics. Hence, it is an accurate model
of communication through optical fibers. We show that unfortunately this restriction does
not allow secure bit commitment. The proof of this result is based on the notion of “intrinsic
purification” that we introduce to circumvent the use of Uhlman’s theorem when the quantum
states are Gaussian.

We then examine a weaker primitive, “quantum weak coin flipping”, in the standard model
of quantum computation. Mochon has showed that there exists such a protocol with arbitrarily
small bias. We give a clear and meaningful interpretation of his proof. That allows us to present
a drastically shorter and simplified proof.

The second part of the dissertation deals with different methods of proving lower bounds
on the quantum query complexity. This is a very important model in quantum complexity in
which numerous results have been proved. In this model, an algorithm has restricted access to
the input: it can only query individual variables. We consider a generalization of the standard
model, where an algorithm does not compute a classical function, but generates a quantum
state.

This generalization allows us to compare the strength of the different methods used to
prove lower bounds in this model. We first prove that the “multiplicative adversary method”
is stronger than the “additive adversary method”. We then show a reduction from the “polyno-
mial method” to the multiplicative adversary method. Hence, we prove that the multiplicative
adversary method is the strongest one.

Adversary methods are usually difficult to use since they involve the computation of norms
of matrices with very large size. We show how studying the symmetries of a problem can
largely simplify these computations.

Last, using these principles we prove the tight lower bound of the Index Erasure problem.
This a quantum state generation problem that has links with the famous Graph Isomorphism
problem.
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1 Introduction

1.1 Quantum disruption in information sciences

The first time that quantum physics poked around information sciences was in 1970 when
Stephen Wiesner proposed a scheme for unforgeable “quantum” banknotes. This idea got
mostly ignored and published only in 1983 [Wie83] but inspired the design of quantum key
distribution, one of the greatest success of quantum cryptography.

The other active branch of quantum information takes its root in a proposal by Richard
Feynman to use quantum effects to speed up some computational tasks. He actually proposed
to use some quantum systems in order to perform efficient simulations of some other quantum
systems for which classical computers seemed unable to do in a reasonable time [Fey82]. The
consequences of this idea reach much further than the domain of numerical simulation. What
he proposed is actually another model of computation.

Quantum information brought a new view on many aspects of computer sciences and
revealed unsuspected possibilities.

1.1.1 Spooky

Quantum computation differs from classical computation at its very core level: it does not
manipulate bits, but a quantum equivalent, qubits, that have “spooky” properties. A bit,
can takes only two values, that we will denote by |0〉 and |1〉. A randomized algorithm, i.e.
an algorithm that will use some random bits as resources, like the Miller-Rabin primality test
[Rab80], is mathematically described by a probabilistic bit, that takes value |0〉 with probability
p and value |1〉 with probability 1− p.

A bit can be compared to an on/off switch that takes only two values 0 or 1, whereas
a probabilistic bit will be a dimmer switch that can take all the values between 0
and 1.

Quantum bits, or qubits, are a generalization of probabilistic bits: instead of being constrained
in one dimension, they are two-dimensional objects in a space where |0〉 and |1〉 are interpreted
as orthonormal vectors, and are described by the superposition α|0〉+β|1〉 with |α|2 + |β|2 = 1.
Note that the parameters α and β do not represent probabilities hence can be negative.1

To continue the switch metaphor, a qubit can be compared to a wheel with a mark
that one would see from the side. The wheel switch is “1” when the mark is on
top, “0” when the mark is at the bottom. The main difference with the dimmer
switch is that to go from “1” to “0”, there are now two distinct paths depending if
the wheel turns clockwise or not. (See Figure 1.1)

1actually they are even complex numbers, but we do not discuss it here for the simplicity of the example.
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1. Introduction

a) 1

0

b) 1

0

c) 1

0

Figure 1.1: a) Schematic representation of an on/off switch on the 1 position. b) Representation of a
dimmer switch in an intermediate position between 0 and 1. c) Representation of a “quantum wheel”
switch. When seen from the side a quantum wheel switch seems identical to a dimmer switch.

Although in many aspects, quantum bits and probabilistic bits seem to have similar behav-
iors, they are not equivalent. For example, it is possible to create a

√
NOT gate with quantum

bits.

We want to find an operation on the switch that when we applied it twice inverts
the position of the switch. A switch in position 0 will ends up in position 1. After a
few thoughts, it is easy to realize that no such operation can exist with determinist
or probabilistic switches. But we can create it with a quantum switch: rotate the
disc by an angle of 90◦. When applied twice, the disc makes a half turn, thus
turning a 0 into a 1.

This notation can be extended to strings: a classical string s is denoted by |s〉 and a quantum
string is in general a superposition of classical strings. A quantum string is of the form

∑
s αs|s〉

with
∑
|αs|2 = 1, for example this is a 4-qubit string composed of the superposition of two

4-bit strings: 1/
√

2|0000〉+ 1/
√

2|1111〉.
The most spooky behavior though, is the EPR paradox, named after Einstein, Podolsky

and Rosen who first published about it [EPR35].

Two entangled discs can be represented as two spatially separate discs in the same
position but it is impossible to describe the positions of the two discs individually.
It is only known that they are in the same position. For example the state of the
two discs after a person made a rotation on one disc is exactly the same as if the
rotation would have been applied to the other disc.

Einstein, Podolsky and Rosen called this phenomenon a “spooky action at a distance” and
even concluded that we were missing parameters, a hidden variable, in the study of quantum
systems. Bell later showed that this was not the case and that quantum physics defeats one’s
imagination [Bel64].

This is then not surprising that entanglement is one of the most useful resource in quantum
computation since the interactions between two players can be enhanced by it.

1.1.2 Surprise

In 1984, Charles Bennett and Gilles Brassard published a quantum key distribution (QKD)
protocol in which two parties, usually called Alice and Bob, can communicate over a channel

2



1.1. Quantum disruption in information sciences

with unconditional security if they both have some quantum resources [BB84]. Even if the
complete proof of the unconditional security took more than two decades to be fully completed
[SP00, Ren05], the simplicity of the protocol and the elegance of the ideas behind it were
powerful enough to start the field now known as quantum cryptography. To really understand
why this announcement was such a surprise, one has to realize that up to that time, uncon-
ditional security has been considered as an impossible task to achieve, and the security of the
protocols were always relying on hardness assumptions, e.g. on the hardness of Factoring
and Discrete Log, or human trust.

Entanglement A surprising fact about the BB84 protocol is that the interaction between
Alice and Bob does not use entangled states. Although Ekert proposed another protocol for
QKD [Eke91] in which the main resource is entangled states shared between Alice and Bob,
this formulation was later shown to be equivalent to the BB84 protocol and the proofs of
security are generally based on this approach. For a recent review on QKD, one could read
[SBPC+09].

1.1.3 Enthusiasm and fear

Communication is not the only domain in which quantum resources proved to be powerful;
they also play an important role in computation. Undoubtedly the main result in quantum
computation is the seminal algorithm by Peter Shor to factorize an integer in polynomial
time [Sho94], whereas no classical polynomial time algorithms are known. As an immediate
consequence, anyone with a quantum computer can break all of the current cryptographic
protocols that are based on the hardness assumption of Factoring or Discrete Log. The
Factoring problem is not believed to be in P, but is neither NP-complete nor coNP-complete
(unless a cataclysmic collapse of the polynomial hierarchy occurs). Thus we do not know for
certain that a quantum computer is more powerful for factoring integers. Proving the higher
computational power of a quantum computer over a classical one is done by finding separations,
i.e. problems for which we can prove that a quantum algorithm exists with lower complexity
than any classical algorithm. Proving separations for time complexity is probably the biggest
challenge in theoretical computer science nowadays. This is why, as a first step, it is interesting
to prove separations in more constrained models.

The other major results that shaped up the field is the discovery in 1996 by Lov Grover
of an algorithm to find an element in a unordered list [Gro96] quadratically faster than any
classical algorithm.

Quantum computation also proved to be efficient for evaluating tree formulae. The objec-
tive is to evaluate a Boolean formula where the inputs are given by the leaves of a tree, and
the nodes are Boolean gates. Consider for example the balanced NAND-tree formula with N
leaves, (all the branches of the tree have the same size, and the nodes are NAND gates), the
deterministic complexity is Θ(N), the randomized one is Θ(N0.754) [SW86] and the quantum
one Θ(N0.5) [FGG08, Amb09].
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1.2 Scope and motivations

1.2.1 Gaussian quantum key distribution

Quantum key distribution started to shape up the field of quantum cryptography. There are
currently many competing protocols, hundreds of papers devoted to prove the security of the
many variants, a dozen of teams building hardware to create QKD enabled networks (optical
fibers, quantum memory, repeaters, lasers) for large-scale deployment. In the last decade some
startups started selling QKD devices for some niche markets. As a witness that this field has
gained maturity, some researchers are now trying to hack theses devices, that is finding errors
in the implementation of QKD protocols [GLLL+11].

The theoretical work on perfect QKD protocol is very mature currently, so the efforts
are now focused on proposing and analyzing real life schemes. A new set of problems are
emerging from this shift of focus, for example how to bypass the low efficiency of single photon
detectors. A first answer has been proposed independently by Ralph [Ral99], Hillery [Hil00]
and Reid [Rei00] who introduced protocols using continuous variables. This idea comes from
physicists for whom it is very natural to manipulate quantum systems described by continuous
variables whereas computer scientists are more used to discrete variables. As a matter of fact,
many physical quantities are accurately described by continuous variables such as the position
and the momentum of a particle or the amplitude of the electromagnetic field.

The key idea of using continuous variables (CV) and the so-called homodyne detection
that measures the amplitude of a pulse of light with high accuracy and efficiency whereas all
the previous protocols required photon detectors that are quite inefficient. Nicolas Cerf, Marc
Lévy and Gilles Van Assche proposed a protocol that uses only Gaussian states [CLVA01] to
performed quantum key distribution, that was later refined by Frédéric Grosshans and Philippe
Grangier [GG02]. Gaussian states are a subset of CV states that have many advantages for
practical implementation as for theoretic analysis: they are produced by a laser and can be
transmitted using current telecom technologies, they can be easily manipulated in a laboratory,
at least for a restricted set of operations, unimaginatively called Gaussian operations, and have
a very well defined mathematical formalism. Indeed, Gaussian states can be represented by
a “small” number of parameters whereas in general a CV state is characterized by an infinite
number of parameters. Good introductions to quantum information with continuous variables
can be found in [BvL05, CLP07].

This is how I came to study continuous variables and most noticeably Gaussian variables.
Several variations of GG02 have been introduced, one of them in [WLB+04]. During my master
thesis I studied a restricted class of attacks [Mag06] against this protocol, later turned into an
article [SMGPSC07]. Complete security has subsequently been proved in [GPS07, RC09].

Contrarily to cryptographic purposes for which Gaussian states and operations enable
perfect key distribution, Gaussian states and operations are not useful for computational tasks.
Indeed they are not universal for quantum computation and can be simulated in polynomial
time with classical computers [BS02, BSBN02].

1.2.2 Cryptographic primitives

Quantum cryptography is not limited to key distribution. Another important task is secure
two-party function evaluation (2PFE). Unlike in QKD the two players, Alice and Bob, do not
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trust each other. Alice has an input xA and Bob xB and they want to compute f(xA, xB)
without revealing their inputs [Yao82].

A popular example is the Millionaire’s problem. Alice and Bob are two millionaires
and they want to determine which one is the richest, without revealing how much
each of them own.

The range of applications to secure two-party function evaluation is gigantic in our Internet era:
secure authentication, identification, voting, and function evaluation, to cite a few. In order to
create protocols for general 2PFE, we use subroutine protocols that perform a restricted class
of secure function evaluation. These protocols are then used as building blocks for creating
more general protocols.

We want to pinpoint that two-party secure computation can be implemented in a totally
secure manner if there is a trusted third party, though it is of crucial importance not to rely
on this trick since third parties can be bribed or corrupted. All current cryptography on the
Internet is based on trusted third parties, and History shows we cannot rely on them. The
latest example being the DigiNotar affair. DigiNotar signs identification certificates. When a
user visits a website over SSL, the website sends a certificate to prove its authenticity. If the
certificate is signed by a trusted authority, the browser lets its user go. DigiNotar servers got
hacked and fraudulent certificates have been issued, that have been actively used to spy on
people2.

1.2.3 Query complexity

The most studied model in quantum computing other than time is the query complexity model.
This model can be described as a two-player interaction. Player A, the algorithm, wants to
compute a function f on an input x known only by Player B, the oracle. The communication
between the algorithm and the oracle is strongly constrained: the algorithm can only ask
questions of the form “what is the i-th bit of x?” and has to pay a 1$ fee per question (query).
In a quantum setting, the queries can be made in superposition. The query complexity of
an algorithm that computes a function f is the amount of money payed by the algorithm to
the oracle. The query complexity of a function f is the minimum over all the algorithms of
their query complexity, hence the query complexity of an algorithm is an upper bound on the
query complexity of the function. Note that this is a worst-case complexity scenario: we are
interested in the complexity of computing f(x) for every x. This model restricts the design of
algorithms in a certain way for which we can prove lower bounds. It proved itself extremely
useful for showing separations and the optimality of certain algorithms, both in classical and
quantum computing. For instance, consider the problem of sorting n elements. If an algorithm
can only make comparisons between two elements, then it has to make Ω(n log n) comparisons
to sort them all.

First results in quantum query complexity The first separation came around the same time
as BB84, when David Deutsch exhibited [Deu85] a (very artificial) problem, now known as
the Deutsch’s problem: a quantum computer can solve it in one single query, whereas two
queries are needed by a classical one. This separation is not dramatic, but was the first one

2http://www.vasco.com/company/press_room/news_archive/2011/news_diginotar_reports_security_

incident.aspx
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to be exhibited. It has been generalized by Deutsch and Josza [DJ92] and is now known
in the improved form by Cleve et al. [CEMM98] as the Deutsch-Josza’s problem: the
input is a Boolean string x of length N with the promise that x is either a constant string
(all the bits of the string are identical) either balanced (half of them are 0, half of them 1).
The goal of the algorithm is to determine which one it is. They show that there is a one-
query quantum algorithm that solves it with no error, whereas classically N/2 + 1 queries
are needed. Unfortunately this huge separation does not hold in the probabilistic case when
allowing bounded error, for which the separation is constant.

Similar problems with their quantum algorithms were later introduced, for example the
Bernstein-Vazirani algorithm [BV97] which is the first exponential separation in query com-
plexity between a quantum algorithm and a probabilistic one, or Simon algorithm [Sim97]. The
main tool of Simon algorithm is the Fourier transform over the groups Zk2. Shor’s algorithm
for factoring integers previously mentioned generalizes this idea to Fourier transform over Zn.
All of these problems can be seen as instances of a more general problem, called the Hidden
Subgroup problem (See e.g. [Joz98]).

Quantum proofs for classical problems Another implication of the study of quantum com-
plexity, which will not be considered in this manuscript but is worth mentioning, is the fact
that quantum arguments can help understanding classical computing. Some purely classical
results have quantum proofs much simpler than their classical counterparts ([DdW11] is a good
survey on this topic). This is even true by considering continuous variables like the very recent
proof of #P completeness of the permanent by Scott Aaronson [Aar11] which uses linear op-
tics arguments, in strong contrast with the arithmetic proof in the celebrated paper by Valiant
[Val79].

1.2.4 Outline of this dissertation

In this dissertation, we will analyze two-player quantum interaction from two different points
of view: cryptographic primitives and query complexity. As a matter of fact, even if these
two domains may look different, they can be cast in the following very general setting: two
players A and B each have an input xA and xB and they want to output a common answer
output(xA, xB). This output can be a quantum state |ψ(xA, xB)〉, a distribution µ(xA, xB), or
a deterministic value f(xA, xB). This thus encompasses quantum state generation problems,
computing a function, and even two-party secure function evaluation. This is schematically
represented by the following figure:

Player A Player B
quantum interaction

xA xB

Output(xA, xB)

In Chapter 2, we successively introduce the models of quantum computation that we will
consider in this dissertation, namely discrete variables (the standard model of quantum com-
putation), the continuous variables model and its interesting subset: Gaussian variables.
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Part I is devoted to analyze cryptographic primitives. In this setting, there is no restriction
on the quantum interaction, but some security properties should be satisfied, for example if
one player is dishonest, the outcome should remains correct. We examine two primitives: bit
commitment in Chapter 3 for which we extend the impossibility from the discrete variable
model to the Gaussian one. We then examine a weaker primitive, weak coin flipping, in
Chapter 4 and prove the existence of a protocol with arbitrary small bias. These results are
summarized in Section 1.3.

Part II studies lower bounds in quantum query complexity. In this setting, player A
represents the algorithm, and player B the oracle, the only player to have an input. The
quantum interaction is limited to queries to the oracle. In Chapter 5 we examine the different
methods used for proving lower bounds on the quantum query complexity and give relationships
between them. Finally in the last Chapter we compute a tight lower bound for a problem called
Index Erasure. These results are summarized in Section 1.4.

1.3 Quantum primitives

In this dissertation, we are interested in two-party primitives involving dishonest players, with-
out the help of a third-party. There is no notion of privacy against an eavesdropper here. This
is a different setup from key distribution where two honest players are trying to prevent a third
one to spy on them. We focus our study on two primitives, bit commitment and coin flipping.

1.3.1 Bit commitment

Bit commitment (BC) is a universal primitive in quantum computing. It means that if one
uses a perfectly secure BC protocol, one can do perfectly secure two-party function evaluation
for any function. This situation is rather surprising since BC is not universal in classical
computing. However, there exists another primitive, called oblivious transfer, that is universal
for both, classical and quantum computation [BBCS92]. Bit commitment is a protocol that
happens in two steps. In the first one, called the commit phase, Alice commits to a bit to Bob
that she later reveals in the second phase, the revealing phase. A bit commitment protocol is
said to be secure if it prevents both players to cheat, namely, during the revealing phase Alice
cannot change the value of the bit she had committed to, and Bob cannot learn information
about that bit before Alice reveals it. A traditional picture for this protocol is as follows:

Alice locks a secret bit into a safe that she gives to Bob; then, when she wants to
reveal her secret, she simply hands over the key of the safe to Bob. The protocol
is secure if Bob cannot open the safe without the key, and if Alice cannot change
her secret while Bob has the safe, for example using a remote false bottom system.

Bit commitment is an instance of our model of two-player interaction with two security
properties: Bob cannot know b at the end of the commit phase, and he outputs b even if Alice
cheats.
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Alice Bob

Commit

Reveal

b

b

No-go theorem This primitive has been exhaustively studied in classical cryptography, where
the security relies on unproven computational assumptions [Nao91, Cha87]. The idea of quan-
tum bit commitment (QBC) was first introduced by Bennett and Brassard in 1984 [BB84],
together with their quantum key distribution protocol. There were hopes that the ideas that
made QKD possible would also work for QBC, although they also exhibited an attack on this
first protocol. In 1993, Brassard et al. proposed a QBC protocol known as BCJL [BCJL93],
which was believed to be secure until 1997, when Mayers [May97] and independently Lo and
Chau [LC97] proved that it was not the case. Their proof involved a reduction of the BCJL
protocol to a purified protocol, which cannot be perfectly secure against both Alice and Bob.
A few months later, it has been realized that this reduction is general enough and applies to all
QBC protocols. It ruled out the existence of an unconditionally secure QBC protocol. Because
of the complexity of this reduction, however, it was not universally accepted (see, e.g., [Yue00])
until 2007, when d’Ariano et al. provided a complete, formal description of QBC protocols
that definitely closed the question [DKSW07]. The proof was written for discrete variables,
but it appeared that it was also valid for continuous variables. This result is known as the
no-go theorem for quantum bit commitment.

This theorem is in fact a lower bound on the relation between the degree of concealment
and bindingness, whereas insecure protocols provide upper bounds. The optimal security
parameter with a quantum bit commitment attaining it have been proven by Chailloux and
Kerenidis [CK11].

Circumventing the limitations The role of the model of security is a central notion: the no-
go theorem is proven under the strong assumption that Alice and Bob have all the resources
allowed by quantum mechanics. The no-go theorem is not true in other models, for example
if one uses special relativity [Ken99, Ken11], or difficulties in building the hardware necessary
to perform QBC. This is a very active research area and one of the greatest results are in
the so-called bounded storage [Sch07] and noisy storage models [WST08]. The basic idea is
obtained from a key observation: if Bob measures the quantum state he has at the end of the
commit phase, the entanglement between Alice and Bob is broken, thus limiting her ability to
cheat. Hence there are protocols for which forcing Bob to make a measurement are secure. The
incentive to measure is done by considering practical implementation constraints, in this case
the difficulty to construct efficient memories. The bounded storage model considers that Bob
does not have enough memory to store all the qubits exchanged during the committing phase,
thus needs to measure the ones he cannot store. The noisy storage model is a refinement of
the latter: by knowing some practical limitations of the memory, mainly the amount and type
of noise it adds per unit of time, it is possible to bound the amount of information that Bob
loses and thus to perform a secure protocol.
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Contributions We are considering a scenario quite similar to the bounded storage model,
based on restraining Alice’s and Bob’s abilities, but the impossibility result remains here. In
Chapter 3, guided by the ease of implementation of Gaussian variables, we investigate Gaussian
quantum bit commitment. The original idea begins with the observation that with current
technologies, only Gaussian deterministic operations are easily accessible. Thus, this limits
the cheating capabilities of dishonest players, and the no-go theorem may not apply with this
additional restriction. We consider the model in which Alice and Bob have at their disposal
only Gaussian resources. We show that unfortunately the impossibility of bit commitment
remains in this fully Gaussian model.

The result by Mayers, Lo and Chau starts by transforming any protocol into an equivalent
protocol in term of security. Such protocol is non-interactive and happens as follows: first,
Alice prepares a bipartite state |ψb〉 if she wants to commit to the bit b, and sends one part to
Bob as the commit phase. The revealing phase consists of Alice sending the other part of |ψb〉.
Thus, as the end of the protocol Bob holds |ψ0〉 if Alice is committed to “0” or |ψ1〉 otherwise.
The protocol ends by Bob measuring the state he is holding.

The degree of concealment of the protocol, intuitively the probability that Bob can cheat,
is related to Bob’s efficiency to distinguish if he received a part of |ψ0〉 or |ψ1〉. Since Bob does
not hold the entire state, he only has a partial view on it. We will later formalize this notion
by the concept of mixed states. The less distinguishable the partial views of these two parts,
the more concealing the protocol. Conversely, the more those partial views are distinguishable,
the less Alice can convince Bob of the other outcome. There are different ways to express the
distinguishability of two states (we detail some of them in Section 2.4), one is the fidelity.
This is a mathematical function that quantifies how alike two states are. The fidelity of two
identical states is 1, when they are totally distinguishable the fidelity between them is 0.

The proof of the insecurity is first performed for perfectly concealing protocols. Using
direct techniques, Mayers, Lo and Chau proved that in this case, Alice has total control over
the outcome of the protocol by applying the right transformation of the qubits she kept. The
general case, not perfectly concealing protocols, is then reduced to the previous one. The
main mathematical tool is Uhlmann’s theorem who states that given two partial views ρ0, ρ1

of two different states, there exist two quantum states |ψ0〉 and |ψ1〉, such that ρ0 and ρ1

are also respectively the partial views of |ψ0〉 and |ψ1〉, and moreover they have the same
distinguishability than |ψ0〉 and |ψ1〉. Those two states are the states that Alice needs to
prepare in order to have a successful cheating strategy.

Our proof of the impossibility of Gaussian quantum bit commitment follows the same
footsteps. Using the power of Gaussian formalism, we first prove the perfect case (Section 3.2.1)
and we then perform a reduction from the approximate case to the perfect one (Section 3.2.2).
This is where our proof differs from the previously published one. We cannot use Uhlmann
theorem for one main reason, contrary to the discrete case, there is no constructive proof of
the purifications. This has two consequences: we cannot exhibit a cheating strategy in this
case, we simply have its existence, and we are not able to prove that the cheating strategy is
Gaussian.

To overcome this problem we introduce a new notion of intrinsic purifications in Section 3.1
with the two properties we need: intrinsic purifications of Gaussian states are Gaussian, and the
fidelity between two states is roughly the same than the one between their intrinsic purifications
(Theorem 3.1). Although our theorem is a bit weaker than Uhlmann’s theorem, we are able
to prove the same level of security than previous proofs.

This work was started during my master thesis [Mag07] and completed with the joint work
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of Frédéric Magniez, Anthony Leverrier and Nicolas J. Cerf [MMLC10].

1.3.2 Coin flipping

The impossibility result of quantum bit commitment is a bit disappointing since the extra
power offered by quantum physics is of no use there. Happily, we can use it to perform a
weaker cryptographic primitive, coin flipping. We say that a primitive P is weaker than Q if
we can construct a secure protocol for P from a secure protocol for Q. This is why in this
dissertation we focus on weak coin flipping.

Strong and weak Coin flipping comes in two flavors. In a weak coin flipping protocol, Alice
and Bob should flip a coin (or a bit) at distance, it means that all their communications are
done through a (quantum) channel. Originally this primitive has been referred as coin flipping
by telephone. Alice wins if the outcome of the protocol is 0, Bob if it is 1. The folklore
metaphor to explain weak CF is the following:

Alice and Bob’s love story has ended and they now live in separate houses. Both
of them want to keep the car, so decide to flip a coin to determine a winner. Bob
refuses to use an attorney to do it, afraid that Alice may bribe him. They decide
to flip the coin on the phone.

The protocol is sound if when both players are honest, the probability that each of them wins
is 1/2. The bias of the protocol is defined by the excess of probability that one player wins
when the other player follows the protocol (i.e. the other player is honest). The protocol is
ε-secure if there is the bias is at most ε.

Once again, a weak coin flipping protocol, can be viewed in our model of quantum inter-
action. The security property is now that the probability of one of the players to win remains
close to 1/2 even if he cheats.

Player A Player B
quantum interaction

“Alice wins” with probability 1/2

“Bob wins” with probability 1/2

This primitive is called weak since there are no constraints on the bias when losing, a
protocol can be secure even though Alice could force the outcome to be 1, i.e. Alice decides to
let Bob win. A strong coin flipping protocol adds such a constraint. As a consequence of this
definition, weak coin flipping is weaker than strong coin flipping, and thus also weaker than bit
commitment since there is a short reduction from strong coin flipping to BC: Alice randomly
picks a bit a and commits to it. Bob picks a random bit b and publicly announces it, finally
Alice unveils a, and the outcome of the protocol is the random bit a⊕ b.

In the classical setting, coin flipping has first been introduced by Blum [Blu83] and the se-
curity of classical protocols relies on computational assumptions, exactly like bit commitment.
Without this requirement a cheating player could always decide the outcome of the protocol
against a honest player.

10



1.3. Quantum primitives

Classical Quantum

Bit commitment 1/2 0.239 + ε

Strong coin flipping 1/2 0.207 + ε

Weak coin flipping 1/2 ε

Table 1.1: Optimal bias for three cryptographic primitives, in classical and quantum settings for
unconditional security (no restriction on the model). The parameter ε can be arbitrary small.

Bounds for quantum coin flipping The study of the bias of coin flipping protocols in the
quantum setting is particularly interesting. Lo and Chau [LC98] proved the impossibility of
perfect strong coin flipping protocols, that is protocols with bias 0, whether protocols with
bias guaranteed to be less than 1/2 (no player can cheat perfectly) exist remained open.

Ambainis proved that a weak coin flipping protocol with bias ε should have a least Ω(log log 1
ε )

rounds, thus ruling out the possibility of perfect weak coin flipping. On the positive side, there
were several simple protocols with bias 1/4 [SR01, Amb04, KN04]. Spekkens and Rudolph
were the first ones to have a protocol with a smaller bias since they found a protocol with
cheating probability 1/

√
2 [SR02]. In a remarkable series of work, Carlos Mochon first discov-

ered protocols with bias 1/6 [Moc05] and even a “protocol” that achieves arbitrarily small bias
[Moc07].

The status of the paper by Mochon [Moc07] is quite peculiar. It is an 80-page long paper,
extremely technical and never peer-reviewed. Inspired by techniques from Kitaev, Mochon
writes the bias of weak coin flipping protocols as semidefinite programs and their duals. He
then shows that these duals are equivalent to another model he calls point games. In a last
step he exhibits a point game achieving arbitrarily small bias. There is a way to turn a point
game into a protocol but Mochon actually never does it, since it is too complicated and the
protocol would have no possibility of practical implementation. Moreover the protocol would
not give any intuition on the reason why it performs so well.

For strong coin flipping, Aharonov et al. [ATSVY00] first discovered a protocol with bias
0.41, thus showing the superiority of quantum over classical cryptography. This result got
improved to 1/4 achieved by many protocols [Amb04, SR01, NS03, KN04]. On the lower
bound side, Kitaev [Kit03] proved that no protocol can have a bias smaller than 1/

√
2 − 1/2

using semidefinite programming. A simple proof can be found in [ABDR04]. This gap has been
closed by Chailloux and Kerenidis [CK09] when they showed a classical reduction from any
weak coin flipping with bias ε to a strong coin flipping protocol with bias at most 1

√
2−1/2+2ε.

This result reinforced the motivation to have a clearer proof of the possibility of weak coin
flipping than the current writing of Mochon. We summarize the tights bounds on the bias for
bit commitment, strong and weak coin flipping in classical and quantum settings in Table 1.1.

Contributions Checking the validity of the proof of arbitrary small bias weak CF protocol
[Moc07] is beneficiary to the community since it has not been, neither will be, submitted to
peer-review. This result was almost not understood at all and the scientific community urged
to see a simpler proof of Mochon’s quantum weak coin flipping.

In Chapter 4 we present an arguably clearer and simpler proof of the existence of quantum
weak coin flipping. The original proof is in two parts: first, a model equivalent to weak coin
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flipping protocols called time independent point games is introduced; and the existence of a
protocol with arbitrary small bias is shown in this model. This dissertation deals the many
steps to prove the equivalence between these two models, the construction of game is left
unchanged.

The first step is the introduction of the concept of point games. Consider a protocol, its
bias can be expressed as a semidefinite program, that is an optimization over a set of matrices,
a dual feasible point, that satisfies some constraints. Each dual feasible points leads to an
upper bound on the bias of the protocol, and thus is interpreted as a witness of the bias of the
protocol. A point game is a graphical representation of a protocol and a dual feasible point.
Informally, a point game is a succession of moves of points on a plane, called transitions. A
point game created from a protocol and a dual feasible points obeys some rules: it starts with
two points at coordinates [0, 1] and [1, 0], points can move either horizontally or vertically at
every turn, and a the end of the game, there is only one point at coordinate [1/2 + ε, 1/2 + ε]
where u is an upper bound on the bias of the protocol.

By construction of a point game, the transitions obey a rule called expressible by matrices
(EBM), and we show that at every point game with EBM transitions and final point [1/2 +
ε, 1/2 + ε] corresponds a weak coin flipping protocol with bias at most ε. In other words, we
construct a protocol and a dual feasible point from a point game. We thus reduce the task of
finding a protocol with bias ε to the task of finding a point game with EBM transitions with
final point [1/2 + ε, 1/2 + ε].

Unfortunately, EBM transitions have one main disadvantage: they are not easy to manip-
ulate, so proving that a transition is EBM is quite a challenge. The problem is mainly that
EBM transitions are described by a pair of matrices and a vector, hence it is difficult to give
general properties of them. This difficulty is overcome by seeing transitions as functions with
finite support. As a matter of fact, EBM functions have an interesting topological property:
they form a convex cone. We interpret the dual of this cone as the set of operator monotone
functions, and we call valid functions the dual of the operator monotone functions. We then
show that valid transitions, i.e. transitions described by a valid function, are essentially the
same as EBM functions. Valid functions have a very simple analytical characterization and
checking that a given transition is valid corresponds to checking two simple mathematical
statements.

Finally, we introduce the model of time independent point games by removing the ordering
on the transitions. This can be done easily once again by seeing transitions as functions.

In [Moc07], point games are directly introduced with valid transitions. In this dissertation,
we explain how point games with EBM transitions naturally arise and that they should be
considered as the equivalent model to protocols with an associated dual feasible point. This
observation is at the heart of the new work presented here. As a matter of fact, we now have an
explanation on why operator monotone functions pop up, whereas in previous work they just
came out of the blue. Moreover with this natural interpretation of valid functions as the bidual
of EBM functions, we prove the equivalence between games with EBM transitions and games
with valid transitions in about 3 pages with clear topological arguments, whereas the previous
proof was a 20-page long appendix full of fairly advanced analysis. Furthermore the fact that
we give a reason why we should consider transitions as functions leads to the introduction of
time independent point games in a much more meaningful way. Our proof of the equivalence
between the different models of point games and protocols is not only shorter and simpler,
it also carries a clear explanation of the relation between the different models, their strength
and why we need to consider them. We believe that this new proof will help other researchers
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understand the ideas behind Mochon’s result.

For the sake of completeness, Appendix C presents Carlos Mochon’s construction of a point
game achieving an arbitrarily small bias.

This work is a collaboration with Dorit Aharonov, André Chailloux, Maor Ganz, and
Iordanis Kerenidis [ACG+11].

1.4 Lower bounds for quantum query complexity

The query complexity model is also an instance of two-player quantum interaction, where the
algorithm aims to compute a function f on a input x accessible only via queries to the oracle.
In this dissertation, we generalize this model by considering algorithms that create a quantum
state |ψx〉.

Algorithm Oracle
Queries

x

f(x) or |ψx〉

There are two main families of methods to prove lower bounds on the quantum query
complexity: the adversary methods and the polynomial method. These methods are used to
prove lower bounds for computing only a single instance of a function. A related problem is
how the number of queries scales if one wants to compute k independent instances of the same
function, and will see how to answer that question.

1.4.1 Direct sum and product theorems

The question of the resources needed to compute k instances is interesting and has a very prac-
tical importance, for instance for computers that perform very repetitive tasks like web servers
that query their database. For example, in order to decrease the load of the database server,
queries from independent and simultaneous users could be combined in smart ways. Roughly
speaking, direct sum and products theorems are impossibility results on these strategies.

A function is said to obey a direct sum theorem if computing k independent instances
requires at least Ω(k) times the amount of resources needed for one instance. In general the
resources can be time, memory, communication or queries. In this dissertation, we are focusing
our study on the latter. Assume that a problem needs T queries to be solved with success
probability σ, then by performing the algorithm k times in parallel, hence using kT queries,
the success probability is σk and thus decreases exponentially in k. A direct sum theorem
leave the possibility that the success probability could decrease slower than exponentially, and
thus there may be some gain to combine the queries. If this is not the case, the function obeys
a strong direct product theorem (SDPT), that is the best strategy to compute k independent
instances of the function is simply to repeat the algorithm k times.

There was a plethora of results concerning strong direct product theorems for query com-
plexity in 2011! Andrew Drucker showed that the randomized query complexity of any function
obeys a SDPT [Dru11]. Troy Lee and Jérémie Roland using totally different techniques proved
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the same result for quantum query complexity [LR11]. Alexander Sherstov proved direct
product for quantum communication complexity and that the polynomial method, a method
to prove lower bounds in the quantum query complexity model, also satisfies a strong direct
product theorem [She11].

1.4.2 Adversaries

The basic idea behind the quantum adversary method and its variations is to define a progress
function that monotonically changes from an initial value (before any query) to a final value
(after the last query), when the algorithm is ready to tell its outcome. The progress function
has one main property: its value changes only when the oracle is queried. Then, a lower bound
on the quantum query complexity of the problem can be obtained by bounding the amount of
progress done by one query.

Original additive The first adversary method was introduced by Ambainis [Amb00] and we
will refer to it has the original adversary method as a generalization of the “hybrid argu-
ment” [BBBV97]. Other adversary methods that are variations on the same principle were
subsequently proposed [HNS08, Amb06, BS04, LM08], but were later proved to be all equiva-
lent [ŠS06]. They all rely on optimizing an adversary matrix Γ assigning non-negative weights
Γxy to different pairs of inputs (x, y) to the problem. Consider two inputs x and y such that
f(x) 6= f(y) and an algorithm computing the function f . The quantum states corresponding
to x and y gradually diverge at each step of the algorithm towards their final value f(x) and
f(y), i.e. their scalar product decreases. The progress function is defined as the measurement
of this divergence as the weighted average of this scalar products, thus a high weight should
be put on pairs of functions hard to distinguish.

It was known that this method cannot always be used to prove tight lower bounds on any
problems, since it is limited by the so-called “certificate complexity barrier” [Zha05, ŠS06],
that is ADV(f) ≤

√
C0(f)C1(f) where ADV(f) denotes the best lower bound proved by the

original adversary, and Cb(f) denotes the certificate complexity of f for f(x) = b. Let us
consider the case of the Element Distinctness problem: given a string of length N , are
all the letters of the string distinct? For this problem, the original adversary method cannot
prove lower bounds better than Ω(N1/2), since the certificate for a negative instance is a pair
of positions of two identical letters, and the one for positive instance is the string itself.

General additive method While originally this method only considered non-negative weights,
Høyer, Lee and Špalek later showed that negative weights also lead to a lower bound, which
can actually be stronger in some cases [HLŠ07]. In particular, they exhibited an example
where this general additive method breaks the certificate complexity barrier. A series of work
[FGG08, ACR+10, RŠ08, Rei11, LMR+11] culminated by showing that the general adversary
bound is tight for the bounded-error quantum query complexity, thus showing the relevance
of the general additive adversary method.

The general additive adversary method also suffers from one main drawback: it cannot
prove lower bounds for very small success probability and thus cannot be used to prove a
strong direct product theorem for the quantum query complexity.

Multiplicative method To circumvent it, Robert Špalek introduced the multiplicative ad-
versary method [Špa08] that generalizes some previous ad-hoc methods [Amb05, AŠdW07].
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1.4. Lower bounds for quantum query complexity

However, Špalek left unanswered the question of how multiplicative and additive methods re-
late in the case of high success probability. Since the multiplicative adversary method can
prove lower bounds for small success probability, Špalek has been able to prove that the bound
obtained with this method obeys a strong direct product theorem, but he did not answer the
key question, wether or not the quantum query complexity does.

1.4.3 Polynomial method

Method The other main technique to prove lower bounds in the quantum query complexity
model is the polynomial method introduced by Beals et al. [BBC+01]. Contrarily to the
adversary method, the polynomial method can only prove lower bounds for Boolean functions,
but has nevertheless achieved tremendous success. One of the most noticeable is, for sure,
that the quantum query complexity of a total function cannot be less than q1/6 where q is
the classical query complexity. In other words, there is no exponential separation between the
randomized and the quantum query complexity for total functions.

The polynomial method has also been used to prove lower bounds for specific problems,
some of them are not very natural like the Ambainis function [Amb06], but it is currently
the only method from which lower bounds for Element Distinctness and Collision were
derived by Scott Aaronson and Yaoyun Shi [Aar02, Shi02, AS04]. Unfortunately, one issue
with those bounds proved by the polynomial method is that they are not very flexible, in
the sense that they cannot be adapted to prove lower bounds on natural variations of these
problems such that k-Element Distinctness: given a string on some alphabet, is there a
letter that appears at least k times?

Other impressive results range from Time-Space trade-offs [KŠdW07], lower bounds for
Abelian Hidden Subgroup [KNP07] to a strong direct product theorem for lower bounds
obtained by the polynomial method [She11].

Relationship with the adversary methods Since the general additive adversary method is
tight for bounded-error quantum query complexity, it is known that the general additive
method is stronger than the polynomial method. However an explicit reduction was unknown
before the work presented in this dissertation.

It was also known that the polynomial method and the original adversary method were not
comparable. Indeed, Aaronson and Shi [AS04] were able to prove a Ω(N2/3) lower bound for
Element Distinctness using the polynomial method which breaks the certificate complexity
barrier. On the other hand, it is known that the adversary method can sometimes give better
lower bounds than the polynomial method, in [Amb06] Ambainis exhibits a function with
polynomial degree d and adversary bound Ω(d1.3).

Other cases for which the original adversary bound is stronger than the polynomial bound
can be obtained by considering a weaker kind of oracles. Up to now, we have been considering
evaluation oracles (an oracle returns the value of a letter of the input). It is possible de define
a weaker kind of oracles, the test oracles. A query to a test oracle is of the form “Is the i-th
letter of x the letter a?” The lower bounds obtained by the polynomial method are the same
in both cases. Using this observation, Pierre Phillips demonstrated that some problems are
easier in an “evaluation” model than in a “test” model, and thus that the original additive is
sometimes stronger than the polynomial method [Phi03].
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1.4.4 Quantum state generation problems

Even if one is interested in proving lower bounds for functions, it appears that studying a more
complex model can actually be very useful. We study a generalization of the query model to
include problems in which the input is still a black box, however, the output is no longer a
classical value but a quantum state.

An example of quantum state generation problem is Index Erasure. Here the input
is a string x of length N on an alphabet of size M with the promise that all the letters in
the string are different. The task is to prepare the quantum state 1√

N

∑N
i=1 |xi〉 using as few

queries to x as possible. The name “index erasure” came from the observation that while it is
straightforward to prepare the (at first glance perhaps similar looking) state 1√

N

∑N
x=1 |i〉|xi〉

using a single quatum query, it is quite challenging to forget (“erase”) the contents of the first
register of this state which carries the input (“index”) of the letter.

In particular, quantum state generation has been considered in [AT03] to solve statisti-
cal zero knowledge problems, one ultimate goal being to tackle Graph Isomorphism. The
quantum state generation problem resulting from the well-known reduction of Graph Iso-
morphism to Index Erasure would be to generate the uniform superposition of all the
permutations of a rigid graph G:

|unif(G)〉 =
1√
n!

∑
π∈Sn

|G permuted by π〉.

By coherently generating this state for two given graphs, one could then use the standard
SWAP-test [BCWdW01] to check whether the two states are equal or orthogonal, and therefore
decide whether the graphs are isomorphic or not.

Such a method for solving Graph Isomorphism would be drastically different from more
standard approaches based on the reduction to the Hidden Subgroup problem, and might
therefore provide a way around serious limitations of the coset state approach [HMR+06]. As
a matter of fact, Graph Isomorphism is quite a mystery in complexity. Like Factoring this
problem is supposed to be NP-intermediate and reduces to an instance of Hidden Subgroup
(however Factoring is an instance of Hidden Subgroup problem (HSP) on the cyclic group,
but Graph Isomorphism is an instance of HSP on the symmetric group). But there is no
known polynomial time quantum algorithm for solving Graph Isomorphism.

1.4.5 Contributions

Quantum state generation The chief technical innovation is the extension of the general
additive and the multiplicative adversary methods to quantum state generation problems in
Section 5.3. This provides to us a newer view on the adversary method: instead of getting
focused on pairs of inputs and their weights in the adversary matrix Γ, we understand that
the eigenspaces of the adversary matrix Γ are the key. The progress function can now be seen
as a function that monitors the progress done by an algorithm, by looking at which subspaces
are supporting the internal state of the algorithm. As a by-product we give elementary and
arguably more intuitive proofs of the additive and multiplicative methods, contrasting with
some rather technical proofs e.g. in [HLŠ07, Špa08]. This is a crucial observation to prove
that the multiplicative method is stronger than both, the general additive method and the
polynomial method.
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1.4. Lower bounds for quantum query complexity

Additive versus multiplicative To compare the strength of the additive and multiplicative
adversary methods, we introduce yet another flavor of adversary method which we call inter-
mediate adversary method. This method provides lower bounds for quantum state generation
problems as well as for classical problems. The intermediate adversary method is a hybridiza-
tion of the additive and multiplicative methods that uses “multiplicative” arguments in an
“additive” setup: it is equivalent to the additive method for large success probability, but
is also able to prove non-trivial lower-bounds for small success probability, overcoming the
concern [Špa08] that the additive adversary method might fail in this case.

In Section 5.4, we show that for any problem, the intermediate adversary bound lies between
the additive and multiplicative adversary bounds, answering Špalek’s open question about the
relative power of these methods [Špa08]. By considering the Search problem for exponentially
small success probability in Chapter 6, we also conclude that the powers of the three methods
are strictly increasing, since the corresponding lower bounds scale differently as a function of
the success probability in that regime.

Polynomial versus multiplicative In Section 5.6.4, we give an explicit reduction from the
polynomial method to the multiplicative adversary method. In order to do so, once again an
intermediate method, the max-adversary method, yet another type of adversary method whose
strength lies between the polynomial method and the multiplicative method.

Directly inspired by the new interpretation of the progress function, this method does not
have an adversary matrix, but relies on a sequence of subspaces. The idea behind the max-
adversary method is the following: define an ordered set of orthogonal subspaces (Sk : 0 ≤ k ≤
K) such that any query can only transfer weight from subspace Sk to its immediate neighbors
(i.e. Sk−1 and Sk+1) and that the initial state of the algorithm has only overlap on S0. If
the final state should have non-zero overlap on subspace ST in order to compute a function f
accurately, this implies that T is a lower bound on the quantum query complexity of f .

The reduction from the max-adversary method to the multiplicative adversary method
follows by considering the multiplicative adversary matrix Γ =

∑
k λ

kΠk, where Πk is the
projector on Sk, and showing that the corresponding multiplicative adversary bound tends to
the max-adversary bound when λ → ∞. The reduction from the polynomial method to the
max-adversary method is done by showing that we can choose Sk to be a subspace characterized
by polynomials of degree k; more precisely, we choose Sk to be the subspace spanned by the
vectors of the Fourier basis of weight k. Let us also note that for any Boolean function, the
adversary matrix leading to the same lower bound as the polynomial method does not depend
on the function itself. This gives new insight on why the polynomial method does not always
provide tight lower bounds.

If we restrict the progress function of the multiplicative adversary to increase by a factor at
most c per query, the multiplicative bound can be written as a semidefinite program [LR11].
The best bound is then obtained by maximizing the value of this semidefinite program over
all possible c. The reduction from the general additive to the multiplicative method shows
that the multiplicative bound degrades into the additive bound in the limit c → 1. In con-
trast, we can obtain the max-adversary bound by taking the limit c → ∞, which therefore
completes the picture of the relations between the different lower bound methods in quantum
query complexity (see Fig. 1.2), and shows in particular that all these methods reduce to the
multiplicative adversary method.

Our reduction from the polynomial method to the multiplicative adversary method gives
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Figure 1.2: Relations between the different methods to prove lower bounds for quantum query com-
plexity. An arrow from method A to method B implies that any lower bound that can be proved with
A can also be proved with B (i.e., B is stronger than A). A solid blue arrow means that the reduction
is constructive, i.e., we can obtain a witness for B from a witness for A. ¬ [HLŠ07] ­ Section 5.4 ®
[Rei11, LMR+11] ¯ Section 5.6.4 ° [Zha05, ŠS06, AS04, Amb06]

new hope to prove lower bounds for problems related to Collision and Element Distinct-
ness. Variations of this problem have practical applications in post quantum cryptography,
see e.g. recent schemes for secure communications where the security is based on the hardness
of Element Distinctness-type problems [BHK+11].

This work was done in collaboration with Jérémie Roland [AMRR11, MR11].

Applications In Chapter 6 we present two applications of our results. First, we extend the
strong direct product theorem for the multiplicative adversary bound [Špa08] to quantum state
generation problems (Section 6.1). Since we have clarified the relation between the additive
and multiplicative adversary methods, this also brings us closer to a similar theorem for the
additive adversary method. The most important consequence would be for the quantum query
complexity of functions, which would therefore also satisfy a strong direct product theorem
since the additive adversary bound is tight in this case [LMR+11].

Secondly we focus on proving lower bounds using the adversary method. As it has been
previously pointed out many interesting problems have strong symmetries [Amb05, AŠdW07,
Špa08]. Section 6.2 shows how studying these symmetries helps to address the two main
difficulties of the usage the adversary method, namely, how to choose a good adversary matrix
Γ and how to bound the progress done by one query. Following the automorphism principle
of [HLŠ07], we define the automorphism group G of a problem (function evaluation or quantum
state generation). To do so, we reduce the adversary method from an algebraic problem to the
study of the representations of the automorphism group G.

Finally, we validate our methodology by proving a lower bound of Ω(
√
N) for the quantum

query complexity of Index Erasure in Section 6.4 which is tight due to the matching upper
bound based on Grover’s algorithm, therefore closing the open problem stated by Shi [Shi02].
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1.4. Lower bounds for quantum query complexity

To the best of our knowledge, this is the first lower bound directly proved for the query
complexity of a quantum state generation problem. The previous bound for Index Erasure
was Ω( 5

√
N/ logN), proved by a classical reduction to the Set Equality problem [Mid04],

which consists in deciding whether two sets of size N are equal or disjoint or, equivalently,
whether two injective functions over a domain of size N have equal or disjoint images.
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2 Models of quantum information

This Chapter presents two models for encoding quantum information, the standard model using
discrete variables (DV), and the so-called continuous variables (CV) model. They share a lot
of similarities but are expressed in two different mathematical frameworks: the DV model is
in finite dimensional Hilbert spaces, whereas the CV model is in separable infinite dimensional
Hilbert spaces.

2.1 Discrete variables

2.1.1 The Hilbert space Cn

The Hilbert space Cn is the vector space of n-dimensional complex column vectors with the
canonical inner product:(

ψ0

...
ψn−1

)
,

(
φ0
...

φn−1

)
7→

n−1∑
i=0

ψ∗i φi = (ψ∗0, . . . , ψ
∗
n−1) ·

(
φ0
...

φn−1

)
,

where ψ∗i denotes the complex conjugate of ψi.
In quantum mechanics, vectors and inner products are denoted following the Dirac notation.

A column vector ψ ∈ Cn is denoted by the ket |ψ〉 and the complex conjugate row vector ψ∗

by the bra 〈ψ|. As a consequence 〈ψ|φ〉 is the inner product between ψ and φ, |φ〉〈ψ| is the
outer product, which is defined as the linear map: |χ〉 7→ 〈ψ|χ〉|φ〉. The projector onto the
one-dimensional space spanned by |ψ〉 is thus denoted by |ψ〉〈ψ|.

For i = 0, 1, . . . , n− 1, we denote by |i〉 the vector (0 0 · · · 0 1 0 · · · 0)T where the “1” is in
the i-th position. We have 〈i|j〉 = δi,j , so {|i〉, 0 ≤ i ≤ n− 1} is an orthonormal basis of Cn.
This basis is called the computational basis of Cn. Thus a vector |ψ〉 can be decomposed on
the computation basis as |ψ〉 =

∑n−1
i=0 αi|i〉 with complex probability amplitudes αi. We will

mostly consider spaces whose dimension is a power of 2, and in this case we often alternate
between writing the index of a vector in the canonical basis in base 10 and in base 2, for
example we could have written the previous decomposition |ψ〉 =

∑
x∈{0,1}logn αx|x〉.

Tensor products For 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1, the tensor product between
|i〉 and |j〉 is the vector |k〉 = |i〉 ⊗ |j〉 of the space Cm ⊗ Cn ∼= Cmn where k = 2ni + j,
that is the concatenation of the binary expansion of i and j. For example |010〉 ⊗ |10〉 =
|01010〉. The tensor product is extended by bilinearity to the full spaces Cm and Cn by:
(
∑

i αi|i〉)⊗ (
∑

j βj |j〉) =
∑

ij αiβj |i〉 ⊗ |j〉 =
∑

ij αiβj |i, j〉.

Linear operators Given a Hilbert space H, we denote by L(H) the set of linear operators
on H. When H = Cn, the linear operators are the matrices of size n × n. The adjoint of an
operator A is the operator denoted by A† defined by being the unique linear operator such
that for all |ψ〉 and |φ〉 of H, 〈A†ψ|φ〉 = 〈ψ|Aφ〉. A Hermitian operator A is its own adjoint
A = A†. In the case where H = Cn, A is a matrix of size n × n and A† is the transpose of
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|1〉

|0〉

|ψ〉
β

α

Figure 2.1: Representation (in red) of a qubit |ψ〉 = α|0〉 + β|1〉 when α and β are real values in the
plane spanned by the basis vectors |0〉 and |1〉 (in blue).

the complex conjugate of A. Hermitian matrices with non-negative eigenvalues are positive
semidefinite. This defines a partial order on Hermitian matrices: A � B if B − A is positive
semidefinite. In particular A � 0 means that A is positive semidefinite.

2.1.2 States

A pure one-qubit state is a normalized vector of C2:

|ψ〉 = α|0〉+ β|1〉 with |α|2 + |β|2 = 1.

When α and β are real, it can be easily represented in a real plane, see Figure 2.1. This can
be generalized to states on n qubits:

Definition 2.1 (n-qubit pure state) A n-qubit pure state is a normalized vector of C2n, and
can be written |ψ〉 =

∑
x∈{0,1}n αx|x〉 with

∑
x∈{0,1}n |αx|

2 = 1.

Entanglement Note that all n-qubit pure states |ψ〉 cannot be written as the tensor product
between two pure states |ψA〉 ⊗ |ψB〉, as for example the state |ψ〉 = 1√

2
(|00〉 + |11〉). States

that are not product of two states are called entangled states, in opposition to product states.
Entangled states play a crucial role in quantum computing, and we will use entangled states
as the primary resource all along this manuscript. For instance they naturally arise in crypto-
graphic primitive, when the state shared by Alice and Bob exhibits correlations between them.
This is the quantum generalization of shared randomness when Alice and Bob share a common
probability distribution.

Mixed states Mixed states are a generalization of pure states and are probabilistic mixtures
of pure states, that is a mixed state behaves like a state |ψi〉 with probability pi. A mixed
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state cannot be described by a unit vector anymore, and is represented by a trace-one positive
semidefinite matrix:

ρ =
∑
i

pi|ψi〉〈ψi|.

This matrix is called a density matrix, and this is how every quantum state is represented:

Definition 2.2 (Density matrix) A n-qubit state ρ is a positive semidefinite matrix of size
2n × 2n such that tr(ρ) = 1.

The density matrix of a pure state |ψ〉 is ρ = |ψ〉〈ψ|, and we can easily characterize the
density matrices of pure state:

Lemma 2.3 ρ is a pure state if and only if tr(ρ2) = 1.

Two different mixtures of pure states can lead to the same density matrix. For example,

one can check that 1
2 |ψa〉〈ψa|+

1
2 |ψb〉〈ψb| =

3
4 |0〉〈0|+

1
4 |1〉〈1| where |ψa〉 =

√
3
4 |0〉+

√
1
4 |1〉 and

|ψb〉 =
√

3
4 |0〉 −

√
1
4 |1〉. Nevertheless, the density matrix is the most complete description

of a quantum states from a physical point of view since two states with the same density
matrix are indistinguishable. In particular, since a density matrix ρ in dimension 2 is always
diagonalizable ρ = p|ϕ0〉〈ϕ0|+(1−p)|ϕ1〉〈ϕ1| for 0 ≤ p ≤ 1, any mixed state is indistinguishable
from a mixture of two pure orthogonal states.

Classical mixture of quantum states and quantum superposition should not be confused.

For instance the state |+〉 = 1√
2
(|0〉+ |1〉) has a density matrix

(
1/2 1/2
1/2 1/2

)
whereas the mixture

1
2 |0〉〈0|+

1
2 |1〉〈1| has a density matrix

(
1/2 0
0 1/2

)
.

Furthermore, we can remark that the states |ψ〉 and eiθ|ψ〉 have the same density matrix,
so they are indistinguishable, which means that pure states are defined up to a phase.

Bipartite quantum states Mixed states can be viewed as “parts” of bigger states. More
formally for a bipartite quantum state, that is a state on more than 1 qubit, the description of
each possible subsystem is in general a mixed state. The density matrix of a subsystem from
the density matrix of the global system is computed using the partial trace:

Definition 2.4 (Partial trace) Given two finite-dimensional Hilbert spaces HA and HB, the
partial trace over B is the linear mapping from L(HA ⊗HB) to L(HA) such that:

∀A ∈ L(HA), ∀B ∈ L(HB), trB(A⊗B) = tr(B)A.

The definition of the partial trace gives an explicit formulation only for product states A⊗B,
but the linearity condition ensures that this mapping is perfectly defined for all operators in
HA ⊗HB.

A mixed state can always been seen as a part of (possibly bigger) pure state:

Lemma 2.5 Let ρ be a n-qubit state. There exist a pure state m-qubit |ψ〉 such that ρ =
trB(|ψ〉〈ψ|) with m ≤ 2n.

Such a pure state is called a purification of ρ. As a sketch of a proof, consider a mixed
state ρ written in its diagonal basis ρ =

∑
i λi|ψi〉〈ψi| with λi ≥ 0 and

∑
i λi = 1. Then

|ψ〉 =
∑

i

√
λi|ψi〉|ψi〉 is a purification of ρ.
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2. Models of quantum information

A useful mathematical tool to analyze pure states and their partial trace is the Schmidt
decomposition:

Theorem 2.6 (Schmidt decomposition) Let |ψ〉 be a pure state in C2n ⊗ C2m. There exists an
orthonormal basis {|ui〉}i of C2n and {|vj〉}j of C2m such that

|ψ〉 =

min(2n,2m)−1∑
i=0

√
pi|ui〉|vi〉,

with
∑

i pi = 1.

Corollary 2.7 Consider a pure bipartite state |ψAB〉 ∈ C2n ⊗ C2n. Its Schmidt decomposition
is |ψAB〉 =

∑2n−1
i=0

√
pi|ui〉|vi〉, thus the two mixed states ρA = trB|ψAB〉〈ψAB| and ρB =

trA|ψAB〉〈ψAB| have the same spectrum {pi}i.

2.1.3 Operations

There are two kinds of operation in quantum mechanics: unitary operations, responsible for
the evolution of the quantum state, and measurements.

Definition 2.8 (Unitary matrix) A unitary matrix U acting on n qubits is a 2n × 2n matrix
such that UU † = I.

A unitary operation U acts on a state ρ by: ρ 7→ UρU †, and a pure state |ψ〉 by: |ψ〉 7→ U |ψ〉.
Quantum evolution shares similarities with stochastic evolution where the latter is modeled
by stochastic matrices that preserve the 1-norm of probability distributions, whereas unitaries
preserve their 2-norm. Moreover unitary matrices are always invertible, so every quantum
computation is be reversible. Unlike classical computing it is not possible to compute functions
that are non 1-to-1, but any function f : {0, 1}n → {0, 1}m can be converted into a unitary
operation by appending qubits: |x〉|s〉 7→ |x〉|s⊕f(x)〉 is a reversible operation on m+n qubits
where ⊕ is the bitwise XOR.

It is sometimes useful to consider a more general type of operation on a quantum state:

Definition 2.9 (CPTP map) Let H1 and H2 be two Hilbert spaces. The linear map E : L(H1)→
L(H2) is completely positive trace preserving if for all k ≥ 1, for all positive semidefinite
matrix A ∈ L(Ck) ⊗ L(H1), (IL(Ck) ⊗ E)(A) � 0 and for all positive semidefinite matrix
A ∈ L(H1), tr(E(A)) = tr(A).

However, this does not allow extra power to the model of quantum computation, since a
CPTP map can be implemented by a unitary on a larger Hilbert space:

Lemma 2.10 (Stinespring’s dilation) Let E be a completely positive trace preserving map from
L(H1) to L(H2). There exist two Hilbert spaces H′1 and H′2 such that H1 ⊗ H′1 ∼= H2 ⊗ H′2,
a unitary U acting on H1 ⊗ H′1 and a pure state |ϕ〉 ∈ H′1 such that ∀ρ ∈ L(H1), E(ρ) =
trH′2 [U(ρ⊗ |ϕ〉〈ϕ|)U †].

Measurement The projective measurement of a n-qubit pure state is defined by an orthonor-
mal basis {|ψi〉} of C2n . After the measurement, a state |ψ〉 will be transformed into |ψi〉 with
probability |〈ψ|ψi〉|2. This phenomenon is referred to as the “collapse of the wave function”.

To extend this notion of measure to mixed states and partial measurements, a more general
framework is for analyzing measurements is the following one:
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2.2. Continuous variables

Definition 2.11 (Positive Operator Valued Measure) A POVM is a finite set of Hermitian
positive semidefinite operators {Ei} such that

∑
iEi = IH. The value of the measure of a state

ρ ∈ B(H) is “i” with probability tr[Eiρ], the resulting state is ρ′ = MiρMi

tr(MiρMi)
with Mi = E

1/2
i .

Physicists tend to use a slightly different and weaker point of view on measurement through
the notion of observable

Definition 2.12 (Observable) Let M be a Hermitian matrix that can be diagonalized M =∑
m∈sp(M) Π[m]. The value of the measurement of a state ρ using the observable M is “m”

with probability tr[Π[m]ρ] and the resulting state is ρ′ = Π[m]ρΠ[m]

tr(Π[m]ρΠ[m])
.

2.2 Continuous variables

Although we will not deal with physical implementations of qubits in the manuscript, one
should never forget a qubit is encoded into two levels of one degree of liberty of a quantum
state, like the spin of an electron or the polarization of a photon. However, quantum states
can usually have more degrees of liberty and many more levels in them. Indeed, all elementary
quantum systems cannot be represented by finite dimensional Hilbert spaces; e.g. position and
momentum of a particle or the amplitude of an electromagnetic (EM) field. Let us insist that
a qubit is a density matrix on a 2-dimensional Hilbert space, and that this Hilbert space can
be embedded into another Hilbert space that can be infinite dimensional, see e.g. [GKP01].

The content of this section is to give a clear mathematical model for continuous variable
systems, their evolution and their measurements.

2.2.1 The Hilbert space L2(Rn)

Let us first recall the definition of the Hilbert space L2(R). This is the quotient space L2(R)/ ∼
where ∼ is the equivalence relation: two function ψ and φ are equivalent if they are equal almost
everywhere, and L2(R) = {φ : R → C |

∫
R |φ(x)|2dx < ∞} is the set of square integrable

functions. For any functions φ, ψ in L2(R), the canonical inner product on this space is defined
by:

(ψ, φ) =

∫
R
ψ∗(x)φ(x)dx,

where ψ∗ is the complex conjugate of ψ and the norm associated to it is:

‖φ‖ =
√

(φ, φ).

When a tensor product structure is involved, we will abuse notations between the two isomor-
phic spaces L2(Rn) ∼= L2(R)⊗n.

One of the main property of L2(Rn) is that it admits a countable basis:

Definition 2.13 (Hilbert basis, separable Hilbert space) A Hilbert basis of an infinite-dimensional
Hilbert space H is a countable set of orthonormal vectors {|vi〉, i ∈ N} such that the space
spanned by finite linear combinations of |vi〉 is dense in H. A Hilbert space with a Hilbert basis
is separable.

As a consequence, all separable Hilbert spaces are isomorphic, in particular L2 and `2, the
Hilbert space of square-summable sequences. In this manuscript, we will exclusivity use L2
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2. Models of quantum information

since we want to capture the “continuous” nature of the electromagnetic field that is more
easily expressed in this setting. From now on, all the Hilbert spaces we will use are separable.

The Dirac notation can also be used in this case. A function ψ of L2 is denoted by the ket
|ψ〉 and the linear form φ ∈ L2 7→

∫
Rn ψ

∗(x)φ(x)dx by |ψ〉. Please note that there are other
linear form that the ones generated by functions of L2 such as Dirac distributions, but we will
carefully avoid to use them in this manuscript since it can lead to errors. The inner product
on L2 between ψ and φ can thus be denoted by 〈ψ|φ〉 and the linear map |χ〉 7→ 〈ψ|χ〉|φ〉 by
|φ〉〈ψ|.

Contrarily to the finite dimensional case, all linear operators on a infinite-dimensional
separable Hilbert space H do not have an adjoint, but bounded linear operator do. A linear
operator A is bounded if for all vector |u〉 of H, the norm ‖A|u〉‖ is finite. This restriction will
not cause any problems, since unitaries and density operators are all bounded.

2.2.2 States

When dealing with infinite dimensional Hilbert spaces to study quantum systems, we are in
a territory controlled by physicists, and the vocabulary is often dictated by historical and
empirical reasons. For example an infinite dimensional state is often called a mode even if
its physical support is not a mode of an electromagnetic field, and conversely the observable
associated to the amplitude of an EM field is called position observable since the equation
governing it is mathematically identical to the one of the position of a particle.

Definition 2.14 (CV states, modes) A pure n-mode state is a vector of L2(Rn) of norm 1.

Contrarily to the finite dimensional case, the trace and the partial trace of an operator do
not necessarily exist, this is why we will restrict ourselves to a smaller class of operators for
which we can define the trace:

Definition 2.15 (Compact, trace-class operators, trace) An operator A on a separable Hilbert
space H is said compact if it can be written

A =

∞∑
n=0

λn|an〉〈bn|,

where the λn is a converging sequence of positive real numbers of limit 0, {|an〉} and {|bn〉} are
two Hilbert basis of H. The operator is trace-class if

∞∑
n=0

λn <∞.

The Banach space of trace-class operators on H is denoted T (H), and the trace is the linear
functional from T (H) to R defined by:

tr(A) =

∞∑
k=0

〈ψk|A|ψk〉,

where {|ψk〉} is any Hilbert basis of H.
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Properties of trace-class operators

• If A and B are trace-class, then AB and BA are also trace-class.

• If A is trace-class, then A† is trace-class.

This definition of the trace is the correct notion since the usual properties of the trace for
matrices are also true for operators of T (H): tr(AB) = tr(BA) and the trace does not depend
of the choice of the basis. It is also straightforward to extend this definition to the partial
trace of trace-class operators:

Definition 2.16 (Partial trace) Given two separable Hilbert spaces HA and HB, the partial
trace over B is the linear mapping from T (HA ⊗HB) to T (HA) such that by:

∀A ∈ T (HA), B ∈ T (HB), trB(A⊗B) = tr(B)A.

A state with n modes will thus be represented by a density operator, the CV analog of the
density matrix:

Definition 2.17 (n-mode state) A n-mode state ρ is a positive semidefinite trace-class operator
of L2(Rn) such that tr(ρ) = 1. The density operator ρ of pure state |ψ〉 is ρ = |ψ〉〈ψ|.
Lemma 2.18 A state ρ is pure if and only if tr(ρ2) = 1.

Since density operators are compact Hermitian operators, we can diagonalize them in a
very similar manner than matrices: they have a discrete spectrum of real positive numbers:

Theorem 2.19 (Spectral Theorem) Let A be a compact positive semidefinite Hermitian operator
on L2. There exists a sequence λn of real positive numbers converging to 0, and a Hilbert basis
|an〉 of L2 such that:

A =
∑
n

λn|an〉〈an|.

When dealing with continuous variable states, it is often easier to use a different formal-
ism than the one introduced here, the phase space formalism which is briefly introduced in
Appendix A. The special case of Gaussian states in phase space is the focus of Section 2.3.
Nevertheless, some operations are more easily done in the state space using a Hilbert basis.
The most famous Hilbert basis is probably the Fourier basis, but this basis will be of no use in
this work, instead we will the Fock basis which is of terrific importance, since the most useful
Gaussian states can be easily expressed in it.

Definition 2.20 (Fock states) For all integer k ∈ N, we define the k-th Fock state |k〉 by the
function

|k〉 : x 7→
(
π1/22kk!

)− 1
2
Hk(x)e−

x2

2 ,

where Hk is the k-th Hermite polynomial defined by: Hk : x 7→ (−1)kex
2 dk

dxk
e−x

2
.

Theorem 2.21 (Fock Basis) The set of Fock states is a Hilbert basis of L2(R).

This definition can seem a bit arid, but those states are the eigenstates of the harmonic
oscillator, one of the most basic model in quantum mechanics. Moreover the state |k〉 repre-
sents number state of exactly k coherent photons produced by a laser. In realistic settings,
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2. Models of quantum information

lasers produce Gaussian states that are superposition of Fock states according to a Poisson
distribution. We will decompose some of the Gaussian states in the Fock basis in Section 2.3.2.

When dealing with n modes, we use bold notation to denote a n-index i = i1 . . . in ∈ Nn.
The set {|i〉, i ∈ Nn} defined by |i〉 = |i1〉 · · · |in〉 will be also called the Fock basis of L2(Rn).

2.2.3 Operations

According to the axioms of quantum mechanics, the states will evolve with unitary operations:

Definition 2.22 (Unitary operator) An operator U acting a Hilbert space H is unitary if UU † =
U †U = IH.

We emphasize that contrary to the finite case, the existence of a right inverse does not imply
the existence of a left inverse. For example, given a Hilbert basis {|φk〉}, the shift operator
S : |φk〉 7→ |φk+1〉 has a left inverse, but no right inverse.

Measurements on the other hand are far more complex with continuous variables and
expressed in the formalism of “observables”. An observable is simply an Hermitian operator
and can have discrete or continuous spectrum, being bounded or not. We do not introduce the
general case here but we give a straightforward generalization of Definition 2.12

Definition 2.23 (Observable with discrete spectrum) A Hermitian operator M is an observable
with discrete spectrum if there exists a countable set of projectors {Π[m]} such that M =∑

mmΠ[m]. Measuring a state ρ with M will result to outcome “m” with probability tr[Π[m]ρ].

The resulting state is ρ′ = Π[m]ρΠ[m]

tr[Π[m]ρΠ[m]]
.

The other fundamental case, that has no discrete equivalent, comes from using an observ-
able with a fully continuous spectrum. Phase space is the best formalism to describe such a
measurement, but we nonetheless give the definition of one of them, the position measurement:

Definition 2.24 (Position observable) Let ρ =
∑

m,n ρm,n|m〉〈n| be a one-mode state. The
outcome of measuring ρ with the position observable and error ∆ is x0 with probability

∑
m,n

ρm,n

∫ x0+∆

x0−∆
n(x)m(x)dx,

where m and n are the m-th and n-th Fock functions.

We did not specify the resulting state after the measurement since we will never consider
it in this dissertation, and in practical implementations this measurement is destructive: the
light is absorbed by the measurement apparatus.

In the limit ∆→ 0, this measurement appears to be fully continuous, thus giving the name
continuous variables to quantum state expressed in infinite dimensional Hilbert spaces. In the
laboratory, this measure can be perform efficiently for very small ∆, which is why this measure
is the very root of considering CV state as a resource in quantum computing. Indeed when
considering light pulses, this correspond to measuring their amplitude.

2.3 Gaussian model

In this dissertation, we restrict ourselves to a class of continuous variables states and operations
called Gaussian states and Gaussian operations. In this Section, we introduce their formalism
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based on covariance and symplectic matrices. This is quite different from the previous sections
since the states and operations are considered from a different point of view, called the phase
space and not from the Hilbert space L2(Rn) which is called the state space. We present a
first connexion between the two formalisms by giving the decomposition of some of the usual
Gaussian states in the Fock basis. The formal construction of the phase space and why states
are described by covariance matrices is postponed to Appendix A since this is not needed for
understanding the results presented in this manuscript.

2.3.1 Covariance and symplectic matrices

In this Section, we introduce the two mathematical objects at the heart of the study of Gaussian
states and operations, covariance and symplectic matrices.

Definition 2.25 (Covariance matrix) A covariance matrix is a 2n× 2n real symmetric positive
semi-definite matrix.

Definition 2.26 (Symplectic matrix) A symplectic matrix is a 2n×2n real matrix that satisfies

SΩST = Ω,

where Ω is the block diagonal matrix Ω =

(
0 1
−1 0

)⊕n
.

Properties of symplectic matrices:

• If S and T are symplectic, ST and TS are also symplectic;

• If S is symplectic, S is invertible and S−1 = −ΩSTΩ;

• detS = 1;

• Ω is symplectic and Ω−1 = ΩT = −Ω.

Covariance matrices can be “diagonalized” by the action of symplectic matrices. Of course,
this is not a diagonalization in the usual sense since symplectic matrices are not unitary in
general.

Theorem 2.27 (Williamson’s decomposition [SCS99]) Let γ be a covariance matrix. There
exists a symplectic matrix S and a diagonal matrix D = diag(ν1, ν1, ν2, ν2 . . . , νn, νn) such
that:

νi ≥ 0 and γ = SDST .

The {νi} are called the symplectic values of γ and are independent of S up to a permutation.

2.3.2 Gaussian states

Definitions Let us now make the connection between covariance matrices and Gaussian states.

Definition 2.28 (Gaussian state) An n-mode Gaussian state is described by a 2n-dimensional
real vector µ called the mean vector and 2n × 2n covariance matrix γ with the additional
constraint γ + iΩ � 0.
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2. Models of quantum information

As a consequence a Gaussian state is described by less than n2 real parameters. This is
in strong contrast with general CV states for which each mode can require an infinite number
of parameters. It is also noteworthy that the set of Gaussian states does not have a linear
structure: the superposition of Gaussian states is in general not a Gaussian state.

Informally, covariance matrices play a role quite similar to the one played by density opera-
tors in state space, and the symplectic values the one of eigenvalues. The condition γ+ iΩ � 0
is in fact a condition on the symplectic values implies that all the symplectic values are at least
one. To continue further this analogy, there is a characterization of pure Gaussian states quite
similar to Lemma 2.18 and Lemma 2.3:

Lemma 2.29 (Symplectic values of a Gaussian state) The symplectic values of a Gaussian state
are greater or equal to 1. They are all equal to one if and only if the state is pure.

Some Gaussian states Some Gaussian states play extremely important roles, such as the
thermal states which are mixed Gaussian states and can be compared to totally mixed states
of one qubit, and the two-mode squeezed states that are the Gaussian equivalent of EPR pairs
on two qubits.

Definition 2.30 (Coherent and thermal states)

• A thermal state of variance ν is a one-mode state with µ = (0, 0) and γ = νI with ν ≥ 1.

• A coherent state |α〉 is a pure one-mode state with µ = 1√
2
(<(α), Im(α)) and γ = I2.

• The vacuum state is the Fock state |0〉. It is a special case of coherent state (centered in
µ = (0, 0)) and thermal state of variance ν = 1.

One other state plays a central role in the study of Gaussian states, the two-mode squeezed
state, since it is the Gaussian equivalent of the EPR pair. A two-mode squeezed state of
squeezing r is the Gaussian state of mean vector µ = (0, 0, 0, 0) and covariance matrix:

ν 0
√
ν2 − 1 0

0 ν 0 −
√
ν2 − 1√

ν2 − 1 0 ν 0

0 −
√
ν2 − 1 0 ν


with the variance ν = cosh(2r).

The partial trace of Gaussian states can also be expressed in a very simple way in phase
space

Theorem 2.31 (Partial trace of a Gaussian state) Let ρAB be a bipartite Gaussian state with

n+m modes. It is described by a 2n× 2m covariance matrix γAB =

(
γA C
CT γB

)
and a mean

vector µ = µA ⊕ µB ∈ R2n+2m, then the state ρA = trB(ρAB) is described by the covariance
matrix γA and the mean vector µA.

This proves that the mixed state obtained by tracing out one of the mode of a two-mode
squeezed state of squeezing r is a thermal state of variance ν = cosh(2r), thus making the
connection with totally mixed states.
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Relation with the Fock basis Although it is difficult to write any Gaussian state in the Fock
basis, we know the expansion of these examples. A coherent state |α〉 can be written as:

|α〉 = e−
|α|2
2

∞∑
i=0

αi√
i!
|i〉,

a two-mode squeezed state with squeezing r as:

|TMS(r)〉 = (cosh(r))−1/2
∑

tanh(r)i|i〉|i〉, (2.1)

and as a consequence a thermal state of variance ν = cosh(2r) as:

ρth(ν) =

∞∑
i=0

(
ν − 1

ν + 1

)i
|i〉〈i|. (2.2)

2.3.3 Gaussian operations

Definition 2.32 (Gaussian operation) A Gaussian operation is a linear map that maps any
Gaussian state into a Gaussian state.

This definition is not quite useful since it does not give a characterization of Gaussian
operations in phase space. For unitary operation, there exist a simple characterization in
phase space [Fiu01]:

Lemma 2.33 The set of Gaussian unitaries acting on n modes is in one-to-one correspondence
with the set {(S, d)} for all 2n× 2n symplectic matrix S and real vector d of R2n.

In Appendix A, we explain how a Gaussian unitary acts on any CV state in phase space.
This has a very simple formulation when considering only Gaussian states:

Corollary 2.34 Let ρ be a Gaussian state with covariance matrix γ and mean vector µ and
a Gaussian unitary U described in phase space by a symplectic matrix S and a displacement
vector d, then the action of U in phase space is:

(γ, µ) 7→ (SγST , Sµ+ d).

Normal mode decomposition One of the main mathematical tool for analyzing bipartite
Gaussian states, is the normal mode decomposition [BR03], which is the Gaussian equivalent
of the Schmidt decomposition:

Theorem 2.35 (Normal form) Let γAB be the covariance matrix of a pure bipartite Gaussian
state. γAB can be decomposed:

(SA ⊕ SB)γAB(STA ⊕ STB) =

(
D

√
D2 − IZn√

D2 − IZn D

)
(2.3)

where D is the diagonal matrix of the symplectic values of γA, Zn =
(

1 0
0 −1

)⊕n
, and SA and

SB are two symplectic matrix acting respectively on Alice’s and Bob’s modes.

Physically, this theorem states if Alice and Bob share n modes of a pure Gaussian state, by
applying local Gaussian unitary operations only, they can transfer it into n shared two-mode
squeezed states.
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2.4 Norms and distinguishability

This section introduces different norms that are used in this manuscript and focuses on how
to use them for distinguishing states. Distinguishability between states has been extensively
studied by Christopher A. Fuchs [Fuc96]. All the notions defined here are valid for separable
Hilbert spaces, finite or infinite dimensional, this is why we omit to specify the dimensions.

First, the measure induced by the scalar product on the linear operator is the operator
norm, sometimes called the spectral norm:

Definition 2.36 (Operator norm) Let A ∈ B(H). The operator norm of A is defined by:

‖A‖ = sup
|v〉

‖A|v〉‖
‖|v〉‖

.

This norm appears quite naturally in many derivations, but does not have an operational
meaning for distinguishability. This is why the trace norm is used:

Definition 2.37 (Trace norm) Let A ∈ T (H), its trace norm is:

‖A‖tr = tr
√
A†A.

The trace norm gives the optimal probability p of distinguishing two equiprobable states ρ
and σ:

p =
1

2
+

1

4
‖ρ− σ‖tr .

It is sometimes easier to define the trace distance between two states ρ and σ by

Dtr(ρ, σ) =
1

2
‖ρ− σ‖tr .

The constant 1/2 is chosen so that two orthogonal states have distance 1.
When dealing with trace norm, we will use the following lemmata:

Lemma 2.38 (Hölder’s inequality) For any A,B ∈ T (H), we have ‖AB‖tr ≤ ‖A‖F · ‖B‖F,

where ‖A‖F is the Frobenius norm defined by: ‖A‖F =
√

tr(A†A).

Lemma 2.39 For any A,B ∈ T (H), we have tr(AB) ≤ ‖A‖ · ‖B‖tr.

Lemma 2.40 For any A,B Hermitian positive definite, we have
∥∥∥A 1

2BA
1
2

∥∥∥ =
∥∥∥A 1

2B
1
2

∥∥∥2
=∥∥∥B 1

2A
1
2

∥∥∥2
, and

∥∥∥A 1
2B−

1
2

∥∥∥2
= min{c such that A � cB}.

The other quantity that we will often use when dealing with distinguishability of two states
is the fidelity.

Definition 2.41 (Fidelity) The fidelity between to quantum states ρ and σ is defined by:

F(ρ, σ) = tr
√√

ρσ
√
ρ.

When dealing with pure states, the fidelity is sometimes called the “transition probability”
(see e.g. [Uhl76]), the term fidelity seems to come from an article by Josza [Joz94], but he
uses the square of this quantity, since it can be understood as a probability. However in their
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book, Nielsen and Chuang [NC04] used this definition and has been used since in the computer
science community. Physicists tend to use the original definition.1

The fidelity and the trace norm have some useful properties in common: they are symmetric,
invariant under the action of unitary operations, and simpler expression for pure states ρ =
|ψ〉〈ψ| and σ = |φ〉〈φ| can be derived:

F(ρ, σ) = |〈ψ|φ〉| and ‖ρ− σ‖tr = 2
√

1− |〈ψ|φ〉|.

Fidelity and trace distance also capture the fact that it is more difficult to distinguish mixed
states than their purifications. Let |ψ〉 and |φ〉 be two bipartite pure states in T (HA ⊗ HB)
and ρA = trB(|ψ〉〈ψ|) and σA = trB(|φ〉〈φ|) their partial traces over HB then:

F(ρA, σA) ≥ F(|ψ〉〈ψ|, |φ〉〈φ|) and Dtr(ρA, σA) ≤ Dtr(|ψ〉〈ψ|, |φ〉〈φ|).

The first inequality can always be saturated, this is the content of Uhlmann’s theorem:

Theorem 2.42 (Uhlmann’s theorem) Let ρ and σ be two quantum states and |ψ〉 a purification
of ρ. Then

F(ρ, σ) = max
|ϕ〉
|〈ψ|ϕ〉| ,

where the maximum is taken over all purifications |ϕ〉 of σ.

There is a first proof of the theorem in [Uhl76] for discrete variables as well as for continuous
variables. This proof is difficult to read and is non constructive. Richard Jozsa gave a simple
constructive proof for the discrete variable case [Joz94]. To the best of our knowledge there is
no continuous variable equivalent.

As written above, fidelity and trace distance have a strong relationship. It is possible to
have a formal statement:

Lemma 2.43 Let ρ and σ two quantum states. Then

1−F(ρ, σ) ≤ Dtr(ρ, σ) ≤
√

1−F(ρ, σ)2.

Quantum Chernoff bound and Bhattacharyya bound The quantum Chernoff bound [ACMT+07]
is an upper bound on the minimal error done when distinguishing between two states when
there are k copies of them and reads,

Perr ≤
1

2

(
inf

0<s<1
tr
[
ρsσ1−s])k .

The Bhattacharyya bound [Kai67, PL08] is the special case s = 1/2 of the Chernoff bound. In
this manuscript, we will only consider that bound when k = 1, and by writing Perr in term of
trace distance, we get:

Lemma 2.44 (Bhattacharyya bound) For all state ρ and σ:

1−Dtr(ρ, σ) ≤ tr
[√
ρ
√
σ
]
.

1and they are probably right, but the primary focus of this dissertation is mostly computer scientists who
are used to the definition introduced here.
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2.5 Summary

In this Chapter, we gave a quick overview of the standard model of quantum computing in a
finite-dimensional Hilbert space. We then extended it to continuous variables by considering
the separable Hilbert space of square integrable functions. We underlined a few key differences,
like the necessity to restrict ourselves to trace-class operators and the existence of “continuous”
measurements.

We then focused on a subclass of CV states, called Gaussian states and their formalism
coming from an formalism in another space. Gaussian states that can be concisely described
by covariance matrices and Gaussian unitaries by symplectic matrices.

Let us summarize an informal connection between CV states in state space and Gaussian
states in phase space (for clarity the mean vector of Gaussian states is omitted)

n qubits n modes n Gaussian modes

Basis |x〉, x ∈ {0, 1}n |i〉, i ∈ Nn no basis

State density matrix density operator covariance matrix

Size 2n × 2n infinite dimensional 2n× 2n

Eigenvalues
∑2n

i=1 λi = 1, λi ≥ 0
∑∞

i=1 λi = 1, λi ≥ 0 (ν1, ν1, ν2, ν2, · · · , νn, νn), νi ≥ 1

Unitary UU † = I UU † = U †U = I SΩST = Ω

Acts by ρ 7→ UρU † ρ 7→ UρU † γ 7→ SγST

We finally examined two different notions to quantify the distinguishability between two
states, the trace distance and the fidelity.
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3 Gaussian quantum bit commitment

In this Chapter, we address quantum bit commitment protocols with continuous variables, and
explore whether such protocols may be found secure when both parties are restricted to use
Gaussian states and operations. We answer by the negative in Section 3.2. The main ingredient
of the proof is the introduction of what we call intrinsic purifications that are introduced and
studied in the first Section.

At the heart of the impossibility proof of quantum bit commitment lies Uhlmann’s theorem
(Theorem 2.42). For Gaussian quantum bit commitment, one would need a Gaussian version
of this theorem, namely that if two Gaussian states have a certain fidelity between them,
then there are two Gaussian purifications of them with the same fidelity. We do not resolve
the question of stating if such theorem exists or not. As a matter of fact this question seems
extremely difficult to answer. However an approximate version of Uhlmann is sufficient to prove
the no-go theorem. This is the strategy we are following in this Chapter. By relaxing slightly
the condition on the fidelity (we do not require that the fidelity of the purifications is exactly
the same than the mixed states, but close enough) we can construct Gaussian purifications.
Our approach is even a bit more general and it is called intrinsic purifications.

Moreover, the use of intrinsic purifications instead of Uhlmann’s theorem allows us to
provide a constructive attack for any CV QBC protocol, whereas constructive attacks were
previously known for finite dimensions only.

3.1 Intrinsic purifications

In this Chapter, A∗ (resp. AT ) denotes the complex conjugate (resp. the transpose) of any
linear operator A relatively to the Fock basis, defined as 〈i|A∗|j〉 = 〈i|A|j〉∗ and 〈i|AT |j〉 =
〈j|A|i〉.

This section is devoted to prove the following theorem:

Theorem 3.1 For all n-mode state ρ there exists a 2n-mode purification |ψ(ρ)〉 of ρ such that:

• If ρ is a Gaussian state, then |ψ(ρ)〉 is also a Gaussian state,

• For every n-mode states ρ0 and ρ1, we have

1−
√

1−F(ρ0, ρ1)2 ≤ F
(
|ψ(ρ0)〉〈ψ(ρ0)|, |ψ(ρ1)〉〈ψ(ρ1)|

)
.

The proof of the theorem is based on the notion of intrinsic purifications :

Definition 3.2 (Intrinsic purifications) Let ρ be an n-mode state and U be a diagonalization of
ρ in the Fock basis, that is, U is a unitary operator such that 〈i|U †ρU |j〉 = pi δij, where δij is
the Kronecker delta. We then define an intrinsic purification |ψ〉 of ρ as

|ψ〉 = (U∗ ⊗ U)
∑
i

√
pi|i〉|i〉.
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3. Gaussian quantum bit commitment

Note that this purification is not uniquely defined, since there exist many diagonalizations of
a state, one can for example permute the ordering of the extra modes. Contrary to Uhlmann’s
purifications for which it is not known wether they can be Gaussian for Gaussian states, we
can make a statement for intrinsic purifications:

Lemma 3.3 A Gaussian state has a Gaussian intrinsic purification.

Proof. By Williamson’s decomposition (Theorem 2.27), there exists a Gaussian unitary V such
that V ρV † is a tensor product of n thermal states with variances νk, i.e. it can be written in
the Fock basis by tensoring Equation (2.2):

V ρV † =

n⊗
k=1

∞∑
i=0

(
νk − 1

νk + 1

)i
|i〉〈i| =

∑
i∈Nk

pi|i〉〈i|,

with pi =
∏n
k=1

(
νk−1
νk+1

)ik
. The unitary V is a diagonalization of ρ in the Fock basis.

Our goal is to show that the state

(V ∗ ⊗ V )
∑
i∈Nk

√
pi|i〉|i〉

is Gaussian. First of all, according to Equation (2.1), the state
∑

i∈Nk
√
pi|i〉|i〉 is a two-mode

squeezed state, so is Gaussian. Since V comes from the Williamson’s decomposition, V is also
Gaussian. The remaining piece is to prove that V ∗ is also Gaussian.

V ∗ is Gaussian Our strategy is look at the action on V ∗ on any Gaussian state, and show
it corresponds to apply a certain symplectic matrix in phase space. Let us take an arbitrary
n-mode Gaussian state τ with covariance matrix γτ and mean vector µτ . Let us also denote
the action of V by its symplectic matrix S and displacement vector d.

Define Zn =
⊕n

k=1 Z =
⊕n

k=1

(
1 0
0 −1

)
. We want to show that applying V ∗ to τ is equivalent

to applying the symplectic matrix ZnSZn and the displacement Znd in phase space. First,
remark that V ∗ = (V †)T and observe that V ∗τV ∗

†
= (V τTV †)T .

The transposition relatively to the Fock basis has a simple expression in phase space for
Gaussian states [Sim00]: let σ be a Gaussian state with covariance matrix γσ and mean vector
µσ, then σT is a Gaussian state with covariance matrix ZnγσZn and mean vector Znµσ.

As a consequence, we get

τT is described by ZnγτZn and Znµτ

V τTV † is described by (SZn)γτ (ZnS
T ) and (SZn)µτ − d

V ∗τTV ∗
†

is described by (ZnSZn)γτ (ZnSZn)T and (ZnSZn)µτ − Znd

Finally, we can conclude that (ZnSZn) is a symplectic matrix, even though Zn is not. First
remark that ZnΩZn = −Ω, this leads us to:

(ZnSZn)Ω(ZnSZn)T = Ω.
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3.1. Intrinsic purifications

Proof of Theorem 3.1. Let |ψ0〉 = (U∗0 ⊗U0)
∑

i

√
pi|i〉|i〉 be an intrinsic purification of ρ0 and

|ψ1〉 = (U∗1 ⊗ U1)
∑

i

√
qi|i〉|i〉 an intrinsic purification of ρ1. According to the Bhattacharyya

bound, we have

1−
√

1−F(ρ0, ρ1)2 ≤ tr[
√
ρ0
√
ρ1],

so proving that

tr[
√
ρ0
√
ρ1] = F

(
|ψ0〉〈ψ0|, |ψ1〉〈ψ1|

)
,

will conclude the proof. This equality is a property of intrinsic purifications.

Let us compute tr[
√
ρ0
√
ρ1] by taking the trace in the basis {U0|k〉}k:

tr[
√
ρ0
√
ρ1] = tr

U0

∑
i

√
pi|i〉〈i|U †0U1

∑
j

√
qj|j〉〈j|U †1


=
∑
i,j,k

√
piqj (〈k|U †0)U0|i〉〈i|U †0U1|j〉〈j|U †1(U0|k〉)

=
∑
i,j

√
piqj〈i|U †0U1|j〉〈j|U †1U0|i〉

=
∑
i,j

√
piqj

∣∣∣〈i|U †0U1|j〉
∣∣∣2

On the other hand:

F(|ψ0〉〈ψ0|, |ψ1〉〈ψ1|) = |〈ψ0|ψ1〉| =

∣∣∣∣∣∣
∑
i,j

√
piqj 〈i|(U †0U1)∗|j〉〈i|U †0U1|j〉

∣∣∣∣∣∣ .
According to the definition of the conjugation relatively to the Fock basis, we can conclude
that

tr(
√
ρ0
√
ρ1) = F(|ψ0〉〈ψ0|, |ψ1〉〈ψ1|).

This proof holds for any intrinsic purifications, so in particular, if ρ0 and ρ1 are Gaussian
states, we can choose |ψ0〉 and |ψ1〉 to be Gaussian.

This theorem can also be reformulated using the trace distance instead of the fidelity:

Corollary 3.4 Given two n-mode states ρ0 and ρ1, there exist 2n-mode purifications |ψ0〉 of ρ0

and |ψ1〉 of ρ1 such that

Dtr(|ψ0〉〈ψ0|, |ψ1〉〈ψ1|) ≤
√

2Dtr(ρ0, ρ1)

Moreover, if ρ0 and ρ1 are Gaussian states, so are their purifications |ψ0〉 and |ψ1〉.
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3. Gaussian quantum bit commitment

Relation to Uhlmann’s theorem Our theorem is weaker than Uhlmann’s theorem when
stated in term of fidelity, but not in term of trace distance like in Corollary 3.4. However,
our theorem has some advantages. First, our proof is constructive, whereas Uhlmann is not
constructive for CV states, and secondly, we are able to prove the Gaussianity of the purifi-
cations, which was our first motivation. Another consequence that we reflected in the term
“intrinsic” is that the purifications do not depend of both states ρ0 and ρ1. Thus we can
purified several close states, and guarantee that their purification will also be close:

Corollary 3.5 Let ρ1, . . . , ρt be t quantum states, and note di,j the trace distance between ρi
and ρj. Then, for all i ∈ [t], there exists purification |ψi〉 of ρi such that

∀i, j ∈ [t],
1

2
‖|ψi〉〈ψi| − |ψj〉〈ψj |‖tr ≤

√
2di,j .

Moreover, if ρ1, . . . , ρt are Gaussian states, the purifications are also Gaussian.

3.2 No-go theorem

In [May97, LC97] it has been shown that any QBC protocol, no matter how complicated are
the commit and the reveal phases is equivalent to a purified protocol in terms of security.

Definition 3.6 (Purified quantum bit commitment protocol) A purified quantum bit commitment
protocol is an interactive protocol between two players Alice and Bob with two phases:

Commit phase Alice encodes her bit b into a pure bipartite state |ψb〉 and sends one half to Bob.
At the end of the committing phase, Bob holds either ρ0 = trA|ψ0〉〈ψ0| or ρ1 = trA|ψ1〉〈ψ1|
if Alice wants to commit to 0 or 1, respectively.

Reveal phase Alice sends the other half of |ψb〉.

The reduction is done by remarking that all the measurements happening during each
of the phases can be postponed to the end of the phases. When a full protocol involves only
Gaussian states and Gaussian operations, the purified protocol uses only Gaussian states. This
is why we will consider that |ψb〉 are Gaussian states from now on, and we will show that such
a protocol is insecure, more precisely, we will show that the more concealing the protocol, the
more powerful the cheating strategies.

Definition 3.7 (ε-concealing) The protocol is referred to as ε-concealing if ‖ρ0 − ρ1‖tr ≤ 2ε,
which means that Bob cannot learn the value of b, except with probability ε

Definition 3.8 (δ-cheating strategy) In a δ-cheating strategy, Alice sends a state ρ] in the
committing phase and then decides to follow a strategy leading to a final state of her choice,
|ψ]0〉 or |ψ]1〉, so that Bob should not be able to distinguish this strategy from a honest strategy

with a probability greater than δ. This means that
∥∥ρ] − ρb∥∥tr

≤ 2δ and
∥∥∥ψ]b − ψb∥∥∥

tr
≤ 2δ.

Now, let us state our main result:

Theorem 3.9 Given any ε-concealing Gaussian quantum bit commitment protocol to Bob,
there exists a Gaussian

√
2ε-cheating strategy for Alice.

Here, we will only consider the simple strategy in which ρ] = ρ0 and |ψ]0〉 = |ψ0〉. Thus,

|ψ]1〉 will correspond to Alice initially committing to a zero and then cheating so to make it

40



3.2. No-go theorem

a one. This is sufficient to prove the no-go theorem. Without loss of generality, we will also
consider that |ψb〉 are 2n-mode states and ρb are n-mode states.

3.2.1 Perfectly concealing protocols

Let us first have a look at what happens when the protocol is perfectly concealing. In this case
Alice has a perfect cheating strategy.

Lemma 3.10 Let |ψ0〉 and |ψ1〉 be 2n-mode Gaussian states such that trA|ψ0〉〈ψ0| = trA|ψ1〉〈ψ1|.
There exists a Gaussian unitary operator U acting on n modes such that (U ⊗ I)|ψ0〉 = |ψ1〉,
where I is the identity on n modes.

Proof. For b ∈ {0, 1}, denote by µb =
(
µAb
µBb

)
and γb =

(
γAb Cb
CTb γBb

)
the covariance matrix and

mean vector of |ψb〉. According to Theorem 2.31, the condition trA|ψ0〉〈ψ0| = trA|ψ1〉〈ψ1|
implies that µB0 = µB1 and γB0 = γB1 .

As a consequence, γA0 and γA1 have the same symplectic spectra, so that, by applying the
normal mode decomposition on γ0 and γ1 we know that there exist symplectic matrices Sjb
such that:

γ0 = (SA0 ⊕ SB0 )γ̃0(SA0 ⊕ SB0 )t,

γ1 = (SA1 ⊕ SB1 )γ̃1(SA1 ⊕ SB1 )t,

where γ̃b =
(
Db d
d Db

)
. The matrices D0 and D1 are diagonal matrices with the same values. It

is then possible to choose the symplectic matrices Sjb such that D0 = D1, hence γ̃0 = γ̃1 = γ̃.
The symplectic matrix S] = SA1 (SA0 )−1 ⊕ I2n transforms γ0 into γ1 by acting on Alice’s modes
only. Similarly, the displacement µ1 − S]µ0 transforms µ0 into µ1 by acting on Alice’s side
only, which proves Lemma 3.10.

The previous theorem is exactly what we needed to prove the no-go theorem for perfectly
concealing protocol. Alice’s cheating strategy is well-known, she first starts the protocol as she
wanted to commit to 0, and she simply applies an appropriate unitary operation to her half of
|ψb〉 between the two stages of the protocol if she decides to actually reveal 1. This allows her
to convert |ψ0〉 into |ψ1〉. In the case of Gaussian QBC, Lemma 3.10 implies that this cheating
unitary is Gaussian.

3.2.2 ε-concealing protocols

We now investigate the realistic case where the protocol is not perfectly concealing, which will
finally lead us to the proof of Theorem 3.9. This proof is a reduction to the perfectly concealing
case that is done using intrinsic purifications. (See Figure 3.1)

Proof of Theorem 3.9. We want to find an explicit Gaussian
√

2ε-cheating strategy for Alice
against a ε-concealing QBC protocol. In the first stage of the protocol, Alice creates the state
|ψ0〉 and sends ρ0 to Bob. In the second stage, if Alice wants to reveal the bit 0, she sends
her half of |ψ0〉 to Bob, while if she decides to reveal the bit 1, she applies a Gaussian unitary

operation to her half of |ψ0〉, mapping it to |ψ]1〉, and then sends it to Bob.
As a consequence of Lemma 3.1, there exist Gaussian purifications |φ0〉 of ρ0 and |φ1〉 of

ρ1 such that D(φ0, φ1) ≤
√

2D(ρ0, ρ1). Moreover |ψ0〉 and |φ0〉 (resp. |ψ1〉 and |φ1〉) are
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3. Gaussian quantum bit commitment

ρ0

|ψ0〉 |ψ]1〉|ψ
]
1〉

ρ1

|ψ1〉

trA trA trA

Dtr ≤ ε

Dtr ≤
√

2εUA ⊗ IB

Figure 3.1: Overview of the proof. Square represent pure states, circles mixed state. The thick arrow
denotes the action of a unitary, the thin arrows tracing over Alice’s modes and the “snake” arrow is
used to indicate the trace distance.

two Gaussian purifications of the same Gaussian state ρ0 (resp. ρ1), so that, according to
Lemma 3.10, there exists a Gaussian unitary operator U0 (resp. U1) such that (U0 ⊗ I)|ψ0〉 =

|φ0〉 (resp. (U1 ⊗ I)|ψ1〉 = |φ1〉). We note |ψ]1〉 = (U−1
1 U0 ⊗ I)|ψ0〉 = (U−1

1 ⊗ I)|φ0〉. By

unitary invariance of the trace distance, one has D(ψ]1, ψ1) = D(φ0, φ1). Thus, for ε-concealing

protocols, we have D(ψ]1, ψ1) ≤
√

2ε.

We have thus obtained a stronger result than the standard no-go theorem since we have
shown that QBC remains impossible even if Alice and Bob are restricted to manipulate Gaus-
sian states. Although Lemma 3.1 can be seen as a weak version of Uhlmann’s theorem in the
sense that the intrinsic purification does not reach Uhlmann’s bound, it is sufficient here be-
cause the quantities of interest in terms of guessing probability are not changed. Interestingly,
the question of whether the purifications that saturate Uhlmann’s bound could both be chosen
Gaussian if the states are Gaussian is still open (although partial results in this direction have
been obtained in [MM07]). Note also that we have an explicit construction of Alice’s cheating
purifications for any CV QBC protocol, Gaussian or not. This is done by noting that the
Gaussian constraint can be relaxed in the proof of Lemma 3.1, and that Lemma 3.10 can be
replaced by the usual Schmidt decomposition.

3.3 Is physics informational?

With the emergence of computers, devices that manipulate information, the concept that
“information is physical” got widely accepted and formulated in a series of papers by Landauer
(e.g. see [Lan92]). But in recent years, this concept got challenged [Fuc01, Fuc02, Bra05]
and presented as the Fuchs-Brassard conjecture. This conjecture tries to build the theory of
quantum physics on axioms from information theory instead of mechanics. Fuchs and Brassard
conjectured that a theory in which key distribution is possible, and bit commitment is not is the
theory of quantum physics. It was later proven wrong, but Clifton et al. proved instead that the
assumptions of no-signalling, no-broadcasting, and the impossibility of bit commitment make
it work within the framework of C∗-algebras [CBH03]. This is known as the CBH theorem.

One of the consequence of this strong no-go theorem is that it provides us with a natural and
elegant counter-example of the Brassard and Fuchs conjecture as well as another input on the
importance of the C∗-algebra framework for CBH. As a matter of fact, consider the subset of
quantum mechanics where only Gaussian states and operations are allowed. As a result of our
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no-go theorem, this Gaussian model forbids bit commitment while it allows unconditional secret
key distribution [RC09]. Interestingly, however, it is strictly included in quantum mechanics
since, for instance, Bell inequalities cannot be violated with Gaussian states and measurements.
This is in contradiction with the Brassard-Fuchs conjecture. Furthermore, according to the
CBH theorem [CBH03], quantum mechanics can be rederived from the sole assumptions that
signaling, broadcasting, and bit commitment are impossible in Nature. While this idea is very
appealing, the Gaussian model again provides a natural counter-example to it.

The reason is that the CBH theorem actually requires the further assumption that the
physical description of Nature is done within the framework of C∗-algebras. Although Smolin
[Smo05] and latter Spekkens [Spe07] found toy models compatible with CBH but distinct from
quantum mechanics, our counter-example is physically grounded.

3.4 Summary

We have addressed continuous variable quantum bit commitment, and have proved a strong
version of the standard no-go theorem in which Alice and Bob are restricted to Gaussian states
and operations. The main technical innovation of our proof is the introduction of “intrinsic
purifications”, for which we are able to prove a Gaussian analog to Uhlmann’s theorem.
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4 Weak coin flipping

The Chapter aims at proving the existence of a way coin flipping protocol with arbitrarily
small bias. More precisely we study a model called time independent point game. We show
that a time independent point game is equivalent to weak quantum coin flipping protocol and
a witness on its bias. The construction of a time independent point game leading to a protocol
with arbitrarily small bias is presented in Appendix C. This construction is due to Carlos
Mochon [Moc07].

To prove the equivalence between a time independent point game and a protocol with
a witness on its bias, we consider different intermediate models. Let us give a big picture
overview of this Chapter. Section 4.1 formally introduces coin flipping protocols and their
bias. We also show that the optimal bias of a protocol can be expressed as a semidefinite
program, and that the points in this dual, dual feasible points are a witness on the bias of
this protocol. In Section 4.2, we show the equivalence between a protocol and its dual feasible
points on one side, and a point game on the other side. Roughly speaking, a point game is a
game composed of succession of moves of points, called transitions. The game ends when only
one point remains. We prove that the coordinates of that final point gives an upper bound on
the cheating probabilities. Thus finding a point game with final point [1/2+ε, 1/2+ε] gives us
the existence of a quantum weak coin flipping protocol with bias ε. We consider 3 variations of
point games, namely point games with EBM transitions, valid transitions and time independent
point games, each model being a little bit easier to manipulate mathematically. We summarize
the succession of models in Figure 4.1.

4.1 Coin flipping and semidefinite programming

4.1.1 Definitions

The role of the next couple of definitions is to formally define weak coin flipping protocols.

Definition 4.1 (Coin flipping protocol) For n even, an n-message coin flipping protocol between
two players, Alice and Bob, is described by:

Protocol

Dual

Feasible

Point

Point game

with EBM

transitions

Point game

with valid

transitions

Time

independent

point game

4.374.134.114.4

Figure 4.1: The succession of models we will consider. An arrow from model A to model B means that
proving the existence of an ε biased protocol in A implies the existence of an ε+ ε′ biased protocol in
B (for all ε, ε′ > 0). The numbers on top of the arrows refer to the theorem proving that reduction.
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4. Weak coin flipping

• Three Hilbert spaces A,B corresponding to Alice and Bob private workspaces (Bob does
not have any access to A and Alice to B), and a message space M.

• An initial product state |ψ0〉 = |ψA,0〉 ⊗ |ψM,0〉 ⊗ |ψB,0〉 ∈ A ⊗M⊗B.

• A set of n unitaries {U1, . . . , Un} acting on A⊗M⊗ B, with Ui = UA,i ⊗ IB for i odd,
and Ui = IA ⊗ UB,i for i even.

• A set of honest states {|ψi〉, i ∈ [n]} defined by |ψi〉 = UiUi−1 · · ·U1|ψ0〉.

• A set of n projectors {E1, . . . , En} acting on A⊗M⊗B, with Ei = EA,i ⊗ IB for i odd,
and Ei = IA ⊗ EB,i for i even, such that Ei|ψi〉 = |ψi〉.

• Two final POVM
{

Π
(0)
A ,Π

(1)
A

}
acting on A and

{
Π

(0)
B ,Π

(1)
B

}
acting on B.

The protocol is the following:

1. In the beginning, Alice holds |ψA,0〉|ψM,0〉 and Bob |ψB,0〉.

2. For i = 1 to n:
— If i is odd, Alice applies Ui and measures the resulting state with the POVM {Ei, I−
Ei}. On the first outcome, Alice sends the message qubits to Bob; on the second outcome,
she ends the protocol by outputting “0”, i.e. Alice declares herself winner.
— If i is even, Bob applies Ui and measures the resulting state with the POVM {Ei, I−
Ei}. On the first outcome, Bob sends the message qubits to Alice; on the second outcome,
he ends the protocol by outputting “1”, i.e. Bob declares himself winner.

3. Alice and Bob measure their part of the state with the final POVM and output the outcome
of their measurements. Alice wins on outcome “0” and Bob on outcome “1”.

Definition 4.2 (Weak coin flipping protocol with bias ε) A weak coin flipping protocol with bias
ε is a coin flipping protocol with the following properties:

• Correctness: When both players are honest, Alice and Bob’s outcomes are always the
same:
Π

(0)
A ⊗ IM ⊗Π

(1)
B |ψn〉 = Π

(1)
A ⊗ IM ⊗Π

(0)
B |ψn〉 = 0.

• Balanced: When both players are honest, they win with probability 1/2:

PA =
∥∥∥Π

(0)
A ⊗ IM ⊗Π

(0)
B |ψn〉

∥∥∥2
= 1

2 and PB =
∥∥∥Π

(1)
A ⊗ IM ⊗Π

(1)
B |ψn〉

∥∥∥2
= 1

2 .

• ε biased: When Alice is honest, the probability that both players agree on Bob winning
is P ∗B ≤ 1/2 + ε. And conversely, if Bob is honest, the probability that both players agree
on Alice winning is P ∗A ≤ 1/2 + ε.

The definition of a weak coin flipping protocol differs from the usual one in the fact that
we added the projections {Ei}. The goal of these projections is to catch if the other player
is cheating since they do not change the honest states. Intuitively they can only decrease the
bias compared to a protocol without them. This can be proved, but it is not necessary in our
case since we will directly prove upper bounds on the cheating probabilities for this specific
type of protocols.
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4.1. Coin flipping and semidefinite programming

4.1.2 Cheating probabilities as SDPs

The cheating probabilities P ∗A and P ∗B cannot be easily computed from the definitions above.
Kitaev showed that they can be expressed as semidefinite programs (SDP) [Kit03] and a written
proof can be found in [ABDR04].

Fix a weak coin flipping protocol, and assume that Alice is honest. We describe a semidefi-
nite program with variables the states ρAM,i, ie. the states at round i after Bob’s workspace is
traced out. The probability that Bob wins is the probability that Alice outputs “1” when apply-

ing the POVM
{

Π
(0)
A ,Π

(1)
A

}
to her part of the final state, or equivalently tr((Π

(1)
A ⊗IM)ρAM,n).

Since Alice is honest, the state in her workspace is not arbitrary, but rather satisfies some
constraints. In the beginning of the protocol, Alice held the state trM(ρAM,0) = |ψA,0〉〈ψA,0|.
Moreover, the evolution of Alice’s state is only due to her own actions, namely trM(ρAM,i) =

trM(ρAM,i−1) if i is even and trM(ρAM,i) = trM(EiUiρAM,i−1U
†
i Ei) if i is odd. Bob’s cheating

probability is the maximum over all his strategies, i.e. over all states {ρAM,i} that satisfy these
constraints.

The evolution of the states ρAM,i is not unitary due to the presence of the projections,

so they are not necessary normalized. However tr((Π
(1)
A ⊗ I)ρAM,n) represents the probability

that Alice and Bob agree on Bob winning when Alice is honest. If Bob got caught cheating
by the projections, Alice already declared herself the winner. The non-normalization of the
states ρAM,i reflects the probability that the protocol ended prematurely by one of the players
declaring oneself winner.

This reasoning leads to the following two semidefinite programs:

Theorem 4.3 (Primal)

P ∗B = max tr((Π
(1)
A ⊗ I)ρAM,n) over all ρAM,i satisfying the constraints:

• trM(ρAM,0) = trMB(|ψ0〉〈ψ0|) = |ψA,0〉〈ψA,0|,

• for i odd, trM(ρAM,i) = trM(EiUiρAM,i−1U
†
i Ei),

• for i even, trM(ρAM,i) = trM(ρAM,i−1).

P ∗A = max tr((I⊗Π
(0)
B )ρMB,n) over all ρBM,i satisfying the constraints:

• trM(ρMB,0) = trAM(|ψ0〉〈ψ0|) = |ψB,0〉〈ψB,0|,

• for i even trM(ρMB,i) = trM(EiUiρMB,i−1U
†
i Ei),

• for i odd trM(ρMB,i) = trM(ρMB,i−1).

4.1.3 Upper bounds on the cheating probabilities via the dual SDPs

We wish to prove upper bounds on the cheating probabilities P ∗A and P ∗B. Using the primal is
not suitable for this task since the cheating probabilities are defined by a maximization: any
set of matrices {ρi} that satisfies the constraints will lead to a lower bound on the cheating
probabilities. We circumvent this problem by dualizing these SDPs.

Theorem 4.4 (Dual)
P ∗B = min tr(ZA,0|ψA,0〉〈ψA,0|) over all ZA,i under the constraints:

¬ ∀i, ZA,i � 0,
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4. Weak coin flipping

­ for i odd, ZA,i−1 ⊗ IM � U †A,iEA,i(ZA,i ⊗ IM)EA,iUA,i,

® for i even, ZA,i−1 = ZA,i,

¯ ZA,n = Π
(1)
A ,

P ∗A = min tr(ZB,0|ψB,0〉〈ψB,0|) over all ZB,i under the constraints:

¬ ∀i, ZB,i � 0,

­ for i even IM ⊗ ZB,i−1 � U †B,iEB,i(IM ⊗ ZB,i)EB,iUB,i,

® for i odd, ZB,i−1 = ZB,i,

¯ ZB,n = Π
(0)
B ,

A proof of this theorem can be found in [Kit03, ABDR04].
Let us now add one more constraint on the above dual SDPs:

° ZA,0|ψA,0〉 = β|ψA,0〉 i.e. |ψA,0〉 is an eigenvector of ZA,0 with eigenvalue β > 0,

° ZB,0|ψB,0〉 = α|ψB,0〉 i.e. |ψB,0〉 is an eigenvector of ZB,0 with eigenvalue α > 0.

Definition 4.5 (Dual feasible point) A dual feasible point is a set of matrices {Z0, . . . , Zn}
with Zi = ZA,i ⊗ IM ⊗ ZB,i satisfying conditions ¬ to °.

Notice that tr(ZA,0|ψA,0〉〈ψA,0|) = β and tr(ZB,0|ψB,0〉〈ψB,0|) = α and hence

Corollary 4.6 Let {Zi} be a dual feasible point of a protocol, then P ∗A ≤ α and P ∗B ≤ β.

Note that since we imposed a new constraint on the dual SDP, we may only be able to find
a dual feasible point with larger values of α and β than before. However, we will show that
still, we can make these values arbitrarily close to 1/2. Moreover, one can, in fact, show that
P ∗A = inf α and P ∗B = inf β where the infimum is taken over all dual feasible points (see proof
in Appendix B); therefore, we have not changed the value of the optimization problem.

Every dual feasible point produces an upper bound on the cheating probability: P ∗A ≤ α
and P ∗B ≤ β. This is the magic of duality, a maximization problem has been turned into a
minimization one.

Notice also that the dualization reversed the time ordering of the protocol. The primal
formulation sets constraints on the evolution of ρi to ρi+1 from a fixed state ρ0, whereas in the
dual formulation the initial constraint is on Zn and the evolution concerns how Zi is related
to Zi−1.

4.2 Point games

In the previous section we saw that we can upper bound the cheating probability of any weak
coin flipping protocol by looking at the dual SDP formulation of the protocol and by providing a
dual feasible point, namely a set of matrices {Z0, . . . , Zn} that satisfies a number of conditions.
One can think of these matrices as a witness of the security of the protocol. However, it is not
clear how to construct a protocol and, moreover, its dual feasible point.

Here, our goal is to find a graphical representation of a protocol together with its dual
feasible point that will be easier to manipulate. This is the reason we introduce point games.
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In high level, a point game is a set of points on a 2-dimensional plane together with a sequence
of transitions between them. Instead of defining a point game at this point, we see how a
protocol with cheating probabilities P ∗A ≤ α and P ∗B ≤ β and a dual feasible point naturally
gives rise to what we call a point game expressible by matrices with final point [β, α]. More
importantly, we will show that the reverse implication is also true and hence we will reduce
the task of finding a coin flipping protocol and its dual feasible point to finding a point game
expressible by matrices (EBM point game).

4.2.1 EBM point games

The dual SDP formulation of a coin flipping protocol enables us to calculate an upper bound
on the cheating probabilities of Alice and Bob by finding a dual feasible point, i.e. a set
of positive definite matrices {Z0, . . . , Zn}, with Zi = ZA,i ⊗ IM ⊗ ZB,i that satisfy a set of
conditions. Then, the cheating probabilities of Alice and Bob are bounded by tr(ZA,0ρA,0) = α
and tr(ZB,0ρB,0) = β, where ρA,0 = |ψA,0〉〈ψA,0| = trMB|ψ0〉〈ψ0| and ρB,0 = |ψB,0〉〈ψB,0| =
trAM|ψ0〉〈ψ0| are the initial states of the protocol.

In fact, we need to be looking at the two cheating probabilities at the same time and hence
we will be interested in their product (similar to Kitaev’s lower bound for strong coin flipping)
tr(ZA,0ρA,0) · tr(ZB,0ρB,0) = tr(ZA,0 ⊗ IM ⊗ ZB,0|ψ0〉〈ψ0|). Note that this equality holds only
because the state |ψ0〉 is a product state and it does not hold for the matrices Zi and states
|ψi〉 that correspond to the intermediate rounds of the protocol.

Nevertheless, the quantity ZA,i ⊗ IM ⊗ ZB,i|ψi〉〈ψi| is exactly what we will represent as a
set of points. In high level, for each pair of eigenspaces of ZA,i and ZB,i with corresponding
eigenvalues zA,i and zB,i we define a point [zA,i, zB,i] with weight equal to the projection of |ψi〉
on this pair of eigenspaces. When |ψi〉 is a unit vector, then this is a probability distribution.
More formally,

Definition 4.7 (prob) Let Z be a positive semidefinite matrix and note Π[z] the projector on the
eigenspace of eigenvalue z ∈ sp(Z). We then have Z =

∑
z zΠ

[z]. Let |ψ〉 be a (not necessarily
unit) vector. We define prob[Z,ψ] as a function with finite support from [0,∞)→ [0,∞) by:

prob[Z,ψ](z) =

{
〈ψ|Π[z]|ψ〉 if z ∈ sp(Z)

0 otherwise.

If Z = ZA ⊗ IM ⊗ ZB, using the same notation, we define prob[ZA, ZB, ψ] as a 2-variate
function with finite support from [0,∞)× [0,∞)→ [0,∞) by:

prob[ZA, ZB, ψ](zA, zB) =

{
〈ψ|Π[zA] ⊗ IM ⊗Π[zB ]|ψ〉 if (zA, zB) ∈ (Sp(ZA), Sp(ZB))

0 otherwise.

Hence, for every i, the positive semidefinite matrix Zi = ZA,i ⊗ IM ⊗ ZB,i and the honest
joint state |ψi〉 define the function pn−i = prob[ZA,i, ZB,i, ψi] with finite support.

Notice that we have reversed the order of the protocol since this is a representation of the
dual. The function p0 represents the final state of the protocol, and pn the protocol before
any message. In other words, we have interpreted the dual feasible solution together with the
honest states of the protocol as a sequence of functions with finite support {p0, p1, . . . , pn}.

A function with finite support can be equivalently represented by weighted points. Each
value (zA,i, zB,i) in the support of the function is represented by a point of coordinates [zA,i, zB,i]
with weight 〈ψi|Π[zA,i] ⊗ IM ⊗ Π[zB,i]|ψi〉. More formally, we denote by [x0, y0] the function
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4. Weak coin flipping

with finite support defined by (x, y) 7→ δx,x0δy,y0 . This function is graphically represented by
a point of coordinates [x0, y0] with weight 1. Then, the “point notation” of prob[ZA,i, ZB,i, ψi]
is

prob[ZA,i, ZB,i, ψi] =
∑

(zA,i,zB,i)∈(sp(ZA,i),sp(ZB,i))

〈ψi|Π[zA,i] ⊗ IM ⊗Π[zB,i]|ψi〉 [zA,i, zB,i].

We can now interpret the initial and final condition of the dual SDP in the language of
point games and get:

p0 = prob[ZA,n, ZB,n, ψn] = prob[Π
(1)
A ,Π

(0)
B , ψn] =

1

2
[1, 0] +

1

2
[0, 1]

pn = prob[ZA,0, ZB,0, ψ0] = 1[β, α].

Recall that we added an extra condition in Theorem 4.4, namely that |ψA,0〉 is an eigenstate
of ZA,0. This condition ensures us that the game ends with one final point, and not several
points.

The only thing that remains is to interpret the dual SDP condition for the intermediate
round i in the language of point games, which will tell us how the points can move on the
plane, in other words what type of transitions (pn−i → pn−i+1) are allowed in our game.

Let us assume that i is odd. We know that the function pn−i (resp. pn−i+1) corresponds
to the matrix Zi (resp. Zi−1) and the state |ψi〉 (resp. |ψi−1〉). Since i is odd, the conditions
of the dual SDP state that ZB,i = ZB,i−1 and also |ψi〉 = EA,iUA,i ⊗ IB|ψi−1〉. We claim that
this implies that the points only move horizontally and moreover, the total weight on every
horizontal line remains unchanged (thus so does the total weight).

We have

pn−i+1 =
∑

(zA,i−1,zB,i−1)

〈ψi−1|Π[zA,i−1] ⊗ IM ⊗Π[zB,i−1]|ψi−1〉 [zA,i−1, zB,i−1].

For pn−i, we have

pn−i =
∑

(zA,i,zB,i−1)

〈ψi|Π[zA,i] ⊗ IM ⊗Π[zB,i−1]|ψi〉 [zA,i, zB,i−1]

=
∑

(zA,i,zB,i−1)

〈ψi−1|U †A,iEA,i(Π
[zA,i] ⊗ IM)EA,iUA,i ⊗Π[zB,i−1]|ψi−1〉 [zA,i, zB,i−1].

First, notice that sp(ZB,i) = sp(ZB,i−1) and hence the possible values for the second
coordinate of the points remain the same. Second, the sum of the weights of the points in each
horizontal line with second coordinate zB,i−1 remains the same and equal to 〈ψi−1|IA ⊗ IM ⊗
Π[zB,i−1]|ψi−1〉. Note also that for every zB,i−1, i.e. for every horizontal line, we can define the
functions

pn−i+1(·, zB,i−1) = prob[ZA,i−1 ⊗ IM ⊗Π[zB,i−1], ψi−1],

pn−i(·, zB,i−1) = prob[U †A,iEA,i(ZA,i ⊗ IM)EA,iUA,i ⊗Π[zB,i−1], ψi−1],

and from the dual SDP condition we have ZA,i−1⊗IM⊗Π[zB,i−1] � U †A,iEA,i(ZA,i⊗IM)EA,iUA,i⊗
Π[zB,i−1]. Similarly, for i even, the points move only vertically and the total weight on every
vertical line remains unchanged.

50



4.2. Point games

We are now ready to define our point game. In plain words, a point game is a sequence
of moves of weighted points. It starts with two points with weight 1/2 at coordinates [1, 0]
and [0, 1]. Odd transitions are called horizontal transitions since the points seem to move
horizontally, in the sense that the sum of the weights of the points on any horizontal line
remains unchanged. Even transitions are called vertical transitions. At the end of the game,
only one final point remains with weight 1 at coordinates [β, α]. More formally,

Definition 4.8 (EBM line transition) Let l, r : [0,∞) → [0,∞) be two functions with finite
supports. The line transition l → r is expressible by matrices (EBM) if there exist pos-
itive semidefinite matrices 0 � X � Y and a (not necessarily unit) vector |ψ〉 such that
l = prob[X,ψ] and r = prob[Y, ψ].

We have already seen that any protocol and dual feasible point give rise only to EBM line
transitions.

Definition 4.9 (EBM transition) Let p, q : [0,∞) × [0,∞) → [0,∞) be two functions with
finite supports. The transition p → q is an EBM horizontal transition if for all y ∈ [0,∞),
p(·, y)→ q(·, y) is an EBM line transition, and an EBM vertical transition if for all x ∈ [0,∞),
p(x, ·)→ q(x, ·) is an EBM line transition.

Definition 4.10 (EBM point game) An EBM point game is a sequence of functions {p0, p1, · · · , pn}
with finite support such that:

• p0 = 1/2[0, 1] + 1/2[1, 0];

• For all even i, pi → pi+1 is an EBM vertical transition;

• For all odd i, pi → pi+1 is an EBM horizontal transition;

• pn = 1[β, α].

We saw that a protocol with cheating probabilities P ∗A ≤ α and P ∗B ≤ β and a dual feasible
point give rise to an EBM point game with final point [β, α]. Our goal is to show the reverse
implication, namely that any EBM point game with final point [β, α] implies the existence of
a protocol with cheating probabilities P ∗A ≤ α and P ∗B ≤ β.

Theorem 4.11 (EBM to Protocol) From any EBM point game with final point [β, α], we can
construct a weak coin flipping protocol with cheating probabilities P ∗A ≤ α and P ∗B ≤ β.

Proof. Consider an EBM point game with transitions p0 → p1 → · · · → pn = [β, α] and let
us define the sets of all possible first and second coordinates zA and zB of all the points that
appear in the game:

SA = {zA ≥ 0 | ∃i ∈ {0, . . . , n}, ∃zB ≥ 0, pi(zA, zB) > 0} ,
SB = {zB ≥ 0 | ∃i ∈ {0, . . . , n}, ∃zA ≥ 0, pi(zA, zB) > 0} .

We wish to find a protocol (honest states, unitaries, projections) and a dual feasible point that
guarantees that in this protocol Alice’s and Bob’s cheating probabilities are upper-bounded
by α and β respectively. The idea is the following: every point [zA, zB] of the game will be
represented as an orthogonal state |0, zA〉|zA, zB〉|zB, 0〉 ∈ A ⊗M⊗B, where

A = span{|b, zA〉, b ∈ {0, 1}, zA ∈ SA},
M = A′ ⊗ B′ = span{|zA, zB〉, zA ∈ SA, zB ∈ SB},
B = span{|zB, b〉, b ∈ {0, 1}, zB ∈ SB}.
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4. Weak coin flipping

The honest state |ψi〉 of the protocol at round i will be

|ψi〉 =
∑

zA∈SA,zB∈SB

√
pn−i(zA, zB)|0, zA〉|zA, zB〉|zB, 0〉.

The message space M contains the states that correspond to all the points of the game
so that both players have alternate access to them and can manipulate their amplitudes by
applying a unitary operation. The role of the unitary Ui is to transform the state |ψi−1〉
to the state |ψi〉, in other words Ui|ψi−1〉 = |ψi〉. Moreover, we need to ensure that when
Alice (resp. Bob) applies a unitary, then it corresponds to a horizontal (resp. vertical) line
transition; in other words that the sum of the squares of the amplitudes of the states with
a fixed second (resp. first) coordinate remains unchanged. The way to achieve this, is to
force Alice to perform a unitary on the message space and her workspace which only uses
the second coordinate of the points as a control (similarly we need to force Bob to perform a
unitary which only uses the first coordinate of the points as a control). For this reason, Alice
(resp. Bob) keeps a copy of the first (resp. second) coordinate of the points and each has a
qubit that becomes 1 (via the unitary operation) when they catch the other player cheating,
ie. not using the coordinate only as control. We define the cheating detection projections
EA,i = EA =

∑
zA
|0, zA, zA〉〈0, zA, zA| ⊗ IB and EB,i = EB =

∑
zB
|0, zB, zB〉〈0, zB, zB| ⊗ IA

that allow Alice and Bob to prematurely end the protocol and declare themselves winner. Note
that these projections leave the honest states invariant.

It remains to find the unitaries Ui and the matrices Zi. Let us assume that i is odd
(similarly for i even), hence the transition pn−i → pn−i+1 is horizontal; that is Alice applies
the unitary Ui = UA,i ⊗ IB. Since we want this unitary to use the second coordinate only as

control we have UA,i =
∑

zB
U

(zB)
A,i ⊗ |zB〉〈zB|. Define the (non-normalized) states |ψ(zB)

i−1 〉 =∑
zA∈SA

√
pn−i+1(zA, zB)|0, zA, zA〉. Then in order to have Ui|ψi−1〉 = |ψi〉, we need that

U
(zB)
A,i |ψ

(zB)
i−1 〉 = |ψ(zB)

i 〉.
We find the unitaries U

(zB)
A,i for i = 1, . . . , n and a single matrix ZA(= ZA,1 = · · · = ZA,n−1)

by expressing each EBM line transition pn−i(·, zB)→ pn−i+1(·, zB) as prob[X,ψ]→ prob[Y, ψ],
where the matrices X,Y and the state |ψ〉 satisfy the properties of the following lemma:

Lemma 4.12 Let l → r be an EBM line transition and denote by supp(l) and supp(r) the
supports of l and r respectively. Let S be a set such that supp(l)∪supp(r) ⊆ S and Λ > max{z :
z ∈ S}. Given a set of orthonormal vectors {|z〉, z ∈ S}, there exists a family of |S| orthonormal
vectors {|ϕ(z)〉, z ∈ S} in the 2|S|2-dimensional space span{|b, z, z′〉, b ∈ {0, 1}, z, z′ ∈ S}
such that

• the state |ψ〉 =
∑

z

√
r(z)|0, z, z〉 can be expressed as |ψ〉 =

∑
z

√
l(z)|ϕ(z)〉,

• l = prob[X,ψ] and r = prob[Y, ψ], with

Y =
∑
z∈S

z|0, z, z〉〈0, z, z|+ Λ
∑
z∈S
|1, z, z〉〈1, z, z| and X =

∑
z∈S

z|ϕ(z)〉〈ϕ(z)|.

We defer the proof of this lemma to the end of the section.
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For each zB ∈ SB and each EBM line transition pn−i(·, zB) → pn−i−1(·, zB), we apply
Lemma 4.12 with S = SA. This defines

X
(zB)
i =

∑
zA∈SA

zA|ϕ(zB)
i (zA)〉〈ϕ(zB)

i (zA)|

Y =
∑
zA∈SA

zA|0, zA, zA〉〈0, zA, zA|+ Λ
∑
zA∈SA

|1, zA, zA〉〈1, zA, zA|

|ψ(zB)
i−1 〉 =

∑
zA∈SA

√
pn−i+1(zA, zB)|0, zA, zA〉 =

∑
zA

√
pn−i(zA, zB)|ϕ(zB)

i (zA)〉

We can now define the unitary U
(zB)
A,i by its action on a subspace of A⊗A′:

U
(zB)
A,i : |ϕ(zB)

i (zA)〉 7→ |0, zA, zA〉.

We complete U
(zB)
A,i so that it is a unitary on A⊗A′. Note that we have:

U
(zB)
A,i

∑
zA

√
pn−i+1(zA, zB)|0, zA, zA〉 = U

(zB)
A,i

∑
zA

√
pn−i(zA, zB)|ϕ(zB)

i (zA)〉

=
∑
zA

√
pn−i(zA, zB)|0, zA, zA〉.

and thus have Ui|ψi−1〉 = |ψi〉. Moreover, by the definition of the unitary and the cheating
detection projection, we can see that indeed Bob is forced to use the first coordinate only as
control.

Last, we define ZA =
∑

zA∈SA zA|0, zA〉〈0, zA| + Λ
∑

zA∈SA |1, zA〉〈1, zA|. We need to verify
that the ZA’s we defined are a dual feasible point. According to the constraints of the dual,

we pick ZA,n = Π
(1)
A = |0, 1〉〈0, 1|. Since the initial points of the point game are [0, 1] and [1, 0],

then 1 is an eigenvalue of ZA, so we have Π
(1)
A � ZA, i.e. ZA,n � ZA,n−1. For i = {0, . . . , n−1},

we have

U †A,iEA(ZA ⊗ IM)EAUA,i = U †A,i

(∑
zA

zA|0, zA, zA〉〈0, zA, zA| ⊗
∑
zB

|zB〉〈zB|

)
UA,i

=
∑
zB

∑
zA

zAU
(zB)†
A,i |0, zA, zA〉〈0, zA, zA|U

(zB)
A,i ⊗ |zB〉〈zB|

=
∑
zB

X
(zB)
i ⊗ |zB〉〈zB|

� Y ⊗ IB′

=

 ∑
zA∈SA

zA|0, zA, zA〉〈0, zA, zA|+ Λ|1, zA, zA〉〈1, zA, zA|

⊗ IB′

�

 ∑
zA,z

′
A∈SA

zA|0, zA, z′A〉〈0, zA, z′A|+ Λ|1, zA, z′A〉〈1, zA, z′A|

⊗ IB′

= ZA ⊗ IM.
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To see that the first inequality is correct, consider a state |ζ〉 inA⊗M, |ζ〉 =
∑

zB
|ζzB 〉|zB〉. We

get 〈ζ|
(∑

zB
X

(zB)
i ⊗ |zB〉〈zB|

)
|ζ〉 =

∑
zB
〈ζzB |X

(zB)
i |ζzB 〉 ≤

∑
zB
〈ζzB |Y |ζzB 〉 = 〈ζ|Y ⊗ IB′ |ζ〉

by Lemma 4.12, hence
∑

zB
X

(zB)
i ⊗ |zB〉〈zB| � Y ⊗ IB′ .

We remark that by the definition of the honest states, the projections, the unitaries and
the dual feasible point, we have shown that any EBM line transition can be expressed as

pn−i+1(·, zB) = prob[ZA ⊗ IA′ , ψ
(zB)
i−1 ] = prob[ZA ⊗ IM ⊗Π[zB ], ψi−1],

pn−i(·, zB) = prob[U
(zB)†
A,i EA(ZA ⊗ IA′)EAU zBA,i, ψ

(zB)
i−1 ]

= prob[U †A,iEA(ZA ⊗ IM)EAUA,i ⊗Π[zB ], ψi−1].

This is precisely the type of EBM line transitions that arose when we started from a protocol
and a dual feasible point.

Proof of Lemma 4.12. Let l → r be an EBM line transition, so by definition there exist two
positive semidefinite matrices X0 � Y0 and a vector |ψ0〉 such that l = prob[X0, ψ0] and
r = prob[Y0, ψ0]. We will now make a succession of transformations to X0, Y0 and |ψ0〉 in order
to show that they can satisfy the properties of the Lemma.

Notice that the size of the matrices X0 and Y0 is unknown. We first see that we can decrease
their size to at most |S|. We start by diagonalizing X0 and Y0:

X0 =
∑
x

xΠ
[x]
X0

and Y0 =
∑
y

yΠ
[y]
Y0
.

To remove the multiplicities of the eigenvalues, we go into the Hilbert space H, spanned by

{Π[x]
X0
|ψ0〉,Π[y]

Y0
|ψ0〉}. This space has dimension at most |supp(p) ∪ supp(q)| ≤ |S|. We define

the new |ψ〉 = ΠH|ψ0〉 as the projection of |ψ0〉 on H and the matrices X and Y by

X =
∑
x

xΠ
[x]
X and Y =

∑
y

yΠ
[y]
Y ,

where Π
[x]
X is the projector onto the one-dimensional space spanned by Π

[x]
X0
|ψ0〉 and Π

[y]
Y is the

projector onto the one-dimensional space spanned by Π
[y]
Y0
|ψ0〉. These matrices have size at

most |S|. By construction, the matrices X, Y and the vector |ψ〉 satisfy the four properties

• X � Y ,

• l = prob[X,ψ] and r = prob[Y, ψ],

• The eigenvalues of X are in supp(l) with multiplicity 1,

• The eigenvalues of Y are in supp(r) with multiplicity 1.

Then, we will append the values in S that are not yet into the spectra of X and Y . This is
done by increasing the dimension of the matrices and the vector |ψ〉 by the following algorithm:
For each z in S do:

• if z is in the spectrum of X but not Y , X ← X ⊕ [0] and Y ← Y ⊕ [z];
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• if z is in the spectrum of Y but not X, X ← X ⊕ [z] and Y ← Y ⊕ [Λ];

• if z is neither in the spectrum of X nor Y , X ← X ⊕ [z] and Y ← Y ⊕ [z].

The output of this algorithm are matrices of size less or equal to 2 |S|. We append extra 0 to
X and extra Λ to Y until they have exactly size 2 |S|. We also increase the dimension of |ψ〉
by appending 0’s.

We have constructed two matrices 0 � X � Y and a vector |ψ〉 of dimension 2 |S| such
that l = prob[X,ψ] and r = prob[Y, ψ]. Moreover the spectrum of X is exactly {0}∪S and all
non zero eigenvalues have multiplicity one; the spectrum of Y is exactly S ∪ {Λ} and all the
eigenvalues in S have multiplicity one. Thus, they can be decomposed as:

X =
∑
z∈S

z|uz〉〈uz| and Y =
∑
z∈S

z|vz〉〈vz|+ ΛP,

where the {|uz〉} and {|vz〉} are orthonormal families of vectors and P is the projector onto
the complement of span{|vz〉}.

We now increase the size of X, Y , and |ψ〉 by appending 0’s to all of them until they reach
size 2|S|2. In particular, we can write X =

∑
z∈S z|u′z〉〈u′z| and Y =

∑
z∈S z|v′z〉〈v′z| + ΛP ′

where |u′z〉 = |uz〉 ⊗ |0S〉, |v′z〉 = |vz〉 ⊗ |0S〉, and P ′ = P ⊗ |0S〉〈0S |. As a consequence, P ′

is a projector on a |S|-dimensional subspace of the 2|S|2-dimensional space. Then, let U be
a unitary that maps |v′z〉 to |0, z, z〉 and sends P ′ to

∑
z |1, z, z〉〈1, z, z| (Such unitary exists

since P ′ is a projector onto a space of size |S| orthogonal to the space spanned by the vectors
{|u′z〉, z ∈ S}). We define |ϕ(z)〉 = Ueiθz |u′z〉 so that applying U to X, Y , and |ψ〉 leads to:

X =
∑
z∈S

z|ϕ(z)〉〈ϕ(z)| ; Y =
∑
z∈S

z|0, z, z〉〈0, z, z|+ Λ|1, z, z〉〈1, z, z| and |ψ〉 =
∑
z

√
l(z)|ϕ(z)〉.

4.2.2 Valid point games

Here is where we stand now: we have defined points games as a sequence of EBM transitions,
starting at points 1/2[0, 1] + 1/2[1, 0] and ending at some point [β, α]. We have also shown
that for each point game with final point [β, α], we can construct a balanced weak coin flipping
protocol with cheating probabilities P ∗A ≤ α and P ∗B ≤ β. Our goal is thus to find a point
game with final point [1

2 + ε, 1
2 + ε] for any ε > 0.

This task is quite a challenge and the formalism of EBM transitions (prob functions, ma-
trices, vectors) is not very practical. As a matter of fact, to check that a transition is EBM,
we need to check an existence property. The strategy we are following in this section is to turn
the existential definition of EBM transitions into a universal characterization. The way we
wish to accomplish that is by seeing the set of EBM transitions as a dual of another set. This
is the main idea, however reality is a bit more complicated.

First, we change our point of view and we see the EBM line transitions as functions. In
other words, instead of considering a line transition l → r, we will manipulate the function
with finite support h = r − l.

We will see in this section how the bidual of EBM functions allows us to define valid
functions (and thus valid transitions). Unfortunately, the set of valid functions is a superset
of the set of EBM functions, which means that all valid transitions are not necessarily EBM
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transitions. The main problem comes from the fact that the set of EBM functions is not closed
while the set of valid functions is. On the other hand, valid transitions are much nicer to
work with since they have a very simple characterization, as we will see in Section 4.2.2. The
solution comes from the fact that even though not all valid transitions are EBM transitions,
they can all be approximated by EBM transitions.

Theorem 4.13 (Valid to EBM) Given a point game with valid transitions and final point [β, α]
and any ε > 0, there is a point game with EBM transitions and final point [β + ε, α+ ε].

Hence our goal has become to find a point game with valid transitions and final point
[1
2 + ε, 1

2 + ε] for any ε > 0. The following subsections are devoted to proving the above
theorem.

EBM functions and EBM functions on [0,Λ]

Let us first describe the topological space we will be working in. This is the set V of functions
from [0,∞) to R with finite support. V is an infinite dimensional vector space spanned by the
canonical basis {[x]}x∈[0,∞) where [x](y) = δx,y is the Kronecker delta function. Each element
v of V can be written as v =

∑
x v(x)[x]. The usual norm on this space is the 1-norm, which

is defined for any v =
∑

x v(x)[x] as ‖v‖1 =
∑

x |v(x)|.
We now define the set K of EBM functions.

Definition 4.14 (K, EBM functions) A function h : [0,∞)→ R with finite support is an EBM
function if the line transition h− → h+ is expressible by matrices (EBM), where h+ : [0,∞)→
[0,∞) and h− : [0,∞) → [0,∞) denotes respectively the positive and the negative part of h
(h = h+ − h−). We denote by K the set of EBM functions.

We would like to better characterize the set K. It is known, that for any closed convex
cone C ⊂ V , we can define the space V ′ as the space of continuous functions from V to R and
the dual cone C∗ of C as

C∗ = {Φ ∈ V ′, ∀h ∈ C,Φ(h) ≥ 0}

Since C is a closed convex cone, C can be recovered from the dual cone (C∗)∗ of C∗ as follows

Proposition 4.15 ([DR09]) If C is a closed convex cone then

C = {h ∈ V, ∀Φ ∈ C∗,Φ(h) ≥ 0}

This provides a universal characterization of the set C.

We can show that K is a convex cone, but unfortunately it is not closed. However, if we
restrict the support of elements of K to be on the closed interval [0,Λ], then the resulting set
is a closed convex cone.

Definition 4.16 (KΛ) A function h : [0,Λ)→ R with finite support is an EBM function with
support on [0,Λ] if the line transition h− → h+ is expressible by matrices with spectrum in
[0,Λ], where h+ and h− denotes respectively the positive and the negative part of h. We denote
by KΛ the set of EBM functions with support on [0,Λ].

Note that when we restrict the spectrum of the matrices in the above definition to [0,Λ],
then the support of the corresponding function is also in [0,Λ].

The proof that KΛ is a closed convex cone follows from Lemma 4.17 and 4.18.
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Lemma 4.17 For any Λ > 0, KΛ is a convex cone.

Proof. Fix Λ > 0. Let g, h ∈ KΛ, so g− → g+ and h− → h+ are two EBM line transitions,
i.e. we can write them as: g− = prob[Xg, ψg], g

+ = prob[Yg, ψg], h
− = prob[Xh, ψh] and

h+ = prob[Yh, ψh]. (note that the dimensions of Xg and Yg are not necessarily the same as the
ones of Xh and Yh)

KΛ is a cone since for all λ ≥ 0, λg = λg+ − λg− = prob[Yg,
√
λ|ψg〉] − prob[Xg,

√
λ|ψg〉]

and hence λg− → λg+ is expressible by matrices with spectra in in [0,Λ].
Let us finally show KΛ is convex. It is enough to prove that g + h ∈ KΛ. Construct

X = Xg ⊕Xh =

[
Xg 0
0 Xh

]
, Y = Yg ⊕ Yh =

[
Yg 0
0 Yh

]
and |ψ〉 = |ψg〉 ⊕ |ψh〉 =

[
ψg
ψh

]
. We now

have

g− + h− = prob[X,ψ] and g+ + h+ = prob[Y, ψ].

Since we also have that sp(X), sp(Y ) ⊂ [0,Λ], we can conclude that KΛ is convex.

Lemma 4.18 For any Λ > 0, KΛ is closed.

Proof. Fix Λ > 0. Let {ti}i∈N be a converging sequence of functions in KΛ, and denote
the limit of this sequence t = limi→∞ ti. The rest of the proof is devoted to show that
t ∈ KΛ. Denote t =

∑
x t(x)[x] and S the support of t, that is the set S = {x : t(x) 6= 0}.

Note that t is an element of V so t has finite support. Since the ti are EBM, we write
ti = prob[Yi, ψi]−prob[Xi, ψi], with 0 � Xi � Yi. Each of the Xi’s and Yi’s can be diagonalized:

Xi =
∑
x(i)

x(i)Π[x(i)] and Yi =
∑
y(i)

y(i)Π[y(i)],

where Π[x(i)] is the projector onto the eigenspace of Xi with eigenvalue x(i). Since there will
be no confusion, we drop the exponent (i) from now on. Let us define the matrices:

Ai =
∑
x∈S

xΠ[x] +
∑
x/∈S

0 ·Π[x] and Bi =
∑
y∈S

yΠ[y] +
∑
y/∈S

Λ ·Π[y].

First note that we immediately have 0 � Ai � Xi � Yi � Bi so we can define an EBM
function t′i = prob[Bi, ψi]− prob[Ai, ψi]. The dimension of the matrices Ai are not necessarily
identical, but this is not a problem. As done in the proof of Lemma 4.12 (“getting rid of the
multiplicities” and “appending the missing eigenvalues”), we construct the positive semidefinite
matrices A′i, B

′
i of size s = 2 |S| and the vectors |ψ′i〉 also of dimension s such that t′i =

prob[B′i, ψ
′
i]−prob[A′i, ψ

′
i]. Notice also that the spectra of the A′i and the B′i are in the interval

[0,Λ].
We show that limi→∞ t

′
i = t. We write each ti as ti = ui + vi, where ui =

∑
x∈S ti(x)[x]

and vi =
∑

x/∈S ti(x)[x]. Let εi =
∑

x/∈S ti(x). Since limi→∞ ti = t, we have limi→∞ εi = 0.
Our construction of t′i implies that t′i = ui + ε+

i [Λ] − ε−i [0] with ε+
i + ε−i = εi. This means

in particular that ‖t′i − ti‖1 ≤ εi. Since limi→∞ εi = 0 and limi→∞ ti = t, we conclude that
limi→∞ t

′
i = t.

We will now show that the limit of the sequence {t′i}i∈N is an element t′ ∈ KΛ which will
conclude the proof. We consider the sequence of triplets {(A′i, B′i, |ψ′i〉)}i∈N. Let Xs

Λ the set
of positive semidefinite matrices with spectrum in [0,Λ] and Y s the set of quantum states of
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4. Weak coin flipping

dimension s. An element of the sequence is an element of Xs
Λ ×Xs

Λ × Y s. Since Xs
Λ and Y s

are two compact sets, Xs
Λ × Xs

Λ × Y s is also a compact set. This means that our sequence
of triplets has an accumulation point (A′, B′, |ψ′〉) even if this sequence does not necessarily
converge.

Let us now define t′ = prob[B′, ψ′]− prob[A′, ψ′]. Since 0 � A′ � B′, we have t′ ∈ KΛ. We
can also see that t′ is an accumulation point of the sequence {t′i}i. Since the sequence of t′i’s
converges to t, we conclude that t = t′ and t ∈ KΛ.

We proved that KΛ is a convex cone. From Proposition 4.15, we have

Proposition 4.19 KΛ = {h,∀Φ ∈ K∗Λ,Φ(h) ≥ 0}

We now go back to the language of transitions and provide a characterization of an EBM
line transition on [0,Λ] (ie. a line transition expressible by matrices with spectra on [0,Λ]).

Proposition 4.20 Let l, r : [0,Λ] → [0,∞) be two functions with finite support on [0,Λ]. The
line transition l→ r is EBM on [0,Λ] if and only if ∀Φ ∈ K∗Λ,Φ(r − l) ≥ 0.

Proof. The forward direction follows immediately from Proposition 4.19. We now prove the
opposite direction. This direction is immediately true from Proposition 4.19 if l and r have
disjoint supports. We show that this still holds in the general case. Let l, r two non negative
functions with finite support on [0,Λ] such that ∀Φ ∈ K∗Λ,Φ(r − l) ≥ 0. Let l = l′ + ξ and
r = r′ + ξ where ξ is a positive function and l′ and r′ have disjoint supports and are non
negative.

For any Φ ∈ K∗Λ, we have Φ(r′ − l′) = Φ(r − l) ≥ 0 hence r′ − l′ ∈ KΛ which means that
l′ → r′ is an EBM line transition on [0,Λ]. In a similar flavor than in Lemma 4.17, we can
append ξ to the EBM transition such that l′ + ξ → r′ + ξ is EBM on [0,Λ]. We conclude that
l→ r is EBM on [0,Λ].

EBM transitions and operator monotone functions

From the previous Proposition we have that a line transition l → r is EBM on [0,Λ] if ∀Φ ∈
K∗Λ,Φ(r − l) ≥ 0. It is now the time to explicitly characterize the set K∗Λ. Recall that

K∗Λ = {Φ ∈ V ′, ∀h ∈ KΛ,Φ(h) ≥ 0}

There is a bijective mapping between Φ and fΦ where fΦ is a function on reals such that
Φ([x]) = fΦ(x). This gives us by linearity of Φ that for a function h =

∑
x h(x)[x] we have

Φ(
∑

x h(x)[x]) =
∑

x h(x)fΦ(x). With this mapping, we can see elements of K∗Λ as functions
on reals.

We will show that up to this mapping, the set K∗Λ is the set of operator monotone functions
on [0,Λ], which we define below.

Definition 4.21 (Operator monotone function) A function f : [0,Λ]→ R is operator monotone
on [0,Λ] if for all positive semidefinite matrices X � Y with spectrum on [0,Λ], we have
f(X) � f(Y ).

A function f : [0,∞) → R is operator monotone if for all positive semidefinite matrices
X � Y , we have f(X) � f(Y ).

Operator monotone functions have an analytic characterization:
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4.2. Point games

Lemma 4.22 ([Bha97]) Any operator monotone function f : [0,∞)→ R can be written as

f(t) = c0 + c1t+

∫ +∞

0

λt

λ+ t
dw(λ)

for a measure w satisfying
∫ +∞

0
λ

1+λdw(λ) < +∞.
Any operator monotone function f : [0,Λ]→ R can be written as

f̃(t) = c0 + c1t+

∫
λt

λ+ t
dw(λ)

with the integral ranging over λ ∈ (−∞,−Λ) ∪ (0,+∞).

Lemma 4.23 Φ ∈ K∗Λ ⇔ fΦ is operator monotone on [0,Λ].

Proof. Forward implication. We first notice that Φ ∈ K∗Λ implies

∀h ∈ KΛ,
∑
x

fΦ(x)h(x) ≥ 0. (4.1)

This is immediate from the definition of fΦ. We now prove that a function f with finite
support on [0,Λ] satisfies (4.1) if and only if f is operator monotone on [0,Λ]. The proof of
this equivalence is based on the following observation:∑
x∈sp(X)

f(x) prob[X,ψ](x) =
∑

x∈sp(X)

f(x)〈ψ|Π[x]|ψ〉 =
∑

x∈sp(X)

〈ψ|f(x)Π[x]|ψ〉 = 〈ψ|f(X)|ψ〉.

Then,

∀h ∈ KΛ,
∑
x

f(x)h(x) ≥ 0

⇔ ∀|ψ〉, ∀ 0 � X � Y with sp(X), sp(Y ) ⊂ [0,Λ],∑
x

f(x) (prob[Y, ψ](x)− prob[X,ψ](x)) ≥ 0

⇔ ∀|ψ〉, ∀ 0 � X � Y with sp(X), sp(Y ) ⊂ [0,Λ], 〈ψ|f(X)|ψ〉 ≤ 〈ψ|f(Y )|ψ〉
⇔ ∀ 0 � X � Y with sp(X), sp(Y ) ⊂ [0,Λ], f(X) � f(Y )

⇔ f is operator monotone on [0,Λ]

For the reverse implication, consider a pair (fΦ,Φ) where fΦ is a function with finite support
on [0,Λ] and Φ is its associated function in V ′. Hence by the previous series of equivalence,
we have ∀h ∈ KΛ, Φ(h) ≥ 0. In order to prove that Φ ∈ K∗Λ we need to show that Φ is
continuous. Since fΦ is operator monotone on [0,Λ], fΦ is increasing and ∀x ∈ [0,Λ], fΦ(x) ∈
[fΦ(0), fΦ(Λ)], which means that ‖fΦ‖∞ < +∞. Thus, for any h =

∑
x h(x)[x], we have

Φf (h) =
∑

x h(x)fΦ(x) ≤ ‖h‖1 ‖fΦ‖∞, and hence Φ is continuous.

Using Lemma 4.23 and Proposition 4.20, we have the following characterization of EBM
line transitions on [0,Λ].

Proposition 4.24 Let l, r : [0,Λ] → [0,∞) be two functions with finite support on [0,Λ]. The
line transition l→ r is EBM on [0,Λ] if and only if ∀f : [0,Λ]→ R operator monotone on [0,Λ],∑

x f(x)l(x) ≤
∑

x f(x)r(x).
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4. Weak coin flipping

From the above proposition and Lemma 4.22, we have the following corollary

Corollary 4.25 Let l, r : [0,Λ]→ [0,∞) be two functions with finite support on [0,Λ]. The line
transition l→ r is EBM on [0,Λ] if and only if∑
x

l(x) =
∑
x

r(x) ;
∑
x

x(r(x)− l(x)) ≥ 0 ; ∀λ ∈ (−∞,−Λ] ∪ (0,∞),
∑
x

λx(r(x)− l(x))

λ+ x
≥ 0

Valid and strictly valid transitions

In the previous section, we gave a characterization of EBM line transitions on [0,Λ] in terms
of functions which are operator monotone on [0,Λ]. However, it is still not easy to manipulate
this type of functions. Hence, we define a superset of EBM transitions, this time in terms of
operator monotone functions (on [0,∞)).

Definition 4.26 (Valid line transition) Let l, r : [0,∞) → [0,∞) be two functions with finite
supports. The line transition l → r is valid if for every operator monotone function f :
[0,∞)→ R, we have

∑
x∈supp(l) f(x)l(x) ≤

∑
x∈supp(r) f(x)r(x).

Definition 4.27 (Valid transition) Let p, q : [0,∞) × [0,∞) → [0,∞) be two functions with
finite supports. The transition p → q is a valid horizontal transition if for all y ∈ [0,∞) the
p(·, y) → q(·, y) is a valid line transition, and a valid vertical transition if for all x ∈ [0,∞)
the p(x, ·)→ q(x, ·) is a valid line transition.

On the positive side, there is a simple way to verify whether a line transition is valid or
not using the following Lemma:

Lemma 4.28 Let l and r be two positive functions with finite support. l → r is a valid line
transition if and only if

∑
x l(x) =

∑
x r(x) and for all λ > 0,

∑
x
−1
λ+xr(x) ≥

∑
x
−1
λ+x l(x).

Proof. An immediate consequence of Lemma 4.22 and the definition of valid line transitions is
that l→ r is a valid line transition if and only if

¶
∑

x r(x) =
∑

x l(x)

· for all λ > 0,
∑

x
λx
λ+xr(x) ≥

∑
x

λx
λ+x l(x),

¸
∑

x x · r(x) ≥
∑

x x · l(x).

Condition ¸ is implied by condition · in the limit λ→∞. Moreover, for all λ > 0 we have:∑
x

λx

λ+ x
r(x) ≥

∑
x

λx

λ+ x
l(x)⇐⇒

∑
x

(
1 +

−λ
λ+ x

)
r(x) ≥

∑
x

(
1 +

−λ
λ+ x

)
l(x)

⇐⇒
∑
x

−1

λ+ x
r(x) ≥

∑
x

−1

λ+ x
l(x)

by using property ¶.

On the negative side, these transitions are indeed not necessarily EBM transitions. To
circumvent this problem, we proceed as follows:

1. We consider a restriction of valid transitions, which we call strictly valid transitions and
we show that such transitions are EBM transitions
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4.2. Point games

2. From a point game with valid transitions and final point [β, α], we construct a point
game with strictly valid transitions - and hence with EBM transitions - with final point
[β + ε, α+ ε], for all ε > 0.

Last, in the following Section, we will present a point game with valid transitions with final
point [1

2 + ε, 1
2 + ε] for any ε > 0 which will, finally, imply the existence of a weak coin flipping

protocol with arbitrarily small bias.

Strictly valid transitions

Definition 4.29 (Strictly valid line transition) Let l, r : [0,∞) → [0,∞) be two functions with
finite supports. The line transition l→ r is strictly valid if it is a valid line transition and for
every non-constant operator monotone function f : [0,∞)→ R, we have

∑
x∈supp(l) f(x)l(x) <∑

x∈supp(r) f(x)r(x).

Using the characterization of operator monotone functions described in Lemma 4.22 and
the same reasoning as in Lemma 4.28, we have

Corollary 4.30 Let l, r : [0,∞) → [0,∞) be two functions with finite supports. The line
transition l→ r is strictly valid if∑

x

l(x) =
∑
x

r(x) ;
∑
x

x(r(x)− l(x)) > 0 ; ∀λ > 0,
∑
x

λx(r(x)− l(x))

λ+ x
> 0.

or equivalently if∑
x

l(x) =
∑
x

r(x) ; ∀λ > 0,
∑
x

−1

λ+ x
r(x) >

∑
x

−1

λ+ x
l(x).

Definition 4.31 (Strictly valid transition) Let p, q : [0,∞) × [0,∞) → [0,∞) be two functions
with finite supports. The transition p → q is a strictly valid horizontal transition if for all
y ∈ [0,∞) with

∑
x p
′
i(x, y) =

∑
x p
′
i+1(x, y) > 0 the p(·, y) → q(·, y) is a strictly valid line

transition, and a strictly valid vertical transition if for all x ∈ [0,∞) with
∑

y p
′
i(x, y) =∑

y p
′
i+1(x, y) > 0 the p(x, ·)→ q(x, ·) is a strictly valid line transition.

Using Corollary 4.30, we can show the following

Lemma 4.32 Any strictly valid transition is an EBM transition.

Proof. We prove that for any strictly valid line transition, there exists a Λ > 0 such that the
transition is an EBM line transition on [0,Λ] and hence an EBM line transition. The proof
easily extends to horizontal and vertical transitions.

Let l→ r be a striclty valid line transition. The conditions of Corollary 4.30 are very close
to the conditions in Corollary 4.25. We just need to show that there exists a Λ such that

∀λ < −Λ,
∑
x

λx h(x)

λ+ x
≥ 0

We have

lim
λ→−∞

∑
x

λx h(x)

λ+ x
=
∑
x

x h(x) > 0.
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If we consider
∑

x
λx h(x)
λ+x as a function of λ, we have by continuity that there exists a Λ > 0

such that

∀λ < −Λ,
∑
x

λx h(x)

λ+ x
> 0,

which proves the Lemma.

Approximating valid transitions with strictly valid transitions

Lemma 4.33 Fix ε > 0. Given a point game with 2m valid transitions and final point [β, α],
there exists a point game with 2m strictly valid transitions and final point [β + ε, α+ ε].

Proof. Consider a game with valid transitions p0 → p1 → · · · → p2m. We will construct a new
game with strictly valid transitions p′0 → p′1 → · · · → p′2m. The idea to ensure strict validity,
is to shift each point by an extra ε/m to the right for horizontal transitions and to the top for
vertical transitions. After 2m transitions (m horizontal and m vertical), the final point will
then be [β + ε, α+ ε] as desired.

For all i 6= 0 and ∀(x, y) ∈ supp(pi), we define the shifted points as:

p′i(x+ iε/m, y + (i− 1)ε/m) = pi(x, y) if i is odd,

p′i(x+ (i− 1)ε/m, y + iε/m) = pi(x, y) if i is even.

Fix i even. We prove that the transition p′i → p′i+1 is a strictly valid horizontal transition by
showing that for all y ∈ [0,∞) with

∑
x p
′
i(x, y) =

∑
x p
′
i+1(x, y) > 0 and for all non-constant

operator monotones functions we have:∑
x∈supp(p′i+1)

p′i+1(x, y)f(x) =
∑

x∈supp(p′i+1)

pi+1(x− (i+ 1)ε/m, y − iε/m)f(x)

=
∑

x∈supp(pi+1)

pi+1(x, y − iε/m)f(x+ (i+ 1)ε/m)

≥
∑

x∈supp(pi)

pi(x, y − iε/m)f(x+ (i+ 1)ε/m)

=
∑

x∈supp(pi)

p′i(x+ (i− 1)ε/m, y)f(x+ (i+ 1)ε/m)

=
∑

x∈supp(p′i)

p′i(x, y)f(x+ 2ε/m)

>
∑

x∈supp(p′i)

p′i(x, y)f(x)

The first inequality follows from the validity of the transition pi → pi+1 and by noticing that if
f(x) is an operator monotone function in x then f(x+(i+1)ε/m) is also an operator monotone
function in x. The second strict inequality follows from the fact that every no constant operator
monotone function is strictly increasing. A similar proof holds for vertical transitions.
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Examples of valid line transitions

Point raise The transition w[x]→ w[x′] with x′ ≥ x is a valid line transition.

We want to show that for all operator monotone functions f , wf(x) ≤ wf(x′)if and only
if x′ ≥ x. By taking f(x) = x, we see that the condition is necessary. It is also sufficient since
every operator monotone function is increasing.

Point merge The transition w1[x1] + w2[x2] → (w1 + w2)[x3] is valid if and only if x3 ≥
w1x1+w2x2
w1+w2

.

We want to show that for every operator monotone function, w1f(x1) + w2f(x2) ≤ (w1 +
w2)[x3] when x3 ≥ w1x1+w2x2

w1+w2
. By taking f(x) = x, the above condition is necessary. This

condition is also sufficient because operator monotone functions are concave.

Point split The transition w[x] → w1[x1] + w2[x2] with w = w1 + w2 is valid if and only if
w
x ≥

w1
x1

+ w2
x2

.

We want to show that for every operator monotone function, wf(x) ≤ w1f(x1) +w2f(x2).
By considering the function f(x) = − 1

λ+x and by considering the case where λ → 0, we have
−w
x ≤ −

w1
x1
− w2

x2
which shows that the above condition is necessary.

We now show that the above condition is also sufficient. Assume that w
x ≥

w1
x1

+ w2
x2

. We

want to verify that wf(x) ≤ w1f(x1) + w2f(x2) for f(x) = − 1
λ+x . Let q = 1

x , q
′
i = 1

xi
. Let a

function g(t) = − t
1+λt . We have − 1

λ+x = g(w) and − 1
λ+xi

= g(wi). This gives us

wf(x) = g(q) ≤ g(
w1q1 + w2q2

w1 + w2
) ≤ w1g(q1) + w2g(q2) = w1f(x1) + w2f(x2)

The first inequality holds because g is decreasing and the second inequality holds because g is
convex. The special case of f(x) = x follows by considering the limit λ→∞ when considering
function f(x) = λx

λ+x = λ(1 + λ · −1
λ+x).

A last property that will be useful later on is that no valid point game puts any weight on
the point [0, 0].

Lemma 4.34 A point game with valid transitions has no transition involving the point [0, 0].

Proof. It is sufficient to prove that there is no valid line transition l→ w[0] + (1−w)r where l
and r are positive functions with finite support and l(0) = r(0) = 0. By contradiction, assume
there exists such transition. In that case the second condition of Lemma 4.28 implies that for
all λ > 0, we have (1 − w)

∑
x
−λ
λ+xr(x) − w ≥

∑
x
−λ
λ+x l(x). The contradiction is obtained by

taking the limit λ→ 0.

4.2.3 Time independent point games

In the previous subsections, we showed that if there exists a point game with valid transitions
and final point [1/2 + ε, 1/2 + ε] for any ε > 0, then there exists a weak coin flipping protocol
with arbitrarily small bias. We now introduce the last model, namely time independent point
games (TIPG).
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As its name suggests, the idea behind a time independent point game is to remove the time
ordering of the transitions.In order to formally define time independent point games, we first
extend the definition of valid functions, to 2-variable functions:

Definition 4.35 (Valid horizontal and vertical function) Let t : [0,∞)× [0,∞)→ R be a function
with finite support.

• t is a valid horizontal function if for all y ≥ 0, t(·, y) is a valid function;

• t is a valid vertical function if for all x ≥ 0, t(x, ·) is a valid function.

The previous discussion leads to the following definition:

Definition 4.36 (Time independent point game) A time independent point game is a valid
horizontal function h and a valid vertical function v such that

h+ v = 1[β, α]− 1

2
[0, 1]− 1

2
[1, 0].

We call the point [β, α] the final point of the game.

The interest of this model in comparison to point games with valid transitions is obvious:
we only need to find two valid functions, instead of a sequence with an appropriate order. Even
simpler, since h+ v = 0 almost everywhere (except in [0, 1], [1, 0], and [β, α]), it is enough to
find a single valid function.

It is easy to construct a time independent point game with final point [β, α] from a point
game with valid transitions and final point [β, α]. As a matter of fact, h is the sum of the
functions representing all the valid horizontal transitions, and v the sum of all the functions
representing the vertical transitions. More interestingly, the reverse also holds:

Theorem 4.37 (TIPG to valid point games) Assume there exists a time independent game with
a valid horizontal function h and a valid vertical function v such that h+v = 1[β, α]− 1

2 [0, 1]−
1
2 [1, 0]. Then, for all ε > 0, there exists a valid point game with final point [β + ε, α+ ε].

Before we prove the above theorem let us define transitively valid transitions.

Definition 4.38 (Transitively valid transition) Let p, q : [0,∞)×[0,∞)→ [0,∞) be two functions
with finite support. The transition p→ q is transitively valid if there exists a sequence of valid
transitions p0 → p1, p1 → p2, · · · , pm−1 → pm such that p = p0 and q = pm.

Proof (Theorem 4.37). We will show that for every ε > 0 the transition 1
2 [0, 1] + 1

2 [1, 0] →
1[β+ε, α+ε] is transitively valid, which implies the theorem. Let us write v = v+−v−, where
v+ and v− are positive functions with disjoint supports and h = h+ − h−, where h+ and h−

are again positive functions with disjoint supports. We first show the following

Lemma 4.39 1
2 [0, 1] + 1

2 [1, 0] + v− → [β, α] + v− is transitively valid.

Proof. By definition of v and h, v− → v+ is a valid vertical transition and h− → h+ is a valid
horizontal transition. By adding the fixed points 1

2 [0, 1] + 1
2 [1, 0] to the transition v− → v+,

we have that

1

2
[0, 1] +

1

2
[1, 0] + v− → 1

2
[0, 1] +

1

2
[1, 0] + v+
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is a valid vertical transition. Let us now show that

1

2
[0, 1] +

1

2
[1, 0] + v+ → [β, α] + v−

is a valid horizontal transition. First, remark that h+v = (h+−h−)+(v+−v−) = −(1
2 [0, 1]+

1
2 [1, 0]) + [β, α] implies

1

2
[0, 1] +

1

2
[1, 0] + v+ = [β, α] + h− − h+ + v−.

Define the function with finite support ζ = [β, α]− h+ + v−. ζ is a positive function: the only
place where ζ could be negative is on the support of h+. But ζ+h− = 1

2 [0, 1]+ 1
2 [1, 0]+v+ is non

negative and supp(h+)∩ supp(h−) = ∅ so ζ is non negative. This gives us ζ + h− → ζ + h+ =
[β, α] + v− is a valid horizontal transition since h− → h+ is a valid horizontal transition and
ζ is non negative. This shows that 1

2 [0, 1] + 1
2 [1, 0] + v− → [β, α] + v− is transitively valid.

Our goal now is to get rid of this v− function. We first show how to reduce the weight
associated to v− in the transition.

Lemma 4.40 Suppose we have a transitively valid transition p+ξ → q+ξ, then for any ε > 0,
the transition p+ εξ → q + εξ is transitively valid.

Proof. First we remark that if p′ → q′ is a transitively valid transition and ζ : [0,∞)×[0,∞)→
[0,∞) is a positive function with finite support, then p′+ ζ → q′+ ζ is also a transitively valid
transition. Pick ε′ the inverse of an integer such that ε > ε′ > 0, we write

p+ ε′ξ = (1− ε′)p+ ε′ (p+ ξ)

→ (1− ε′)p+ ε′ (q + ξ) = (p+ ε′ξ) + ε′(q − p),

where we used p′ = ε′(p+ ξ), q′ = ε′(q + ξ) and ζ = (1− ε′)p. By repeating this process 1/ε′

times, and adding on both side (ε − ε′)ξ, we obtain that the transition p + εξ → q + εξ is
transitively valid.

From this Lemma, we have that ∀ε > 0, the following transition is transitively valid

1

2
[0, 1] +

1

2
[1, 0] + εv− → [β, α] + εv− (4.2)

We will now see how to create this tiny part εv− by removing some weight from the points
[0, 1] and [1, 0].

First note that by Lemma 4.34, v−(0, 0) = 0. Now let

m = min
(x,y)∈supp(v−)

{max{x, y}}.

Then, we have v−(x, y) > 0 =⇒ x ≥ m or y ≥ m. From the previous remark, we have that
m > 0. Then, by doing point raises, we have that there exists a, b ≥ 0 such that the transition

a[0,m] + b[m, 0]→ v− (4.3)

is transitively valid. This gives
∑

x,y v
−(x, y) = a+ b.
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4. Weak coin flipping

Let us now assume that m < 1 (in fact, the case m ≥ 1 is simpler and we will consider it

afterwards). Let mx,my such that [0, 1]→ am
a+b [0,m]+ b+a(1−m)

a+b [0,my] and [1, 0]→ bm
a+b [m, 0]+

a+b(1−m)
a+b [mx, 0] are valid line transitions (such mx,my always exist). For any δ > 0, the

transition

1

2
[0, 1] +

1

2
[1, 0]→1− δ

2
[0, 1] +

δam

2(a+ b)
[0,m] +

δ(b+ a(1−m))

2(a+ b)
[0,my]

+
1− δ

2
[1, 0] +

δbm

2(a+ b)
[m, 0] +

δ(a+ b(1−m))

2(a+ b)
[mx, 0]

is transitively valid by definition of mx and my. Using Equation (4.3), we get that the following
transition is transitively valid:

1

2
[0, 1] +

1

2
[1, 0]→1− δ

2
[0, 1] +

1− δ
2

[1, 0] +
δm

2(a+ b)
v−

+
δ(b+ a(1−m))

2(a+ b)
[0,my] +

δ(a+ b(1−m))

2(a+ b)
[mx, 0].

Using Lemma 4.40 and Equation 4.2, we have that (1−δ)
(

1
2 [0, 1] + 1

2 [1, 0] + δm
2(1−δ)(a+b)v

−
)
→

(1− δ)
(

[β, α] + δm
2(1−δ)(a+b)v

−
)

is transitively valid. This gives that:

1

2
[0, 1] +

1

2
[1, 0]→ (1− δ)[β, α] +

δm

2(a+ b)
v− +

δ(b+ a(1−m))

2(a+ b)
[0,my] +

δ(a+ b(1−m))

2(a+ b)
[mx, 0]

is transitively valid. Let ξ = m
2(a+b)v

−+ b+a(1−m)
2(a+b) [0,my]+

a+b(1−m)
2(a+b) [mx, 0]. The above transition

can be rewritten as 1
2 [1, 0] + 1

2 [0, 1]→ (1− δ)[β, α] + δξ. This holds for any δ > 0.
For m ≥ 1, we start by considering the raises [0, 1] → [0,m] and [1, 0] → [m, 0] and then

continue as above.
Our last goal is to get rid of this δξ. To do this, we use the following Lemma.

Lemma 4.41 Given ε > 0 and a function ξ : [0,∞)× [0,∞)→ [0,∞) with finite support and∑
(x,y)∈supp(ξ) ξ(x, y) = 1, there exists 0 < δ < 1 such that (1− δ)[β, α] + δξ → [β + ε, α+ ε] is

transitively valid.

Proof. By point raising, there exist values nx and ny such that ξ → [nx, ny] is transitively
valid. Moreover, by further point raising, we can have nx > β + ε and ny > α+ ε. We pick δ
and δ′ such that the following two line transitions are valid:

δ′[nx, α] + δ[nx, ny]→ (δ + δ′)[nx, α+ ε],

(1− δ − δ′)[β, α+ ε] + (δ′ + δ)[nx, α+ ε]→ [β + ε, α+ ε].

This is possible by taking δ, δ′ > 0 that satisfy δ′α+ δny = (δ + δ′)(α+ ε) and (1− δ − δ′)β +
(δ′ + δ)nx = β + ε. We conclude that

(1− δ)[β, α] + δξ → (1− δ)[β, α] + δ[nx, ny] is transitively valid

→ (1− δ − δ′)[β, α] + δ′[nx, α] + δ[nx, ny] is a valid point raise

→ (1− δ − δ′)[β, α] + (δ′ + δ)[mx, α+ ε] is a valid merge

→ (1− δ − δ′)[β, α+ ε] + (δ′ + δ)[mx, α+ ε] is a valid point raise

→ [β + ε, α+ ε] is a valid merge.
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4.3. Summary

This concludes the proof of the theorem.

4.2.4 Unbalanced weak coin flipping

Unbalanced weak coin flipping is a generalization of the balanced version in which when both
players are honest Alice wins with probability PA and Bob with probability PB = 1 − PA as
defined in Definition 4.2, but we do not impose any longer that PA = PB = 1/2. All the point
game formalism can be easily extended to handle unbalanced coin flipping. The initial points
are then PA[1, 0] + PB[0, 1] and we aim to have a final point 1[β, α] = 1[PB + ε, PA + ε]. As
shown in [CK09], the existence of ε-biased unbalanced coin flipping implies the existence of an
1/
√

2−1/2+2ε-biased unbalanced coin flipping for all ε by composition of balanced protocols.

4.3 Summary

The objective of this Chapter is to prove the existence of weak coin flipping protocol with
arbitrarily small bias. We have shown that this task can be reduced to finding a time indepen-
dent point game with final point [1/2 + ε, 1/2 + ε]. Such game has already been constructed
by Carlos Mochon (see Appendix C). Our major contribution is a strong clarification on the
relationship between transitions expressible by matrices and valid transitions. The proof pre-
sented in this dissertation that strictly valid transitions are EBM is also totally new and uses
topological arguments.
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Query complexity
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5 Adversaries and polynomials

This Chapter is devoted to the different methods used to prove lower bounds in the quantum
query complexity model. The main result is that the multiplicative adversary method is
stronger than any other known method, in particular the general additive method and the
polynomial method. The key to prove this result is generalizing all the methods to be able
to prove lower bounds on the query complexity of quantum state generation, and not simply
classical functions. The methods then take a particularly nice geometric simplifications and
simpler mathematical formulations that are thus used to compare their respective powers. We
first introduce the notion of quantum query complexity for state generation before generalizing
the methods.

5.1 Quantum query complexity

The query complexity model is a model of computation where the input of the a problem P, a
string x of length N over an alphabet ΣO, can be accessed only through an oracle Ox.We will
consider two types of oracles. A register oracle acts on two registers, the input register I and
the output register O, as:

|i〉I |s〉O
Ox−→ |i〉I |s⊕ xi〉O,

where i ∈ [N ], s, xi ∈ ΣO and ⊕ denotes the bitwise XOR.
When ΣO = {0, 1}, it is also possible to consider a phase oracle

∀i, b ∈ {0, 1}, |i〉|b〉 7→ (−1)bxi |i〉|b〉.

We denote by F the set of all possible inputs x that can be encoded into the oracle. We
will consider three types of problems P, a classical one and two quantum ones:

Function evaluation Given an oracle Ox, compute the classical output P(x). The success
probability of an algorithm A solving P is minx∈F Pr[A(x) = P(x)], where A(x) is the
classical output of the algorithm on oracle x.

Coherent quantum state generation Given an oracle Ox, generate a quantum state |P(x)〉 =
|ψx〉 in some target register T , and reset all other registers to a default state |0̄〉. Let
|ψTx 〉 be the final state of an algorithm A on oracle x, where <(〈ψTx |(|ψx〉|0̄〉)) ≥

√
1− εx,

where <(z) denotes the real part of the complex number z. Then, the success probability
of A is given by minx∈F (1− εx).

Non-coherent quantum state generation Given an oracle Ox, generate a quantum state
|P(x)〉 = |ψx〉 in some target register T , while some x-dependent junk state may be
generated in other registers. The success probability of an algorithm A solving P is
given by minx∈F

∥∥Π|ψx〉|ψTx 〉
∥∥2

, where |ψTx 〉 is the final state of the algorithm and Π|ψx〉
is the projector on |ψx〉.
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A U0

Ox
U1

Ox
Ut

Ox
UT

|0〉I

|0〉O

|0〉W

|ψ1
x〉 |ψtx〉

Figure 5.1: Schematic representation of a quantum algorithm that make use of an oracle Ox, an input
register I, an output register O, and a register W for work space.

Definition 5.1 (Query complexity) Fix one oracle and ε ≥ 0. The query complexity Qε(P) is
the minimum number of queries to the oracle necessary to solve P with error probability ε over
all possible algorithms.

The two different model of oracle, phase oracle and register oracle, lead to equivalent
notions of asymptotic query complexity (up to a constant), so we usually do not specify which
one is used.

5.2 Adversary methods: general concepts

Before examining the differences between all the variations of the adversary method in the
next Section, let us review the elements that are common in all of them.

Let us note that computing a function is a special case of non-coherent quantum state
generation, where all states |P(x)〉 are computational basis states. Indeed, no coherence is
needed since the state is in this case measured right after its generation. However, when
the quantum state generation is used as a subroutine in a quantum algorithm for another
problem, coherence is typically needed to allow interferences between different states. This
is in particular the case for solving Set Equality via reduction to Index Erasure, and
similarly to solve Graph Isomorphism via the quantum state generation approach, since
coherence is required to implement the SWAP-test.

Without loss of generality we can consider the algorithm as being a circuit C consisting
of a sequence of unitaries U0, . . . , UT and oracle calls Ox acting on the “algorithm” Hilbert
space A. Decomposing A into three registers, the input register I and output register O for
the oracle, as well as an additional workspace register W, the circuit may be represented as in
Fig. 5.1.

At the end of the circuit, a target register T holds the output of the algorithm. In the
classical case, this register is measured to obtain the classical output, the string A(x). In the
quantum case, it holds the output state A(x) (not necessarily pure).

In both cases, for a fixed algorithm, we note |ψtx〉 the state of the algorithm after the t-
th query. The idea behind the adversary methods is to consider that x is in fact an input
to the oracle. We therefore introduce a function register F holding this input, and define a
super-oracle O acting on registers I ⊗ O ⊗ F as

|i〉I |s〉O|x〉F
O−→ |i〉I |s⊕ xi〉O|x〉F .

We see that when the function register F is in state |x〉, O acts on I ⊗O just as Ox. Suppose,
just for the sake of analyzing the algorithm, that we prepare register F in the state |α〉 =
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A U0

O

U1

O

Ut

O

UT

|α〉F

|0〉I

|0〉O

|0〉W

ρT

|Ψ1〉

ρ1

|Ψt〉

ρt

Figure 5.2: Schematic representation of a quantum algorithm that makes use of an oracle Of , an input
register I, an output register O, a registerW for work space, and a virtual register F holding the input
of the problem.

∑
x∈F
√
αx|x〉 (with αx ≥ 0), a superposition over the elements of F , and that we apply the

same circuit as before, by replacing each call to Ox by a call to O. Intuitively, each oracle call
introduces more entanglement between this new register and the algorithm register. The state
of this new circuit after the t-th query is (see Figure 5.2)

|Ψt〉 =
∑
x∈F

√
αx|ψtx〉A|x〉F .

Note that only oracle calls can modify the state of the function register F , since all other
gates only affect the algorithm register A = I ⊗O ⊗W. After the t-th query, the state in the
function register can be written as:

ρt = trA|Ψt〉〈Ψt| =
∑
x,x′∈F

√
αxαx′〈ψtx′ |ψtf 〉|x〉〈x′|.

The general idea of all adversary methods is to study the evolution of the algorithm by looking
at ρt. The algorithm starts with the state ρ0 = |α〉〈α| and ends in a state ρT .

5.2.1 Adversary matrices and progress function

The adversary method studies how fast ρt can change from ρ0 to ρT . We introduce a progress
function in order to do so.

Definition 5.2 (Adversary, progress function) An adversary is a couple (Γ, |α〉) where Γ, the
adversary matrix, is a Hermitian matrix such that tr[Γ|α〉〈α|] = 1, and |α〉, the adversary
state, is a pure state. An additive adversary matrix also satisfies −I � Γ � I (i.e., ‖Γ‖ = 1),
while a multiplicative adversary matrix satisfies Γ � I. In both cases, the progress function is
defined as W t = tr

[
Γρt
]
.

In order to analyze the variation of the progress function, let us define the action of an
oracle in terms of matrices.

Definition 5.3 (Di) For a register oracle we define Di as the (0-1)-matrix

Di =
∑

x,x′:xi=x′i

|x〉〈x′|,
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Ox ⊕ O−1
x

|i〉

|0〉

|s〉

|i〉

|0〉

|s⊕ xi〉

|i〉

|xi〉 |xi〉

Figure 5.3: Schematic representation on the simulation of one register oracle (in gray) by one computing
oracle call, a |ΣO| XOR gates and one uncomputing oracle call (in white).

and for a phase oracle as the {−1, 1}-valued matrix

Di =
∑
x,x′

(−1)xi+x
′
i |x〉〈x′|.

Recall that the Hadamard product (entrywise product) between two matrices is denoted
by ◦. We will show that the Hadamard product is closely related to oracle calls.

Definition 5.4 (Γi) For any adversary matrix Γ, we denote by Γi the matrix Γ ◦Di.

For the rest of this Section, we only consider register oracles. Consider now that the input
register is in a state |i〉, the oracle acts on the function register as the Hadamard product,
denoted by ◦, with Di. It is easy to check that this Hadamard product is a CPTP-map.

Fact 5.5 The map γ 7→ γ◦Di is a CPTP-map and γ◦Di =
∑

y Πi
yγΠi

y with Πi
y =

∑
x:xi=y

|x〉〈x|.

5.2.2 Effect of oracle calls

The basic idea of all adversary methods is to bound how much the value of the progress function
can change by one oracle call. To study the action of one oracle call, we isolate the registers
I and O holding the input and output of the oracle from the rest of the algorithm register.
Without loss of generality, we may assume that for any oracle call, the output register O is in
the state |0〉O (computing oracle call) or |xi〉O (uncomputing oracle call). Indeed, an oracle call
for any other state |s〉O may be simulated by one computing oracle call, O(log |ΣO|) XOR gates
and one uncomputing oracle call (See Figure 5.3). Therefore, this assumption only increases
the query complexity by a factor at most 2.

Let us consider the action of the (t + 1)-th register oracle call, which we assume to be of
computing type (uncomputing oracle calls are treated similarly). Just before the (t + 1)-th
oracle call, the state can be written as:

|Ψt〉 =
∑
x,i

√
αx|ψtx,i〉W |i〉I |0〉O|x〉F ,

with |ψtx,i〉 being non-normalized states. Let us consider the reduced density matrix ρ̃t =
trW |Ψt〉〈Ψt|:

ρ̃t =
∑
x,x′

√
αxαx′

∑
i,i′

〈ψtx,i|ψtx′,i′〉|i′〉〈i|

⊗ |0〉〈0| ⊗ |x′〉〈x|. (5.1)
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and note that ρt = trIO
[
ρ̃t
]
.

Lemma 5.6 Let the t-th oracle call be of computing-type. Then, W t = tr
[
Υρ̃t

]
and W t+1 =

tr
[
Υ′ρ̃t

]
, where

Υ =
∑
i

|i〉〈i| ⊗
∑
y

|y〉〈y| ⊗ Γ =
⊕
i,y

Γ, (5.2)

Υ′ =
∑
i

|i〉〈i| ⊗
∑
y

|y〉〈y| ⊗ Γi =
⊕
i,y

Γi. (5.3)

Note that for uncomputing oracle calls, it suffices to swap the roles of ρt and ρt+1.

Proof. Recall that the progress function is defined by W t = tr[Γρt]. From the definition of
Υ and from the fact that ρt = trIO

[
ρ̃t
]
, we get W t = tr

[
Υρ̃t

]
. Let us now consider what

happens after one oracle call. An oracle call acts on the registers I ⊗ O ⊗ F as the operator

O =
∑
i

|i〉〈i|
∑
x,s

|xi ⊕ s〉〈s| ⊗ |x〉〈x|.

Before a computing oracle call, the output register O is in the state |0〉, as in Equation (5.1).
Therefore, the state ρ̃t+1 = Oρ̃tO† just after the (t+ 1)-th oracle call is

ρ̃t+1 =
∑

x,x′,i,i′

√
αxαx′〈ψtx,i|ψtx′,i′〉|i′〉〈i| ⊗ |x′i′〉〈xi| ⊗ |x′〉〈x|

and

ρt+1 = trIO
[
ρ̃t+1

]
=
∑
i

ρti ◦Di, (5.4)

where

ρti =
∑
x,x′

√
αxαx′〈ψtx,i|ψtx′,i〉|x′〉〈x|. (5.5)

Combining Equation (5.1) with Equation (5.3) we have:

tr
[
Υ′ρ̃t

]
=

∑
x,x′,i,i′

√
αxαx′tr

[
〈ψtx,i|ψtx′,i′〉|i′〉〈i| ⊗ |0〉〈0| ⊗ Γi|x′〉〈x|

]

=
∑
i

tr

Γi
∑
x,x′

√
αxαx′〈ψtx,i|ψtx′,i〉|x′〉〈x|


=
∑
i

tr
[
Γiρ

t
i

]
by Equation (5.5)

=
∑
i

tr
[
(Γ ◦Di)ρ

t
i

]
=
∑
i

tr
[
Γ(ρti ◦Di)

]
using Fact 5.5 and tr(AB) = tr(BA)

= tr
[
Γρt+1

]
by Equation (5.4).

Notice that the action of querying i on ρt is the CPTP map ρ 7→ ρt+1 = ρ ◦Di.
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5.3 The different adversary methods

We first review the two main methods, namely the general additive and the multiplicative
methods. These methods differ in two key points: firstly, the additive method bounds the
absolute variation of the progress functions, whereas the multiplicative method bounds the
relative progress done by one query; secondly the additive method imposes more conditions on
the adversary matrix than the multiplicative method.

Then, we introduce the intermediate method, that is bound the absolute progress done
by one query (additively) but uses the same conditions on the adversary matrices than the
multiplicative method. We will later use this intermediate method as a “bridge” between the
two other to compare their respective powers.

Moreover, we directly consider the case of quantum state generation since this formalism
is the technical key in the proof of our main theorem. On of the main difference between
generating a quantum state and a classical value is that the quantum state may be entangled
with the environment. The query complexity should not depend of the state of the environment
that we capture in a junk matrix. This is the role of the next couple of definitions.

To differentiate between the different methods, we will from now on denote additive ad-
versary matrices by Γ̃ and multiplicative adversary matrices by Γ. For the statement of the
theorem, we will also need the following notions.

Definition 5.7 (Gram matrix) A Gram matrix M of size |F | × |F | is a positive semidefinite
matrix whose all diagonal entries are 1 (M ◦ I = I). Equivalently, there exists a set {vk : k ∈
[|F |]} of unit-length vectors such that Mk,l = 〈vk|vl〉.
Definition 5.8 (ρ�, junk matrix) For a quantum state generation problem P such that |P(x)〉 =
|ψx〉, and a adversary state |α〉, we denote by ρ� the target matrix

ρ� =
∑
x,x′∈F

√
αxαx′〈ψx|ψx′〉|x′〉〈x|.

In the non-coherent case, we call junk matrix any Gram matrix M . In the coherent case we
call junk matrix, the matrix J (the all-one matrix).

5.3.1 General additive adversary method

Theorem 5.9 (Additive adversary method) Let P be a problem, and (Γ, |α〉) be an additive

adversary such that tr
[
Γ̃(ρ� ◦M)

]
= 0 for any junk matrix M . Then,

Qε(P) ≥ 1− C(ε)

maxi

∥∥∥Γ̃i − Γ̃
∥∥∥ where C(ε) = ε+ 2

√
ε(1− ε).

Proof. Consider an algorithm that solves P with probability at least 1 − ε in T queries. By
definition of Γ̃, the initial value of the progress function is W̃ 0 = 1. We now bound the decrease
of the progress function for each query. We have from Lemma 5.6∣∣∣W̃ t+1 − W̃ t

∣∣∣ =
∣∣∣tr[(Υ̃′ − Υ̃)ρ̃t]

∣∣∣ ≤ ∥∥∥Υ̃′ − Υ̃
∥∥∥ = max

i

∥∥∥Γ̃i − Γ̃
∥∥∥.

To conclude, we need to upper-bound the value of the progress function at the end of the
algorithm. Let us prove that W̃ T ≤ C(ε). Let |ψx〉 be the state to be generated when the
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input is x (in particular, for a classical problem this will just be a computational basis state
encoding the output of the function). The final state is:

|ΨT 〉 =
∑
x∈F

√
αx
[√

1− εx|ψx, junkx〉+
√
εx|errx〉

]
|x〉,

where |junkx〉 is the default state |0̄〉 for a coherent quantum state generation problem, and
any state otherwise. Since the algorithm has success probability 1− ε, we have 0 ≤ εx ≤ ε, ∀x
and the final state can be rewritten as:

|ΨT 〉 =
∑
x∈F

√
αx
[√

1− ε|ψx, junkx〉+
√
ε|errorx〉

]
|x〉,

where |errorx〉 is the (non-normalized) vector
√

1−εx−
√

1−ε√
ε

|ψx, junkx〉+
√

εx
ε |errx〉.

Tracing over everything but the last register, we have

ρT = (1− ε)
(
ρ� ◦Mjunk

)
+ ετ +

√
ε(1− ε)(σ + σ†),

where

Mjunk =
∑
x,x′∈F

〈junkx|junkx′〉|x′〉〈x|,

τ =
∑
x,x′∈F

√
αxαx′〈errorx|errorx′〉|x′〉〈x|,

σ =
∑
x,x′∈F

√
αxαx′〈ψx, junkx|errorx′〉|x′〉〈x|.

By assumption on Γ̃, we have tr
[
Γ̃(ρ� ◦Mjunk)

]
= 0. Moreover, according to Lemma 2.39 we

have tr
[
Γ̃A
]
≤ ‖Γ‖ ‖A‖tr = ‖A‖tr for any operator A, so that

W T = (1− ε)tr
[
Γ̃(ρ� ◦Mjunk)

]
+ εtr

[
Γ̃τ
]

+
√
ε(1− ε)tr

[
Γ̃(σ + σ†)

]
≤ ε ‖τ‖tr +

√
ε(1− ε)

∥∥∥σ + σ†
∥∥∥

tr
.

It remains to show that ‖τ‖tr ≤ 1 and
∥∥σ + σ†

∥∥
tr
≤ 2. Let us define the following matrices:

A =
∑
x∈F

√
αx|ψx, junkx〉〈x|, B =

∑
x∈F

√
αx|errorx〉〈x|.

Then, we have σ = (A†B)t and therefore
∥∥σ + σ†

∥∥
tr
≤ 2 ‖σ‖tr = 2

∥∥A†B∥∥
tr
≤ 2 ‖A‖F · ‖B‖F ≤

2, where we have used Hölder’s inequality (Lemma 2.38) and the fact that ‖A‖F = 1 since
|ψx, junkx〉 is normalized, ‖B‖F ≤ 1, and 〈errorx|errorx〉 = 1

ε

(
2− ε− 2

√
1− ε

√
1− εx

)
≤ 1

for εx ≤ ε. Similarly, we have τ = (B†B)t and therefore ‖τ‖tr ≤ ‖B‖
2
F ≤ 1.

For classical problems, we now prove that our method generalizes [HLŠ07]. Indeed, our
condition on the adversary matrix is different, which allows us to also deal with quantum
problems. However, for function evaluation the following lemma shows that the usual condition
implies our modified condition. Let P(x) be the function to be computed.
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Lemma 5.10 tr
[
Γ̃(ρ� ◦M)

]
= 0 for any matrix M if and only if Γ̃xx′ = 0 for any x, x′ such

that P(x) = P(x′).

Proof. Let Γ̃ be such that tr
[
Γ̃(ρ� ◦M)

]
= 0 for any matrix M , and x0, x

′
0 be such that

P(x0) = P(x′0). Choosing M such that Mx0x′0
= 1 and Myy′ = 0 for any other element, we

have ρ� ◦M = √αx0αx′0M and therefore Γ̃x0x′0 = 0.

For the other direction, we obtain for any matrix M

tr
[
Γ̃(ρ� ◦M)

]
=
∑
x,x′∈F

√
αxαx′Γ̃xx′〈P(x)|P(x′)〉Mxx′ = 0

since Γ̃xx′ = 0 whenever P(x) = P(x′), and 〈P(x)|P(x′)〉 = 0 whenever P(x) 6= P(x′).

5.3.2 Multiplicative adversary method

The original adversary method can only prove a lower bound when C(ε) < 1, that is, when the
success probability 1−ε > 4

5 . For smaller success probability, we need to prove a stronger bound
on the final value of the progress function W T . Recall that this one of the main differences
compared to the additive method. Since it is slightly more complicated than for the additive
method, we first need to introduce the notion of overlap on the bad subspace:

Definition 5.11 (Good and bad multiplicative subspaces) Let Γ be a multipliative adversary
matrix and fix a threshold λ > 1. The eigenspaces of Γ are split into two spaces: the good
subspace Vgood is the direct sum of the eigenspaces of Γ with eigenvalues larger than λ, and the
bad subspace Vbad is the direct sum of the eigenspaces of Γ with eigenvalues strictly smaller
than λ̃. The projector on the bad subspace is denoted by Πbad.

Since the state of the algorithm ρT starts by being ρ0 = |α〉〈α|, it only has support on the
bad subspace. Intuitively, ρ� should have a small support on it. This is quantified by

Definition 5.12 (Overlap on the bad subspace) Let P be a problem, (Γ, |α〉) be an adversary
(additive or multiplicative), and λ a threshold. The overlap of ρ� on the bad subspace set
defined by η = minM tr [Πbad(ρ� ◦M)] over all junk matrix M .

We can now state the multiplicative adversary method in a similar manner than the general
additive adversary method:

Theorem 5.13 (Multiplicative adversary method) Let P be a problem, (Γ, |α〉) be a multiplicative
adversary, and λ > 1 a threshold. Denote by η the overlap of ρ� on the bad subspace. If
η ≤ 1− ε, then we have:

Qε(P) ≥ logK(η, λ, ε)

log max

{∥∥∥∥Γ
1
2
i Γ−

1
2

∥∥∥∥2

,

∥∥∥∥Γ
1
2 Γ
− 1

2
i

∥∥∥∥2

: ∀i ∈ ΣI

} ,

where K(η, λ, ε) = 1 + (λ− 1)(
√

1− ε−√η)2.

Proof. Consider an algorithm that solves P with probability at least 1 − ε in T queries. As
done in the previous proof, the initial value of the progress function is W 0 = 1.
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In this case we do not bound the difference of the progress function between two queries,
but its quotient. From Fact 5.5, we note that Υ and Υ′ are positive semidefinite. Then, using
Lemma 5.6, we have

W t+1

W t
=

tr
[
Υ′ρ̃t

]
tr [Υρ̃t]

=
tr
[
Υ′

1
2 Υ−

1
2 Υ

1
2 ρ̃tΥ

1
2 Υ−

1
2 Υ′

1
2

]
tr
[
Υ

1
2 ρ̃tΥ

1
2

] =
tr
[
Υ−

1
2 Υ′Υ−

1
2 Υ

1
2 ρ̃tΥ

1
2

]
tr
[
Υ

1
2 ρ̃tΥ

1
2

]
≤
∥∥∥Υ−

1
2 Υ′Υ−

1
2

∥∥∥ by to Lemma 2.39 and since tr[Υ
1
2 ρ̃tΥ

1
2 ] =

∥∥∥Υ
1
2 ρ̃tΥ

1
2

∥∥∥
tr

=
∥∥∥Υ′

1
2 Υ−

1
2

∥∥∥2
by Lemma 2.40

=

∥∥∥∥∥∥
⊕
i,y

Γ
1
2
i Γ−

1
2

∥∥∥∥∥∥
2

= max
i

∥∥∥∥Γ
1
2
i Γ−

1
2

∥∥∥∥2

.

If the (t+1)-th oracle call is of uncomputing type, we similarly obtain W t+1

W t ≤ maxx

∥∥∥∥Γ
1
2 Γ
− 1

2
i

∥∥∥∥2

.

The second part of the proof is upper-bounding the final value of the progress function.
Recall that by assumption, |ΨT 〉 can be written

|ΨT 〉 =
∑
x∈F

√
αx
[√

1− ε|ψx, junkx〉+
√
ε|errorx〉

]
|x〉.

The state |Ψ〉 =
∑

x∈F
√
αx|ψx, junkx〉|f〉 satisfies |〈Ψ|ΨT 〉| ≥

√
1− ε, and trA|Ψ〉〈Ψ| = ρ� ◦

Mjunk. Let β =
∥∥Πgood|ΨT 〉

∥∥2
, |Ψgood〉 = Πgood|ΨT 〉/

√
β and |Ψbad〉 = Πbad|ΨT 〉/

√
1− β, so

that

√
1− ε ≤ |〈Ψ|ΨT 〉| =

√
β |〈Ψ|Ψgood〉|+

√
1− β |〈Ψ|Ψbad〉|

≤
√
β ‖Πgood|Ψ〉‖+

√
1− β ‖Πbad|Ψ〉‖

≤
√
β +

√
1− β

√
tr [Πbad(ρ� ◦Mjunk)]

≤
√
β +
√
η.

Since η ≤ 1−ε, we obtain that β ≥ (
√

1− ε−√η)2. We are now ready to bound W T = tr(ΓρT ),
where

ρT = βρgood + (1− β)ρbad +
√
β(1− β) [trA(|Ψgood〉〈Ψbad|) + trA(|Ψbad〉〈Ψgood|)] .

Since tr(Γρgood) ≥ λ, tr(Γρbad) ≥ 1, and the off-diagonal terms are zero, we have

WT = β tr(Γρgood) + (1− β) tr(Γρbad) (5.6)

≥ 1 + (λ− 1)β ≥ 1 + (λ− 1)(
√

1− ε−√η)2. (5.7)

The lower bound on the query complexity is a consequence of(
max

{∥∥∥∥Γ
1
2
i Γ−

1
2

∥∥∥∥2

,

∥∥∥∥Γ
1
2 Γ
− 1

2
i

∥∥∥∥2

: ∀i ∈ ΣI

})T
≥ K(η, λ, ε).

79



5. Adversaries and polynomials

For classical problems (function evaluation), we can use the following lemma:

Lemma 5.14 Let Πbad be the projector on Vbad, Πz =
∑
P(x)=z |x〉〈x|, and assume that

‖ΠzΠbad‖2 ≤ η for any z. Then, tr [Πbad(ρ� ◦M)] ≤ η for any junk matrix M .

Proof. For any junk matrix M , let us define the following purification of ρ� ◦M ,

|ψ�M 〉 =
∑
x∈F

√
αx|P(x)〉|Mx〉|x〉,

where |Mx〉 are normalized states such that 〈Mx|Mx′〉 = 〈x|M |x′〉. Let us also consider the
operator P =

∑
z |z〉〈z| ⊗ Ijunk ⊗Πz. Then, we have P |ψ�M 〉 = |ψ�M 〉, so that

tr
[
Πbad(ρ� ◦M)

]
=
∥∥Πbad|ψ�M 〉

∥∥2
=
∥∥ΠbadP |ψ�M 〉

∥∥2 ≤ ‖ΠbadP‖2 = max
z
‖ΠbadΠz‖2 ≤ η.

This implies that our method is an extension of Špalek’s original multiplicative adversary
method [Špa08].

5.3.3 Intermediate adversary method

We now introduce the intermediate adversary method:

Definition 5.15 (Good and bad additive subspaces) Let Γ̃ be an additive adversary matrix and
fix a threshold 0 < λ̃ < 1. The eigenspaces of Γ̃ are split into two categories: the good subspace
Vgood is the direct sum of the eigenspaces of Γ̃ with eigenvalues smaller than λ̃, and the bad

subspace Vbad is the direct sum of the eigenspaces of Γ̃ with eigenvalues strictly larger than λ̃.
The projector on the bad subspace is denoted by Πbad.

Theorem 5.16 (Intermediate adversary method) Let P be a problem, (Γ̃, |α〉) be an additive
adversary, and 0 < λ̃ < 1 be a threshold. Denote by η the overlap of ρ� on the bad subspace.
If η ≤ 1− ε, then we have:

Qε(P) ≥ K̃(η, λ̃, ε)

maxi

∥∥∥Γ̃i − Γ̃
∥∥∥ where K̃(η, λ̃, ε) = (1− λ̃)(

√
1− ε−√η)2.

Proof. The proof to bound the progress done by query is identical to the proof used for the
general additive method, and the proof to lower-bound the final value of the progress function is
identical to the proof of the multiplicative method up to Equation (5.6). Since tr(Γ̃ρgood) ≤ λ̃,

tr(Γ̃ρbad) ≤ 1, and the off-diagonal terms are zero, we have

W̃ T = β tr(Γ̃ρgood) + (1− β) tr(Γ̃ρbad) (5.8)

≤ 1− (1− λ̃)β ≤ 1− (1− λ̃)(
√

1− ε−√η)2. (5.9)

Note that since the condition on the adversary matrix is very similar as for the multiplicative
adversary, we can also use an analogue of Lemma 5.14 to choose the adversary matrix in the
special case of classical problems.
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5.4 Comparison of the adversary methods

Definition 5.17 We define the additive adversary bound and the intermediate adversary
bound respectively as

ADV±ε (P) = max
Γ̃,|α〉

1− C(ε)

maxi

∥∥∥Γ̃− Γ̃i

∥∥∥ and ÃDVε(P) = max
Γ̃,|α〉,λ̃

K̃(η, λ̃, ε)

maxi

∥∥∥Γ̃− Γ̃i

∥∥∥
where, for ADV±, the maximum is taken over additive adversary (Γ̃, |α〉) such that

tr
[
Γ̃(ρ� ◦M)

]
= 0 for any junk matrix M , while for ÃDV it is taken over all additive adver-

sary matrices. Finally, we define the multiplicative adversary bound as

MADVε(P) = sup
λ>1

MADV(λ)
ε (P) where MADV(λ)

ε (P) = sup
Γ,|α〉

logK(η,λ,ε)

log max

{∥∥∥∥Γ
1
2
i Γ−

1
2

∥∥∥∥2,∥∥∥∥Γ
1
2 Γ
− 1

2
i

∥∥∥∥2:∀i∈ΣI

} ,

and the supremum is taken over all multiplicative adversary (Γ, |α〉).
Remark 5.18 (Alternate formulation) Moreover, using Lemma 2.40, the multiplicative adver-
sary bound can be rewritten:

MADVc
ε(P) = sup

Γ,|α〉

logK(η, λ, ε)

log c
,

MADVε(P) = sup
c>1

MADVc
ε(P),

where c satisfies Γi � cΓ for all i ∈ ΣI . There is a implicit relation between c, λ and η that we
do not specify in this dissertation. We will use this alternate form later on.

In this Section, we show that the three methods are progressively stronger (the two in-
equalities are proved independently in the next two sections).

Theorem 5.19 MADVε(P) ≥ ÃDVε(P) ≥ ADV±ε (P)/60.

In a nutshell, the multiplicative adversary bound is larger than the intermediate one since
bounding the relative progress is more subtle than the absolute progress; and the intermediate
adversary bound is larger than the general additive since the condition on the adversary matrix
is more tight.

5.4.1 Additive versus intermediate

We show that the intermediate adversary method is at least as strong as the original additive
one (up to a constant factor).

Lemma 5.20 ÃDVε(P) ≥ ADV±ε (P)/60.

The proof of this lemma relies on the following.

Lemma 5.21 Let (Γ̃, |α〉) be an additive adversary such that tr
[
Γ̃(ρ� ◦M)

]
= 0 for any junk

matrix M . Then, for any λ̃, ε such that ε
1−ε ≤ λ̃ ≤ 1, we have

K̃(η, λ̃, ε) > (1− λ̃)

(
√

1− ε− 1√
1 + λ̃

)2

.
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Proof. From the definition of K̃(η, λ̃, ε), it suffices to show that tr [Πbad(ρ� ◦M)] < 1/(1 +

λ̃) for any junk matrix M . Let pbad = tr [Πbad(ρ� ◦M)] =
∥∥Πbad|ψ�M 〉

∥∥2
, where |ψ�M 〉 is

defined as above. Let us also define the states |ψbad〉 = Πbad|ψ�M 〉/
√
pbad and |ψgood〉 =

Πgood|ψ�M 〉/
√

1− pbad, so that |ψ�M 〉 =
√
pbad|ψbad〉 +

√
1− pbad|ψgood〉. From the properties

of the additive adversary matrix Γ̃, we have

0 = tr
[
Γ̃(ρ� ◦M)

]
= tr

[
Γ̃|ψ�M 〉〈ψ

�
M |
]

= pbadtr
[
Γ̃|ψbad〉〈ψbad|

]
+ (1− pbad)tr

[
Γ̃|ψgood〉〈ψgood|

]
> pbadλ̃+ (1− pbad)(−1) = (λ̃+ 1)pbad − 1.

This implies that pbad < 1/(1 + λ̃).

Proof of Lemma 5.20. This is immediate for ε ≥ 1/5 as in this case, we have ADV±ε (P) = 0.
Therefore, it suffices to show that for any additive adversary (Γ̃, |α〉) and any ε < 1/5, we have
maxλ̃ K̃(η, λ̃, ε) ≥ (1− ε− 2

√
ε(1− ε))/60. Let

λ̃ =

(
4

1− ε

)1/3

− 1,

and note that ε
1−ε ≤ λ̃ ≤ 1 when 0 ≤ ε ≤ 1/2. By Lemma 5.21, we then have

max
λ̃

K̃(η, λ̃, ε) ≥ 1− 2ε− 3(2− 2ε)2/3 + 3(2− 2ε)1/3 ≥ (1− ε− 2
√
ε(1− ε))/60,

for any 0 ≤ ε ≤ 1/2.

5.4.2 intermediate versus multiplicative

We now show that the multiplicative adversary method is at least as strong as the intermediate
one.

Lemma 5.22 limλ→1 MADV
(λ)
ε (P) ≥ ÃDVε(P).

Using the alternate form of the multiplicative bound, it can be shown that this lemma
reads, limc→1 MADVc

ε(P) ≥ ÃDVε(P).

Proof. Let (Γ̃, |α〉) be the additive adversary achieving ÃDVε(P). Therefore, we have

ÃDVε(P) =
K̃(η, λ̃, ε)

maxi

∥∥∥Γ̃− Γ̃i

∥∥∥ .
Let Γ(γ) = I + γ(I − Γ̃). Since tr(Γ̃|α〉〈α|) = 1 and

∥∥∥Γ̃
∥∥∥ ≤ 1, we see that for any γ > 0, Γ(γ)

is definite positive with Γ(γ) � I and tr(Γ(γ)|α〉〈α|) = 1, therefore it is a valid multiplicative
adversary matrix. Moreover, Γ has eigenvalue at least λ = 1 + γ(1− λ̃) over Vgood. Therefore,
K(η, λ(γ), ε) = 1 + γK̃(η, λ̃, ε) and, by definition of the multiplicative adversary bound,

MADVε(P) ≥ sup
γ>0

ln
[
1 + γK̃(η, λ̃, ε)

]
ln max

{∥∥∥∥Γ
1
2
i (γ)Γ−

1
2 (γ)

∥∥∥∥2

,

∥∥∥∥Γ
1
2 (γ)Γ

− 1
2

i (γ)

∥∥∥∥2

: ∀i ∈ ΣI

} .
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We show that in the limit γ → 0+, the argument of the supremum is just ÃDVε(P), which
implies the lemma. For the numerator, we immediately have

ln
[
1 + γK̃(η, λ̃, ε)

]
= γK̃(η, λ̃, ε) + O

(
γ2
)
.

Also, since Γi(γ) = I + γ(I− Γ̃i), we have∥∥∥∥Γ
1
2
i (γ)Γ−

1
2 (γ)

∥∥∥∥2

=
∥∥∥I +

γ

2
(Γ̃− Γ̃i)

∥∥∥2
+ O

(
γ2
)
,∥∥∥∥Γ

1
2 (γ)Γ

− 1
2

i (γ)

∥∥∥∥2

=
∥∥∥I− γ

2
(Γ̃− Γ̃i)

∥∥∥2
+ O

(
γ2
)
.

Therefore, we have for the denominator

L(γ, i)
def
= ln max

{∥∥∥∥Γ
1
2
i (γ)Γ−

1
2 (γ)

∥∥∥∥2

,

∥∥∥∥Γ
1
2 (γ)Γ

− 1
2

i (γ)

∥∥∥∥2
}

= γ
∥∥∥Γ̃− Γ̃i

∥∥∥+ O
(
γ2
)
.

Since limγ→0+ L(γ, i) exists for all i ∈ ΣI and there are only a finite number of possible i, we
can swap lim and max, which finally implies that:

lim
γ→0

ln
[
1 + γK̃(η, λ̃, ε)

]
ln max

{∥∥∥∥Γ
1
2
i (γ)Γ−

1
2 (γ)

∥∥∥∥2

,

∥∥∥∥Γ
1
2 (γ)Γ

− 1
2

i (γ)

∥∥∥∥2

: ∀i ∈ ΣI

} = ÃDVε(P).

5.5 Related work

In a follow-up work, Troy Lee and Jérémie Roland simplified and improved the understanding
of the adversary methods. First, they separated the dependency of the adversary state |α〉
from the density matrix ρt. As a matter of fact, for every t, the state of the algorithm can be
decomposed:

ρt = M t ◦ |α〉〈α|,

where M t is the Gram matrix [M t]xx′ = 〈ψtx|ψtx′〉. Since tr[Γ(ρt)] = tr[Γ(M t ◦ |α〉〈α|)] =
tr[(Γ ◦ |α〉〈α|)M t], the dependency in |α〉 can be transferred to the adversary matrix. As a
consequence, instead of defining the progress function for a state ρt that depends of some
arbitrary state |α〉, it is possible to express it as a Gram matrix whose coefficients depends
only on the problem. An algorithm start with the Gram matrix M0 = J, the all-one matrix,
and in the zero-error case ends with the Gram matrix M� =

∑
x,x′〈ψx′ |ψx〉|x〉〈x′|. Since Gram

matrix are Hermitian positive semidefinite, we still call them “states of the algorithm” even if
they are not normalized.

Using the alternate formulation of the multiplicative adversary bound, and the previous
remark, Lee and Roland gave a beautiful formulation of the multiplicative adversary bound in
the zero-error case:

MADVc
0(M�) =

1

ln c
max
Γ̄�0

{
log tr[Γ̄M�] : tr[Γ̄J] = 1, Γ̄ ◦Di � cΓ̄, ∀i ∈ ΣI

}
,

MADV0(M�) = sup
c>1

MADVc
0(M�).
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Since we now only impose to the adversary matrix to be positive semidefinite in this setup,
we denote it by Γ̄ in order to avoid confusions. For the general additive and the intermediate
method, the dependency in |α〉 cannot be completely removed.

They also revisited the output condition of an algorithm. Consider an algorithm that
produces a Gram matrix N . What are the conditions that N should satisfy in order to solve P
with probability larger than 1−ε? It can be shown1 that the original additive method considers
as output states, any state N such that ‖N −M�‖∞ ≤ 2

√
ε, and the general additive method

the states such that γ2(N − M�) ≤ 2
√
ε. Troy Lee and Jérémie Roland interpreted the

intermediate method and the multiplicative methods as using yet another output condition,
based on the classical fidelity between the probability distributions of measuring N and M�

with the observable Γ.
They even found the optimal output condition that the final Gram matrix of an algorithm

should obeys to solve a problem with error ε. This condition involves the Hadamard product
fidelity:

Definition 5.23 (Hadamard product fidelity) The Hadamard product fidelity FH(A,B) between
two Gram matrices A and B is defined by:

FH(A,B) = min
|α〉:‖|α〉‖=1

F(A ◦ |α〉〈α|, B ◦ |α〉〈α|).

When the Gram matrices are given by their vectors, computing the Hadamard product
fidelity can be expressed by a maximization over unitaries:

Claim 5.24 ([LR11]) Let {|ax〉}, {|bx〉} be two sets of vectors, and A,B their corresponding
Gram matrices. We have

max
V

min
x
<(〈ax|V |bx〉) = FH(A,B),

where the maximization is taken over all unitaries V .

Lemma 5.25 ([LR11]) Let M� be a target state of a problem P, An algorithm with final state
MT solve P with error at most ε if and only if FH(MT ,M�) ≥

√
1− ε.

As a consequence, in the approximate case, the multiplicative bound have also a very
beautiful formulation:

MADVε(M
�) = min

N

{
MADV0(N) : FH

(
M�, N

)
≥
√

1− ε, N � 0, N ◦ I = I
}
.

For the rest of this chapter, we will now use this definition since separating the output
condition from the adversary matrix will be helpful.

5.6 Relation with the polynomial method

In this section we show an explicit reduction from the polynomial method to the multiplicative
adversary. The polynomial has a more restrictive scope than the adversary method. We
consider only the case of function evaluation, and more precisely Booleans functions. To
mainstream the notations we will use f to denote P. We also consider only inputs that are
binary strings of size n.

Even with those restrictions, considering state generation as intermediate steps will simplify
the proof.

1Personnal communication with Troy Lee and Jérémie Roland.
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5.6. Relation with the polynomial method

5.6.1 Polynomial method

Definition 5.26 (Approximate degree) For any ε ≥ 0, the approximate degree d̃egε(f) of a
function f : {0, 1}n → R is defined as:

d̃egε(f) = min
p
{deg(p) : ∀x ∈ {0, 1}n, |f(x)− p(x)| ≤ ε} ,

where the minimum is over n-variate polynomials p : Rn → R.

Theorem 5.27 (Polynomial method [BBC+01]) If f is a Boolean function, then Qε(f) ≥
Ω
(

d̃egε(f)
)

.

To compare the polynomial bound and the multiplicative adversary bound, we introduce the
max-adversary method, that is, once again, an intermediate method between the polynomial
method and the multiplicative method. The main idea behind this method is to rewrite the
polynomial method with a progress function: this progress function can increase by at most
one at each query, exactly as the degree of the coefficients in the polynomial method.

5.6.2 Max-adversary method

Let us introduce a new adversary method that we call max-adversary method. The basic idea
is to define an ordered set of orthogonal subspaces (Sk : 0 ≤ k ≤ K) such that any query
can only transfer weight from subspace Sk to its immediate neighbors, i.e. on subspace Sk′ if
|k − k′| ≤ 1. In that case, if the initial Gram matrix J only has overlap on S0 and the final
Gram matrix M� has non-zero overlap on a subspace Sk0 , then k0 is a lower bound on the
query complexity of M�. This leads to the following adversary bound.

Definition 5.28 (Max-adversary bound) Let M� be a Gram matrix specifying a quantum state
generation problem. The zero-error max-adversary bound is:

ADVmax
0 (M�) = max

P

{
k0 : tr(Πk0M

t) 6= 0
}
,

where the maximization is over ordered sets of projectors P = (Πk : 0 ≤ k ≤ K) satisfying the
3 following constraints:

¬
∑

k Πk = IC2n ,

­ tr(Π0J) = 2n,

® ∀i ∈ [1, n],∀k, k′ such that |k − k′| > 1,

{
Πk′(Πk ◦Di) = 0
(Πk ◦Di)Πk′ = 0

.

The bounded-error bound is defined as:

ADVmax
ε (M�) = min

N

{
ADVmax

0 (N) : FH
(
M�, N

)
≥
√

1− ε, N � 0, N ◦ I = I
}
.

The name max -adversary comes from the fact that we define the progress function as the
index of the maximal eigenspace on which M t has support, whereas in all the other adversary
methods, the progress function is defined as an average over those indices.

Theorem 5.29 (Max-adversary) Qε(M
�) ≥ ADVmax

ε (M�).
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5. Adversaries and polynomials

Proof. We track the change of a progress function

W [M t] = max
k

{
k : tr[ΠkM

t] 6= 0
}
.

By condition ­, the first Gram matrix M0 = J has only support on S0, so its initial value is
0. The final value is ADVmax

ε (M�). It suffices to show that one query increases the progress
function by at most one.

Similarily to Equation (5.5), we decompose M t =
∑

iM
t
i . This means that M t

i is the
reduced Gram matrix corresponding to the part of the state where the bit xi is queried. Recall
that after the t-th query, the Gram matrix of the algorithm will be M t+1 =

∑
iM

t
i ◦Di. Let

k0 = W [M t]. Remark that for all i, W [M t
i ] is positive, thus by definition of k0, we also have

W [M t
i ] ≤ k0. Hence it is sufficient to prove that for all k > k0 + 1, we have tr[ΠkM

t
i ] = 0 to

conclude the proof. Fix 0 ≤ k ≤ K, we get:

tr[Πk(M
t
i ◦Di)] = tr[(Πk ◦Di)M

t
i ] =

∑
l,m≤k0

tr[(Πk ◦Di)ΠlM
t
iΠm].

The last equality holds since M t
i has no support on the spaces Sk for k > k0 by definition of

k0. This quantity is null for all k > k0 + 1, therefore the progress function can increase by at
most one per query.

5.6.3 Max versus multiplicative

We have previously shown that in the limit c → 1, the multiplicative adversary bound
MADVc

0(M�) is at least as strong as the additive adversary bound ADV±(M�). Here, we
show that the max-adversary bound can be obtained by taking the limit c→∞.

There is a good intuitive explanation to this fact. Recall that the progress function
tr[Γ̄M t] =

∑
λktr[ΠkM

t] is the average weighted by the λk of M t on the spaces spanned
by the Πk, whereas the max-adversary is simply the maximum of the index of those spaces,
thus by taking weights that are increase exponentially, the average is then quite close to the
maximum.

Theorem 5.30 For any ε ≥ 0 and any Gram matrix M�, we have

lim
c→∞

MADVc
0(M�) ≥ ADVmax

0 (M�).

This theorem is for the zero-error case, but since the ε-error case can be obtained for both
bounds using the same optimization, we immediately obtain the following corollary.

Corollary 5.31 For any ε ≥ 0 and any Gram matrix M�,

MADVε(M
�) ≥ ADVmax

ε (M�).

Proof of Theorem 5.30. Let {Πk} be a set of projectors such that T = ADVmax
0 (M�). There-

fore, we have tr(Π0J) = 2n and tr(ΠTM
�) 6= 0. We construct the multiplicative adversary

matrix

Γ̄ =
1

2n

∑
k

λkΠk,
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5.6. Relation with the polynomial method

for some λ > 1 (we will later take the limit λ → ∞). Then Γ̄ satisfies tr(Γ̄J) = 1 and
tr(Γ̄M�) ≥ λT pT > 0, where we have defined pT = tr(ΠTM

�)/2n > 0.

We now show that for c = 3λ, we have Γ̄◦Di � cΓ̄ for all i. We recall that for a phase oracle
Di =

∑
x,x′(−1)xi+x

′
i |x〉〈x′|, and for any matrix A, A ◦Di = UiAU

†
i where Ui is the diagonal

unitary matrix Ui =
∑

x(−1)xi |x〉〈x|. Let us first observe that ∀k ∈ [1,K − 1], UiΠkUi has
eigenvalues at most one and support only on the spaces spanned by Πk−1, Πk, and Πk−1. As a
consequence we have λkUiΠkUi � λk(Πk−1 +Πk+Πk+1) � λ

(
λk−1Πk−1 + λkΠk + λk+1Πk+1

)
.

The cases k = 0 and k = K are handled in a similar manner. We also observe that Πk ◦ Di

and Πk+3 ◦ Di have no overlap, thus Γ̄j =
∑bK/3c

k=0 λ3k+jUiΠ3k+jUi � λΓ̄. By decomposing
Γ̄ = Γ̄0 + Γ̄1 + Γ̄2 we get:

∀i ∈ [n], Γ̄ ◦Di � 3λ · Γ̄.

Combining everything, we have:

MADVc
0(M�) ≥ log tr[Γ̄M�]

log c
≥ T · log(c/3)

log c
+

log pT
log c

−−−→
c→∞

T.

5.6.4 Polynomial versus max-adversary

This section compares the bounds obtained by the polynomial method and the max-adversary
method. The common point between these two methods is that they both have a quantity
that increases by at most one per query. For the max-adversary method, this quantity is the
progress function; and for the polynomial method, it is the degree of the amplitudes of the
basis states (see proof of the polynomial method [BBC+01]). The proof makes a formal link
between these two quantities by defining spaces Sk characterizing polynomial of degree k with
very little Fourier analysis on the Boolean cube.

For a Boolean function f , let us define the {1,−1}-valued function ϕ : {0, 1}n → {1,−1} :
x → (−1)f(x). There are two natural quantum state generation problems associated to f ,
corresponding to the Gram matrices

F =
∑
x,x′

δf(x),f(x′)|x〉〈x′| and Φ =
∑
x,x′

ϕ(x)ϕ(x′)|x′〉〈x|.

Indeed, generating the Gram matrix F non-coherently is exactly the same problem as comput-
ing f , while generating the Gram matrix Φ coherently corresponds to computing the function
in the phase, i.e., we need to generate the state ϕ(x)|0̄〉. The bounded-error complexities of
these problems are closely related:

Claim 5.32 ([LR11]) Q(1−
√

1−ε)/2+ε/4(f) ≤ Qε(Φ) ≤ 2Q(1−
√

1−ε)/2(f).

We insist that the problem corresponding to compute f is an incoherent quantum state
generation problem, whereas computing f “in the phase” corresponds to the coherent state
generation problem of the Gram matrix Φ.

This implies that to prove lower bounds on the bounded-error query complexity of f ,
it is sufficient to prove lower bounds on the query complexity of the related quantum state
generation problem Φ, and this is precisely the approach that we will use in this section.
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5. Adversaries and polynomials

Theorem 5.33 Let f be a Boolean function and Φ be the Gram matrix corresponding to com-
puting f in the phase. For any 0 ≤ ε < 1/2, we have

ADVmax
ε (Φ) ≥ d̃egε(f).

Combined with Claim 5.32 this immediately implies the polynomial lower bound as corol-
lary.

Corollary 5.34 Q(1−
√

1−ε)/2(f) ≥ d̃egε(f)
2 .

The proof of Theorem 5.33 relies on the following property of the Hadamard product fidelity
FH . Recall that <(z) denotes the real part of the complex z.

Claim 5.35 Let f be a Boolean function and Φ be the corresponding phase matrix. Then, for
any Gram matrix N such that FH(N,Φ) ≥

√
1− ε , we have

∣∣<(Nx,x′)− Φx,x′
∣∣ ≤ 2ε for all

x, x′.

Proof. By Claim 5.24, there exists a set of unit vectors {|nx〉} such that for all x, x′, we have
Nx,x′ = 〈nx|nx′〉 and <〈nx|ϕ(x)|0̄〉 ≥

√
1− ε. For each x, let us define the scalar εx such that

<〈nx|0̄〉 = ϕ(x)
√

1− εx and the vector |ex〉 = |nx〉 − ϕ(x)
√

1− εx|0̄〉. Therefore, we have by
definition

|nx〉 = ϕ(x)
√

1− εx|0̄〉+ |ex〉,

where <〈0̄|ex〉 = 0 and ‖|ex〉‖ =
√
εx ≤

√
ε. Finally, this implies

ϕ(x)ϕ(x′)<〈nx|nx′〉 =
√

(1− εx)(1− εx′) + ϕ(x)ϕ(x′)<〈ex|ex′〉 ≥ 1− 2ε,

and in turn |<〈nx|nx′〉 − ϕ(x)ϕ(x′)| ≤ 2ε.

The other main ingredient of the proof is basic properties of the Fourier basis on the
Boolean cube (see e.g. [dW08]).

Definition 5.36 (Fourier basis) For every subset S ⊆ [n], we denote by |χS〉 the Fourier state

|χS〉 =
1√
2n

∑
x∈{0,1}n

(−1)S·x|x〉,

where S · x is the inner product of S and x when both are seen as vectors of C2n, i.e. S · x =∑
i∈S xi. The set {|χS〉, S ⊆ [n]} is an orthonormal basis of C2n.

Lemma 5.37 The set {Πk} where Πk =
∑

S:|S|=k |χS〉〈χS | satisfies the 3 properties in Defini-
tion 5.28.

Observe that this set is independent of any function f . This will lead to the fact that
there exists a fixed multiplicative adversary matrix independent of the problem such that the
multiplicative bound obtained by using this matrix is as stronger than the polynomial method.

Proof. The set {Πk} satisfies conditions ¬ and ­. Let us show that it also satisfies condition
®. For any l ∈ [n− 1] and i ∈ [n], we have

Πl ◦Di =
1

2n

∑
S:|S|=l

∑
x,x′

(−1)S·(x+x′)+xi+x′i |x〉〈x′| =
∑

S:|S|=l+1
i∈S

|χS〉〈χS |+
∑

S:|S|=l−1
i 6∈S

|χS〉〈χS |.

88



5.7. Summary

We also have Π0 ◦ Di = |χ{i}〉〈χ{i}| and Πn ◦ Di = |χ[n]\{i}〉〈χ[n]\{i}|. Condition ® is then
enforced.

We are now ready to prove that this adversary method leads to the same lower bound as
the polynomial method.

Proof of Theorem 5.33. Recall that we associate to any Boolean function f the {−1, 1}-valued
function defined by ϕ(x) = (−1)f(x) = 1− 2f(x). We then have deg(ϕ) = deg(f).

We denote by |ϕ〉 =
∑

x(−1)f(x)|x〉 the non-normalized quantum state representing the
function ϕ. For all S ⊆ [n], the S-indexed Fourier coefficient ϕ̂(S) of the function ϕ is defined
by ϕ̂(S) = 〈χS |ϕ〉. They have the property that ϕ̂(S) = 0 if S has more elements than deg(ϕ).
Hence, |ϕ〉 in the Fourier basis reads

|ϕ〉 =
∑

S:|S|≤deg(ϕ)

ϕ̂(S)|χS〉 =
∑

S:|S|≤deg(f)

ϕ̂(S)|χS〉.

. For the problem of computing the function f in the phase, the final Gram matrix is Φ = |ϕ〉〈ϕ|,
hence tr(ΠdΦ) 6= 0 for d = deg(f) (see e.g. [dW08]), which immediately proves the theorem in
the special case ε = 0 since this implies that ADVmax

0 (Φ) ≥ deg(f).
Let us now fix ε > 0. We now show that for any Gram matrix N such that FH(N,Φ) ≥√

1− ε, there exists T ≥ d̃egε(f) such that tr(ΠTN) 6= 0, which implies the theorem by defi-
nition of ADVmax

ε (Φ). Let N be any such matrix. Fix x0 ∈ {0, 1}n and define the multilinear
polynomial p by

p(x) = ϕ(x0)<〈nx|nx0〉.

By Claim 5.35, we have |<(〈nx|nx0〉 − ϕ(x0)ϕ(x0))| ≤ 2ε for any x, therefore maxx |ϕ(x)− p(x)| ≤
2ε. As a consequence the polynomial q = (1+p)/2 is an ε-approximation of f since ϕ = 1−2f .

Let T = maxk {k : tr(ΠkN) 6= 0}. Then, the matrixN can be written asN =
∑

S,S′ αS,S′ |χS〉〈χS′ |
where the sum is over all the sets of size at most T . Then the coefficient

Nx0,x =
∑
S

(∑
S′

αS,S′χS(x0)

)
χS′(x)

is a polynomial of degree at most T in x, and so is p. Thus

d̃egε(f) ≤ T = max
k
{k : tr(ΠkN) 6= 0} ,

that is, there exists T ≥ d̃egε(f) such that tr(ΠTN) 6= 0.

5.7 Summary

We extended the multiplicative adversary method and the general adversary method to quan-
tum state generation problems which is a generalization of their usual scope: computing func-
tions. This generalization gives a clearer view on the adversary methods by considering that
one should put weight on spaces instead of on pairs of inputs. This was used to prove that the
multiplicative adversary is stronger that the general additive (by introducing another inter-
mediate method: the intermediate adversary method). Considering quantum state generation
problems was also very useful to give an explicit reduction from the polynomial method to the
multiplicative method.
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6 Applications

6.1 Strong direct product theorem

In this section we extend Špalek’s strong direct product theorem [Špa08] to quantum state
generation problems. We prove that for any problem which accepts a multiplicative adversary

bound MADV
(λ)
ε (P), if one wants to solve P(k), i.e., k independent instances of P, using less

than O(k) times the number of queries necessary to solve one instance with error ε, then the
success probability for P(k) is exponentially small in k.

Theorem 6.1 (Strong direct product) For any ε > 0 and λ > 1 there exist a constant 0 < s < 1
and two integers k0, κ such that for any problem P and k > k0:

MADV
(λ)

1−sk(P(k)) ≥ k

κ
·MADV(λ)

ε (P).

Proof. This proof closely follows the footsteps of the one by Špalek in [Špa08, Section 5], which
dealt with the special case of computing functions. Let us assume that the multiplicative
adversary bound for P with threshold λ is obtained by the adversary (Γ, |α〉). For P(k), we

construct an adversary (Γ′ = Γ⊗k, |α′〉 = |α〉⊗k) and set the threshold at value λ′ = λ
k
κ , where

κ is an integer that will be fixed later.

First of all we observe that maxi∈ΣI ,j∈[k]

∥∥∥∥Γ
′ 1
2
i,jΓ
′− 1

2

∥∥∥∥ = maxi∈ΣI

∥∥∥∥Γ
1
2
i Γ−

1
2

∥∥∥∥ where j is the

index of the queried oracle and Γ′i,j = Γ′ ◦ (Jj−1⊗Di⊗ Jk−j), J being the all-one matrix of size
|F | × |F |. The proof follows by noting that for all i ∈ ΣI and for all j ∈ [k] we have

Γ
′ 1
2
i,jΓ
′− 1

2 =

(
Γ

1
2
⊗j−1

⊗ Γ
1
2
i ⊗ Γ

1
2
⊗k−j

)(
Γ−

1
2
⊗j−1

⊗ Γ−
1
2 ⊗ Γ−

1
2
⊗k−j

)
= I⊗j−1 ⊗ Γ

1
2
i Γ−

1
2 ⊗ I⊗k−j .

The same calculation holds for the uncomputing oracle: Γ
′− 1

2
i,j Γ′

1
2 = I⊗j−1 ⊗ Γ

− 1
2

i Γ
1
2 ⊗ I⊗k−j .

Let us now find an upper bound of maxM tr[Π′bad(ρ� ◦M)]. The “bad” subspace V ′bad for
the problem P(k) is defined by the direct sum of eigenspaces of Γ⊗k with eigenvalue at most
λ′ = λk/κ. While, we do not have in general V ′bad ⊂ V ⊗kbad nor V ⊗kbad ⊂ V ′bad, we know that V ′bad

is a subspace of the direct sum of spaces
⊗k

j=1 Vvj where v ∈ {good, bad}k and the number

of good subspaces |v| is at most k
κ . Indeed, any other eigenspace of Γ′ has eigenvalue at least

1(κ−1)k/κλk/κ = λ′ since the eigenvalues of Γ are greater than 1, and those associated to good
subspaces are greater than λ > 1. Therefore, the projector Π′bad on the bad subspace is such

that Π′bad = Π′bad ·
(⊕

v:|v|<k/κ
⊗

j Πvj

)
. Let us consider a junk matrix M ′ for P(k). Such a

matrix can be written as M ′ =
∑

lml
⊗k

j=1Mj,l where
∑

lml = 1, and each Mj,l is a junk
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matrix for P.

tr[Π′bad(ρ�
⊗k ◦M ′)] ≤

∑
v:|v|<k/κ

∑
l

mltr

 k⊗
j=1

Πvj (ρ
� ◦Mjl)


=

∑
v:|v|<k/κ

∑
l

ml

∏
j

tr[Πvj (ρ
� ◦Mjl)]

≤
∑

v:|v|<k/κ

∑
l

mlη
(κ−1)k/κ

= η(κ−1)k/κ
∑

v:|v|<k/κ

1

≤ η(κ−1)k/κ(κe)k/κ

≤
[
(κe)1/κη(κ−1)/κ

]k
≤ η′k,

where η′ = (κe)1/κ(1− ε)(κ−1)/κ, and we choose a large enough integer κ so that η′ < 1 (this is

always possible as 1− ε < 1). Let us also define the constant ζ ′ =
(

1+(λ−1)(1−ε)
λ

)1/κ
and note

that ζ ′ < 1 since λ > 1 and 1− ε < 1. Therefore, for large enough k0, there exists a constant
0 < s < 1 such that for all k ≥ k0, ζ

′k/2 + η′k/2 ≤ sk/2. For such k’s, we choose ε′ = 1 − sk.
With these choices, we have

K(η′, λ′, ε′) = 1 + (λ′ − 1)(
√

1− ε′k/2 − η′k/2) ≥ 1 + (λ′ − 1)ζ ′k

≥ 1 + (1− λ−k/κ)K(η, λ, ε)k/κ ≥ K(η, λ, ε)k/κ,

where we used the fact that K(η, λ, ε) = 1 + (λ − 1)(
√

1− ε − √η)2 ≤ λζ ′κ ≤ λ. Combining
everything, we then have

k

κ
·MADVε(P) =

lnK(η, λ, ε)k/κ

ln max

{∥∥∥∥Γ
1
2
i Γ−

1
2

∥∥∥∥2

,

∥∥∥∥Γ
1
2 Γ
− 1

2
i

∥∥∥∥2

: ∀i ∈ ΣI

}

≤ lnK(η′, λ′, ε′)

ln max

{∥∥∥∥Γ
′ 1
2
i Γ′−

1
2

∥∥∥∥2

,

∥∥∥∥Γ′
1
2 Γ
′− 1

2
i

∥∥∥∥2

: ∀i ∈ ΣI

} ≤ MADVε′(P(k)).

Let us note that while we have proved that the multiplicative adversary method is stronger
than the additive one, we cannot directly conclude that this strong direct product theorem
also applies to the additive bound, in particular we cannot conclude that the bounded-error
quantum query complexity of any function obeys a strong direct product theorem. This is
because we can only prove that the multiplicative adversary method becomes stronger in the
limit of λ going to 1, while in the same limit the constant s in the theorem also goes to 1.
Therefore, this only implies a direct sum theorem for the additive adversary bound.
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6.2. Using the representation theory

However, we made a significant step towards a proof that the quantum query complexity
obeys a strong direct product theorem. In the special of functions, Troy Lee and Jérémie
Roland filled up the missing part of the proof [LR11]. They overcame the issue by using
the alternate formulation of the multiplicative bound (see Remark 5.18). More precisely they

showed that there exists c0(ε) > 1 such that for all c < c0(ε), MADV
(c)
ε (P) ≥ ADV±ε (P)/60

for any problem P. The question wether the quantum query complexity obeys a SDPT for
quantum state generation problems remains opened.

6.2 Using the representation theory

There are two main challenges to derive an adversary bound: first, one needs to find an optimal

adversary, and then to compute the norm of Γi − Γ in an additive setting or Γ1/2Γ
−1/2
i for the

multiplicative bound.
In this section we study how we can leverage the symmetries of a problem in order to

simplify these two tasks. This leads to a very elegant solution when a natural representation
of its automorphism group is multiplicity-free. We recall that the set of inputs of length N
over an alphabet of size M is denoted by F .

6.2.1 Symmetrization of the circuit

In this section we will study how the symmetries of the problem can help choosing the adversary
matrix and in turn obtain the lower bounds. Let us consider permutations (π, τ) ∈ SN × SM
acting on x ∈ F as

∀i ∈ ΣI , x
π,τ (i) = τ(xπ(i)).

Definition 6.2 (Automorphism group of P) We call a group G ⊆ SN × SM an automorphism
group of a problem P if

• For any (π, τ) ∈ G and x ∈ F , we have xπ,τ ∈ F .

• For any (π, τ) ∈ G, there exists a unitary Vπ,τ such that Vπ,τ |P(x)〉 = |P(xπ,τ )〉 for all
x ∈ F .

Note that from an oracle for x, it is easy to simulate an oracle for xπ,τ by prefixing and
appending the necessary permutations on the input and output registers. Consider for example
a computing oracle call. Then, Oxπ,τ acts on |i〉|0〉 just as (π−1 ⊗ τ)Of (π ⊗ I).

Therefore, if (π, τ) is an element of an automorphism G of P, we can solve the problem
with oracle x in the following indirect way:

1. Solve the problem for xπ,τ , which will prepare a state close to |P(xπ,τ )〉.

2. Apply V †π,τ to map this state to a state close to |P(x)〉.

Since we want the algorithm to work just as well for any possible x, we can use this property
to symmetrize the circuit. The idea is to solve the algorithm for x by solving it for xπ,τ for all
possible (π, τ) ∈ G simultaneously in superposition. Just as we considered |x〉 as an additional
input to the circuit, we can also use the same mathematical trick and consider |π, τ〉 as another
input. We then run the algorithm on the superposition 1√

|G|

∑
(π,τ)∈G |π, τ〉. Note that we can
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assume without loss of generality that the best algorithm for P is symmetrized. Indeed, for any
algorithm for P with success probability p and query complexity T , the symmetrized version
will have the same query complexity and a success probability at least p. For the same reason,
we can also assume that the optimal adversary matrix satisfies a similar symmetry, in the
following sense:

Lemma 6.3 For all (π, τ) ∈ G, let Uπ,τ be the unitary that maps |x〉 to |xπ,τ 〉. Then, we can

assume without loss of generality that the optimal adversary matrix Γ satisfies Uπ,τΓU †π,τ = Γ
for any (π, τ) ∈ G.

Proof. Let Γ be an adversary matrix that does not satisfy this property, and |α〉 =
∑

x

√
αx|x〉

be one of its eigenstates with eigenvalue 1.. We have Γ|α〉 = |α〉, so in particular the condition
tr[Γ|α〉〈α|] = 1. Let

ᾱx =
1

|G|
∑

(π,τ)∈G

αxπ,τ

and let us consider the following states and matrices

|ᾱ〉 =
∑
x

√
ᾱx|x〉, |ᾱ〉 =

∑
x

1√
ᾱx
|x〉,

Γ̄ =
1

|G|
∑

(π,τ)∈G

Uπ,τ (Γ ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|)U †π,τ , M� =
∑
x,x′

〈P(x)|P(x′)〉 |x′〉〈x|.

Let us note that any of the matrices |ᾱ〉〈ᾱ|, |ᾱ〉〈ᾱ|, Γ̄ and M� satisfy the required symmetry

under the action of G, i.e., Uπ,τ Γ̄U †π,τ = Γ̄ for any (π, τ) ∈ G, and similarly for the other
matrices. For |ᾱ〉〈ᾱ|, |ᾱ〉〈ᾱ| and Γ̄, it follows directly from their definition and the fact that
ᾱxπ,τ = ᾱx for any (π, τ) ∈ G, while for M�, it follows from the definition of the automorphism
group: for any (π, τ) ∈ G, we have

Uπ,τM
�U †π,τ =

∑
x,x′

〈P(x)|P(x′)〉 |x′π,τ 〉〈xπ,τ | =
∑
x,x′

〈P(xπ
−1,τ−1

)|P(x′π
−1,τ−1

)〉 |x′〉〈x|

=
∑
x,x′

〈P(x)|Vπ,τV †π,τ |P(x′)〉 |x′〉〈x| = M�.

Recall that we can assume without loss of generality that the optimal algorithm is symmetrized.
In that case, the states |ψtx〉 of the algorithm satisfy 〈ψtxπ,τ |ψtx′π,τ 〉 = 〈ψtx|ψtx′〉 for any (π, τ) ∈ G
at any time t. Therefore, the Gram matrix

M t =
∑
x,x′

〈ψtx|ψtx′〉|x′〉〈x|

also satisfies the symmetry Uπ,τM
tU †π,τ = Γ̄ for any (π, τ) ∈ G at any time t.

We now show that using the adversary matrix Γ̄ with initial state |ᾱ〉 yields adversary
bounds that are at least as strong as those obtained from Γ with initial state |α〉. Intuitively,
this follows from the fact that this choice leads to the same progress function for symmetrized
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algorithms. Indeed, for ρ̄t = M t ◦ |ᾱ〉〈ᾱ|, we have

tr
[
Γ̄ρ̄t
]

=
1

|G|
∑

(π,τ)∈G

tr
[
Uπ,τ (Γ ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|)U †π,τ (M t ◦ |ᾱ〉〈ᾱ|)

]
=

1

|G|
∑

(π,τ)∈G

tr
[
(Γ ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|)U †π,τ (M t ◦ |ᾱ〉〈ᾱ|)Uπ,τ

]
= tr

[
(Γ ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|)(M t ◦ |ᾱ〉〈ᾱ|)

]
= tr

[
Γ(M t ◦ |α〉〈α|)

]
= tr

[
Γρt
]

(6.1)

where we used the fact that |ᾱ〉〈ᾱ| ◦ |ᾱ〉〈ᾱ| = J, the all-one matrix.
Let us now show more explicitly that this implies that the additive bound obtained from Γ̄

is at least as strong as that obtained from Γ (the cases of the intermediate and multiplicative
bounds are treated similarly). First, since ρ̄0 = |ᾱ〉〈ᾱ| and ρ0 = |α〉〈α|, we immediately obtain
from Equation (6.1) that tr

[
Γ̄|ᾱ〉〈ᾱ|

]
= tr [Γ|α〉〈α|] = 1. Moreover, ‖Γ‖ ≤ 1 is equivalent to

−I � Γ � I and therefore implies

Γ � I =⇒ Γ ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ| � I ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|

=⇒ 1

|G|
∑

(π,τ)∈G

Uπ,τ (Γ ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|)U †π,τ �
1

|G|
∑

(π,τ)∈G

Uπ,τ (I ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|)U †π,τ

=⇒ Γ̄ � I. (6.2)

Similarly, Γ � −I implies Γ̄ � −I, and therefore
∥∥Γ̄
∥∥ ≤ 1. Together with the fact that

tr
[
Γ̄|ᾱ〉〈ᾱ|

]
= 1, this implies that

∥∥Γ̄
∥∥ = 1 and Γ̄|ᾱ〉 = |ᾱ〉.

Second, we need to show that if Γ satisfies tr [Γ(ρ� ◦M)] = 0 for any junk matrix M , the
same applies for Γ̄ and ρ̄� = M� ◦ |ᾱ〉〈ᾱ|. Following the same argument as for Equation (6.1),
we have

tr
[
Γ̄(ρ̄� ◦M)

]
= tr

[
(Γ ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|)(M� ◦ |ᾱ〉〈ᾱ| ◦ M̄)

]
= tr

[
Γ(M� ◦ |α〉〈α| ◦ M̄)

]
= tr

[
Γ(ρ� ◦ M̄)

]
= 0,

where M̄ = 1
|G|
∑

(π,τ)∈G Uπ,τMU †π,τ is the symmetrized version of M , which is also a junk
matrix.

Third, we need to show that maxi ‖Γ− Γi‖ ≤ c implies the same condition for Γ̄ and
Γ̄i = Γ̄ ◦Di. Recall from Fact 5.5 that Γi =

∑
y Πi

yΓΠi
y, and similarly for Γ̄i. By definition of

Πi
y, we have Uπ,τΠi

yU
†
π,τ = Π

π−1(i)
τ(y) and in turn

Γ̄i =
1

|G|
∑
y

∑
(π,τ)∈G

Πi
yUπ,τ (Γ ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|)U †π,τΠi

y

=
1

|G|
∑
y

∑
(π,τ)∈G

Uπ,τΠ
π(i)
τ−1(y)

(Γ ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|)Ππ(i)
τ−1(y)

U †π,τ

=
1

|G|
∑

(π,τ)∈G

Uπ,τ (Γπ(i) ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|)U †π,τ

Since maxi ‖Γ− Γi‖ ≤ c can be rewritten as −c I � Γ− Γi � c I, we have, following the same
argument as for Equation (6.2),

Γ− Γπ(i) � c I⇔ (Γ− Γπ(i)) ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ| � c I ◦ |α〉〈α| ◦ |ᾱ〉〈ᾱ|
⇒ Γ̄− Γ̄i � c I.
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Similarly, we also have Γ̄− Γ̄i � −c I and therefore
∥∥Γ̄− Γ̄i

∥∥ ≤ c for every i in ΣI .

Note that the mapping U : (π, τ) 7→ Uπ,τ defines a representation of the automorphism
group G and that Lemma 6.3 implies that Γ commutes with Uπ,τ for any (π, τ) ∈ G. This
means that the matrices Uπ,τ and Γ block-diagonalize simultaneously in a common basis, where
each block corresponds to a different irrep of G in U . From now on, we will consider the special
case where U is multiplicity-free. This happens for different interesting problems, such as t-
fold search [AŠdW07, Špa08] and Index Erasure (see Section 6.4), as a consequence of
the following lemma.

Lemma 6.4 If, for any x, x′ ∈ F , there exists (π, τ) ∈ G such that x′ = xπ,τ and x′π,τ = x,
then U is multiplicity-free.

Proof. Let us consider the set of matrices M = {A ∈ C|F |×|F | : ∀(π, τ) ∈ G, Uπ,τAU †π,τ = A}.
It is easy to see that for any A,B ∈ M, we have AB ∈ M, therefore M defines an algebra.
Note that U is multiplicity-free if and only if M is commutative, in which case all matrices
in M diagonalize in a common basis [Cam99, page 65]. For any matrix A ∈ M, we have

At = A since there exists (π, τ) ∈ G such that 〈f |A|g〉 = 〈f |Uπ,τAU †π,τ |g〉 = 〈g|A|x〉. This
immediately implies that for any A,B ∈ M, we have AB = (AB)t = BtAt = BA, therefore
M is a commutative algebra. (More precisely, M is a Bose-Mesner algebra associated to an
association scheme [Bai04])

6.2.2 Symmetry of oracle calls

Recall that oracle calls are closely related to the Hadamard product with Di. We show that
the invariance of Γ under the action of a group G implies the invariance of Γi = Γ ◦Di under
the action of the subgroup Gi of G that leaves i invariant.

Lemma 6.5 For any i ∈ ΣI and y ∈ ΣO, let us define the following subgroups of G

Giy = {(π, τ) ∈ G : π(i) = i, τ(y) = y},
Gi = {(π, τ) ∈ G : π(i) = i}.

Then Πi
y satisfies Uπ,τΠi

yU
†
π,τ = Πi

y for any (π, τ) ∈ Giy, and Γi satisfies Uπ,τΓiU
†
π,τ = Γi for

any (π, τ) ∈ Gi.

Proof. Recall that by definition of Πi
y, we have Uπ,τΠi

yU
†
π,τ = Π

π−1(i)
τ(y) for any (π, τ) ∈ G. This

immediately implies the first part of the lemma for (π, τ) ∈ Giy. Moreover, Fact 5.5 and

Lemma 6.3 imply that Uπ,τΓiU
†
π,τ = Γπ−1(i) for any (π, τ) ∈ G. This implies the second part

of the lemma for (π, τ) ∈ Gi.

Since U is a representation of G, it is also a representation of the subgroup Gi. However,
even if U is multiplicity-free with respect to G, it is typically not with respect to Gi. Indeed,
when restricting G to Gi, multiplicities can happen due to two different mechanisms. First, an
irrep can become reducible, and one of the new smaller irreps can be a copy of another irrep.
Secondly, two irreps that are different for G could be the same when we restrict to the elements
of Gi. Let us identify an irrep of Gi by three indices (k, l,m): the first index identifies the
irrep k of G from which it originates, the second index identifies the irrep l of Gi, and the last
index allows to discriminate betwen different copies of the same irrep of Gi. For example, two
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irreps having the same index l but different indices k are two copies of the same irrep of Gi
originating from different irreps of G. Also, we denote by Vk,l,m the subspace spanned by irrep
(k, l,m). These subspaces are such that

⊕
l,m Vk,l,m = Vk, where Vk is the subspace spanned

by the irrep k of G (we assume that Vk,l,m is empty if (k, l,m) does not correspond to a valid
irrep). In the following, it will also be useful to define Wl =

⊕
k,m Vk,l,m which is sometimes

called the isotypical component corresponding to l [Ser77].

Lemma 6.6 Let U be multiplicity-free for G. Then, Γ can be written as Γ =
∑

k γkΠk, where
k indexes the irreps of G and Πk is the projector onto the space Vk spanned by the irrep k.
Also, Γi block-diagonalizes as Γi =

∑
l Γ

l
i, where l indexes the irreps of Gi, and, for each l, Γli

is a matrix on the isotypical component Wl =
⊕

k,m Vk,l,m of l. Moreover, Γli can be written as

Γli =
∑

k1,m1,k2,m2

γlx;k1m1;k2m2
Πl
k1m1←k2m2

,

where dl is the dimension of irrep l, Πl
k1m1←k2m2

is the “transporter” from Vk2,l,m2 to Vk1,l,m1,
i.e., the operator that maps any state in Vk2,l,m2 to the corresponding state in Vk1,l,m1, and

γlx;k1m1;k2m2
=

1

dl
tr
[
ΓiΠ

l
k2m2←k1m1

]
.

Proof. This directly follows from Lemmas 6.3 and 6.5 using the canonical decomposition of
the representation U [Ser77].

6.2.3 Computing the adversary bounds

Lemma 6.6 tells us how to choose the adversary matrix: it suffices to assign weights γk to
each irrep k of G, i.e., Γ =

∑
k γkΠk. Moreover, it also implies that computing the associated

adversary bounds boils down to bounding for each irrep l of Gi the norm of a small ml ×ml

matrix, where ml is the multiplicity of irrep l.

Theorem 6.7 Let U be multiplicity-free for G. Then, we have∥∥∥Γ̃i − Γ̃
∥∥∥ = max

l

∥∥∥∆̃l
i

∥∥∥ , ∥∥∥∥Γ
1
2
i Γ−

1
2

∥∥∥∥2

= max
l

∥∥∥∆l
i

∥∥∥ , ∥∥∥∥Γ
1
2 Γ
− 1

2
i

∥∥∥∥2

= max
l

∥∥∥(∆l
i)
−1
∥∥∥ ,

where the maximums are over irreps l of Gi. For each irrep l, ∆̃l
i and ∆l

i are ml×ml matrices,
where ml is the multiplicity of l for Gi, with elements labeled by the different copies of the irrep
and such that

(∆̃l
i)k1m1,k2m2 =

1

dl

∑
k,y

γktr
[
Πi
yΠkΠ

i
yΠ

l
k2m2←k1m1

]
− γk1δk1,m1;k2,m2

(∆l
i)k1m1,k2m2 =

1

dl

∑
k,y

γk√
γk1γk2

tr
[
Πi
yΠkΠ

i
yΠ

l
k2m2←k1m1

]
.

Proof. Γ and Γi block-diagonalize in the spaces spanned by the irreps (k, l,m) of Gi, this
implies that ‖Γi − Γ‖ = maxl

∥∥Γli − Γl
∥∥ where

Γl =
⊕
k,m:

(k,l,m)∈U

γkIdl = Idl ⊗

 ⊕
k,m:

(k,l,m)∈U

γk|k, l,m〉〈k, l,m|

 .
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and Lemma 6.6 gives us:

Γli − Γl = Idl ⊗


∑
k1,m1
k2,m2

(
1

dl
tr
[
ΓiΠ

l
k2m2←k1m1

]
− γk1δk1,m1;k2,m2

)
︸ ︷︷ ︸

(∆̃l
i)k1m1,k2m2

|k1, l,m1〉〈k2, l,m2|

 .

The multiplicative case is handled similarly after noting that

∥∥∥∥Γ
1
2
i Γ−

1
2

∥∥∥∥2

=
∥∥∥Γ−

1
2 ΓiΓ

− 1
2

∥∥∥ which

leads to

(Γl)−
1
2 Γli(Γ

l)−
1
2 = Idl ⊗


∑
k1,m1
k2,m2

1
dl

tr
[
ΓiΠ

l
k2m2←k1m1

]
√
γk1γk2︸ ︷︷ ︸

(∆l
i)k1m1,k2m2

|k1, l,m1〉〈k2, l,m2|

 .

We see that to obtain the adversary bounds, we need to compute the traces of products
of four operators. Since Giy is a subgroup of both G and Gi, each of these operators can be
decomposed into a sum of projectors onto irreps of Giy (or transporters from and to these
irreps). To compute these traces, we can use the following lemma, which shows that it is
sufficient to compute the traces of products of two projectors onto irreps of Giy.

Lemma 6.8 Let λ, µ, ν1, ν2 denote irreps of Giy. If any of µ, ν1 or ν2 is not isomorphic to λ,
then tr [ΠλΠµΠλΠν1←ν2 ] = 0. Otherwise, we have

tr [ΠλΠµΠλΠν1←ν2 ] =
1

d
tr [ΠλΠµ] · tr [ΠλΠν1←ν2 ] ,

|tr [ΠλΠν1←ν2 ]| =
√

tr [ΠλΠν1 ] · tr [ΠλΠν2 ],

where d is the dimension of the representation λ.

Proof. If two irreps are not isomorphic to each other, they belong to different isotypical sub-
spaces of U , and therefore the product of their projectors (or transporters) is zero. Let us
now assume that all the irreps are isomorphic to λ, and therefore belong to the same isotyp-

ical subspace. Then, we can define isomorphic bases {|j〉}j∈[d], {|ψj〉}j∈[d], {|φ
(1)
j 〉}j∈[d] and

{|φ(2)
j 〉}j∈[d] for the subspaces spanned by irreps λ, µ, ν1 and ν2, respectively, such that

Πλ =

d∑
j=1

|j〉〈j|, Πµ =

d∑
j=1

|ψj〉〈ψj |, Πν1←ν2 =

d∑
j=1

|φ(1)
j 〉〈φ

(2)
j |.

Let us also choose a basis {|j, j′〉}(j,j′)∈[d]×[m] for the whole (d × m)-dimensional isotypical
subspace, m being the multiplicity of the irreps. Without loss of generality, we may choose
this basis such that {|j, 1〉}j∈[d] = {|j〉}j∈[d] corresponds to λ itself, and, for any j′ 6= 1,
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{|j, j′〉}j∈[d] corresponds to a copy of λ. Since λ, µ, ν1 and ν2 are isomorphic, there exist

coefficients {αj′}j′∈[m], {β
(1)
j′ }j′∈[m] and {β(2)

j′ }j′∈[m] such that

|ψj〉 =

m∑
j′=1

αj′ |j, j′〉, |φ(1)
j 〉 =

m∑
j′=1

β
(1)
j′ |j, j

′〉, |φ(2)
j 〉 =

m∑
j′=1

β
(2)
j′ |j, j

′〉.

We now have

tr [ΠλΠµΠλΠν1←ν2 ] =
d∑
j=1

〈j|ψj〉〈ψj |j〉〈j|φ(1)
j 〉〈φ

(2)
j |j〉

= d · 〈1|ψ1〉〈ψ1|1〉〈1|φ(1)
1 〉〈φ

(2)
1 |1〉

=
1

d

d∑
i=1

〈j|ψj〉〈ψj |j〉 ·
d∑
j=1

〈j|φ(1)
j 〉〈φ

(2)
j |j〉

=
1

d
tr [ΠλΠµ] · tr [ΠλΠν1←ν2 ] .

Similarly, we also have

tr [ΠµΠν1←ν2 ] · tr [ΠµΠν2←ν1 ] =

d∑
j=1

〈j|φ(1)
j 〉〈φ

(2)
j |j〉 ·

d∑
j=1

〈j|φ(2)
j 〉〈φ

(1)
j |j〉

= d2 · 〈1|φ(1)
1 〉〈φ

(2)
1 |1〉〈1|φ

(2)
1 〉〈φ

(1)
1 |1〉

=
d∑
j=1

〈j|φ(1)
j 〉〈φ

(1)
j |j〉 ·

d∑
j=1

〈j|φ(2)
j 〉〈φ

(2)
j |j〉

= tr [ΠµΠν1 ] · tr [ΠµΠν2 ] .

6.3 Lower bound for Search

In this Section, we consider Grover’s Search problem [Gro96], which we denote Searchn:
Given a string x ∈ {0, 1}n with the promise that there exists a unique i such that xi = 1, find
this index. We can show that the inequalities in Theorem 5.19 are strict.

Theorem 6.9 For any 0 < ε < 1− 1
n , we have

ADV±ε (Searchn) = Ω
(

(1− ε− 2
√
ε(1− ε))

√
n
)

ÃDVε(Searchn) = Ω
(
(
√

1− ε− 1/
√
n)2√n

)
MADVε(Searchn) = Ω

(
(
√

1− ε− 1/
√
n)
√
n
)
.

In particular, for ε > 1/5, we have MADVε(Searchn) > ÃDVε(Searchn) > ADV±ε (Searchn).

In order to illustrate our method, we will use representation theory to compute the adver-
sary bounds, even though this is not really necessary for such a simple problem. The Ω(

√
n)
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lower bound for large success probability is well-known (see e.g [BBBV97]), and the case of
small success probability has been studied in [Amb05, Špa08] using the multiplicative adver-
sary method. The fact that a non-trivial bound can also be found in this regime using an
additive adversary method (our intermediate method) is new to the present work.

Proof. Let us denote by x(j) the oracle that marks element j, that is, x
(j)
i = 1 if i = j and 0

otherwise. Let us consider the symmetric group Sn acting on x as xπi = x(π(i)). This group
forms an automorphism for Searchn, and the associated representation U corresponds to the
natural representation acting on [n]. This representation decomposes into two irreps, the one-
dimensional trivial representation on V0 = Span{|α〉}, where |α〉 = (1/

√
n)
∑

j |x(j)〉, and an

(n− 1)-dimensional irrep on V1 = V ⊥0 . Following Lemma 6.3, we set Γ = Π0 + γΠ1.

Let us now fix some input i ∈ [n] to the oracle (by symmetry, the calculation will be the
same for any i). When restricting G to Gi = {π ∈ G : π(i) = i}, the second representation
splits into two irreps, the first one being a second copy of the trivial representation, now acting
on V1,0 = Span{|αi〉}, where |αi〉 = (|α〉 −

√
n|x(i)〉)/

√
n− 1. Following our convention, we

index the three irreps of Gi with labels (k, l) as (0, 0), (1, 0) and (1, 1) (no need for a third
index as each irrep of Gi appears only once in a given irrep of G). Since we have one irrep
with multiplicity two, and one irrep with multiplicity one, the matrix Γi will block-diagonalize
into two blocks: one 2× 2 block Γ0

i on V0 ⊕ V1,0, and one (n− 2)× (n− 2) block Γ1
i on V1,1.

Only the block corresponding to the trivial representation l = 0 is relevant. Indeed, since
the other representation has multiplicity 1, the corresponding block is characterized by a single
scalar, and it is straightforward to check that ∆̃1

i = 0 and ∆1
i = 1, so that the maximum in

Theorem 6.7 will not be achieved by this block.

Let us now consider the other representation, corresponding to a 2 × 2 block. In order to
compute matrices ∆̃0

i , and ∆0
i , we first compute Π0 ◦ Di and Π1 ◦ Di using Fact 5.5. In the

basis {|α〉, |αi〉}, we obtain

Π0 ◦Di =

(
1− 2β2(1− β2) β

√
1− β2(1− 2β2)

β
√

1− β2(1− 2β2) 2β2(1− β2)

)
,

where β = 1/
√
n, and therefore Π1 ◦Di = I − Π0 ◦Di. For the additive adversary methods,

we then obtain from Theorem 6.7

∆̃0
i = (1− γ)β

√
1− β

(
−2β

√
1− β2 1− 2β2

1− 2β2 2β
√

1− β2

)
.

The matrix has eigenvalues ±1, so that
∥∥∥∆̃0

i

∥∥∥ = (1− γ)β
√

1− β.

For the usual additive adversary method, we need to choose γ such that tr(Γ̃(ρ� ◦M)) = 0
for any junk matrix M . Here, ρ� = I/n, therefore this condition reduces to tr(Γ̃) = 0, which is

satisfied for γ = −1/(n−1). This yields
∥∥∥∆̃0

i

∥∥∥ = 1/
√
n− 1, and therefore ADV±ε (Searchn) =

(1− ε− 2
√
ε(1− ε))

√
n− 1, which is Ω(

√
n) for ε < 1/5, but negative otherwise.

For the intermediate adversary method, we can choose λ̃ = γ, so that Vbad = V0 and η =
1/n. This implies that as soon as ε < 1−1/n, we have a non-trivial bound ÃDVε(Searchn) =
(
√

1− ε− 1/
√
n)2
√
n− 1.
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For the multiplicative adversary method, we choose γ > 1 and λ = γ, so that Vbad = V0

and η = 1/n. We then obtain similarly

∆0
i =

(
1 + 2(γ − 1)β2(1− β2) −γ−1√

γ β
√

1− β2(1− 2β2)

−γ−1√
γ β
√

1− β2(1− 2β2) 1− 2γ−1
γ β2(1− β2)

)

=

(
1 −γ−1√

γ β

−γ−1√
γ β 1

)
+ O

(
β2
)
.

For a 2 × 2 matrix
(
a b
c d

)
, Gershgorin circle theorem states the eigenvalues lie in [b −

|a|, b + |a|] ∪ [d − |c|, d + |c|]. In our case, the eigenvalues of

(
1 − γ−1√

γ
β

− γ−1√
γ
β 1

)
lie in the range

[1− γ−1√
γn , 1 + γ−1√

γn ], so that

MADV(Searchn) ≥ log[1 + (γ − 1)ζ2]

log[1 + (γ − 1)/
√
γn]

,

where ζ =
√

1− ε − 1/
√
n. In the limit γ → 1+, we obtain the same bound as for the

intermediate adversary method. However, for γ = 1 + 1/ζ2, we obtain

MADV(Searchn) ≥ (log 2) ·
√
γn

γ − 1
= Ω

(
(
√

1− ε− 1/
√
n)
√
n
)
,

where we have used the fact that log(1 + x) ≤ x.

6.4 Lower bounds for Index Erasure

We recall the definition of Index Erasure:

Definition 6.10 (Index Erasure) Let x be a string of length N on an alphabet of size M > N
with distinct letters, that is xi 6= xj if i 6= j. Index Erasure is the problem of coherently
generating the quantum state

|ψx〉 =
1√
N

N∑
i=1

|xi〉.

The goal of this section is to prove the optimal quantum query complexity of this problem:

Theorem 6.11 For any ε < 1− N
M , we have Qε(Index Erasure) = Θ(

√
N).

The upper bound has been proved by Shi [Shi02], we focus our work on the lower bound.
The proof is rather long and takes the whole Section 6.4.2. Note that in general, we can see
the input x as function i 7→ xi, and in the case of Index Erasure as an injective function
from [N ] to [M ]. Since it is easier to speak about “injective functions from [N ] to [M ]” than
“strings of length N with distinct letters over an alphabet of size M”, we will mostly use this
terminology.

101



6. Applications

6.4.1 Notations

We will consider irreps of the symmetric group SN , i.e., Young diagrams and denote them by
λN , λ

+
N , . . . . Note that since a diagram λN necessarily contains N boxes, it is fully determined

by its part λ below the first row, as we know that its first row must contain N − |λ| boxes,
where |λ| is the number of boxes below the first row. This will lighten the notations. The
dimension of the space spanned by an irrep of the symmetric group can be easily computed:

Lemma 6.12 (Hook-length formula [Sag01]) For any Young diagram λ corresponding to an
irrep of SN , the dimension of the space spanned by this irrep is:

dNλ =
N !∏

(i,j)∈λ hN (i, j)
,

where hN (i, j) = |{(i, j′) ∈ λN : j′ > j} ∪ {(i′, j) ∈ λN : i′ ≥ i}| is the hook-length.

More precisely, we will use the Hook-length formula to show that:

Lemma 6.13 For |λ| ≤
√
N , we have:

dNλ
NdN−1

λ

= O

(
1

N

)
.

Proof.

dNλ
NdN−1

λ

=
N !

N(N − 1)!

H(λ)

H(λ)

∏
i:(i,1)∈λN−1

hN (i, 1)− 1

hN (i, 1)
,

where H(λ) denotes the product of the Hook-length of the boxes below the first row. The
other product is maximized when the Hook-lengths are small, i.e. when the Young diagrams
have only two rows. It leads to:

dNλ
NdN−1

λ

≤
N−2|λ|∏
i=2

(
1− 1

i

) N−|λ|+1∏
i=N−2|λ|+2

(
1− 1

i

)
=

1

N − 2 |λ|
N − 2 |λ|+ 1

N − |λ|+ 1
= O

(
1

N

)

since |λ| ≤
√
N .

6.4.2 Proof of the optimal lower bound for Index Erasure

Let (π, τ) ∈ SN×SM act on the set F of injective functions from [N ] to [M ] (with M ≥ N2) by
mapping x to xπ,τ . Since we can obtain the state |ψx〉 from |ψxπ,τ 〉 by applying the permutation
τ−1 on the target register, the whole group G = SN × SM defines an automorphism group for
the problem.

Proof road map This proof is an illustration of the method we developed in Section 6.2, and
thus relies heavily on the representation theory of the automorphism group SN × SM .

First of all, we ensure that the irreps of the representation corresponding to the action G on
the set of injective functions is multiplicity-free by using the necessary condition of Lemma 6.4.
The irreps of the symmetric group SN are represented by Young diagrams with N boxes (see
e.g. [Sag01]), so the irreps of G are represented by pairs of Young diagrams with respectively
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N and M boxes. We show that most of the irreps do not even occur in this representation.
More precisely that only the irreps whose Young diagram for SN is included into the one for
SM appear.

Secondly, we decompose ρ0 and ρ� in the basis corresponding to those irreps. Since the
Index Erasure problem is totally symmetric by permutation of the outputs, we choose |α〉 as
the uniform superposition over the set of injective functions, thus ρ0 = |α〉〈α| as support only
on the space V0 corresponding to the trivial irrep which is represented by the pair of Young
diagrams respectively with only one row of N boxes and M boxes. Meanwhile, we show that
ρ� has overlap on two spaces: V0 the one corresponding to the trivial irrep, and mostly on V1,
the space corresponding to the Young diagrams (λN , λM ) where λN has only one row of N
boxes, and λM has two rows with respectively M − 1 and 1 boxes (See Figure 6.1).

Since we start from state ρ0 and we want to reach the state ρ� which has a large weight
over the space V1, the strategy for the lower bound is to show that it is hard to transfer weight
from V0 to V1. More precisely, we divide all irreps (and by consequence their corresponding
subspaces) into two sets: one set of bad irreps containing all irreps represented by diagrams
(λN , λM ) where λN and λM only differ in their first row, and one set of good irreps containing
all the other irreps (see Figure 6.2). According to Lemma 6.5, we pick the adversary matrix Γ̃
diagonal in the basis of the irreps of the representation. We also choose the eigenvalues of Γ̃
to be 0 on the good irrep so that the progress function for ρ� is small.

The last step uses Theorem 6.7. We show that three different cases arise for the matrices
∆̃l
i, and we handle them separately.

Multiplicities of representations Let us show that the representation U corresponding to the
action of G on the set of injective functions F is multiplicity-free by using Lemma 6.4. We need
to show that for any pair of functions x, x′ ∈ F , there exists permutations (π, τ) ∈ SM × SN
such that xπ,τ = x′ and x′π,τ = x. We first construct a permutation π acting on the input set.
We denote by Px (resp. Px′) the preimage of the set Im(x)∩ Im(x′) by the function x (resp. by
the function x′). We call chain of length l + 1 a sequence of inputs i0 → i1 → · · · → il−1 → il
such that xi0 = x′i1 , xi1 = x′i2 , . . . , xil−1

= x′il . We only consider maximal chains, that is, chains
that cannot be made longer by prepending or appending another chain. There are two types
of maximal chains: the paths such that i0 ∈ Px\Px′ , i1, . . . , il−1 ∈ Px ∪ Px′ and il ∈ Px′\Px;
and the cycles such that all the elements are in Px ∩ Px′ and i0 = il. The maximal chains are
a partition of Px ∪Px′ . We define the permutation π on each chain by π(ij) = il−j , and for all
j 6∈ Px ∪ Px′ , π(j) = i.

We define the permutation τ by:

τ :


∀i ∈ [N ], τ(xπ(j)) = x′i
∀i ∈ [N ], τ(x′π(j)) = xi

∀y 6∈ Im(x) ∪ Im(x′), τ(y) = y

The two first equations would imply that xπ,τ = x′ and x′π,τ = x, but we need to check that
they are consistent.

This is immediately the case for all y /∈ Im(x) ∩ Im(x′), therefore it remains to show
that they are equivalent for y ∈ Im(x) ∩ Im(x′). Let us consider such an output y, in which
case there is a chain including inputs ij and ij+1 such that y = xij = x′ij+1

. By definition

of π, the same chain then also includes the inputs π(ij+1) and π(ij), and we can define an
output y′ as y′ = xπ(ij+1) = x′π(ij)

. Therefore, the first equation in the definition of τ leads to
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a)

×
N boxes M boxes b)

×
N boxes M − 1 boxes

Figure 6.1: We use N = 10 and M = 15. a) Young diagrams corresponding to the one-dimensional
space V0. The initial state ρ0 is the projector over V0 ; b) Young diagrams corresponding to the (M−1)-
dimensional space V1. The target state ρ� has a large overlap (1 −N/M) with the completely mixed
state over V1.

τ(y′) = τ(xπ(ij+1)) = x′ij+1
= y while the second equations leads to τ(y′) = τ(x′π(ij)

) = xij = y,

i.e., both equations are consistent. By Lemma 6.4, this concludes the proof that the irreps in
U have multiplicity 0 or 1.

Let us now show that many irreps do not appear at all. Recall that irreps of G = SN ×SM
can be represented by pairs of Young diagrams (λN , λM ), where λN has N boxes, and λM
has M boxes [Sag01]. We show that only irreps where the diagram λN is contained in the
diagram λM can appear. We show this by induction on M , starting from M = N . For the
base case, the set of injective functions F is isomorphic to the set of permutations in SN , and
(π, τ) ∈ SN ×SN acts on a permutation σ as τσπ. Therefore, the only irreps which occur in U
are those where the two diagrams are the same, that is, λN = λM . When extending the range
of functions in F from M to M + 1, we induce irreps of SN × SM to irreps of SN × SM+1 by
adding an extra box on the diagram corresponding to SM . Since we start from a case where
the two diagrams are the same, we can only obtain pairs of diagrams (λN , λM ) where λN is
contained inside λM .

Initial and target states The initial state is ρ0 = |xπ,τ 〉〈xπ,τ |, where |xπ,τ 〉 = 1√
|F |

∑
x∈F |x〉 is

the superposition over all injective functions, which is invariant under any element (π, τ) ∈ G.
Therefore, it corresponds to the trivial one-dimensional irrep of SN × SM , represented by a
pair of diagrams (λN , λM ) where both diagrams contain only one row of N and M boxes,
respectively (see Figure 6.1). Let V0 = Span{|xπ,τ 〉} be the corresponding one-dimensional
subspace. We now show that the target state ρ� is a mixed state over V0 ⊕ V1, where
V1 = Span{|φy〉 : y ∈ [M ]} is the (M − 1)-dimensional subspace spanned by states |φy〉 =√

1− (N/M)|ψy〉 −
√
N/M |ψ̄y〉, |ψy〉 being the uniform superposition over functions x such

that y ∈ Im(x), and |ψ̄y〉 the uniform superposition over functions x such that y /∈ Im(x). This
subspace corresponds to the irrep represented by diagrams (λN , λM ) where λN contains only
one row of N boxes, and λM has M − 1 boxes on the first row and one box on the second (see
Figure 6.1). We have for the target state

ρ� =
1

F

∑
x,x′∈F

〈ψx|ψx′〉|x′〉〈x| =
1

F

∑
x,x′∈F

|Im(x) ∩ Im(x′)|
N

|x′〉〈x|

=
1

M

M∑
y=1

|ψy〉〈ψy| =
N

M
|xπ,τ 〉〈xπ,τ |+

(
1− N

M

)
1

M

M∑
y=1

|φy〉〈φy|

=
N

M
ρ0 +

(
1− N

M

)
ρ1,

where ρ0 and ρ1 are the maximally mixed states over V0 and V1, respectively.
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a) ×
λN λM

λ

b) ×

λ 6= λ′

Figure 6.2: We use N = 17 and M = 21. a) Example of a “bad” irrep λN × λM : the shape of the
diagrams below the first row for SN and SM are the same λ ; b) Example of a “good” irrep: the shape
of the diagram below the first line of SN is strictly included into the one for SM .

Adversary matrix Since we start from state ρ0 and we want to reach state ρ� which has a large
weight over ρ1, the strategy for the lower bound is to show that it is hard to transfer weight
from V0 to V1. More precisely, we divide all irreps (and by consequence their corresponding
subspaces) into two sets: one set of bad irreps containing all irreps represented by diagrams
(λN , λM ) where λN and λM only differ in their first row, and one set of good irreps containing
all the other irreps (see Figure 6.2). By this definition, the irrep corresponding to V0 is bad,
while the irrep corresponding to V1 is good. The lower bound is based on the fact that it is
hard to transfer weight onto good subspaces (in particular V1) starting from V0. As mentioned
in Section 6.4.1, from now on, we note the irreps only by their part under the first row; (λ, λ′)
then denotes an irrep of SN × SM . Therefore, bad irreps are precisely those such that λ = λ′.
Recall from Lemma 6.5 that constructing an adversary matrix Γ̃ amounts to assigning an
eigenvalue to each irrep of G. We choose Γ̃ such that it has eigenvalue 0 on good irreps, and
eigenvalue γ|λ| on a bad irrep (λ, λ), which only depends on |λ|, i.e.,

Γ̃ =
∑
λ

γ|λ|Π(λ,λ),

where Π(λ,λ′) is the projector onto the subspace corresponding to the irrep (λ, λ′). We set

γ|λ| =

{
1− |λ|√

N
if |λ| <

√
N

0 otherwise.

Therefore, we have γ0 = 1 and 0 ≤ γ|λ| ≤ 1 for any λ, and Γ̃ is a valid additive adversary
matrix. Let Vbad denote the direct-sum of the bad subspaces. Since ρ� only has overlap N/M
over Vbad, we have tr(Πbadρ

�) ≤ N/M . Therefore, we can set the threshold eigenvalue λ̃ = 0
and the base success probability η = N/M . This adversary matrix is thus a perfect candidate
to prove a lower bound on the coherent version of Index Erasure.

Discussion From Theorem 6.7, we see that we need to compute the norm of a matrix ∆̃l
i

for each irrep l of Gi = SN−1 × SM . We show that these matrices are non-zero only for
three different types of irreps of Gi. Indeed, for irreps k of G and l of Gi, the quantity
γktr

[
Πi
yΠkΠ

i
yΠ

l
k1m1←k2m2

]
is non-zero only if: ¬ k is a bad irrep (otherwise γk = 0); ­ k and

l restrict to a common irrep of Giy = SN−1 × SM−1 (otherwise the product of the projectors
is zero). The restrictions of an irrep (λ, λ′) of G to Giy are obtained by removing one box
from each of the diagrams λ and λ′. Similarly, the restrictions of an irrep (λ, λ′) of Gi to Giy
are obtained by removing one box from λ′. ® Note that not all irreps of Giy appear in the
projector Πi

y, as it projects on all injective functions such that xi = y. Therefore, this set is
isomorphic to the set of injective functions from [N −1] to [M −1], and we know that the irrep
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Gi = SN−1 × SM
λ, λ λ, λ+ λ−, λ λ−, λ+ λ−, λ− λ−, λ̃

Giy = SN−1 × SM−1

λ, λ λ−, λ λ−, λ−

G = SN × SM
λ, λ

¬

®

­

Figure 6.3: Following our convention, we draw only the part of the diagram below the first row. The
condition ¬ imposes that the two diagrams for SN×SM (on top) have the same shape. When restricting
from SN × SM to SN−1 × SM−1, one should remove one box from each diagram. When the removed
box does not belong to the original irrep of SN ×SM , it is shown in light gray. The condition ® imposes
that the diagram for SN−1 (left) is included into the one for SM−1 (right). The condition ­ gives the
diagrams for SN−1 × SM (at the bottom). Finally we have 3 “generic” types of irreps: case 1 (green)
where the diagrams have the same shape; case 2 (blue) where the right diagram has one additional box;
and case 3 (red) where the right diagram has 2 additional boxes.

U acting on this set is multiplicity-free, and that only irreps (λ, λ′) where λ is contained in λ′

can occur. Altogether, this implies that only three type of irreps of Gi = SN−1 × SM lead to
non-zero matrices (see Figure 6.3)

1. l = (λ, λ): Same diagram for SN−1 and SM below the first row. This irrep has multiplicity
one since there is only one way to induce to a valid irrep of SN × SM , by adding a box
in the first row of the left diagram, leading to irrep k = (λ, λ).

2. l = (λ, λ+): Diagram for SM has one additional box below the first row. This irrep has
multiplicity two since there are two ways to induce to a valid irrep of SN×SM , by adding
a box either in the first row, leading to k = (λ, λ+), or at the missing place below the
first row, leading to k = (λ+, λ+).

3. l = (λ, λ++): Diagram for SM has two additional boxes below the first row. This irrep
has multiplicity three since there are three ways to induce to a valid irrep of SN × SM ,
by adding a box either in the first row, leading to k = (λ, λ+), or at to one of the missing
places below the first row, leading to k = (λ+, λ++).

Analysis of the three cases Let us now consider these three cases separately.

Case (λ, λ). Since this irrep has multiplicity one, we just need to compute a scalar. As an
irrep of SN−1×SM , (λ, λ) restricts to only one valid irrep of SN−1×SM−1, by removing a box
on the first row of the right diagram, therefore this irrep is also labeled (λ, λ). Inducing from
this irrep of SN−1×SM−1 to SN ×SM , we obtain three valid irreps, two “bad” ones, (λ, λ) and
(λ+, λ+), and a good one, (λ, λ+). To differentiate between projectors of irreps of the different
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a)

SN−1 × SM−1

SN−1 × SM

SN × SM

λ, λ

λ, λ

λ, λ λ+, λ

λ, λ+

λ, λ+ λ+, λ+

b)

SN−1 × SM−1

SN × SM−1

SN × SM

λ, λ

λ, λ

λ, λ λ, λ+

λ+, λ

λ+, λ λ+, λ+

Figure 6.4: a) Justification of Equation (6.3). The irrep (λ, λ) of SN−1 × SM only induces to one
irrep of SN × SM , since the other possible irrep is invalid (diagram λ+ is not contained inside λ). b)
Justification of Equation (6.4), using a similar argument.

groups, we will from now on use superscripts (for example ΠN,M
λ,λ denotes a projector on the

irrep (λ, λ) of SN × SM ). We therefore have from Theorem 6.7

∆λ,λ
i =

γ|λ|

dN−1,M
λ,λ

∑
y

tr
[
Πi
yΠ

N,M
λ,λ Πi

yΠ
N−1,M
λ,λ

]
+

γ|λ|+1

dN−1,M
λ,λ

∑
y,λ+

tr
[
Πi
yΠ

N,M
λ+,λ+

Πi
yΠ

N−1,M
λ,λ

]
− γ|λ|

=
Mγ|λ|

dN−1,M
λ,λ dN−1,M−1

λ,λ

· tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ

]
· tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ

]
+

Mγ|λ|+1

dN−1,M
λ,λ dN−1,M−1

λ,λ

∑
λ+

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]
· tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ

]
− γ|λ|,

where we have used Lemma 6.8 and the fact that all terms in the sum over y are equal by
symmetry.

From Figure 6.4, we see that

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ

]
= tr

[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ

]
, (6.3)

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]
= tr

[
ΠN−1,M−1
λ,λ ΠN,M−1

λ+,λ

]
, (6.4)

since the only way for (λ, λ) as an irrep of SN × SM to restrict to (λ, λ) as an irrep of SN−1 ×
SM−1 is to first restrict to (λ, λ) as an irrep of SN−1×SM , and similarly for (λ+, λ+). Therefore,
we only have two traces to compute. For the first one, we consider the maximally mixed state
ρN−1,M−1
λ,λ over the corresponding irrep. By inducing from SM−1 to SM we find that its overlap

over the irrep (λ, λ) of SN−1 × SM is given by

tr
[
ρN−1,M−1
λ,λ ΠN−1,M

λ,λ

]
=

dN−1,M
λ,λ

MdN−1,M−1
λ,λ

=
dMλ

MdM−1
λ

.

For the second term, we use the fact that
∑

λ+ ΠN,M−1
λ+,λ

= I−ΠN,M−1
λ,λ ,∑

λ+

tr
[
ρN−1,M−1
λ,λ ΠN,M−1

λ+,λ

]
= 1− tr

[
ρN−1,M−1
λ,λ ΠN,M−1

λ,λ

]
= 1−

dNλ
NdN−1

λ

,
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and finally

∆λ,λ
i = γ|λ|

dMλ
MdM−1

λ

+ γ|λ|+1

(
1−

dNλ
NdN−1

λ

)
− γ|λ|

=
1√
N

+ O

(
1

N
+

1

M

)
,

where we have used Lemma 6.13.

Case (λ, λ+). This irrep has multiplicity two, so we need to compute a 2× 2 matrix. Let
(λ, λ+, 1) denote the copy of (λ, λ+) irrep of SN−1 × SM which is inside the (λ+, λ+) irrep
of SN × SM . Let (λ, λ+, 2) denote the copy of (λ, λ+) irrep of SN−1 × SM which is inside

the (λ, λ+) irrep of SN × SM . Let the first row and the first column of ∆λ,λ+

i be indexed by
(λ, λ+, 1) and the second row and the second column be indexed by (λ, λ+, 2).

An irrep (λ, λ+) of SN−1 × SM restricts to two valid irreps of SN−1 × SM−1: (λ, λ) and
(λ, λ+). Those two irreps can be induced to the following bad irreps of SN × SM : (λ, λ) and
any irrep (λ′, λ′) which has one more square below the first row than λ. (λ′ may be equal or
different from λ+.)

For brevity, we denote ∆λ,λ+

i simply by ∆. Since (λ, λ+, 1) is contained inside a bad irrep
of SN × SM , we have

∆1,1 =
γ|λ|

dN−1,M
λ,λ+

∑
y

tr
[
Πi
yΠ

N,M
λ,λ Πi

yΠ
N−1,M
λ,λ+,1

]
+

γ|λ|+1

dN−1,M
λ,λ+

∑
λ′

∑
y

tr
[
Πi
yΠ

N,M
λ′,λ′Π

i
yΠ

N−1,M
λ,λ+,1

]
− γ|λ|+1

=
Mγ|λ|

dN−1,M
λ,λ+

dN−1,M−1
λ,λ

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ

]
tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]
+

Mγ|λ|+1

dN−1,M
λ,λ+

dN−1,M−1
λ,λ

(∑
λ′

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ′,λ′

])
tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]
+

Mγ|λ|+1

dN−1,M
λ,λ+

dN−1,M−1
λ,λ+

tr
[
ΠN−1,M−1
λ,λ+

ΠN,M
λ+,λ+

]
tr
[
ΠN−1,M−1
λ,λ+

ΠN−1,M
λ,λ+,1

]
− γ|λ|+1

We start by evaluating the sum ∑
λ′

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ′,λ′

]
.

We consider the maximally mixed state ρN−1,M−1
λ,λ over the corresponding irrep of SN−1×SM−1.

By inducing λ from SN−1 to SN , we find that the dimension of the induced representation is
NdN−1

λ and the induced representation decomposes into irrep λ of SN , with dimension dNλ and
irreps λ′. Therefore, ∑

λ′

tr
[
ΠN,M
λ′,λ′ ρ

N−1,M−1
λ,λ

]
= 1−

dNλ
NdN−1

λ

≤ 1− 1

N
(6.5)

where the inequality follows by comparing the hook-length formulas of dNλ and dN−1
λ . Similarly,

we have

tr
[
ΠN,M
λ,λ ρN−1,M−1

λ,λ

]
= O

(
1

N

)
. (6.6)
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We now evaluate a similar quantity for ρN−1,M−1
λ,λ+

. By inducing λ+ from SM−1 to SM , we find

that the dimension of the induced representation is MdM−1
λ+

and the induced representation
decomposes into irrep λ+ of SM , with dimension dMλ and irreps λ++ which have one more
square below the first row than λ+. Therefore,

tr
[
ΠN,M
λ+,λ+

ρN−1,M−1
λ,λ+

]
=

dMλ
MdM−1

λ

= O

(
1

M

)
. (6.7)

By using Equations (6.5), (6.6) and (6.7), we have

∆1,1 =
Mγ|λ|+1

dN−1,M
λ,λ+

tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]
+ O

(
1

N

)
− γ|λ|+1. (6.8)

We have
tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]
= tr

[
ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]
because the other irreps of SN−1 × SM contained in the irrep (λ+, λ+) of SN × SM have no
overlap with the irrep (λ, λ) of SN−1 × SM−1. Let ρN−1,M−1

λ,λ be the completely mixed state
over (λ, λ). Then,

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]
= dN−1,M−1

λ,λ tr
[
ΠN,M
λ+,λ+

ρN−1,M−1
λ,λ

]
= dN−1,M−1

λ,λ

dNλ+

NdN−1
λ

.

Here, the second equality follows by inducing λ from SN−1 to SN . We have

dN−1,M−1
λ,λ

dNλ+

NdN−1
λ

= dN−1
λ dM−1

λ

dNλ+

NdN−1
λ

=
dM−1
λ dNλ+

N
.

By matching up the terms in hook-length formulas, we have

dM−1
λ dNλ+ =

(
1 + O

(
1

N

))
N

M
dN−1
λ dMλ+ . (6.9)

Therefore,

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]
=

(
1 + O

(
1

N

))
dN−1,M
λ,λ+

M
(6.10)

and

∆1,1 = O

(
1

N

)
Similarly to Equation (6.8), we have

∆2,2 =
Mγ|λ|+1

dN−1,M
λ,λ+

tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,2

]
+ O

(
1

N

)
. (6.11)

We have

tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,2

]
= tr

[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ+

]
= dN−1,M−1

λ,λ tr
[
ΠN,M
λ,λ+

ρN−1,M−1
λ,λ

]
,
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because the other irreps of SN−1 × SM contained in the irrep (λ, λ+) of SN × SM have no
overlap with the irrep (λ, λ) of SN−1 × SM−1.

By inducing λ from SM−1 to SM , we get

tr
[
ΠN,M
λ,λ+

ρN−1,M−1
λ,λ

]
+ tr

[
ΠN,M
λ+,λ+

ρN−1,M−1
λ,λ

]
=

dMλ+

MdM−1
λ

. (6.12)

By inducing λ from SN−1 to SN , we get

tr
[
ΠN,M
λ+,λ+

ρN−1,M−1
λ,λ

]
=

dNλ+

NdN−1
λ

. (6.13)

By subtracting Equation (6.13) from Equation (6.12), we get

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ+

]
=
dMλ+d

N−1
λ

M
−
dNλ+d

M−1
λ

N
.

Because of Equation (6.9),

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ+

]
= O

(
dMλ+d

N−1
λ

MN

)
. (6.14)

By substituting this into Equation (6.11), we get ∆2,2 = O
(

1
N

)
.

Last, we have to bound ∆1,2 and ∆2,1. Similarly to Equation (6.8), we have

∆i,j =
Mγ|λ|+1

dN−1,M
λ,λ+

tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,i←j

]
+ O

(
1

N

)
.

By using Lemma 6.8 and Equations (6.10) and (6.14), we get

∆i,j = O

(
1√
N

)
.

We have shown that ∆i,j = O
(

1√
N

)
for all i, j. Therefore, ‖∆‖ = O

(
1√
N

)
.

Case (λ, λ++). This irrep of SN−1 × SM has multiplicity three, so we need to bound the
elements of a 3 × 3 matrix. Let (λ, λ++, 1) denote the copy of the irrep that lies inside the
irrep (λ, λ++) of (SN × SM ), (λ, λ++, 2) be the copy that lies inside the irrep (λ+, λ++) of
(SN × SM ), and (λ, λ++, 3) be the copy that lies inside the irrep (λ′+, λ++) of (SN × SM ),
where λ+ and λ′+ correspond to the two different ways a box can be added to λ. Since these
two last copies have exactly the same structure, they can be treated similarly and we really
need to compute only 4 different matrix elements (2 diagonal elements and 2 non-diagonal
elements). Let us also note that none of these copies are contained in bad irreps of SN × SM .

Let us now denote ∆λ,λ++

i by ∆, and index the rows and columns of this matrix by the
three copies of the irrep. Note that the irrep (λ, λ++) of SN−1 × SM restricts to three valid
irreps of SN−1 × SM−1: (λ, λ++), (λ, λ+) and (λ, λ′+). Also only these last two irreps induce
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to bad irreps of SN × SM , (λ+, λ+) and (λ′+, λ′+), respectively. Therefore, we have for the
first diagonal element

∆1,1 =
γ|λ|+1

dN−1,M
λ,λ++

∑
y

{
tr
[
Πi
yΠ

N,M
λ+,λ+

Πi
yΠ

N−1,M
λ,λ++,1

]
+ tr

[
Πi
yΠ

N,M

λ′+,λ′+
Πi
yΠ

N−1,M
λ,λ++,1

]}

=
2Mγ|λ|+1d

N−1,M−1
λ,λ+

dN−1,M
λ,λ++

tr
[
ΠN,M
λ+,λ+

ρN−1,M−1
λ,λ+

]
· tr
[
ΠN−1,M
λ,λ++,1

ρN−1,M−1
λ,λ+

]
.

Studying as before the overlap of ρN−1,M−1
λ,λ+

over the irreps of SN × SM , we obtain for the two
traces

tr
[
ΠN,M
λ+,λ+

ρN−1,M−1
λ,λ+

]
≤

dMλ+

MdM−1
λ+

, (6.15)

tr
[
ΠN−1,M
λ,λ++,1

ρN−1,M−1
λ,λ+

]
= tr

[
ΠN,M
λ,λ++ρ

N−1,M−1
λ,λ+

]
≤

dNλ+

NdN−1
λ+

, (6.16)

and in turn

∆1,1 ≤
2Mγ|λ|+1d

N
λ+d

M
λ+

NdN−1
λ+

dM
λ++

= O

(
1

MN

)
.

For the second diagonal element, we find similarly

∆2,2 =
γ|λ|+1

dN−1,M
λ,λ++

∑
y

{
tr
[
Πi
yΠ

N,M
λ+,λ+

Πi
yΠ

N−1,M
λ,λ++,2

]
+ tr

[
Πi
yΠ

N,M

λ′+,λ′+
Πi
yΠ

N−1,M
λ,λ++,2

]}

=
Mγ|λ|+1d

N−1,M−1
λ,λ+

dN−1,M
λ,λ++

tr
[
ΠN,M
λ+,λ+

ρN−1,M−1
λ,λ+

]
·
{

tr
[
ΠN−1,M
λ,λ++,2

ρN−1,M−1
λ,λ+

]
+ tr

[
ΠN−1,M
λ,λ++,2

ρN−1,M−1

λ,λ′+

]}
≤

2γ|λ|+1d
M
λ+

dM
λ++

= O

(
1

M

)
,

where we have used Equation (6.16) and the fact that the other overlaps are at most 1.
Using exactly the same arguments, we find for the non-diagonal elements

|∆1,2| ≤
2γ|λ|+1d

M
λ+

dM
λ++

√
dN
λ+

NdN−1
λ+

= O

(
1

M
√
N

)
,

|∆2,3| ≤
2γ|λ|+1d

M
λ+

dM
λ++

= O

(
1

M

)
.

Since the irreps (λ, λ++, 2) and (λ, λ++, 3) are of the same type, we also have ∆3,3 = O(1/M)

and ∆1,3 = O
(

1/(M
√
N)
)

. Therefore, all elements of ∆ are at most O(1/M), so that ‖∆‖ =

O(1/M).

Finally, since the matrices corresponding to all irreps have norm at most O
(

1/
√
N
)

, we

have from Theorem 6.7 that
∥∥∥Γ̃i − Γ̃

∥∥∥ = O
(

1/
√
N
)

, and in turn

Qε(Index Erasure) = Ω
(

(
√

1− ε−
√
N/M)2

√
N
)
.
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6.5 Summary

In this Chapter, we showed that the multiplicative adversary bound satisfies a strong direct
product even for quantum state generation problems. We also examined how to use the
adversary methods on specific problems, in particular we gave simple expressions when the
automorphism group of a function is multiplicity-free. We then applied these formulas to re-
derived the bounds for Search, (which gives an illustration of the differences between the
adversary methods) and a tight lower bound for Index Erasure.
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7 Perspectives

7.1 Cryptographic primitives

The quest is now to find practical schemes for implementing quantum primitives. Bit commit-
ment and coin flipping face different challenges: indeed, we are interested in secure quantum bit
commitment based on “reasonable” assumptions. In this manuscript we unfortunately proved
that the physically grounded restriction to Gaussian states and Gaussian operations does not
allow security. Let us give two other approaches that could lead to secure bit commitment
under restrictions.

Gaussian bounded/noisy-storage model In a recent series of work, bit commitment and
oblivious transfer have been shown to been secure when both player have bounded or deficient
memories [DFSS08, WW08, WST08]. However, the proposed protocols involve qubits, single
photon source and single photon detectors. Following the footsteps of quantum key distribu-
tion, proposing protocols with Gaussian variables could lead to efficient protocols. It appears
that the study of security of such protocols requires new ideas. For example what is the good
definition of “bounded” memory for continuous variables? If one tries to limit the number
of modes, each of them being described by an infinite-dimensional vector, the overall Hilbert
space is still unbounded, thus no real limitation is achieved. In these models, security can
be proved by using a strong converse Shannon coding theorem [KW09]. Very few results are
known in the continuous case, even for Gaussian channels. Such results would have strong
impacts in the study of continuous variables cryptography.

Almost Gaussian bit commitment To go beyond Gaussian bit commitment we wish to find
another model, with physical significance, that allows bit commitment. Mandilara and Cerf
[MC11] proposed an extension to the Gaussian model by allowing a non-Gaussian gate (in
this case photon subtraction) that only succeeds with bounded probability. They introduced
a protocol which is more a proof-of-concept than a proposal for an actual protocol and proved
as a first step that it is secure against Gaussian attacks. The full study of the security remains
to be done and this idea deserves to be pushed further.

Let us point out that adding any non-Gaussian gate to Gaussian computation makes it
universal for quantum computing [LB99]. This leads to the following extension: consider a
set of gates that is not universal for quantum computing (e.g. Clifford operation for discrete
variables, Gaussian operations for continuous variables) and one extra gate that makes the set
universal (CNOT for DV, cubic gate for CV) but which can only be implemented with bounded
probability. Can one construct a secure bit commitment protocol in this setting? The idea is
that when preparing states, the probabilistic gate can be repeated as long a desired, but not
when trying to cheat. Such a model is strongly grounded for the CV case and might also be
relevant in the DV one.

Weak coin flipping The situation is quite different for weak coin flipping. If one tries to
construct a protocol directly from the point games, it will be ridiculous in term of resources
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(qubits, circuit size, and number of rounds). Finding protocols with more constrained resources
seems the next step. In particular, the recursive structure of the ladder seems to imply that
such protocols may exist. Another direction is to prove better bounds on the number of rounds
needed to achieve a bias ε than the current lower bound of log log 1/ε [Amb04]. Only when
such protocols will be discovered, it will be interesting to study practical questions that arise
from implementation: detector efficiency, loss in the communication channel, imperfection of
memories, etc. It would also be interesting to know if the proof of arbitrary small bias can still
be adapted to take care of these effects, or if it will stay a Grail for unconditional security.

7.2 Query complexity

We proved that the multiplicative method is the strongest method we currently have to prove
lower bounds for the quantum query complexity. Nevertheless this method is quite challenging
to use, this is why we gave an easier formulation in term of representation theory when problems
are multiplicity free.

Graph Isomorphism We extended the adversary methods to prove lower bounds for quantum
state generation problems and demonstrated the power of our method by proving a tight lower
bound for Index Erasure. This did not specifically address Graph Isomorphism since an
exponential lower bound was already known using this approach. However we now have at
our disposal a powerful new tool to rule out many more “state generation” approaches in the
query complexity model. The next step is to consider more powerful approaches than Index
Erasure for which we did not assume any structure to the problem. One elegant solution
would be to prove lower bounds for the Component Superposition problem introduced in
[Lut11]. This would have implication for Graph Isomorphism as well as on the study of
counterfeiting quantum money [FGH+10].

Lower bound for Element Disctinctness The optimal lower bounds for Element Distinct-
ness and Collision have been proved by the polynomial method [AS04]. Unfortunately it
is not know how to extend those proofs to related problems like k-Element Distinctness.
The reduction from the polynomial method to the multiplicative adversary method offers a
new hope to prove those lower bounds. The first step is naturally to reprove the bound for
Element Distinctness using the adversary method, and in a second step to generalize it.

Time-space tradeoff for Element Distinctness We made a significant step in proving that
the quantum query complexity obeys a strong direct product theorem, the proof has then
been completed in [LR11]. However this proof holds only for functions and not for quantum
state generation problems. One possible application of this theorem is for proving a time-space
tradeoff for Element Distinctness. Indeed, such tradeoff for multi output problems, such
as Sorting, were proved using SDPTs. The k independent instances of a function f are
encoded in Sorting such that the k outputs can be deduced from the sorted array. Then the
space constraint combined to the SDPT gives the time-space tradeoff. For a decision problem
however, such as Element Distinctness, this approach fails. One needs a measure on the
progress based on the intermediate quantum states. We hope our approach can contribute to
this quest.
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A Phase-space representation and Wigner function

In this Appendix we introduce another description of continuous variables states and operation:
the phase-space description. This gives a formal justification to the introduction of covariance
and symplectic matrices for Gaussian states.

A.1 Characteristic and Wigner functions

Definition A.1 (The operators X and P ) For j ∈ [n], define the operators Xj , Pj : L2(Rn) →
CRn that act on a function ψ ∈ L2(Rn) by

• ∀(x1, . . . , xn) ∈ Rn, Xj [ψ](x1, . . . , xn) = xjψ(x1, . . . , xn),

• ∀(x1, . . . , xn) ∈ Rn, Pj [ψ](x1, . . . , xn) = −i ∂ψ∂xj (x1, . . . , xn).

Definition A.2 (Characteristic function) Let ξ = (α1, β1, . . . , αn, βn) ∈ R2n. Define the Weyl
operator Vξ on L2(Rn) by:

Vξ = exp

{
n∑
i=1

αiXi + βiPi

}
.

The characteristic function of a trace-class operator A is

χA : ξ 7→ tr[AVξ].

The Weyl operator, is sometimes called the displacement operator. For example let |ψ〉 ∈
L2(R), then V(α,0)|ψ〉 is the function: x 7→ ψ(x − α). Consider another example: let ρ be
a density operator on n modes, and ζ a 2n-dimensional vector, the χ

VζρV
†
ζ

(ξ) = χρ(ξ − ζ).

Details of these derivations can be found in [GPS07].

The vector ξ belongs to a 2n-dimensional real space called the phase-space. The phase-
space is actually a good model to analyze CV systems since any trace-class operator can be
reconstructed from its characteristic function, this is the Weyl-Wigner isomorphism:

A =
1

(2π)n

∫
χA(−ξ)Vξdξ.

Though all the computations in the phase-space can be done using the characteristic function,
it is often easier to use the Wigner function which is its Fourier transform:

WA(ξ) =
1

(2π)n

∫
χA(ζ) exp

{
iξTΩζ

}
dζ,

where Ω =

(
0 1
−1 0

)⊕n
.
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It is also very useful to compute the trace of a state from its Wigner function. Let A and
B be two trace-class operators, we have:

tr[A] =

∫
R2n

WA(ξ)dξ,

tr[AB] = (2π)n
∫
R2n

WA(ξ)WB(ξ)dξ.

This latest formula has some practical implications. For example, it can be used to compute
the purity of a state ρ by taking A = B = ρ, that is

tr(ρ2) = (2π)n
∫
R2n

dξWρ(ξ)
2,

or the fidelity between a mixed state ρ and a pure state |ψ〉〈ψ|:

F(ρ, |ψ〉〈ψ|)2 = 〈ψ|ρ|ψ〉 = tr[ρ|ψ〉〈ψ|] = (2π)n
∫
R2n

Wρ(ξ)W|ψ〉〈ψ|(ξ)dξ.

This is also how is computed the Wigner function of the partial trace of an operator. Let ρAB
be a bipartite state with n+m modes and denote by ρA = trB(ρAB), then

WρA(ξA) =

∫
R2m

WρAB

(
ξA
ξB

)
dξB.

A.2 Gaussian states

Definition A.3 (Gaussian states) An n-mode Gaussian state is a state whose Wigner function
is a multivariate normal distribution, that is:

Wρ(ξ) =
1

πn
√

det γ
exp

{
−(ξ − µ)Tγ−1(ξ − µ)

}
,

where γ is a covariance matrix satisfying γ + iΩ � 0 and µ is a 2n-dimensional real vector
called the mean vector.

Representing a 1-mode state in the phase-space requires a 3D-plotting. It is often easier
to represent them in a 2-dimensional plane spanned by x and p with a contour plot. The plot
represents the variance of a state, see e.g. Figure A.1.

Two-mode squeezed states Recall that a two mode squeezed state is given by a null mean
vector and a covariance matrix

ν 0
√
ν2 − 1 0

0 ν 0 −
√
ν2 − 1√

ν2 − 1 0 ν 0

0 −
√
ν2 − 1 0 ν

 .

We can now understand why this state is similar to the EPR pair. In the limit r → ∞, this
Wigner function of the state would be given by Dirac deltas: (x1, p1, x2, p2) 7→ δ(x1−x2)δ(p1 +
p2), meaning that the value of x1 and x2 are perfectly correlated, as the value of any projective
measurement of a shared EPR pair are perfectly correlated. Unfortunately such states do not
exist since they would require an infinite squeezing, hence infinite energy. This is why using
CV EPR pair, the value of the measurements are approximately correlated.
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x

p

|α〉

<α/
√

2

Imα/
√

2

1|0〉v

ρth(v)

Figure A.1: Phase-space representations of the vacuum state |0〉, a coherent state centered on α and a
thermal state of variance v. The diameter of the circles represent the variance of the Wigner function.

A.3 Operations

Gaussian unitary Let ρ be a n-mode Gaussian state and U be Gaussian unitary acting on n
modes and characterized by a symplectic matrix S and a displacement vector d, then for all
ξ ∈ R2n:

WUρU†(ξ) = Wρ(S
T ξ − d).

Homodyne measurement The homodyne measurement of one mode is the measurement of
the value of one quadrature of this mode (x or p). Since these values are continuous, the
outcomes of the measurement are given by a continuous probability distribution P which
corresponds the marginal of the Wigner function over the other quadrature:

P (x) =

∫
R
W (x, p)dp.

Partial measurement When considering multimode states, the partial measurement of some
of the mode is a Gaussian operation. Consider a bipartite Gaussian state with covariance ma-

trix γAB =

(
γA C
CT γB

)
and a mean vector µ = µA⊕µB. Denote by µm = (x1, 0, x2, 0, . . . , xnB , 0)

the values of the homodyne measurements on the “B” modes, then the resulting state on A
conditionally on the outcome µB on B is described a covariance matrix

γA − C(∆γB∆)−1CT

where ∆ =

(
1 0
0 0

)⊕nB
and the inverse is taken only on the range of the matrix. The mean

vector reads,

C(∆γB∆)−1CT (µm − µB) + µA.
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B Additional constraint on the dual feasible points

Lemma B.1 P ∗A = inf α and P ∗B = inf β where the infinimum is taken over all dual feasible
points.

The difference between this lemma and Theorem 4.4, is the condition ° of that the dual
feasible points should obey. We will now prove that for all set of matrices {ZA,i} that satisfy
the constraints ¬ to ¯ and all ε > 0, there exists a set of matrices {Z ′A,i} that satisfy the
constraints ¬ to ° with α = tr(Z ′A,0ρ0) = tr(ZA,0ρ0) + ε.

Fix {ZA,0, . . . , ZA,n} a set of matrices that satisfies the constraints ¬ to ¯ and ε > 0. The
proof relies on the following fact: there exists Λ > 0 such that:

Z ′A,0 = (〈ψA,0|ZA,0|ψA,0〉+ ε)|ψA,0〉〈ψA,0|+ Λ(I− |ψA,0〉〈ψA,0|) � ZA,0.

For all i > 0, define Z ′A,i = ZA,i. We now prove that the set of matrices {Z ′A,0, . . . , Z ′A,n}
satisfies the constraints 1) to 6). Since |ψA,0〉 is an eigenvector of Z ′A,0 of the eigenvalue α =
tr(ZA,0ρ0) + ε, the constraint 6) is satisfied. Moreover, Z ′A,0 � ZA,0 so Z ′A,0⊗ IM � ZA,0⊗ IM
so constraint 2) is also satisfied. (All the other constraints involves only matrices Z ′A,i for i > 0
so they are satisfied by definition of the Z ′A,i.

The only one thing left to do is to prove the previous claim, that is for a well chosen Λ, we
have Z ′A,0 � ZA,0. Let |φ〉 a vector in A, then it can be decomposed as |φ〉 = a|ψA,0〉+ b|ψ⊥〉
where 〈ψA,0|ψ⊥〉 = 0. We can restrict ourselves to b ∈ R and |a|2 + |b|2 = 1, thus we have:

〈φ|Z ′A,0 − ZA,0|φ〉 = |a|2 ε+ |b|2 (Λ− 〈ψ⊥|ZA,0|ψ⊥〉)− 2b<(a〈ψ⊥|ZA,0|ψA,0〉) (B.1)

This expression is always non negative for a Λ big enough that we will explicit later on. This
Λ is independent of |φ〉, i.e. a, b and |ψ⊥〉. We have the following cases:

• a = 0. We want Λ ≥ 〈ψ⊥|ZA,0|ψ⊥〉 for all |ψ⊥〉. This is possible by choosing Λ ≥ ‖ZA,0‖.
Let us assume now assume that a 6= 0.

• a 6= 0. Let us see Equation (B.1) as a polynomial in b. The leading coefficient being
non negative, we need to show that the discriminant is negative for Λ large enough.
The discriminant reads 4<(a〈ψ⊥|ZA,0|ψA,0〉)2 − 4 |a|2 ε(Λ − 〈ψ⊥|ZA,0|ψ⊥〉). Since for
any complex number x, <(x) ≤ |x|, it is sufficient to prove that for Λ large enough

we have, |a|2
∣∣〈ψ⊥|ZA,0|ψA,0〉∣∣2 − |a|2 ε(Λ − 〈ψ⊥|ZA,0|ψ⊥〉) ≤ 0. Since a 6= 0, we want

Λ ≥ 1
ε (
∣∣〈ψ⊥|ZA,0|ψA,0〉∣∣2 − 〈ψ⊥|ZA,0|ψ⊥〉). This is done by choosing Λ ≥ ‖ZA,0‖2 /ε.

Choosing Λ such that Λ ≥ ‖ZA,0‖ and Λ ≥ ‖ZA,0‖2 /ε concludes the proof.
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C Time independent point game achieving bias ε

Finally in this appendix, we present Carlos Mochon’s construction of a time independent point
game with final point [1/2 + ε, 1/2 + ε], but we do not give detail of the proof. They can all
be found in [Moc07]. More precisely for any k > 1, we will construct a family of games with

final points converging to
[
k+1
2k+1 ,

k+1
2k+1

]
. Each of these games can be seen as a game with 3

transitions: a split, a ladder and a raise.

C.1 Overview of the game

We now proceed to the construction of a time independent point game, i.e. we simply have
to place weighted points on the plane. Since we want to construct a game corresponding to
a weak coin flipping protocol, all the points (except the initial ones and the final one) should
have total weight 0. That is if a point in the horizontal function has some weight w, it should
have weight −w as seen as a point of the vertical function.

To make this simpler, we will only consider symmetric games, i.e. the horizontal function
h and the vertical function v will satisfy:

v(x, y) = −h(x, y) and also h(x, y) = −h(y, x). (C.1)

except for final and initial points.
To simplify the analysis even further, we also add another constraint on the points. Except

the initial points [0, 1] and [1, 0] all the points are placed on a regular 2D grid of step ω i.e.
every points can be written [aω, bω] for some a, b ∈ N.

ζω

1

Γω

ζω 1 Γω

ζω

1

Γω

ζω 1 Γω

ζω

1

Γω

ζω 1 Γω

Figure C.1: Schematic representation of the game. The initial points are in black, the final points are
colored in red if they are part of the horizontal ladder and in green of the vertical ladder. The arrows
represents the idea of the movements of the points. a) Each point is split into many points (represented
by a line) on their axes. b) The ladder combines the points on the axes into 2 points. c) The raises
create the final point of the game.
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C. Time independent point game achieving bias ε

We will consider a 3 step game:

Split: The point [0, 1] will be split into points on the vertical axis between the position ζω and
Γω. (same treatment for [1, 0]). See a) in Figure C.1.

Ladder of width k: This transition mixed the points on the axes and has two final points in
position [ζω − kω, ζω] and [ζω, ζω − kω]. See b) in Figure C.1.

Raises The two points are raised into a final point [ζω, ζω]. See c) in Figure C.1.

More formally the game will be:

1

2
[0, 1] +

1

2
[1, 0]

split−→
Γ∑
j=ζ

split(j)[0, jω] +

Γ∑
j=ζ

split(j)[jω, 0] (C.2)

ladder−→ 1

2
[ζω − kω, ζω] +

1

2
[ζω, ζω − kω] (C.3)

raises−→ 1[ζω, ζω]

C.2 Ladder

A ladder of width k is a repetitive pattern along the main diagonal for h and v, with 2k + 1
points on each level. A rung in the ladder, is the horizontal part of it, i.e.

∑
x h(x, y) for some

y. As previously discussed we will consider a symmetric ladder. Equation C.1 implies that
there are no point on the main diagonal: ∀z, h(z, z) = v(z, z) = 0. If h is valid function, then
v will be valid too. This is why we focus our attention on the horizontal part of the ladder.

The ladder have rungs from height z∗ = ζω to Γω, each rung will have 2k points centered on
the diagonal and one point on the y-axis. More formally for ζ < j0 < Γ, the x-axis coordinate
of the points of the rung at height j0ω are

{0, (j0 − k)ω, (j0 − k + 1)ω, . . . , (j0 − 1)ω, (j0 + 1)ω, . . . , (j0 + k − 1)ω, (j0 + k)ω} . (C.4)

Some principles governing the ladder are represented in Figure C.2. First in a), we give a
schematic representation of all the points defined in (C.4) that are the horizontal part of the
ladder. The vertical part is constructed using the symmetry relation (C.1) we imposed. Both,
the horizontal part and the vertical part of the ladder are represented in Figure b). All the
points that are located on the overlap of the two parts of the ladder have total weight 0. There
a then only a few remaining points: the initial points on the axes, the final points in [ζω] and
4 “triangles”.

To choose the weight on the point of the ladder, we use the following lemma that is
extremely useful to construct valid functions:

Lemma C.1 ([Moc07]) Let x1, . . . , x2k+1 ∈ R+ be different points, f ∈ R [X] be a real polyno-
mial such that:

• the absolute value of its leading coefficient is 1,

• deg(f) ≤ 2k − 1,

• ∀λ < 0, f(λ) > 0,
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C.3. Splits

ζω

1

Γω

ζω 1 Γω

ζω

1

Γω

ζω 1 Γω

ζω

1

Γω

ζω 1 Γω

Figure C.2: Schematic construction of the ladder. a) The horizontal part of the ladder. b) Superposition
of the horizontal part and the vertical part of the ladder. By symmetry, the sum of the weights of the
point in the overlap is 0. Except the final points, the weights of the points in the 4 “triangle” with no
overlap will be set to 0 by truncation. c) All the points actually involved in the ladder transition

then ∀C > 0 the function hrung defined by:

hrung =

2k+1∑
i=1

−C · f(xi)∏
j 6=i

(xj − xi)
[xi] (C.5)

is a valid function.

This is how we get rid of the 4 “triangles”. We use the previous lemma in order to put
weights on the points in the ladder, except the one in the triangle, that is we impose the
polynomial to be 0 on these points. There is then only on way (up to a constant C) to set up
weights on the ladder, and the horizontal function is thus:

hlad =
Γ∑
j=ζ

 −C · f(0, jω)∏k
l=−k[(j + l)ω]

[0, jω] +
k∑

i=−k
i 6=0

C · f((j + i)ω, jω)

((j + i)ω)(jω)
∏
l 6=i
l 6=0

[ω(l − i)]
[(j + i)ω, jω]

 , (C.6)

where f is the polynomial defined by its zeros being on the points in the “triangles”:

f(x, y) = (−1)k+1
k−1∏
i=1

(z∗ − iω − x) (z∗ − iω − y)
k∏
i=1

(Γω + iω − x) (Γω + iω − y) .

C.3 Splits

Notice that Equation (C.6) also defines the weight on the points of the splits:

split(j) =
C · f(0, jω)∏k
l=−k[(j + l)ω]

.
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C. Time independent point game achieving bias ε

The last remaining part is to check that the splits are valid. More precisely, we show that
the ladder is high enough, and the steps ω small enough, the splits are strictly valid for all
z∗ > k+1

2k+1 .

Lemma C.2 (The splits are strictly valid [Moc07]) We can chose ω and Γ such that if z∗ > k+1
2k+1 ,

the functions

hsplit =
Γ∑
j=ζ

split(j)[jω, 0]− 1

2
[1, 0] and vsplit =

Γ∑
j=ζ

split(j)[0, jω]− 1

2
[0, 1]

are strictly valid functions for

C =
1

2
·


Γ∑
j=ζ

−f(0, jω)
k∏

l=−k
ω (j + l)


−1

.

126



Bibliography

[Aar02] Scott Aaronson. Quantum lower bound for the collision problem. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing, pages 635–642.
ACM, 2002. arXiv:quant-ph/0111102, doi:10.1145/509907.509999. [1.4.3]

[Aar11] Scott Aaronson. A linear-optical proof that the permanent is #P-hard. In
Proceedings of the Royal Society A. Royal Society Publishing, 2011. arXiv:

1109.1674, doi:10.1098/rspa.2011.0232. [1.2.3]

[ABDR04] Andris Ambainis, Harry Buhrman, Yevgenity Dodis, and Hein Rörig. Multiparty
quantum coin flipping. In Proceedings of the 19th IEEE Annual Conference
on Computational Complexity, pages 250–259. IEEE Computer Society, 2004.
arXiv:quant-ph/0304112, doi:10.1109/CCC.2004.19. [1.3.2, 4.1.2, 4.1.3]
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[AMRR11] Andris Ambainis, Löıck Magnin, Martin Roetteler, and Jérémie Roland.
Symmetry-assisted adversaries for quantum state generation. In Proceedings
of the 26th Annual IEEE Conference on Computational Complexity, pages 167–
177, San Jose, CA, USA, 2011. IEEE Computer Society. arXiv:1012.2112,
doi:10.1109/CCC.2011.24. [1.4.5]

[AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and
the element distinctness problems. Journal of the ACM, 51(4):595–605, 2004.
doi:10.1145/1008731.1008735. [1.4.3, 1.4.3, 1.2, 7.2]
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[BCJL93] Gilles Brassard, Claude Crépeau, Richard Jozsa, and David Langlois. A quan-
tum bit commitment scheme provably unbreakable by both parties. In Proceed-
ing of the 34th Annual IEEE Symphosium on Foundations of Computer Science,
pages 42–52, 1993. Available from: crypto.cs.mcgill.ca/~crepeau/COMP647/
2007/TOPIC04/BCJL93.pdf, doi:10.1109/SFCS.1993.366851. [1.3.1]

[BCWdW01] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum
fingerprinting. Physical Review Letters, 87:167902, 2001. arXiv:quant-ph/

0102001, doi:10.1103/PhysRevLett.87.167902. [1.4.4]

[Bel64] John S. Bell. On the Einstein Podolsky Rosen paradox. Physics, 1(3):195–200,
1964. [1.1.1]

[Bha97] Rajendra Bhatia. Matrix analysis, volume 169 of Graduate texts in mathematics.
Springer-Verlag, 1997. [4.22]

[BHK+11] Gilles Brassard, Peter Høyer, Kassem Kalach, Marc Kaplan, Sophie Laplante,
and Louis Salvail. Merkle puzzles in a quantum world. In Proceedings of the 31st
International Cryptology Conference, volume 6841 of Lecture Notes in Computer
Science, pages 391–410. Springer Berlin / Heidelberg, 2011. arXiv:1108.2316,
doi:10.1007/978-3-642-22792-9_22. [1.4.5]

[Blu83] Manuel Blum. Coin flipping by telephone a protocol for solving impossible
problems. SIGACT News, 15:23–27, 1983. doi:10.1145/1008908.1008911.
[1.3.2]

[BR03] Alonso Botero and Benni Reznik. Modewise entanglement of Gaussian states.
Physical Review A, 67(5):052311, 2003. arXiv:quant-ph/0209026, doi:10.

1103/PhysRevA.67.052311. [2.3.3]

[Bra05] Gilles Brassard. Is information the key? Nature Physics, 1(1):2–4, 2005. arXiv:
10.1038/nphys134. [3.3]

[BS02] Stephen D. Bartlett and Barry C. Sanders. Efficient classical simulation of
optical quantum information circuits. Physical Review Letters, 89:207903, 2002.
doi:10.1103/PhysRevLett.89.207903. [1.2.1]

[BS04] Howard Barnum and Michael Saks. A lower bound on the quantum query
complexity of read-once functions. Journal of Computer and System Sciences,
69(2):244–258, 2004. arXiv:quant-ph/0201007, doi:10.1016/j.jcss.2004.
02.002. [1.4.2]

129

www.cs.mcgill.ca/~crepeau/PS/BBCS92.ps
crypto.cs.mcgill.ca/~crepeau/COMP647/2007/TOPIC04/BCJL93.pdf
crypto.cs.mcgill.ca/~crepeau/COMP647/2007/TOPIC04/BCJL93.pdf
http://dx.doi.org/10.1109/SFCS.1993.366851
http://arxiv.org/abs/quant-ph/0102001
http://arxiv.org/abs/quant-ph/0102001
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://arxiv.org/abs/1108.2316
http://dx.doi.org/10.1007/978-3-642-22792-9_22
http://dx.doi.org/10.1145/1008908.1008911
http://arxiv.org/abs/quant-ph/0209026
http://dx.doi.org/10.1103/PhysRevA.67.052311
http://dx.doi.org/10.1103/PhysRevA.67.052311
http://arxiv.org/abs/10.1038/nphys134
http://arxiv.org/abs/10.1038/nphys134
http://dx.doi.org/10.1103/PhysRevLett.89.207903
http://arxiv.org/abs/quant-ph/0201007
http://dx.doi.org/10.1016/j.jcss.2004.02.002
http://dx.doi.org/10.1016/j.jcss.2004.02.002


Bibliography

[BSBN02] Stephen D. Bartlett, Barry C. Sanders, Samuel L. Braunstein, and Kae Nemoto.
Efficient classical simulation of continuous variable quantum information pro-
cesses. Physical Review Letters, 88(9):097904, 2002. arXiv:quant-ph/0109047,
doi:10.1103/PhysRevLett.88.097904. [1.2.1]

[BV97] Ethan. Bernstein and Umesh V. Vazirani. Quantum complexity the-
ory. SIAM Journal on Computing, 26(5):1411–1473, 1997. Avail-
able from: www.cs.berkeley.edu/~vazirani/pubs/bv.ps, doi:10.1137/

S0097539796300921. [1.2.3]

[BvL05] Samuel L. Braunstein and Peter van Loock. Quantum information with con-
tinuous variables. Reviews of Modern Physics, 77:513–577, 2005. arXiv:

quant-ph/0410100, doi:10.1103/RevModPhys.77.513. [1.2.1]

[Cam99] Peter James Cameron. Permutation Groups, volume 45 of London Mathematical
Society Student Texts. Cambridge University Press, 1999. [6.2.1]

[CBH03] Rob Clifton, Jeffrey Bub, and Halvorson Hans. Characterizing quantum theory
in terms of information-theoretic constraints. Found. Phys, 33(11):1561–1591,
2003. arXiv:quant-ph/0211089, doi:10.1023/A:1026056716397. [3.3]

[CEMM98] Richard Cleeve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quan-
tum algorithms revisited. In Proceedings of the Royal Society A, volume 454,
pages 339–354, 1998. arXiv:quant-ph/9708016, doi:10.1098/rspa.1998.

0164. [1.2.3]

[Cha87] David Chaum. Demonstrating that a public predicate can be satisfied without
revealing any information about how. In Proceedings on Advances in cryptol-
ogy, pages 195–199. Springer-Verlag, 1987. Available from: http://crypto.cs.
mcgill.ca/~crepeau/COMP647/2007/TOPIC05/Chaum.pdf. [1.3.1]
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[Mag06] Löıck Magnin. Cryptographie avec des variables continues. Master’s thesis,
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