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Abstract—We introduce a new quantum adversary method
to prove lower bounds on the query complexity of the quantum
state generation problem. This problem encompasses both, the
computation of partial or total functions and the preparation
of target quantum states. There has been hope for quite some
time that quantum state generation might be a route to tackle
the GRAPH ISOMORPHISM problem. We show that for the
related problem of INDEX ERASURE our method leads to a
lower bound of square root of N which matches an upper bound
obtained via reduction to quantum search on N elements. This
closes an open problem first raised by Shi [FOCS’02].

Our approach is based on two ideas: (i) on the one hand
we generalize the known additive and multiplicative adversary
methods to the case of quantum state generation, (ii) on the
other hand we show how the symmetries of the underlying
problem can be leveraged for the design of optimal adversary
matrices and dramatically simplify the computation of adver-
sary bounds. Taken together, these two ideas give the new result
for INDEX ERASURE by using the representation theory of the
symmetric group. Also, the method can lead to lower bounds
even for small success probability, contrary to the standard
adversary method. Furthermore, we answer an open question
due to Špalek [CCC’08] by showing that the multiplicative
version of the adversary method is stronger than the additive
one for any problem. Finally, we prove that the multiplicative
bound satisfies a strong direct product theorem, extending a
result by Špalek to quantum state generation problems.
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strong direct product theorem; index-erasure

INTRODUCTION

The query model provides a way to analyze quantum
algorithms including, but not limited to, those of Shor [1]
and Grover [2] as well as quantum walks, quantum counting,
and hidden subgroup problems. Traditionally, in this model
the input is a black-box function which can be accessed via
queries and the output is a classical value. The measure of
complexity of an algorithm is then defined as the number of
queries made by the algorithm. Studying the quantum query
complexity of functions is quite fruitful since the model is
simple enough that one can show tight bounds for several
problems and hence provides some intuition about the power
of quantum computing.

In this paper, we study a generalization of the query
model to include problems in which the input is still a
black-box function, however, the output is no longer a

classical value but a target quantum state. An example for
the resulting quantum state generation problem is INDEX
ERASURE. Here we are given access to an injective function
f : [N ] → [M ] and the task is to prepare the quantum
state 1√

N

∑N
x=1 |f(x)〉 using as few queries to f as possible.

The name “index erasure” stems from the observation that
while it is straightforward to prepare the (at first glance
perhaps similar looking) state 1√

N

∑N
x=1 |x〉|f(x)〉, it is

quite challenging to forget (“erase”) the contents of the first
register of this state which carries the input (“index”) of the
function.

In particular, this approach has been considered in [3] to
solve statistical zero knowledge problems, one ultimate goal
being to tackle GRAPH ISOMORPHISM [4]. The quantum
state generation problem resulting from the well-known
reduction of GRAPH ISOMORPHISM to INDEX ERASURE
would be to generate the uniform superposition of all the
permutations of a graph Γ:

|Γ〉 =
1√
n!

∑
π∈Sn

|Γπ〉.

By coherently generating this state for two given graphs,
one could then use the standard SWAP-test to check whether
the two states are equal or orthogonal, and therefore decide
whether the graphs are isomorphic or not. Such a method
for solving GRAPH ISOMORPHISM would be drastically
different from more standard approaches based on the re-
duction to the hidden subgroup problem, and might therefore
provide a way around serious limitations of the coset state
approach [5]. There has been hope for quite some time
that quantum state generation might be a route to tackle
the GRAPH ISOMORPHISM problem, however one of the
main results of this paper is that any approach that tries
to generate |Γ〉 without exploiting further structure1 of the
graph cannot improve on the simple O(

√
n!) upper bound

via search. More generally, we are interested in the query
complexity of the quantum state generation problem, in
which the amplitudes of the target quantum state can depend

1Indeed, here we assume that the only way to access the graph Γ would
be by querying an oracle that, given a permutation π, returns the permuted
graph Γπ .



on the given function in an arbitrary way. Subroutines for
quantum state generation might provide a useful toolbox
to design efficient quantum algorithms for a large class of
problems.

Adversaries: Lower bounds on the quantum query
complexity have been shown for a wide range of (classical
in the above sense) functions. Roughly speaking, currently
there are two main ideas for proving lower bounds on
quantum query complexity: the polynomial method [6], [7],
[8], [9], [10], [11] and the adversary method [12]. The latter
method has seen a sequence of variations, generalizations,
and improvements over the past decade including [13], [10],
[14], [15].

The basic idea behind the adversary method and its
variations is to define a progress function that monotonically
changes from an initial value (before any query) to a final
value (depending on the success probability of the algorithm)
with one main property: the value of the progress function
changes only when the oracle is queried. Then, a lower
bound on the quantum query complexity of the problem can
be obtained by bounding the amount of progress done by
one query.

Different adversary methods were introduced, but they
were later proved to be all equivalent [16]. They rely on
optimizing an adversary matrix assigning weights to differ-
ent pairs of inputs to the problem. While originally these
methods only considered positive weights, it was later shown
that negative weights also lead to a lower bound, which can
actually be stronger in some cases [17]. The relevance of
this new adversary method with negative weights, called
additive, was made even clearer when it was very recently
shown to be tight for the quantum query complexity of
functions in the bounded-error model [18], [19].

Nevertheless, for some problems other methods (such as
the polynomial method or other ad-hoc techniques) might
be easier to implement while also leading to strong bounds.
The additive adversary method also suffers from one main
drawback: it cannot prove lower bounds for very small
success probability. To circumvent it, Špalek introduced the
multiplicative adversary method [20] that generalizes some
previous ad-hoc methods [21], [22]. Being able to deal
with exponentially small success probability also allowed
to prove a strong direct product theorem for any function
that admits a multiplicative adversary lower bound [21],
[22], [20] (note that a similar result has recently been
proved for the polynomial method [23]). Roughly speaking,
it means that if we try to compute k independent instances
of a function using less than O(k) times the number of
queries required to compute one instance, then the overall
success probability is exponentially small in k. However,
Špalek left unanswered the question of how multiplicative
and additive methods relate in the case of high success
probability. In particular, it is unknown whether the strong
direct product theorem extends to the additive adversary

method, and therefore to the quantum query complexity of
any function since this method is known to be tight in the
bounded error model [19]. The quantum query complexity
of functions nevertheless satisfies a weaker property called
direct sum theorem, meaning that computing k instances
requires at least Ω(k) times the number of queries necessary
to solve one instance, but it is unknown how the success
probability decreases if less than O(k) queries are used.

Related work: We are not aware of techniques to
directly prove lower bounds for quantum state generation
problems, and the only lower bounds are based on reductions
to computing functions. One particular example is a lower
bound for the already mentioned INDEX ERASURE prob-
lem, which consists in generating the uniform superposition
over the image of an injective function. The best lower
bound comes from a Ω( 5

√
N/ logN) lower bound for the

SET EQUALITY problem [24], which consists in deciding
whether two sets of size N are equal or disjoint or, equiv-
alently, whether two injective functions over a domain of
size N have equal or disjoint images. This problem reduces
to INDEX ERASURE since by generating the superposition
over the image of the two functions, we can decide whether
they are equal or not using the SWAP-test. Therefore, this
implies the same Ω( 5

√
N/ logN) lower bound for INDEX

ERASURE. However, this lower bound is probably not tight,
neither for SET EQUALITY, whose best upper bound is
O( 3
√
N) due to the algorithm for COLLISION [25], nor for

INDEX ERASURE, whose best upper bound is O(
√
N) due

to an application of Grover’s algorithm fro SEARCH [2].
The question of the complexity of INDEX ERASURE has
first been raised by Shi [9] in 2002 and has remained open
until the present work.

Our results: The chief technical innovation of this
paper is an extension of both, the additive and multi-
plicative adversary methods, to quantum state generation
(Theorems 5 and 9). To do so, we give a geometric
interpretation of the adversary methods which is reminiscent
of the approach of [21], [20], where this is done for classical
problems. As a by-product we give elementary and arguably
more intuitive proofs of the additive and multiplicative
methods, contrasting with some rather technical proofs e.g.
in [17], [20].

In order to compare the additive and multiplicative adver-
sary bounds, we introduce yet another flavor of adversary
method (Theorem 7), which we will call hybrid adversary
method. Indeed, this method is a hybridization of the addi-
tive and multiplicative methods that uses “multiplicative”
arguments in an “additive” setup: it is equivalent to the
additive method for large success probability, but is also
able to prove non-trivial lower-bounds for small success
probability, overcoming the concern [20] that the additive
adversary method might fail in this case. We show that for
any problem, the hybrid adversary bound lies between the
additive and multiplicative adversary bounds (Theorem 11),



answering Špalek’s open question about the relative power
of these methods [20]. By considering the SEARCH problem
for exponentially small success probability, we also conclude
that the powers of the three methods are strictly increasing,
since the corresponding lower bounds scale differently as
a function of the success probability in that regime (Theo-
rem 19).

We then extend the strong direct product theorem for the
multiplicative adversary bound [20] to quantum state gener-
ation problems (Theorem 12). Since we have clarified the
relation between the additive and multiplicative adversary
methods, this also brings us closer to a similar theorem
for the additive adversary method. The most important
consequence would be for the quantum query complexity
of functions, which would therefore also satisfy a strong
direct product theorem since the additive adversary bound
is tight in this case [19]. However, it remains to prove some
technical lemma about the multiplicative bound to be able
to conclude.

As it has been previously pointed out many interesting
problems have strong symmetries [21], [22], [20]. We show
how studying these symmetries helps to address the two
main difficulties of the usage the adversary method, namely,
how to choose a good adversary matrix Γ and how to
compute the spectral norm of Γx − Γ (Theorem 17).
Following the automorphism principle of [17], we define
the automorphism group G of P , and its restrictions Gx,
for any input x to the oracle. We show how computing the
norm of Γx − Γ can be simplified to compute the norm
of much smaller matrices that depend only on the irreps
of G and Gx. For problems with strong symmetries, these
matrices typically have size at most 3 × 3 [21], [22], [20].
We have therefore reduced the adversary method from an
algebraic problem to the study of the representations of the
automorphism group.

Finally, we use our hybrid adversary method to prove a
lower bound of Ω(

√
N) for the quantum query complexity

of INDEX ERASURE (Theorem 20), which is tight due to
the matching upper bound based on Grover’s algorithm,
therefore closing the open problem stated by Shi [9]. To the
best of our knowledge, this is the first lower bound directly
proved for the query complexity of a quantum state genera-
tion problem. The lower bound is entirely based on the study
of the representations of the symmetric group, a technique
that might be fruitful for other problems having similar
symmetries, such as the SET EQUALITY problem [24], or
in turn some stronger quantum state generation approaches
to GRAPH ISOMORPHISM.

I. ADVERSARY METHODS: GENERAL CONCEPTS

A. Definition of the problem

In this section, we describe elements which are common
to all adversary methods. The goal of these methods is to
study the quantum query complexity of some problems in

the bounded-error model when we have access to an oracle
Of computing a function f : ΣI 7→ ΣO. In this article, we
will consider an oracle acting on two registers, the input
register I and the output register O, as:

|x〉I |s〉O
Of−→ |x〉I |s⊕ f(x)〉O,

where x ∈ ΣI and s, f(x) ∈ ΣO. Note that it is also possible
to consider other types of oracle, for example computing the
value of the function into the phase instead of into another
register, but these different models all lead to equivalent
notions of query complexity (up to a constant).

We denote by F the set of all possible functions f that
can be encoded into the oracle. We will consider three types
of problems P , a classical one and two quantum ones:

• Function: Given an oracle Of , compute the classical
output P(f). The success probability of an algorithm
A solving P is minf∈F Pr[A(f) = P(f)], where A(f)
is the classical output of the algorithm on oracle f .

• Coherent quantum state generation: Given an oracle
Of , generate a quantum state |P(f)〉 = |ψf 〉 in some
target register T , and reset all other registers to a default
state |0̄〉. Let |ψTf 〉 =

√
1− εf |ψf 〉|0̄〉+

√
εf |errf 〉 be

the final state of an algorithm A on oracle f , where
|errf 〉 ⊥ |ψf 〉|0̄〉 is some error state. Then, the success
probability of A is given by minf∈F (1− εf ).

• Non-coherent quantum state generation: Given an
oracle Of , generate a quantum state |P(f)〉 = |ψf 〉 in
some target register T , while some f -dependent junk
state may be generated in other registers. The success
probability of an algorithm A solving P is given by

minf∈F

∥∥∥Π|ψf 〉|ψTf 〉
∥∥∥2

, where |ψTf 〉 is the final state
of the algorithm and Π|ψf 〉 is the projector on |ψf 〉.

Let us note that computing a function is a special case
of non-coherent quantum state generation, where all states
|P(f)〉 are computational basis states. Indeed, no coherence
is needed since the state is in this case measured right after
its generation. However, when the quantum state generation
is used as a subroutine in a quantum algorithm for another
problem, coherence is typically needed to allow interferences
between different states. This is in particular the case for
solving SET EQUALITY via reduction to INDEX ERASURE,
and similarly to solve GRAPH ISOMORPHISM via the quan-
tum state generation approach, since coherence is required
to implement the SWAP-test.

Without loss of generality we can consider the algorithm
as being a circuit C consisting of a sequence of unitaries
U0, . . . , UT and oracle calls Of acting on the “algorithm”
Hilbert space A. A can be decomposed into three registers:
the input register I; the output register O for the oracle; and
an additional workspace register W .

At the end of the circuit, a target register T holds the
output of the algorithm. In the classical case, this register is



measured to obtain the classical output A(f). In the quantum
case, it holds the output state A(f).

In both cases, for a fixed algorithm, we note |ψtf 〉 the
state of the algorithm after the t-th query. The idea behind
the adversary methods is to consider that f is in fact an input
to the oracle. We therefore introduce a function register F
holding this input, and define a super-oracle O acting on
registers I ⊗ O ⊗ F as

|x〉I |s〉O|f〉F
O−→ |x〉I |s⊕ f(x)〉O|f〉F . (1)

We see that when the function register F is in state |f〉,
O acts on I ⊗ O just as Of . Suppose, just for the sake
of analyzing the algorithm, that we prepare register F in
the state |δ〉 = 1√

|F |

∑
f∈F |f〉, the uniform superposi-

tion over all the elements of F , and that we apply the
same circuit as before, by replacing each call to Of by
a call to O. Intuitively, each oracle call introduces more
entanglement between this new register and the algorithm
register. The state of this new circuit after the t-th query is
|Ψt〉 = 1√

|F |

∑
f∈F |ψtf 〉A|f〉F .

Note that only oracle calls can modify the state of the
function register F , since all other gates only affect the
algorithm register A = I ⊗ O ⊗ W . The general idea
of all adversary methods is to study the evolution of the
algorithm by looking at the reduced state of the input
register, ρt = trA|Ψt〉〈Ψt| = 1

|F |
∑
f,f ′∈F 〈ψtf ′ |ψtf 〉|f〉〈f ′|.

The algorithm starts with the state ρ0 = |δ〉〈δ| and ends in
a state ρT .

B. Adversary matrices and progress function

The adversary method studies how fast ρt can change
from ρ0 to ρT . We introduce a progress function in order to
do so.

Definition 1 (Adversary matrix). An adversary matrix Γ
is a Hermitian matrix such that Γ|δ〉 = |δ〉. An additive
adversary matrix also satisfies −I � Γ � I (i.e., ‖Γ‖ =
1), while a multiplicative adversary matrix satisfies Γ � I.
In both cases, the progress function is defined as W t =
tr [Γρt].

We will also use a matrix Γx derived from the adversary
matrix Γ and defined as follows (for both the additive and
the multiplicative case).

Definition 2 (Γx, Dx). For any adversary matrix Γ, let Γx =
Γ◦Dx, where ◦ denotes the Hadamard (element-wise) prod-
uct and Dx is the (0-1)-matrix Dx =

∑
f,f ′ δf(x),f ′(x)|f ′〉〈f |

where δ denotes the Kronecker’s delta.

We will show that the Hadamard product is closely related
to oracle calls: when the input register is in the state |x〉, the
oracle calls acts on the function register as the Hadamard
product with Dx. It is easy to check that this Hadamard
product is a CP-map.

Fact 3. The map γ 7→ γ ◦Dx is a CP-map and γ ◦Dx =∑
y Πx

yγΠx
y with Πx

y =
∑
f :f(x)=y |f〉〈f |.

The basic idea of all adversary methods is to bound how
much the value of the progress function can change by one
oracle call. To study the action of one oracle call, we isolate
the registers I and O holding the input and output of the
oracle from the rest of the algorithm register. Without loss
of generality, we may assume that for any oracle call, the
output register O is in the state |0〉O (computing oracle call)
or |f(x)〉O (uncomputing oracle call). Indeed, an oracle call
for any other state |s〉O may be simulated by one computing
oracle call, O(log |ΣO|) XOR gates and one uncomputing
oracle call. Therefore, this assumption only increases the
query complexity by a factor at most 2.

II. THE DIFFERENT ADVERSARY METHODS

A. Lower bounds

Definition 4 (ρ�, junk matrix). For a quantum state gen-
eration problem P such that |P(f)〉 = |ψf 〉, we denote
by ρ� the target state ρ� = 1

|F |
∑
f,f ′∈F 〈ψf |ψf ′〉|f ′〉〈f |.

In the non-coherent case, we call junk matrix any Gram
matrix M of size |F | × |F | such that Mij = 〈vi|vj〉, where
{vi : i ∈ [|F |]} is a set of unit vectors (or, equivalently, any
semi-definite matrix M such that Mii = 1 for any i ∈ [|F |]).
In the coherent case, we call junk matrix the all-1 matrix of
size |F | × |F |.

Theorem 5 (Additive adversary method [17]). Consider a
quantum algorithm solving P with success probability at
least 1− ε, and let Γ̃ be an additive adversary matrix such
that tr

[
Γ̃(ρ� ◦M)

]
= 0 for any junk matrix M . Then,

Qε(P) ≥ 1−C(ε)

maxx‖Γ̃x−Γ̃‖ where C(ε) = ε+ 2
√
ε(1− ε)

For classical problems, we now prove that our method
generalizes [17]. Indeed, our condition on the adversary ma-
trix is different, which allows us to also deal with quantum
problems. However, for classical problems, the following
lemma shows that the usual condition implies our modified
condition. Let P(f) be the function to be computed.

Lemma 6. tr
[
Γ̃(ρ� ◦M)

]
= 0 for any matrix M if and

only if Γ̃ff ′ = 0 for any f, f ′ such that P(f) = P(f ′).

The original adversary method can only prove a lower
bound when C(ε) < 1, that is, when the success probability
1−ε > 4

5 . For smaller success probability, we need to prove
a stronger bound on the final value of the progress function
W̃T . Inspired by the multiplicative adversary method [20],
we prove the following hybrid adversary bound.

Theorem 7 (Hybrid adversary method). Consider a quan-
tum algorithm solving P with success at least 1− ε. Let Γ̃
be any additive adversary matrix, Vbad be the direct sum
of eigenspaces of Γ̃ with eigenvalue strictly larger than



λ̃ < 1, and assume that tr [Πbad(ρ� ◦M)] ≤ η for any
junk matrix M , where Πbad is the projector on Vbad, and
0 ≤ η ≤ 1 − ε. We have Qε(P) ≥ K̃(Γ̃,λ̃,ε)

maxx‖Γ̃x−Γ̃‖ where

K̃(Γ̃, λ̃, ε) = (1− λ̃)(
√

1− ε−√η)2.

For classical problems, we can use the following lemma:

Lemma 8. Let Πbad be the projector on Vbad, Πz =∑
P(f)=z |f〉〈f |, and assume that ‖ΠzΠbad‖2 ≤ η for any

z. Then, tr [Πbad(ρ� ◦M)] ≤ η for any junk matrix M .

Theorem 9 (Multiplicative adversary method [20]). Con-
sider a quantum algorithm solving P with success at least
1−ε. Let Γ be any multiplicative adversary matrix, Vbad be
the direct sum of eigenspaces of Γ with eigenvalue strictly
smaller than λ > 1, and assume that tr [Πbad(ρ� ◦M)] ≤ η
for any junk matrix M , where Πbad is the projector on Vbad,
and 0 ≤ η ≤ 1− ε. We have

Qε(P) ≥ logK(Γ, λ, ε)

log max

{∥∥∥Γ
1/2
x Γ−1/2

∥∥∥2

,
∥∥∥Γ1/2Γ

−1/2
x

∥∥∥2

: ∀x ∈ I
} ,

where K(Γ, λ, ε) = 1 + (λ− 1)(
√

1− ε−√η)2.

Note that since the condition on the adversary matrix is
very similar as for the hybrid adversary, we can also use
an analogue of Lemma 8 to choose the adversary matrix in
the special case of classical problems. This implies that our
method is an extension of Špalek’s original multiplicative
adversary method [20].

B. Comparison of the adversary methods

We show that the three methods are progressively stronger.

Definition 10. We define the additive adversary bound and
the hybrid adversary bound respectively as

ADV±ε (P) = max
Γ̃

1− C(ε)

maxx

∥∥∥Γ̃− Γ̃x

∥∥∥ ,
ÃDVε(P) = max

Γ̃,λ̃<1

K̃(Γ̃, λ̃, ε)

maxx

∥∥∥Γ̃− Γ̃x

∥∥∥
where, for ADV±, the maximum is taken over additive
adversary matrices Γ̃ such that tr

[
Γ̃(ρ� ◦M)

]
= 0 for any

junk matrix M , while for ÃDV it is taken over all additive
adversary matrices. Finally, we define the multiplicative
adversary bound as MADVε(P) = supλ>1 MADV(λ)

ε (P)
where

MADV(λ)
ε (P) = sup

Γ

logK(Γ,λ,ε)

log max

{∥∥∥Γ
1/2
x Γ−1/2

∥∥∥2
,
∥∥∥Γ1/2Γ

−1/2
x

∥∥∥2
:∀x∈I

} ,
and the supremum is taken over all multiplicative adversary
matrices Γ.

Theorem 11. MADVε(P) ≥ ÃDVε(P) ≥ ADV±ε (P)/60.

Proof: The second inequality is obtained by a straight-
forward comparison of the bound on the final value
of the progress function. The first inequality relies on
limλ→1 MADV(λ)

ε (P) ≥ ÃDVε(P). This is proven by
using a multiplicative adversary matrix Γ(γ) = I+γ(I− Γ̃)
with threshold λ(γ) = 1 + γ(1 − λ̃), where Γ̃ and λ̃ are
the optimal adversary matrix and threshold for the hybrid
method, and taking the limit γ → 0.

C. Strong direct product theorem

We can show that Špalek’s strong direct product theorem
also holds for quantum state generation problems.

Theorem 12 (Strong direct product). For any ε > 0 and
λ > 1 there exist a constant 0 < c < 1 and an integer k0

such that for any problem P and k > k0:

MADV
(λ)

1−ck(P(k)) ≥ k

10
·MADV(λ)

ε (P).

Let us note that while we have proved that the multi-
plicative adversary method is stronger than the additive one,
we cannot directly conclude that this strong direct product
theorem also applies to the additive bound. This is because
we can only prove that the multiplicative adversary method
becomes stronger in the limit of λ going to 1, while in
the same limit the constant c in the theorem also goes
to 1. Therefore, this only implies a direct sum theorem
for the additive adversary bound. To conclude that it also
satisfies a direct product theorem, one approach would be
to prove that whenever the multiplicative adversary method
can prove a lower bound in the limit λ → 1, there exists
some fixed λ > 1 which leads to the same bound. The
most important consequence would be for the quantum query
complexity of functions, which would itself satisfy a strong
direct product theorem for any function, since the additive
adversary method is known to be tight in that case [18],
[19].

III. REPRESENTATION THEORY

In this section we will study how the symmetries of the
problem can help choosing the adversary matrix and in turn
obtain the lower bounds. Recall that the oracle computes a
function f ∈ F from ΣI to ΣO, where the input alphabet has
size N = |ΣI | and the output alphabet has size M = |ΣO|.
Let us consider permutations (π, τ) ∈ SN × SM acting on
f ∈ F as fπ,τ = τ ◦ f ◦ π, that is, fπ,τ : ΣI 7→ ΣO : x 7→
τ(f(π(x))).

Definition 13 (Automorphism group of P). We call a group
G ⊆ SN × SM an automorphism group of a problem P if
• For any (π, τ) ∈ G and f ∈ F , we have fπ,τ ∈ F .
• For any (π, τ) ∈ G, there exists a unitary Vπ,τ such

that Vπ,τ |P(f)〉 = |P(fπ,τ )〉 for all f ∈ F .

Note that from an oracle for f , it is easy to simulate an
oracle for fπ,τ by prefixing and appending the necessary



permutations on the input and output registers. Consider for
example a computing oracle call. Then, Ofπ,τ acts on |x〉|0〉
just as (π−1 ⊗ τ)Of (π ⊗ I).

Therefore, if (π, τ) is an element of an automorphism
G of P , we can solve the problem with oracle f in the
following indirect way:

1) Solve the problem for fπ,τ , which will prepare a state
close to |P(fπ,τ )〉.

2) Apply V †π,τ to map this state to a state close to |P(f)〉.
Since we want the algorithm to work just as well for any
possible f , we can use this property to symmetrize the
circuit. The idea is to solve the algorithm for f by solving
it for fπ,τ for all possible (π, τ) ∈ G simultaneously in
superposition. Just as we considered |f〉 as an additional
input to the circuit, we can also use the same mathematical
trick and consider |π, τ〉 as another input. We then run the
algorithm on the superposition 1√

|G|

∑
(π,τ)∈G |π, τ〉. Note

that we can assume without loss of generality that the best
algorithm for P is symmetrized. Indeed, for any algorithm
for P with success probability p and query complexity T , the
symmetrized version will have the same query complexity
and a success probability at least p. For the same reason, we
can also assume that the optimal adversary matrix satisfies
a similar symmetry, in the following sense:

Lemma 14. For all (π, τ) ∈ G, let Uπ,τ be the unitary that
maps |f〉 onto |fπ,τ 〉. Then, we can assume without loss
of generality that the optimal adversary matrix Γ satisfies
Uπ,τΓU†π,τ = Γ for any (π, τ) ∈ G.

Note that the mapping U : (π, τ) 7→ Uπ,τ defines
a representation of the automorphism group G and that
Lemma 14 implies that Γ commutes with Uπ,τ for any
(π, τ) ∈ G. This means that the matrices Uπ,τ and Γ block-
diagonalize simultaneously in a common basis, where each
block corresponds to a different irrep of G in U . From now
on, we will consider the special case where U is multiplicity-
free. This happens for different interesting problems, such
as t-FOLD SEARCH [22], [20] and INDEX ERASURE (see
Section IV-B), as a consequence of the following lemma.

Lemma 15. If, for any f, g ∈ F , there exists (π, τ) ∈ G
such that g = fπ,τ and gπ,τ = f , then U is multiplicity-free.

Proof: Let us consider the set of matrices M = {A ∈
C|F |×|F | : ∀(π, τ) ∈ G, Uπ,τAU

†
π,τ = A}. It is easy to

see that for any A,B ∈ M, we have AB ∈ M, therefore
M defines an algebra. Note that U is multiplicity-free if
and only if M is commutative, in which case all matrices
in M diagonalize in a common basis [26, p. 65]. For
any matrix A ∈ M, we have At = A since there exists
(π, τ) ∈ G such 〈f |A|g〉 = 〈f |Uπ,τAU†π,τ |g〉 = 〈g|A|f〉.
This immediately implies that for any A,B ∈ M, we
have AB = (AB)t = BtAt = BA, therefore M is a
commutative algebra. (More precisely, it is a Bose-Mesner

algebra associated to an association scheme [27])
Recall that oracle calls are closely related to the Hadamard

product with Dx. We show that the invariance of Γ under the
action of a group G implies the invariance of Γx = Γ ◦Dx

under the action of the subgroup Gx of G that leaves x
invariant.

Lemma 16. For any x ∈ ΣI and y ∈ ΣO, let us define the
following subgroups of G

Gxy = {(π, τ) ∈ G : π(x) = x, τ(y) = y},
Gx = {(π, τ) ∈ G : π(x) = x}.

Then Πx
y satisfies Uπ,τΠx

yU
†
π,τ = Πx

y for any (π, τ) ∈ Gxy ,
and Γx satisfies Uπ,τΓxU

†
π,τ = Γx for any (π, τ) ∈ Gx.

Proof: Recall that by definition of Πx
y , we have

Uπ,τΠx
yU
†
π,τ = Π

π−1(x)
τ(y) for any (π, τ) ∈ G. This imme-

diately implies the first part of the lemma for (π, τ) ∈ Gxy .
Moreover, Fact 3 and Lemma 14 imply that Uπ,τΓxU

†
π,τ =

Γπ−1(x) for any (π, τ) ∈ G. This implies the second part of
the lemma for (π, τ) ∈ Gx.

Since U is a representation of G, it is also a representation
of the subgroup Gx. However, even if U is multiplicity-free
with respect to G, it is typically not with respect to Gx.
Indeed, when restricting G to Gx, multiplicities can happen
due to two different mechanisms. First, an irrep can become
reducible, and one of the new smaller irreps can be a copy
of another irrep. Secondly, two irreps that are different for G
could be the same when we restrict to the elements of Gx.
Let us identify an irrep of Gx by three indices (k, l,m): the
first index identifies the irrep k of G from which it originates,
the second index identifies the irrep l of Gx, and the last
index allows to discriminate betwen different copies of the
same irrep of Gx. For example, two irreps having the same
index l but different indices k are two copies of the same
irrep of Gx originating from different irreps of G. Also, we
denote by Vk,l,m the subspace spanned by irrep (k, l,m).
These subspaces are such that

⊕
l,m Vk,l,m = Vk, where Vk

is the subspace spanned by the irrep k of G (we assume
that Vk,l,m is empty if (k, l,m) does not correspond to a
valid irrep). In the following, it will also be useful to define
Wl =

⊕
k,m Vk,l,m which is sometimes called the isotypical

component corresponding to l [28].
When U is multiplicity-free, Lemma 14 implies that Γ

diagonalizes in the irrep basis. Then to choose the adversary
matrix, it suffices to assign weights γk to each irrep k of G,
i.e., Γ =

∑
k γkΠk. Moreover, it also implies that computing

the associated adversary bounds boils down to bounding for
each irrep l of Gx the norm of a small ml × ml matrix,
where ml is the multiplicity of irrep l.

Theorem 17. Let U be multiplicity-free for G. Then, we



have∥∥∥Γ̃x − Γ̃
∥∥∥ = max

l

∥∥∥∆̃l
x

∥∥∥ , ∥∥∥Γ1/2
x Γ−1/2

∥∥∥2

= max
l

∥∥∆l
x

∥∥ ,∥∥∥Γ1/2Γ−1/2
x

∥∥∥2

= max
l

∥∥(∆l
x)−1

∥∥ ,
where the maximums are over irreps l of Gx. For each
irrep l, ∆̃l

x and ∆l
x are ml × ml matrices, where ml is

the multiplicity of l for Gx, with elements labeled by the
different copies of the irrep and such that

(∆̃l
x)k1m1k2m2 =

1

dl

∑
k,y

γktr
[
Πx
yΠkΠx

yΠl
k1m1←k2m2

]
− γk1δk1k2 ,

(∆l
x)k1m1k2m2

=
1

dl

∑
k,y

γk√
γk1γk2

tr
[
Πx
yΠkΠx

yΠl
k1m1←k2m2

]
where dl is the dimension of irrep l and Πl

k1m1←k2m2
is

the “transporter” from Vk2,l,m2
to Vk1,l,m1

, i.e., the operator
that maps any state in Vk2,l,m2 to the corresponding state
in Vk1,l,m1 .

We see that to obtain the adversary bounds, we need to
compute the traces of products of four operators. Since Gxy
is a subgroup of both G and Gx, each of these operators
can be decomposed into a sum of projectors onto irreps of
Gxy (or transporters from and to these irreps). To compute
these traces, we can use the following lemma, which shows
that it is sufficient to compute the traces of products of two
projectors onto irreps of Gxy .

Lemma 18. Let λ, µ, ν1, ν2 denote irreps of Gxy . If
any of µ, ν1 or ν2 is not isomorphic to λ, then
tr [ΠλΠµΠλΠν1←ν2 ] = 0. Otherwise, we have

tr [ΠλΠµΠλΠν1←ν2 ] =
1

d
tr [ΠλΠµ] · tr [ΠλΠν1←ν2 ] ,

|tr [ΠλΠν1←ν2 ]| =
√

tr [ΠλΠν1 ] · tr [ΠλΠν2 ],

where d is the dimension of the representation λ.

IV. APPLICATIONS

A. SEARCH

By considering Grover’s SEARCH problem [2], which
we denote SEARCHn, we can show that the inequalities in
Theorem 11 are strict.

Theorem 19. For any 0 < ε < 1− 1
n , we have

ADV±ε (SEARCHn) = Ω
(

(1− ε− 2
√
ε(1− ε))

√
n
)

ÃDVε(SEARCHn) = Ω
(
(
√

1− ε− 1/
√
n)2
√
n
)

MADVε(SEARCHn) = Ω
(
(
√

1− ε− 1/
√
n)
√
n
)
.

In particular, for ε > 1/5, we have MADVε(SEARCHn) >

ÃDVε(SEARCHn) > ADV±ε (SEARCHn).

The Ω(
√
n) lower bound for large success probability is

well-known (see e.g [6]), and the case of small success prob-
ability has been studied in [21], [20] using the multiplicative
adversary method. The fact that a non-trivial bound can also
be found in this regime using an additive adversary method
(our hybrid method) is new to the present work.

B. INDEX ERASURE

Let us now consider the following coherent quantum state
generation problem, called INDEX ERASURE [9]: given an
oracle for an injective function f : [N ] → [M ], coherently
generate the superposition |ψf 〉 = 1√

N

∑N
x=1 |f(x)〉 over

the image of f .
The previously best known lower bound for INDEX ERA-

SURE is Ω( 5
√
N/ logN), which follows from a reduction to

the SET EQUALITY problem [24]. It is also known that this
problem may be solved with O(

√
N) oracle calls. Indeed,

given |f(x)〉, one can find the index |x〉 with O(
√
N)

oracle calls using Grover’s algorithm for SEARCH [2].
Therefore, the quantum circuit for this algorithm maps the
superposition |ψf 〉 = 1√

N

∑N
x=1 |f(x)〉 to the the state

1√
N

∑N
x=1 |x〉|f(x)〉. The algorithm for INDEX ERASURE

then follows by inverting this circuit. We now show that
this algorithm is optimal by proving a matching lower bound
using the hybrid adversary method.

Theorem 20. For any 0 < ε < 1 − N
M , we have

Qε(INDEX ERASURE) = Θ(
√
N).

Proof: Let (π, τ) ∈ SN × SM act on the set F of
injective functions from [N ] to [M ] by mapping f to fπ,τ =
τ ◦ f ◦ π. Since we can obtain the state |ψf 〉 from |ψfπ,τ 〉
by applying the permutation τ−1 on the target register, the
whole group G = SN ×SM defines an automorphism group
for the problem.

Let us study the representation U corresponding to the
action of G on the set of injective functions F . From
Lemma 15, this representation is multiplicity-free: indeed,
for any f, g ∈ F , it is easy to construct a group element
(π, τ) that maps both f to g and g to f . Therefore, any
irrep of G appears in U at most once. Let us now show
that many irreps do not appear at all. Recall that irreps
of G = SN × SM can be represented by pairs of Young
diagrams (λN , λM ), where λN has N boxes, and λM has
M boxes [29]. We show that only irreps where the diagram
λN is contained in the diagram λM can appear. We show
this by induction on M , starting from M = N . For the base
case, the set of injective functions F is isomorphic to the
set of permutations in SN , and (π, τ) ∈ SN × SN acts on
a permutation σ as τσπ. Therefore, the only irreps which
occur in U are those where the two diagrams are the same,
that is, λN = λM . When extending the range of functions
in F from M to M + 1, we induce irreps of SN × SM to
irreps of SN×SM+1 by adding an extra box on the diagram
corresponding to SM . Since we start from a case where the



two diagrams are the same, we can only obtain pairs of
diagrams (λN , λM ) where λN is contained inside λM .

The initial state is ρ0 = |δ〉〈δ|, where |δ〉 =
1√
|F |

∑
f∈F |f〉 is the superposition over all injective func-

tions, which is invariant under any element (π, τ) ∈ G.
Therefore, it corresponds to the trivial one-dimensional
irrep of SN × SM , represented by a pair of diagrams
(λN , λM ) where both diagrams contain only one row of
N and M boxes, respectively. Let V0 = Span{|δ〉} be the
corresponding one-dimensional subspace. We now show that
the target state ρ� is a mixed state over V0⊕V1, where V1 =
Span{|φy〉 : y ∈ [M ]} is the (M−1)-dimensional subspace
spanned by states |φy〉 =

√
1− (N/M)|ψy〉−

√
N/M |ψ̄y〉,

|ψy〉 being the uniform superposition over functions f such
that y ∈ Im(f), and |ψ̄y〉 the uniform superposition over
functions f such that y /∈ Im(f). This subspace corresponds
to the irrep represented by diagrams (λN , λM ) where λN
contains only one row of N boxes, and λM has M − 1
boxes on the first row and one box on the second. We have
for the target state

ρ� =
1

|F |
∑

f,f ′∈F

|Im(f) ∩ Im(f ′)|
N

|f ′〉〈f | = 1

M

M∑
y=1

|ψy〉〈ψy|

=
N

M
|δ〉〈δ|+

(
1− N

M

)
1

M

M∑
y=1

|φy〉〈φy|

=
N

M
ρ0 +

(
1− N

M

)
ρ1,

where ρ0 and ρ1 are the maximally mixed states over V0

and V1, respectively.
Since we start from state ρ0 and we want to reach state

ρ� which has a large weight over ρ1, the strategy for the
lower bound is to show that it is hard to transfer weight
from V0 to V1. More precisely, we divide all irreps (and by
consequence their corresponding subspaces) into two sets:
one set of bad irreps containing all irreps represented by
diagrams (λN , λM ) where λN and λM only differ in their
first row, and one set of good irreps containing all the other
irreps. By this definition, the irrep corresponding to V0 is
bad, while the irrep corresponding to V1 is good. The lower
bound is based on the fact that it is hard to transfer weight
onto good subspaces (in particular V1) starting from V0.
From now on, we note the irreps only by their part under
the first row; (λ, λ′) then denotes an irrep of SN × SM .
Therefore, bad irreps are precisely those such that λ = λ′.
Recall from Lemma 16 that constructing an adversary matrix
Γ̃ amounts to assigning an eigenvalue to each irrep of G. We
choose Γ̃ such that it has eigenvalue 0 on good irreps, and
eigenvalue γ|λ| on a bad irrep (λ, λ), which only depends
on |λ|, i.e.,

Γ̃ =
∑
λ

γ|λ|Π(λ,λ),

where Π(λ,λ′) is the projector onto the subspace correspond-
ing to the irrep (λ, λ′). We set

γ|λ| =

{
1− |λ|√

N
if λ <

√
N

0 otherwise.

Therefore, we have γ0 = 1 and 0 ≤ γ|λ| ≤ 1 for any λ, and
Γ̃ is a valid additive adversary matrix. Let Vbad denote the
direct-sum of the bad subspaces. Since ρ� only has overlap
N/M over Vbad, we have tr(Πbadρ

�) ≤ N/M . Therefore,
we can set the threshold eigenvalue λ̃ = 0 and the base
success probability η = N/M .

From Theorem 17, we see that we need to compute the
norm of a matrix ∆l

x for each irrep l of Gx = SN−1×SM .
We show that these matrices are non-zero only for three
different types of irreps of Gx. Indeed, for irreps k of G
and l of Gx, the quantity γktr

[
Πx
yΠkΠx

yΠl
k1m1←k2m2

]
is

non-zero only if: ¬ k is a bad irrep (otherwise γk = 0);
­ k and l restrict to a common irrep of Gxy = SN−1 ×
SM−1 (otherwise the product of the projectors is zero). The
restrictions of an irrep (λ, λ′) of G to Gxy are obtained
by removing one box from each of the diagrams λ and λ′.
Similarly, the restrictions of an irrep (λ, λ′) of Gx to Gxy
are obtained by removing one box from λ′. ® Note that not
all irreps of Gxy appear in the projector Πx

y , as it projects on
all injective functions such that f(x) = y. Therefore, this set
is isomorphic to the set of injective functions from [N − 1]
to [M − 1], and we know that the irrep U acting on this set
is multiplicity-free, and that only irreps (λ, λ′) where λ is
contained in λ′ can occur. Altogether, this implies that only
three type of irreps of Gx = SN−1 × SM lead to non-zero
matrices:

1) l = (λ, λ): Same diagram for SN−1 and SM below the
first row. This irrep has multiplicity one since there is
only one way to induce to a valid irrep of SN × SM ,
by adding a box in the first row of the left diagram,
leading to irrep k = (λ, λ).

2) l = (λ, λ+): Diagram for SM has one additional box
below the first row. This irrep has multiplicity two
since there are two ways to induce to a valid irrep
of SN × SM , by adding a box either in the first row,
leading to k = (λ, λ+), or at the missing place below
the first row, leading to k = (λ+, λ+).

3) l = (λ, λ++): Diagram for SM has two additional
boxes below the first row. This irrep has multiplicity
three since there are three ways to induce to a valid
irrep of SN × SM , by adding a box either in the first
row, leading to k = (λ, λ+), or at to one of the missing
places below the first row, leading to k = (λ+, λ++).

Let us now consider these three cases separately.
Case (λ, λ): Since this irrep has multiplicity one, we just

need to compute a scalar. As an irrep of SN−1 × SM ,
(λ, λ) restricts to only one valid irrep of SN−1 × SM−1,
by removing a box on the first row of the right diagram,



therefore this irrep is also labeled (λ, λ). Inducing from this
irrep of SN−1 × SM−1 to SN × SM , we obtain three valid
irreps, two “bad” ones, (λ, λ) and (λ+, λ+), and a good one,
(λ, λ+). To differentiate between projectors of irreps of the
different groups, we will from now on use superscripts (for
example ΠN,M

λ,λ denotes a projector on the irrep (λ, λ) of
SN × SM ). We therefore have from Theorem 17

∆λ,λ
x =

γ|λ|

dN−1,M
λ,λ

∑
y

tr
[
Πx
yΠN,M

λ,λ Πx
yΠN−1,M

λ,λ

]
+

γ|λ|+1

dN−1,M
λ,λ

∑
y

tr
[
Πx
yΠN,M

λ+,λ+Πx
yΠN−1,M

λ,λ

]
− γ|λ|

=
Mγ|λ|

dN−1,M
λ,λ dN−1,M−1

λ,λ

· tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ

]
· tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ

]
+

Mγ|λ|+1

dN−1,M
λ,λ dN−1,M−1

λ,λ

· tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]
· tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ

]
− γ|λ|,

where we have used Lemma 18 and the fact that all terms
in the sum over y are equal by symmetry.

We also have

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ

]
= tr

[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ

]
, (2)

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]
= tr

[
ΠN−1,M−1
λ,λ ΠN,M−1

λ+,λ

]
, (3)

since the only way for (λ, λ) as an irrep of SN × SM to
restrict to (λ, λ) as an irrep of SN−1 × SM−1 is to first
restrict to (λ, λ) as an irrep of SN−1×SM , and similarly for
(λ+, λ+). Therefore, we only have two traces to compute.
For the first one, we consider the maximally mixed state
ρN−1,M−1
λ,λ over the corresponding irrep. By inducing from
SM−1 to SM we find that its overlap over the irrep (λ, λ)
of SN−1 × SM is given by

tr
[
ρN−1,M−1
λ,λ ΠN−1,M

λ,λ

]
=

dN−1,M
λ,λ

MdN−1,M−1
λ,λ

=
dMλ

MdM−1
λ

.

Similarly, we obtain

tr
[
ρN−1,M−1
λ,λ ΠN,M−1

λ+,λ

]
=

dN,M−1
λ+,λ

NdN−1,M−1
λ,λ

=
dNλ+

NdN−1
λ

,

and finally

∆λ,λ
x = γ|λ|

dMλ
MdM−1

λ

+ γ|λ|+1

dNλ+

NdN−1
λ

− γ|λ|

=
1√
N

+O(
1

N
),

where we have used the hook-length formula for dimensions
of irreps and the fact that the number of boxes |λ| below
the first row is at most

√
N , otherwise γ|λ| = 0.

Case (λ, λ+): This irrep has multiplicity two, so we need
to compute a 2×2 matrix. Let (λ, λ+, 1) denote the copy of
(λ, λ+) irrep of SN−1 × SM which is inside the (λ+, λ+)
irrep of SN×SM . Let (λ, λ+, 2) denote the copy of (λ, λ+)
irrep of SN−1 × SM which is inside the (λ, λ+) irrep of
SN × SM . Let the first row and the first column of ∆λ,λ+

x

be indexed by (λ, λ+, 1) and the second row and the second
column be indexed by (λ, λ+, 2).

An irrep (λ, λ+) of SN−1 × SM restricts to two valid
irreps of SN−1×SM−1: (λ, λ) and (λ, λ+). Those two irreps
can be induced to the following bad irreps of SN × SM :
(λ, λ) and any irrep (λ′, λ′) which has one more square
below the first row than λ. (λ′ may be equal or different
from λ+.)

For brevity, we denote ∆λ,λ+

x simply by ∆. Since
(λ, λ+, 1) is contained inside a bad irrep of SN × SM , we
have

∆1,1 =
γ|λ|

dN−1,M
λ,λ+

∑
y

tr
[
Πx
yΠN,M

λ,λ Πx
yΠN−1,M

λ,λ+,1

]
+

γ|λ|+1

dN−1,M
λ,λ+

∑
λ′

∑
y

tr
[
Πx
yΠN,M

λ′,λ′Π
x
yΠN−1,M

λ,λ+,1

]
− γ|λ|+1

=
Mγ|λ|

dN−1,M
λ,λ+ dN−1,M−1

λ,λ

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ

]
· tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]
+

Mγ|λ|+1

dN−1,M
λ,λ+ dN−1,M−1

λ,λ

(∑
λ′

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ′,λ′

])
· tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]
+

Mγ|λ|+1

dN−1,M
λ,λ+ dN−1,M−1

λ,λ+

tr
[
ΠN−1,M−1
λ,λ+ ΠN,M

λ+,λ+

]
· tr
[
ΠN−1,M−1
λ,λ+ ΠN−1,M

λ,λ+,1

]
− γ|λ|+1.

We start by evaluating the sum∑
λ′

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ′,λ′

]
.

We consider the maximally mixed state ρN−1,M−1
λ,λ over the

corresponding irrep of SN−1 × SM−1. By inducing λ from
SN−1 to SN , we find that the dimension of the induced
representation is NdN−1

λ and the induced representation
decomposes into irrep λ of SN , with dimension dNλ and
irreps λ′. Therefore,∑

λ′

tr
[
ΠN,M
λ′,λ′ρ

N−1,M−1
λ,λ

]
= 1− dNλ

NdN−1
λ

≤ 1− 1

N
(4)

where the inequality follows by comparing the hook-length
formulas of dNλ and dN−1

λ . Similarly, we have

tr
[
ΠN,M
λ,λ ρN−1,M−1

λ,λ

]
= O

(
1

N

)
. (5)



We now evaluate a similar quantity for ρN−1,M−1
λ,λ+ . By

inducing λ+ from SM−1 to SM , we find that the dimension
of the induced representation is MdM−1

λ+ and the induced
representation decomposes into irrep λ+ of SM , with di-
mension dMλ and irreps λ++ which have one more square
below the first row than λ+. Therefore,

tr
[
ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ+

]
=

dMλ
MdM−1

λ

= O

(
1

M

)
. (6)

By using eqs. (4), (5) and (6), we have

∆1,1 =
Mγ|λ|+1

dN−1,M
λ,λ+

tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]
+O

(
1

N

)
−γ|λ|+1.

(7)
We have

tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]
= tr

[
ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]
because the other irreps of SN−1 × SM contained in the
irrep (λ+, λ+) of SN × SM have no overlap with the irrep
(λ, λ) of SN−1 × SM−1. Let ρN−1,M−1

λ,λ be the completely
mixed state over (λ, λ). Then,

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]
= dN−1,M−1

λ,λ tr
[
ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ

]
= dN−1,M−1

λ,λ

dNλ+

NdN−1
λ

.

Here, the second equality follows by inducing λ from SN−1

to SN . We have

dN−1,M−1
λ,λ

dNλ+

NdN−1
λ

= dN−1
λ dM−1

λ

dNλ+

NdN−1
λ

=
dM−1
λ dNλ+

N
.

By matching up the terms in hook-length formulas, we have

dM−1
λ dNλ+ =

(
1 +O

(
1

N

))
N

M
dN−1
λ dMλ+ . (8)

Therefore,

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]
=

(
1 +O

(
1

N

))
dN−1,M
λ,λ+

M
(9)

and

∆1,1 = O

(
1

N

)
Similarly to eq. (7), we have

∆2,2 =
Mγ|λ|+1

dN−1,M
λ,λ+

tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,2

]
+O

(
1

N

)
.

(10)

We have

tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,2

]
= tr

[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ+

]
= dN−1,M−1

λ,λ tr
[
ΠN,M
λ,λ+ρ

N−1,M−1
λ,λ

]
,

because the other irreps of SN−1 × SM contained in the
irrep (λ, λ+) of SN × SM have no overlap with the irrep
(λ, λ) of SN−1 × SM−1.

By inducing λ from SM−1 to SM , we get

tr
[
ΠN,M
λ,λ+ρ

N−1,M−1
λ,λ

]
+tr

[
ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ

]
=

dMλ+

MdM−1
λ

.

(11)
By inducing λ from SN−1 to SN , we get

tr
[
ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ

]
=

dNλ+

NdN−1
λ

. (12)

By subtracting eq. (12) from eq. (11), we get

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ+

]
=
dMλ+d

N−1
λ

M
−
dNλ+d

M−1
λ

N
.

Because of eq. (8),

tr
[
ΠN−1,M−1
λ,λ ΠN,M

λ,λ+

]
= O

(
dMλ+d

N−1
λ

MN

)
. (13)

By substituting this into eq. (10), we get ∆2,2 = O( 1
N ).

Last, we have to bound ∆1,2 and ∆2,1. Similarly to
eq. (7), we have

∆i,j =
Mγ|λ|+1

dN−1,M
λ,λ+

tr
[
ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,i←j

]
+O

(
1

N

)
.

By using Lemma 18 and eqs. (9) and (13), we get

∆i,j = O

(
1√
N

)
.

We have shown that ∆i,j = O( 1√
N

) for all i, j. Therefore,
‖∆‖ = O( 1√

N
).

Case (λ, λ++): We treat this case similarly as the two
previous one and get: |∆1,1| = O (1/(MN)) , |∆1,2| =

O
(

1/(M
√
N)
)
, |∆1,3| = O

(
1/(M

√
N)
)
, |∆2,2| =

O (1/M) , |∆2,3| = O (1/M) and |∆3,3| = O (1/M).
Therefore, all elements of ∆ are at most O(1/M), so that
‖∆‖ = O(1/M).

Finally, since the matrices corresponding to all irreps
have norm at most O(1/

√
N), we have from Theorem 17∥∥∥Γ̃x − Γ̃

∥∥∥ = O(1/
√
N), and in turn

Qε(INDEX ERASURE) = Ω
(

(
√

1− ε−
√
N/M)2

√
N
)
.
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