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Earlier, we proved a duality between two optimizations problems [Phys. Rev. Lett. 104, 120501 (2010)]. The
primary one is, given two quantum channels M and N , to find a quantum channel R such that R ◦ N is optimally
close to M as measured by the worst-case entanglement fidelity. The dual problem involves the information
obtained by the environment through the so-called complementary channels M̂ and N̂ , and consists in finding a
quantum channel R′ such that R′ ◦ M̂ is optimally close to N̂ . It turns out to be easier to find an approximate
solution to the dual problem in certain important situations, notably when M is the identity channel—the
problem of quantum error correction—yielding a good near-optimal worst-case entanglement fidelity as well as
the corresponding near-optimal correcting channel. Here we provide more detailed proofs of these results. In
addition, we generalize the main theorem to the case where there are certain constraints on the implementation
of R, namely, on the number of Kraus operators. We also offer a simple algebraic form for the near-optimal
correction channel in the case M = id. For approximate error correction, we show that any ε-correctable channel
is, up to appending an ancilla, ε-close to an exactly correctable one. We also demonstrate an application of our
theorem to the problem of minimax state discrimination.
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I. INTRODUCTION

Shannon theory and error correction, be their classical or
quantum version, are based on the problem of transmitting
information through a given noisy channel N by choosing an
encoding channel E and a decoding channel R such that when
composed, they simulate a noiseless channel id: RNE ≈ id.
For instance, the capacity of a channel N is the largest ratio
n/m such that N⊗m can perfectly simulate id⊗n in the limit
n → ∞ [1].

Classically, the problem of simulating a noiseless channel
has been found to provide the benchmark for most of
a channel’s information carrying capabilities. In quantum
information theory, however, the situation is more complex.
For instance, the capacity of a quantum channel defined in this
way—the quantum capacity—does not suffice to determine the
capacity of channels used in conjunction with each other [2].

More generally, one can consider the simulation of an
arbitrary channel M: RNE ≈ M. For example, if N is
quantum, choosing the target M = id⊗n yields the quantum
capacity, while using copies of a fully decoherent (i.e.,
classical) channel

M(ρ) =
∑

i

〈i|ρ|i〉|i〉〈i| (1)

yields the classical capacity. A slightly more general case is
that where M is a noiseless channel on any C∗ algebra, which
yields subsystem quantum error correction (QEC) and hybrid
quantum-classical error correction [3], or hybrid capacities in
the asymptotic case [4].

A fundamental result in the case of standard QEC, namely,
simulation of the identity quantum channel, is the Knill-
Laflamme conditions [5], which, given an encoding E , provide
a criterion for the existence of a corresponding decoding
channel R. Specifically, it says that R exists, i.e., the channel
and code are correctable, if and only if the environment

gains no information about the encoded state. This condition,
in its approximate form [6] is also the main starting point
for the “decoupling” approach to channel capacities [7],
namely, the corresponding result applied to states via the
Choi-Jamiołkowski isomorphism.

Here we detail and extend work presented in Ref. [8] which
generalizes these results to a generic target M. In Sec. III, we
prove two slightly more general versions of the main theorem
of Ref. [8], which says that the optimal distance (optimized
over the decoding operations R) between RN and M is equal
to the optimal distance between N̂ and RM̂, where the hat
denotes respective complementary channels. This yields an
efficient way of estimating the optimal distance for a large
class of target channels M (Sec. IV A). We also show how to
explicitly construct a channel R achieving the estimated dis-
tance (Sec. IV B). In Sec. IV C, we show that any ε-correctable
channel is, up to appending an ancilla, ε-close to an exactly cor-
rectable one. We also give an application of our main theorem
to the problem of minimax state discrimination in Sec. IV D.

We note that our approach also yields new results in the im-
portant special caseM = id. In order to measure the quality of
a simulation, we use a fidelity-based distance as in Refs. [9,10].
In contrast to these works, however, our approach yields an
approximate reversal channel for the worst-case entanglement
fidelity which is a state-independent measure. See Sec. V for
a comparison with these works in the case M = id.

Other works focused on the worst-case trace distance [6,11].
The advantage of the fidelity over these is that the optimal
fidelity in the dual problem is precisely equal to the optimal fi-
delity in the original problem. Although the dual problem may
not be solved easily, it can be precisely estimated. This yields
better bounds on the original optimization which are useful not
only for analyzing asymptotic scenarios, but may be advanta-
geous also in one-shot scenarios, e.g., to estimate the error in
an approximate quantum error correction scheme [12–17].
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In addition, since our results concern only the problem
of finding R such that RN ′ ≈ M , they are not restricted to
the case where N ′ = NE but apply also to the case where
resources are shared between the sender and the recipient. For
instance, for an entanglement-assisted scheme [18,19], one
would consider a channel of the form

N ′(ρ) = 1

d

∑
i

(NE)(ρ ⊗ |i〉〈j |) ⊗ |i〉〈j |. (2)

II. PRELIMINARIES

In this paper, we restrict our considerations to finite-
dimensional systems. We begin by introducing the main
concepts that we will be using to express our results.

A. Complementary channels

A channelN is a completely positive trace-preserving map.
It can always be written as

N (ρ) =
∑

i

EiρE
†
i , (3)

where the Kraus operators Ei satisfy
∑

i E
†
i Ei = 1. Con-

versely, any function of this form is completely positive and
trace-preserving. The dual N† is defined by the relation

Tr[N (ρ)A] = Tr[ρ N†(A)] (4)

for any state ρ and any operator A. This implies that

N†(A) =
∑

i

E
†
i ρEi. (5)

Physically, N is interpreted as evolving states, while N†

evolves observables. Hence, N† represents the Heisenberg
picture for the evolution defined by the channel. To avoid
confusion, we only call N a channel, while N† is its dual.

Note that the dimension of the input and output quantum
systems may differ. In this case the operators Ei are not square
matrices. For instance, there is only one channel whose output
Hilbert space has dimension one: the trace. Channels with a
one-dimensional input are in one-to-one correspondence with
quantum states. Since the input is just a complex number z,
the output can only be of the form zρ for some fixed quantum
state ρ.

We let the reader check that the dual of the trace channel
takes as an input a complex number α (an operator on the one-
dimensional Hilbert space), and outputs the identity operator
times α:

Tr†(α) = α1. (6)

Note that the partial trace can be written as id ⊗ Tr, where id
is the identity channel on the subsystem that is not traced over.
Hence, for instance,

(id ⊗ Tr)†(A) = A ⊗ 1. (7)

Stinespring’s dilation theorem [20] guarantees that for any
channel N we can find a (nonunique) isometry V which maps

the input space of N into its output space extended by an extra
system E, the “environment,” such that

N†(A) = V †(A ⊗ 1E)V, (8)

or equivalently,

N (ρ) = (id ⊗ TrE)(VρV †), (9)

where id ⊗ TrE denotes the partial trace over E. We say that
V defines a dilation of N .

An isometry V is any operator satisfying the property
V †V = 1. It describes how the input Hilbert space is iso-
metrically embedded in the target space. It can be seen as a
unitary operator but with the input restricted to a subspace. For
instance, if the target space dimension is divisible by the input
space dimension, it amounts to adding an auxiliary system with
a fixed pure initial state |φ0〉 and letting it interact unitarily with
the system, i.e.,

V |ψ〉 := U (|ψ〉 ⊗ |φ0〉) (10)

for some unitary operator U .
It is easy to see that this isometry V is not unique. Indeed

we can always use another isometry W from E to a larger
environment E′ to obtain also

N (ρ) = (id ⊗ TrE′)[V ′ρ(V ′)†], (11)

where V ′ is the new isometry

V ′ = (1 ⊗ W )V. (12)

Definition 1. Let V define a dilation of the channel N as
above. We say that the channel N̂ , defined by

N̂ †(B) = V †(1 ⊗ B)V (13)

for all B, is complementary to N .
Equivalently, we have

N̂ (ρ) = (Tr ⊗ id)(VρV †). (14)

The channel N̂ maps the initial state of the system to the final
state of the environment.

It is clear from the definition that N is also complementary
to N̂ .

Since the isometry V associated with N is not unique
as observed above, there are correspondingly many channels
complementary toN . For instance, if N̂ maps the input system
to the environment E, and W is an isometry from E to E′, then
the channel N ′ defined by

(N̂ ′)†(B) = (V ′)†(1 ⊗ B)V ′, (15)

where V ′ = (1 ⊗ W )V, is also complementary to N .
The connection between the isometry V and the channels’

Kraus operators can be found by introducing an orthonormal
basis |i〉 of the environment as follows:

N†(A) = V †(A ⊗ 1)V =
∑

i

V †(A ⊗ |i〉〈i|)V

=
∑

i

V †(1 ⊗ |i〉)A(1 ⊗ 〈i|)V. (16)

Hence, we can use

Ei = (1 ⊗ 〈i|)V, (17)
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which is defined by

〈ψ |Ei = (〈ψ | ⊗ 〈i|)V. (18)

This implies that the complementary channel associated with
the isometry V can be written in a dual form as

N̂ †(B) =
∑
ij

〈i|B|j 〉E†
i Ej . (19)

B. Minimal dimension of the environment

Definition 2. Given a channel N , we write |N | for the
minimal number of Kraus operators with which it can be
represented. This corresponds to the minimal dimension of
the environment for which it has an isometric implementation
[Eq. (8)].

If the channel N maps states over the Hilbert space HA to
states over HB , then [21]

1 � |N | � dim(HA) dim(HB). (20)

In addition, |N | = 1 if and only if

N (ρ) = VρV † (21)

for some isometry V .

C. Postprocessing order and equivalence relation

Definition 3. Given two channels N and M, we write

N � M (22)

if there exists a channel R such that RN = M [i.e.,
R(N (ρ)) = M(ρ) for all states ρ]. We also write

N ∼ M (23)

when we have both N � M and M � N .
Note that this relation � can equivalently be defined by

dropping the requirement that R be trace-preserving. Indeed,
R can always be completed to the trace-preserving channel

R′(ρ) = R(ρ) + Tr[(1 − R†(1))ρ]σ, (24)

where σ is an arbitrary state, such R′N = M.
It is easy to see that the relation � is a preorder on all

channels, and that ∼ is an equivalence relation.
The relationN ∼ M can be seen as a precise way of saying

that the two channels carry the same information about the
initial system, independently of further processing. For this
reason, we will mostly focus on the equivalence classes rather
than on individual channels.

Note thatN ∼ M does not imply thatN andM are related
by a unitary map. For instance, consider the family of channels
Sτ (ρ) := Tr(ρ)τ . These channels are all equivalent since Sτ =
SτSτ ′ . But they can be related by a unitary map if and only if
τ and τ ′ have the same spectrum.

Let us state a few elementary facts in order to build up
some intuition about this relation. All channels are bounded
from above by the unitary channels (in particular), which are
all equivalent to the identity channel id, and from below by
the channels Sτ mentioned above, which are all equivalent to

the trace Tr (which is the only channel with a target space of
dimension 1):

id � N � Tr. (25)

Note that for any channels N , M, N ′, and M′,

N ⊗ N ′ � M ⊗ M′ ⇐⇒ N � M and N ′ � M′. (26)

In particular,

N � M ⇐⇒ N ⊗ id � M ⊗ id. (27)

Since channels are trace-preserving, we always have

TrN = Tr. (28)

Let us show that all the channels complementary to a given
one belong to the same equivalence class.

Lemma 1. If N̂ and N̂ ′ are both complementary to N , then
N̂ ∼ N̂ ′.

Proof. Suppose without loss of generality that the dimension
of the output of N̂ ′ is larger or equal to that of N̂ . Then there
is an isometry W such that

N̂ ′(ρ) = W N̂ (ρ)W † (29)

for all ρ. Hence, clearly, N̂ ′ � N̂ . In order to show that
also N̂ � N̂ ′, we need to build a channel R such that N̂ =
RN̂ ′. Since V †V = 1, we would like to use the completely
positive map ρ �→ V †ρV . Unfortunately, this map is not
trace-preserving. Instead, letting P := V V †, we use

R(ρ) = V †ρV + Tr[(1 − P )ρ]. (30)

It is easy to check that this map is trace-preserving. Further-
more, since (1 − P )V = 0, the extra term does not affect the
ability of R to invert N̂ ′.

Note that the equivalence class associated with N̂ is in
general larger than the set of channels complementary to
N . We will regard the channels belonging to this class as
generalized complementary channels and will typically denote
them by a tilde, i.e., as Ñ .

Definition 2. The channel Ñ is a generalized complemen-
tary channel of N if Ñ ∼ N̂ , where N̂ is complementary
to N .

The generalized complementary channels satisfy the fol-
lowing important property:

Theorem 2. If Ñ and M̃ are generalized complementary
channels of N and M, respectively, then

N � M ⇐⇒ M̃ � Ñ . (31)

Proof. It is sufficient to show that N � M =⇒ M̃ � Ñ .
For any channel N , we will write

VN (ρ) = VNρV
†
N (32)

for an isometric map characterizing a dilation of N , i.e., such
that N = (id ⊗ Tr)VN . Note that if R̃ is a generalized com-
plementary channel of R, then (R̃ ⊗ id)VN is a generalized
complementary channel of RN .

If N � M, then there is a channel R such that RN = M.
It follows that

M̃ ∼ (R̃ ⊗ id)VN . (33)
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But then

Ñ ∼ (Tr ⊗ id)VN = (TrR̃ ⊗ id)VN ∼ (Tr ⊗ id)M̃, (34)

which implies that M̃ � Ñ .. �

D. Exact error correction

Theorem 2 directly yields the Knill-Laflamme conditions
for exact quantum error correction on standard (subspace)
codes. Suppose that the “noise” on the physical Hilbert space
H is modeled by a channel with Kraus operators Ei . A standard
code can be seen as a subspace of H, or, equivalently, as an
isometric encoding map V : HC ↪→ H from the logical space
HC to the physical space H. The projector V V † = P projects
on a subspace of H isomorphic to HC , which is usually called
itself the “code.” The channel to consider then is

N (ρ) =
∑

i

EiVρV †E†
i (35)

from HC to H. It implements the encoding followed by
the noise. Given the code P (or equivalently the isometric
encoding V ), the problem of quantum error correction is to
find a correction channel R mapping H back to HC such that

RN = idC, (36)

where idC is the identity map on the logical space HC .
Hence, we can directly apply Theorem 2 with M = idC . It

is easy to see that all channels complementary to idC are of the
form

ρ �→ |ψ〉〈ψ | Tr(ρ) (37)

for an arbitrary pure state |ψ〉 living in a space of arbitrary
dimension. In addition, one can show that all channels similar
to such complementary channels are of the form

ρ �→ τ Tr(ρ) (38)

for some mixed state τ , i.e., Eq. (38) describes the generalized
complementary channels to idC . Picking any of these channels,
Theorem 2 states that the existence of a channel R satisfying
Eq. (36) is equivalent to the existence of a channel R′ such
that

N̂ (ρ) = R′(τ ) Tr(ρ). (39)

But since τ is fixed, this is equivalent to the existence of a state
σ such that

N̂ (ρ) = σ Tr(ρ) (40)

for any state ρ. This is the Knill-Laflamme condition. This
is most easily seen from its dual (Heisenberg picture) form,
which reads

N̂ †(A) = Tr(Aσ )1 (41)

for all operators A. It is enough to check this condition for a
basis |i〉〈j | of the space of operators, which yields

N̂ †(|i〉〈j |) = V †E†
i EjV = 〈j |σ |i〉1. (42)

Multiplying on the left and on the right by V and V †,
respectively, we obtain

PE
†
i EjP = λijP, (43)

where λij = 〈j |σ |i〉, which is the Knill-Laflamme condition
in its most familiar form.

Moreover, we also obtain the generalized Knill-Laflamme
conditions for the correctability of subsystem codes [22–24],
or in fact any algebra, of which subsystem codes are a special
case [3]. A † algebra (or algebra for short) is a set of operators
closed under multiplication and which also contains the adjoint
of all its elements. For instance, suppose that our Hilbert
spaceH is divided into two subsystems:H = HA ⊗ HB . Then
consider the set A of operators of the form A ⊗ 1, where A

is an operator on HA and 1 the identity on HB . It is trivial to
show thatA is an algebra. It represents all the local observables
acting onH1. In fact this is close to being the most general form
of a † algebra. For any † algebraAwe can find a decomposition
of the Hilbert space into orthogonal subspaces Hi which are
left invariant by all elements of the algebra. Furthermore, when
restricted to any of these invariant subspaces, the algebra has
precisely the form described in the above example. Hence,
the algebra defines a set of subsystems living in a family of
orthogonal subspaces. This means that any element A ∈ A is
of the form

A =
∑

i

Ai ⊗ 1i , (44)

where Ai ⊗ 1i is an operator supported onHi . Said differently,
if Pi is the projector on Hi , then PiAPi = Ai ⊗ 1i .

A handy tool is the projector PA on this algebra, which
we take to be orthogonal in terms of the Hilbert-Schmidt
inner product between operators. This is a quantum channel
satisfying P2

A = PA = P†
A, whose range is precisely A. It has

the following explicit form:

PA(ρ) =
∑

i

Tr2(PiρPi) ⊗ 1i

mi

, (45)

where Tr2 is the partial trace over the second subsystem of the
ith subspace, and mi is the dimension of that subsystem.

We say that an algebra A is correctable for the channel N if
there exists a “correction” channel R such that for all A ∈ A,

(R ◦ N )†(A) = A. (46)

Note that A contains the spectral projectors of any observ-
able A ∈ A. Hence, this definition implies that measuring A

before the action of the channel N or after the correction will
yield the same probabilities, no matter what the initial state
was.

Clearly, Eq. (46) implies thatPA ◦ R ◦ N = PA. Hence, an
equivalent formulation is to require the existence of a (possibly
different) channel R such that

R ◦ N = PA. (47)

This puts the problem in a form suitable for the application
of Theorem 2, since it says that N � PA. If A′ denotes the
algebra formed by all operators commuting with all elements
of A (i.e., the commutant of A), one can show that the channel
PA′ is a generalized complementary channel of PA. Elements
of the commutant have the form B = ∑

i 1i ⊗ Bi for the same
decomposition into orthogonal subspaces. Explicitly,

PA′(ρ) =
∑

i

1i

ni

⊗ Tr1(PiρPi), (48)
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where Tr1 is the partial trace over the first subsystem of the ith
subspace, and ni is the dimension of that subsystem.

Hence, Theorem 2 states that the existence of R that
satisfies Eq. (47) is equivalent to the existence of R′ such
that

N̂ = R′PA′ . (49)

But since PA′ is a projector, this is equivalent to requiring that

N̂ = N̂PA′ , (50)

or, in the Heisenberg picture,

N̂ † = PA′N̂ †. (51)

The latter is equivalent to requiring that for all operators A,

N̂ †(A) ∈ A′, (52)

or, for all i,j , assuming N has the form previously used,

N̂ †(|i〉〈j |) = V †E†
i EjV ∈ A′. (53)

This is the form of the conditions derived, using a different
method, in Ref. [3].

III. MAIN THEOREM

Let f (ρ,σ ) = Tr
√√

ρ σ
√

ρ be the fidelity [25] between
states ρ and σ . For reasons that will become clear, we extend
the definition of this function to all positive operators ρ or σ of
trace smaller than or equal to one [note that for operators of
trace smaller than one, f (ρ,σ ) does not have the meaning
of fidelity]. Even for this more general concept, Uhlmann’s
theorem [25] holds. We have the following expression:

f (ρ,σ ) = max
V

|〈ψρ |(1 ⊗ V )|ψσ 〉|, (54)

where |ψρ〉 and |ψσ 〉 are any purifications of ρ and σ ,
respectively, and the maximization runs over all isometric
operators V between the extra reference systems. (Note that
here either V †V = 1 or V V † = 1 depending on which of the
two purifications is of larger dimension). Since the quantity
f (ρ,σ ) is real, we can optimize the real part rather then the
absolute value of the expression 〈ψρ |(1 ⊗ V )|ψσ 〉. In addition,
one can show that the optimization can be done over all
operators of norm smaller than 1 rather than just the isometric
operators, i.e.,

f(ρ, σ) = max
A 1

Re ψρ|(1⊗ A)|ψσ

= max
A 1

Re ψσ
A

ψρ .
(55)

The diagram can be thought of as a circuit where the boxes are
operators which are not necessarily unitary, nor even square
matrices. The left half circles represent input states, while the
right half circles represent states which are scalar-multiplied
with the corresponding ouputs. The above diagram thus
represents the scalar product between the output of the circuit,
(1 ⊗ A)|ψσ 〉, and the state |ψρ〉.

For a given state ρ, we introduce the “entanglement fidelity”
between channels N and M,

Fρ(N ,M) = f((N ⊗ id)(|ψ ψ|), (M⊗ id)(|ψ ψ|))

= max
A 1

Re ψ
VN

A
V †
M

ψ ,

where |ψ〉 is a purification of ρ. When M = id, this quantity
reduces to the square root of Schumacher’s entanglement
fidelity of N [26]. We will compare channels using the
worst-case entanglement fidelity,

F (N ,M) = min
ρ

Fρ(N ,M), (56)

which was studied in Ref. [27].
Theorem 3. If N̂ and M̂ are complementary to N and M,

respectively, then for any d > 1,

max
|R|�d

F (RN ,M) = max
|R′|�d

F (N̂ ,R′M̂), (57)

where the maxima are over all trace-nonincreasing completely
positive maps with the appropriate source and target spaces,
and |R| stands for the minimal number of Kraus operators
for R.

Proof. The proof closely follows arguments used in Ref. [6].
Let VN be the isometry for which N (ρ) = TrE(VNρV

†
N ) and

N̂ (ρ) = TrB(VNρV
†
N ), and VM be the isometry yielding both

M and M̂ in the same way. Note that any trace-nonincreasing
channel R can be written as R(ρ) = TrẼ(AρA†) for some
operator A satisfying ‖A‖ � 1 from the input Hilbert space of
R to its output space tensored with an “environment” Ẽ. Using
this fact and writing the fidelity using Eq. (55), we obtain

max
|R|�d

F (RN ,M) = max
‖A‖�1

min
ρ

max
‖A′‖�1

Re gρ(A,A′), (58)

where gρ can be expressed in terms of a circuit:

gρ(A, A ) =
ψ

VN

B

A d

E
A

†
E

B

V †
M

ψ

(59)

The small d indicates that the wire below it represents a Hilbert
space of dimension d, namely, the system Ẽ mentioned above.
The wires labeled B and B ′ represent the target systems for
N and M, respectively, and E and E′ are the respective
“environments.” The state |ψρ〉 can be any purification of ρ. If
we reflect the picture with respect to a vertical axis through the
middle, Hermitian conjugating each operator [this amounts to
a complex conjugation of gρ(A,A′)], and exchange the wire
labels E′ and B, and E and B ′, we see that we also have

max
|R′|�d

F (N̂ ,R′M̂) = max
‖A′‖�1

min
ρ

max
‖A‖�1

Re gρ(A,A′), (60)

where now A′ is the operator defining R′ while A comes
from Eq. (55) for the fidelity. Hence, we just have to
show that we can exchange the maximizations over A and
A′ in Eq. (58). This can be done by applying Shiffman’s
minimax theorem [28] which says that we can exchange
the rightmost min and max provided that the function is
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convex concave in the two arguments (in this case it is
bilinear), and that the variables are optimized over convex sets,
which is the case here. Hence, we obtain maxR F (RN ,M) =
maxA′ maxA minρ Re gρ(A,A′) = maxR′ F (N̂ ,R′M̂), where
‖A′‖,‖A‖ � 1. �

Proposition 4. If N ′ ∼ N and M′ ∼ M, then

max
R

F (RN ,M) = max
R

F (RN ′,M′), (61)

where the maxima are over all quantum channels with the
appropriate source and target spaces.

Proof. We have N ′ = SN , N = S ′N ′, N ′ = T N , N =
T ′N ′ for some channels S,S ′,T ,T ′. Hence,

max
R

F (N ,RM) = F (N ,R0M)

� F (SN ,SR0M)

= F (N ′,SR0T ′M′)
� max

R
F (N ′,RM′). (62)

The converse inequality follows in the same way. �
Proof. Suppose thatN maps operators overHA to operators

over HB , and M maps operators over HA to operators over
HC . Then, using Proposition 4 together with the main theorem
for d maximal, i.e.,

d = dim(HA)2 dim(HB) dim(HC), (63)

we obtain a variation of Theorem 3 which we will find most
useful, and which is the direct generalization of Theorem 2:

Corollary 5. If Ñ and M̃ are generalized complementary
channels of N and M, respectively, then

max
R

F (RN ,M) = max
R′

F (Ñ ,R′M̃), (64)

where the maxima are over quantum channels with the
appropriate source and target spaces.

Proof. The only thing we have to show is that the maxima
taken without constraint on the number of Kraus operators
are always attained by trace-preserving maps, i.e., quantum
channels. We use the fact that for any states ρ,τ , and σ , and
0 � p � 1, we have from the strong concavity of the fidelity
[29] that

f (pρ + (1 − p)τ,σ ) � √
p f (ρ,σ ) = f (pρ,σ ). (65)

Suppose that R is a trace-nonincreasing completely positive
map. We can always “complete” it to a trace-preserving
channel R = R + S, where S is another completely positive
map. For example, one can take S(ρ) = Tr[ρ − R(ρ)]τ for
some state τ . We then have, using the shorthands N e ≡
N ⊗ id and ψ ≡ |ψ〉〈ψ |,

F (RN ,M) = min
ψ

f ((RN )e(ψ),Me(ψ))

= f ((RN )e(ψ0),Me(ψ0))

= f ((RN )e(ψ0) + (SN )e(ψ0),Me(ψ0))

� f ((RN )e(ψ0),Me(ψ0))

� min
ψ

f ((RN )e(ψ),Me(ψ))

= F (RN ,M). (66)

The same argument works for the right-hand side of
Eq. (64). �

IV. SPECIAL CASE ˜M2 = ˜M

Theorem 3 and Corollary 5 might not seem directly useful
since they express one optimization in terms of a different but
seemingly equally hard one. However, we will show that there
are interesting problems, in particular error correction and
minimax state discrimination, where one of the optimizations
can be given a general and straightforward near-optimal
solution. More generally, we will consider the case where

M̃2 = M̃. (67)

One can readily check that this can indeed be satisfied in the
special case where M = 1, i.e., quantum error correction.

A. Near-optimal bounds

We will concentrate here on the form of our theorem given
in Corollary 5; however, it is straightforward to apply the same
reasoning to Theorem 3.

In this section, we will replace the worst-case entanglement
fidelity F (N ,M) by a distance d(N ,M). From the Bures
distance [30], we can define dρ(N ,M) = √

1 − Fρ(N ,M),
which can be used to define

d(N ,M) := max
ρ

dρ(N ,M) =
√

1 − F (N ,M), (68)

which satisfies the triangle inequality:

d(N ,M) = max
ρ

dρ(N ,M)

� max
ρ

[dρ(N ,R) + dρ(R,M)]

� d(N ,R) + d(R,M). (69)

The equation in Corollary 5 in terms of this distance becomes

min
R

d(RN ,M) = min
R′

d(Ñ ,R′M̃). (70)

Corollary 6. If Ñ and M̃ are generalized complementary
channels of N and M, respectively, and M̃2 = M̃, then

1
2d(Ñ ,ÑM̃) � min

R
d(RN ,M) � d(Ñ ,ÑM̃). (71)

Proof.The rightmost inequality follows from picking the
suboptimal R′ = Ñ . For the leftmost inequality, suppose that
R′

0 minimizes d(Ñ ,R′M̃). Then, using the triangle inequality,

d(Ñ ,ÑM̃) � d(Ñ ,R′
0M̃) + d(R′

0M̃,ÑM̃). (72)

Let ε0 := minR d(RN ,M). We know that the first term is
equal to ε0 since R′

0 is optimal. For the second term, note that

d(R′
0M̃,ÑM̃) = d(R′

0M̃2,ÑM̃) � d(R′
0M̃,Ñ ) = ε0.

(73)

For the last inequality, we used the fact that

d(NR,MR) � d(N ,M) (74)

for any channelsN ,M, andR. This property follows from the
fact that R simply limits the number of input states over which
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the maximum is taken inside the definition of the distance. It
follows that d(Ñ ,ÑM̃) � 2ε0. �

Note that computing d(N̂ ,N̂M̂) requires a convex maxi-
mization over inputs only [27], which is a significant simplifi-
cation over the minimax minR d(RN ,M).

B. Near-optimal recovery channels

Let us show how we can construct a recovery channel Rg

which performs as well as guaranteed by our bounds [Eq. (71)],
i.e.,

d(RgN ,M) � d(Ñ ,ÑM̃). (75)

If we takeM̃ = M̂ to be complementary toM and Ñ = N̂
to be complementary to N , then the fidelity F (N̂ ,N̂M̂) =
1 − d(N̂ ,N̂M̂)2 is given through a minimization and a
maximization as

F (N̂ ,N̂M̂) = min
ρ

max
‖A‖�1

Re gρ(A,U ′), (76)

where the bilinear function gρ is defined in Eq. (59), and U ′

yields N̂ through N̂ (ρ) = Tr2[U ′(ρ ⊗ |0〉〈0|)(U ′)†].
The minimax theorem guarantees that there exists a saddle

point, i.e., a pair (ρ0,A0) such that we have both

Re gρ0 (A0,U
′) = min

ρ
max
‖A‖�1

Re gρ(A,U ′) (77)

and

Re gρ0 (A0,U
′) = max

‖A‖�1
min

ρ
Re gρ(A,U ′). (78)

If we know this saddle point, then, defining the trace-
nonincreasing completely positive map

S(ρ) := Tr2[A0(ρ ⊗ |0〉〈0|)A†
0] (79)

and completing it to the trace-preserving channel

Rg(ρ) = S(ρ) + Tr[ρ − S(ρ)]τ (80)

for some state τ , we have

F (RgN ,M) � F (SN ,M)

= min
ρ

max
U ′

Re gρ(A0,U
′)

= max
‖A′‖�1

min
ρ

Re gρ(A0,A
′)

� min
ρ

Re gρ(A0,U
′)

= Re gρ0 (A0,U
′)

= F (N̂ ,N̂M̂), (81)

i.e., Rg satisfies Eq. (75). Hence, a near-optimal correction
channel Rg is given by the saddle point in the minimax
problem yielding the estimate F (N̂ ,N̂M̂). For completeness,
suppose that instead of M̂ complementary to M, we use
a generalized complementary channel M̃ ∼ M̂. Let M′ be
complementary to M̃. Using Theorem 2 we obtain M′ ∼ M.
As above, we can build R′

g such that

d(R′
gN ,M′) � d(N̂ ,N̂M̃). (82)

Suppose that T ′ is such that M = T ′M′. Then using Rg :=
T ′R′

g , we obtain

d(RgN ,M) � d(R′
gN ,M′) � d(N̂ ,N̂M̃). (83)

If furthermore Ñ ∼ N̂ , we have

d(RgN ,M) � d(N̂ ,N̂M̃) � d(Ñ ,ÑM̃) (84)

by the monotonicity of the distance.
Let us now focus on the problem of finding the saddle point

in the case where

M(ρ) = ρ ⊗ σ, (85)

and we use the complementary channel

M̂(ρ) = σTr(ρ). (86)

We use a channel M slightly more general than for pure
quantum error correction so that we can use for M̂ the most
general channel similar to a channel complementary to the
identity. This means that to simulate the identity rather than
this channel M, we can just use the near-optimal channel Rg

that we will obtain and trace out the extra state σ .
We also write

N (ρ) =
∑

i

EiVρV †E†
i (87)

as in Sec. II D.
Assuming σ = ∑

j pj |j 〉〈j |, and writing a purification of
σ as |ψ〉 = ∑

i

√
pi |i〉A ⊗ |i〉R , we define the operator

Xρ :=
ψ

VN
V †
N

ρ A

B

R

=
i ψ

VN
i i

V †
N

ρ A

B

R

=
i

ρV †E†
i ⊗ (EiV ⊗ 1)|ψ

=
ij

ρV †E†
i ⊗√

pjEiV |j j .

(88)

{We note that the operator Xρ defined here is different from the
one denoted by the same symbol in Ref. [8].}One can check
that

gρ(A,U ′) = Tr[A(X†
ρ ⊗ |0〉)], (89)

where the state |0〉 is the state used before to relate A to a
completely positive map S. Since this state is arbitrary, we
can just absorb it in the definition of a new operator A, which
is now not given by a square matrix anymore, and we write
simply

gρ(A,U ′) = Tr(AX†
ρ), (90)

where the completely positive map S is obtained from A by

S(ρ) := TrB(AρA†). (91)
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In terms of Xρ , we then have

F (N̂ ,N̂M̂) = min
ρ

max
‖A‖�1

Re Tr(AX†
ρ) = min

ρ
Tr|Xρ |, (92)

where

|Xρ | :=
√

X
†
ρXρ. (93)

The second equality in Eq. (92) uses the fact
that max‖A‖�1 Re Tr(AX†

ρ) = Tr|Xρ |, which can be seen
as follows. Let Xρ = V |Xρ | be a polar decom-
position of Xρ . Then Re Tr(AX†

ρ) ≡ Re Tr(A|Xρ |V †) =
Re Tr(V †A|Xρ |). Since ‖V †A‖ � ‖V †‖‖A‖ � 1 and |Xρ | �
0, we have (see Appendix A) Re Tr(V †A|Xρ |) � Tr|Xρ |. This
bound is achievable for A = V .

The following result shows that under certain circumstances
one can use as a saddle point the state ρ0 minimizing Tr|Xρ |
together with a unitary operator A0 coming from the polar
decomposition of Xρ0 ,

Xρ0 = A0|Xρ0 |. (94)

To express S, it will be convenient to introduce the completely
positive map �ρ defined by

�†
ρ(τ ) = TrBR(XρτX†

ρ)

=
∑
ij

Tr(σV †E†
i EjV )ρV †E†

j τEiVρ. (95)

Note also that

X†
ρXρ = �ρ(1). (96)

Proposition 7. Let N be defined as in Eq. (87) and � as in
Eq. (95). Let ρ0 be a state minimizing

F0(ρ) := Tr
√

�ρ(1). (97)

We have

F0(ρ0) � max
R

F (RN ,id) � 1
4F0(ρ0) + 3

4 . (98)

If furthermore the optimal state ρ0 is unique and of full rank,
then any channel of the form

Rg(τ ) = �†
ρ0

[�ρ0 (1)−
1
2 τ�ρ0 (1)−

1
2 ] + T (τ ), (99)

for some completely positive map T , is near-optimal in the
sense that it satisfies

F0(ρ0) � F (RgN ,id). (100)

Proof. The inequalities involving F0(ρ0) follow directly
from Eq. (71). In view of the previous discussion, we only need
to prove that the optimal state ρ0 together with an operator A0

solving Xρ0 = A0|Xρ0 | form a saddle point for Re Tr(AX†
ρ). It

is clear from the definitions that this pair (A0,ρ0) attains the
value minρ max‖A‖=1 Re Tr(AX†

ρ). But we do not a priori know
which solution A0 of the equation Xρ0 = A|Xρ0 | is such that
ρ0 is the minimum for Re Tr(A0X

†
ρ), which is what is needed

for (A0,ρ0) to be a saddle point. We show in Appendix B
that if ρ0 has full rank, then for any state ρ ′, Re Tr(A0Xρ ′ )
is independent of which solution A0 of Xρ0 = A|Xρ0 | we
choose. Hence, any of them yields a near-optimal correction
channel. �

Note that the condition that ρ0 be full-rank is necessary
for the above construction to work. A counterexample to this
construction for the case when ρ0 is not of full rank is presented
in Appendix C.

C. Nature of the approximately correctable channels

It would seem natural that an approximately correctable
channel is also close to some exactly correctable channel.
Here we will show a slight variation of this intuition in
terms of the worst-case entanglement fidelity, namely, that
an approximately correctable channel is always similar to one
which is close to an exactly correctable channel.

Theorem 8. For any channel N , there exists an exactly
correctable channel N0 and a channel N ′ ∼ N such that

d(N ′,N0) = min
R

d(RN ,id). (101)

Proof. Let

ε := min
R

d(RN ,id). (102)

To prove that d(N ′,N0) � ε, consider the channel R0 correct-
ing N0. Using first the monotonicity of the distance and then
Corollary 4, we conclude

d(N ′,N0) � d(R0N ′,id) � min
R

d(RN ′,id) = ε. (103)

For the converse, observe that by Corollary 5 there exists a
constant channel C,

C(ρ) = σTr(ρ), (104)

such that

d(N̂ ,C) = ε. (105)

Using Theorem 3 with d = 1,

ε = d(N̂ ,C) � min
|R|=1

d(RN̂ ,C) = min
|R|=1

d(N ,RĈ). (106)

Let R0 be the optimal trace-nonincreasing CP map on the right-
hand side. It is of the form R0(ρ) = AρA† where A†A � 1.
Consider the isometry

V := A ⊗ |0〉 +
√

1 − A†A ⊗ |1〉 (107)

with corresponding map V(ρ) := VρV †. We have

ε � d(N ,R0Ĉ) = d(N ′,VĈ), (108)

where

N ′(ρ) := N (ρ) ⊗ |0〉〈0|. (109)

Clearly N ′ ∼ N . In addition, we know from the Knill-
Laflamme conditions (see Sec. II D) that Ĉ is exactly cor-
rectable. Therefore N0 = VĈ is also exactly correctable. �

Let us find a channel Ĉ complementary to C explicitly. If
σ = ∑

i pi |i〉〈i|, we have

C(ρ) =
∑
ij

pi |i〉〈j |ρ|j 〉〈i| = TrEWρW †, (110)

where

W =
∑
ij

√
pi |i〉〈j | ⊗ |ij 〉E. (111)
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The corresponding complementary channel is

Ĉ(ρ)=TrBWρW †=
∑
ijj ′

pi〈j |ρ|j ′〉 ⊗ |ij 〉〈ij ′|=ρ ⊗ σ.

(112)

Hence we see that the exactly correctable channel N0 in the
above proof has the form

N0(ρ) = V (ρ ⊗ σ )V †, (113)

which is indeed the general form of a correctable channel [31].

D. State discrimination

To illustrate the generality of our result, let us show how it
yields a nontrivial result for minimax state discrimination [32].

We want to specialize the relation

1
2d(N̂ ,N̂M̂) � min

R
d(RN ,M) � d(N̂ ,N̂M̂), (114)

where d(N ,M) = √
1 − F (N ,M) and F (N ,M) is the

worst-case entanglement fidelity between channels N and M,
to the case where

M(ρ) =
∑

i

|i〉〈i|ρ|i〉〈i| (115)

and

N (ρ) =
∑

i

ρi〈i|ρ|i〉 =
∑
ij

s
†
i |j 〉〈i|ρ|i〉〈j |si (116)

for a fixed set of states {ρi}, where ρi = s
†
i si . This is the

problem of minimax state discrimination [32]. Indeed, this
channel N can be thought of as a classical-to-quantum
channel, which is just what a state preparation is: it outputs a
quantum state depending on some classical data, namely, the
choice of which ρi to output.

Since the output of M is diagonal in the basis |i〉, we also
expect the output of the optimal channel R to be, in which
case there is a positive operator-valued measure (POVM) with
elements Ai (

∑
i Ai = 1) such that

R(ρ) =
∑

i

Tr(ρAi)|i〉〈i|. (117)

We then have

max
R

F (RN ,M)=max
A

min
p

∑
i

√
pi

√∑
j

pj Tr(ρjAi),

(118)

where pi = 〈i|ρ|i〉 is all that matters about the initial state ρ.
Since the classical fidelity is jointly concave in both arguments,
the minimum of p is achieved when p is pure. Hence,

max
R

F (RN ,M) = max
A

min
i

√
Tr(ρiAi). (119)

The square of this expression is the minimal worst-case success
probability for the discrimination of the states ρi .

In order to see what the bound F (N̂ ,N̂M̂) is, we need
channels complementary to N and M, or the corresponding
isometries V and W . If

W =
∑

i

|i〉E ⊗ |i〉B〈i|, (120)

then clearly M(ρ) = TrEWρW †. Hence, we can pick M̂ :=
TrBWρW †. Similarly, if

V =
∑
ij

|ij 〉E ⊗ s
†
i |j 〉B〈i|, (121)

then N (ρ) = TrEVρV †, and so we can use N̂ := TrBVρV †.
The worst-case entanglement fidelity F (N̂ ,N̂M̂) then can be
written as

F (N̂ ,N̂M̂) = min
ψ

max
U

|f (U,ρ)|, (122)

where

f(U, ρ) =
ψ

V 0 U
V † W †

ψ

=
ij

ψ
i j s†

i

0
U si j

i i

ψ

=
i

i|ρ|i s†
i

0
U si

i

=
i

i|ρ|i ρi

0
U

i = Tr(UX†),
(123)

with |ψ〉 being a purification of ρ, and

X =
∑

i

〈i|ρ|i〉 ρi ⊗ |i〉〈0|. (124)

In the above, we used the notation

A
=

i

i i

A

=
i

i A i = TrA.

(125)

We also used that fact that

ψ
i i

ψ =
i

ψ ψ
i

= i ρ i = i|ρ|i .
(126)

Therefore,

X†X =
∑

i

ρ2
i 〈i|ρ|i〉2 ⊗ |0〉〈0| (127)

and

F (N̂ ,N̂M̂) = min
ρ

Tr
√

X†X. (128)

Hence, the quantity

� := 1 − min
p

Tr

√∑
i
p2

i ρ
2
i (129)
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CÉDRIC BÉNY AND OGNYAN ORESHKOV PHYSICAL REVIEW A 84, 022333 (2011)

satisfies

1
4� � min

A
max

i
[1 −

√
Tr(ρiAi)] � �, (130)

i.e.,

1
2�− 1

16�2 �min
A

max
i

[1−Tr(ρiAi)]�2�−�2. (131)

This provides a simple estimate to the optimal achievable
solution to the minimax state discrimination problem.

We note that the same upper bound, and a better lower
bound exactly equal to �, can also be derived [10] by
applying the minimax theorem to previously obtained state
discrimination bounds [33–35].

V. COMPARISON WITH OTHER RESULTS

Results similar to ours exist in the special case M = id
[9,10], or in the particular case of state discrimination [33]. In
these works, bounds are derived for the entanglement fidelity
for a fixed state, but a direct application of the minimax
theorem yields bounds for the worst-case entanglement fidelity
[10]. However, it is not known whether there exists an efficient
procedure for constructing near-optimal recovery channels
compatible with the worst-case bounds obtained in this way.

Let us show that our method also works for the fixed-state
entanglement fidelity, at least for the main theorem. Then we
will see that it yields almost the same bounds as in Ref. [10]
in the case M = id, albeit weaker.

It is easy to show that both Theorems 3 and 5 still hold
if the worst-case fidelity F is replaced by the fidelity Fρ for
a fixed input state ρ [8]. The proofs are much simpler as
the minimum disappears from Eq. (58). Hence, it suffices to
see that max‖A‖�1,‖A′‖�1 g(A,A′) is equal to both sides of the
equation

max
|R|�d

Fρ(RN ,M) = max
|R′|�d

Fρ(N̂ ,R′M̂), (132)

when N̂ and M̂ are complementary, respectively, to N and
M. From this it follows also that if Ñ ∼ N̂ and M̃ ∼ M̂,
then

max
R

Fρ(RN ,M) = max
R′

Fρ(Ñ ,R′M̃). (133)

However, since Fρ does not have the special property expressed
in Eq. (74), we cannot use the same technique to get a simple
approximation of maxR′ Fρ(Ñ ,R′M̃) in the case M̃2 = M̃.
However, we can obtain an inequality similar to Eq. (71) for
the important case

M̃(σ ) = ρTr(σ ), (134)

where ρ is the same state as the one used to evaluate the fidelity.
This channel M̃ is generalized complementary to M = id.
Hence, this corresponds to the approximate quantum error
correction problem.

Concretely, suppose that R′
0 is such that

dρ(Ñ ,R′
0(ρ)Tr) = min

R′
dρ(Ñ ,R′(ρ)Tr) ≡ ε0. (135)

Then, using the triangle inequality, we have

dρ(Ñ ,Ñ (ρ)Tr) � ε0 + dρ(R′
0(ρ)Tr,Ñ (ρ)Tr). (136)

The second term is calculated from

Fρ(R′
0(ρ)Tr,Ñ (ρ)Tr) = f (R′

0(ρ),Ñ (ρ))

� Fρ(Ñ ,R′
0(ρ)Tr) = 1 − ε2

0. (137)

Hence, dρ(Ñ ,Ñ (ρ)Tr) � 2ε0, from which we obtain the
estimate

1
2dρ(Ñ ,Ñ (ρ)Tr)�min

R
dρ(RN ,id)�dρ(Ñ ,Ñ (ρ)Tr). (138)

This is a weaker form of the bounds derived by Tyson
{Eq. (153) of Ref. [10]} using a different method. The upper
bound can be seen to be equivalent to the corresponding bound
in Ref. [10], but the lower bound is weaker, which may be
significant in the regime where the optimal error is large.

Indeed, if we write the estimate explicitly in terms of some
Kraus operators Ei of N , we have

Fρ(Ñ ,Ñ (ρ)Tr) = Tr
√∑

ij

Eiρ2E
†
j Tr(ρE

†
i Ej ). (139)

This is precisely the quantity that Tyson denotes by 

{Eq. (154) of Ref. [10]} (note that the quantity that Tyson
calls “fidelity” is the square of our fidelity). Tyson writes the
channel as N (ρ) = ∑

i piFiρF
†
i , where Tr(ρF

†
i Fj ) = δij and

pi > 0, which is always possible. Hence, we obtain his formula
for  using Ei = √

p
i
Fi .

The corresponding near-optimal channel that we obtain in
this way is the same as the one introduced by Tyson, which is
Rg defined in Eq. (99) but with ρ0 = σ = ρ, i.e.,

Rg(τ ) = �†[�(1)−
1
2 τ �(1)−

1
2 ] + T (τ ), (140)

where

�†(τ ) :=
∑
ij

Tr(ρE
†
i Ej )ρE

†
j τEiρ, (141)

and T is any CP map that makes Rg trace-preserving. For
instance, T can be chosen as

T (τ ) = Tr(τP )σ, (142)

where P projects on the kernel of �(1), and σ can be any state.
As explained in Ref. [10], this channel is not the same as

the one used in Ref. [9] which yields similar bounds and was
introduced by Petz [36,37] who showed that it yields exact
inversion on two given states. The latter is built in the same
way, but from the CP map

�†(τ ) = √
ρN†(τ )

√
ρ. (143)

The performance of this channel with ρ maximally mixed
(known as the “transpose channel”) was also studied for
approximate QEC in terms of the worst-case fidelity in
Ref. [16].
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APPENDIX A: PROOF OF THE RELATION
Re Tr(V † A|Xρ|) � Tr|Xρ|

Let {|i〉} be an eigenbasis of |Xρ |, |Xρ | = ∑
j xj |j 〉〈j |,

xj � 0. Since V is unitary and ‖A‖ � 1, we have ‖V †A‖ �
‖V †‖‖A‖ � 1. This means that for all j ,

‖V †A|j 〉‖2 = 〈j |A†V V †A|j 〉
=

∑
i

〈j |A†V |i〉〈i|V †A|j 〉 � 1. (A1)

Therefore,

|〈j |V †A|j 〉| � 1, ∀j. (A2)

We thus have

Re Tr(V †A|Xρ |) = Re
∑

j

〈j |V †A|j 〉xj �
∑

j

|〈j |V †A|j 〉|xj

�
∑

j

xj ≡ Tr|Xρ |.

APPENDIX B: SADDLE POINT IN THE CASE OF A
UNIQUE, FULL-RANK ρ0

Our procedure for constructing a near-optimal recov-
ery channel requires finding a saddle point (ρ0,A0) of
Re gρ(A,U ′), where U ′ yields N̂ through N̂ (ρ) = Tr2(U ′(ρ ⊗
|0〉〈0|)(U ′)†). In the case of M(ρ) = ρ ⊗ σ , we saw that this
is equivalent to finding (ρ0,A0) that achieves the optimiza-
tion minρ max‖A‖�1 Re Tr(AX†

ρ) = minρ Tr|Xρ |. One way to
approach the problem in this case could be to first search for
ρ0 that achieves minρ Tr|Xρ |, which is a convex optimization
task. If we find ρ0 that is unique, then we know that it must be
the one at the saddle point. Now imagine that this ρ0 is also
of full rank. We will prove that in such a case the saddle-point
A0 can be taken to be A0 = U0, where U0 is any unitary that
comes from the polar decomposition of Xρ0 , Xρ0 = U0|Xρ0 |.

Clearly, the unitary U0 achieves the maximum
in max‖A‖�1 Re Tr(AX†

ρ0
), because Re Tr(U0X

†
ρ0

) = Re Tr

(U0|Xρ0 |U †
0 ) = Tr|Xρ0 |, but we also need that ρ0 achieves the

minimum in minρ Re Tr(U0X
†
ρ). If U0 is the unique maximizer

of max‖A‖�1 Re Tr(AX†
ρ0

), then we know that it must be a
saddle point. The problem is that in general A0 need not be
unique. However, we will see that if ρ0 is of full rank, A0

is unique up to a freedom that is irrelevant for the value of
Re Tr(AX†

ρ) whose saddle point we are looking for. Hence,
any operator A0 that maximizes Re Tr(AX†

ρ0
) would yield a

saddle point.
To show this, let us characterize the operators A, ‖A‖ � 1,

that satisfy

Re Tr(AX†
ρ0

) = Tr|Xρ0 |. (B1)

Equation (B1) can be equivalently written as

Re Tr(Ǎ|Xρ0 |) = Tr|Xρ0 |, (B2)

where (using the cyclic invariance of the trace)

Ǎ := U
†
0A. (B3)

Note that ‖Ǎ‖ � ‖U †
0‖‖A‖ � 1.

Let |i〉, i = 1, . . . ,d, be eigenvectors of |Xρ0 | ordered
such that the first n � d of them are all those with nonzero
eigenvalues, |Xρ0 | = ∑

i�n xi |i〉〈i|, xi > 0. Then Eq. (B2) is
equivalent to

Re
∑
i�n

〈i|Ǎ|i〉xi =
∑
i�n

xi, (B4)

or ∑
i�n

(1 − Re 〈i|Ǎ|i〉)xi = 0. (B5)

Since ‖Ǎ‖ � 1, we have |〈i|Ǎ|i〉| � 1 for all i � n. Therefore,
the above is satisfied if and only if

〈i|Ǎ|i〉 = 1, ∀ i � n. (B6)

From ‖Ǎ‖ � 1 we also have that for all j � n,

‖Ǎ|j 〉‖2 = 〈j |Ǎ†Ǎ|j 〉 =
∑

i

〈j |Ǎ†|i〉〈i|Ǎ|j 〉

= 1 +
∑
i �=j

〈j |Ǎ†|i〉〈i|Ǎ|j 〉 � 1, (B7)

which is only possible if

〈i|Ǎ|j 〉 = 0, ∀ i �= j , j � n. (B8)

Since ‖Ǎ†‖ = ‖Ǎ‖ � 1, we obtain via the same argument

〈i|Ǎ|j 〉 = 0, ∀ i �= j , i � n. (B9)

This implies that Ǎ is block diagonal in the basis {|i〉}, with the
upper block (corresponding to the first n basis vectors) equal
to 1. This is necessary and sufficient for our condition to hold.
Let us write

Ǎ =
(

1 0

0 B

)
(B10)

for some matrix B and 1 = ∑
i�n |i〉〈i|.

Coming back to A itself, and labeling the blocks of U0 by
Uμν , we have that

A=U0Ǎ=
(

U11 U12

U21 U22

)(
1 0

0 B

)
=

(
U11 U12B

U21 U22B

)
. (B11)

Since the left block column of A is unique, we know that it is
equal to that of A0 which sits at the saddle point.

Now, suppose that we replace Xρ0 by Xρ which is such that
the support of |Xρ | is within the support of |Xρ0 |. Then let us
show that only the left block column of A as defined above
would matter for the calculation of the pseudofidelity

Re Tr(AX†
ρ) = Re Tr(V †A|Xρ |), (B12)

where Xρ = V |Xρ |. Indeed, since the only nonzero compo-
nents of |Xρ | are in the upper left block, for the trace in the
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last expression only the upper left block of V †A would matter,
and this block is

(V †A)11 = V
†

11A11 + V
†

21A21 = V
†

11U11 + V
†

21U21, (B13)

where Vμν are the corresponding blocks of V . We see that
(V †A)11 is independent of any freedom we may have in
choosing A and therefore behaves just like for the saddle-
point A0. �

For M(ρ) = ρ ⊗ σ , we can write |Xρ0 |2 in the form

|Xρ0 |2 =
∑

i

Eiρ
2
0E

†
i λi, (B14)

where Ei are suitable Kraus operators of N , and λi =
Tr(EiσE

†
i ) [M̂(ρ) = σTr(ρ)]. It is easy to see that a state

|ψ〉 is in the kernel of |Xρ0 |2 (and therefore of |Xρ0 |) if
and only if, for all i, λi = 0 or ρ0E

†
i |ψ〉 = 0. If ρ0 is full

rank, the last condition reads E
†
i |ψ〉 = 0. This means that for

any ρ, the kernel of |Xρ | contains the kernel of |Xρ0 |, or equiva-
lently, the support of |Xρ0 | contains the support of |Xρ | for all ρ.
By the above argument, A0 = U0 would be the unique
maximizer of Re Tr(AX†

ρ0
) up to the freedom in the way

Ǎ = U
†
0A acts on the kernel of |Xρ |, which has no relevance

for the value of Re Tr(Ǎ|Xρ |) = Re Tr(AX†
ρ0

). Hence, (U0,ρ0)
is a saddle point of Re Tr(AX†

ρ).

APPENDIX C: INADEQUACY OF THE ABOVE
PROCEDURE WHEN ρ0 IS NOT OF FULL RANK

Unfortunately, the above argument cannot be used to
simplify the procedure in the general case, since in principle
ρ0 need not be unique (take, for example, the extreme case
where N is correctable), and even if it is unique, it need not
be of full rank. Let us illustrate the latter case by an example.

Let N̂ be a channel with a two-dimensional input (we
will denote the input system by A) and a two-dimensional
output (denoted by E) with basis vectors {|0〉A,|1〉A} and
{|0〉E,|1〉E}, respectively, that acts as follows: N̂ (ρA) = (1 −
s)ρE + s|0〉〈0|ETr(ρA). Take M̂(ρA) = |0〉〈0|ETr(ρA). Note
that N̂ = (1 − s)1 + sM̂ and N̂M̂ = M̂. Let |ψρ〉AR be a
purification of ρA. From the concavity of the square of the
fidelity [25], we have

min
ρ

F 2
ρ (N̂ ,N̂M̂)

= min
ρ

F 2((1 − s)|ψ〉〈ψ |ER + sM̂ ⊗ idR(|ψ〉〈ψ |AR),

M̂ ⊗ idR(|ψ〉〈ψ |AR))

� min
ρ

[(1 − s)F 2(|ψ〉〈ψ |ER,M ⊗ idR(|ψ〉〈ψ |AR))

+ sF 2(M ⊗ idR|ψ〉〈ψ |AR,M ⊗ idR(|ψ〉〈ψ |AR))] � s.

(C1)

We will show that the lower bound s is actually achievable
for ρA

0 = |1〉〈1|A. Indeed, in this case we can take |ψ〉AR =
|1〉A|1〉R . We then have M ⊗ idR(|ψ〉〈ψ |AR) = |0〉〈0|E ⊗
|1〉〈1|R . We obtain

F 2
|1〉〈1|(N̂ ,N̂M̂)

= 〈0|E〈1|R((1 − s)|1〉〈1|E ⊗ |1〉〈1|R
+ s|0〉〈0|E ⊗ |1〉〈1|R)|0〉E|1〉R = s. (C2)

Moreover, it is easy to see that ρA
0 = |1〉〈1|A is the unique state

that achieves the minimum value.
The state ρA

0 = |1〉〈1|A does not have full support. To
show that this does not allow us to obtain a saddle-point
A0 by simply taking any maximizer of maxA gρ0 (A,U ′), let
us look at the support of |Xρ0 | as a function of ρ. Since
N̂ has three Kraus operators, Ê0 = √

1 − s1, Ê1 = √
s|0〉〈0|,

Ê2 = √
s|0〉〈1|, we will take system B in the circuit diagram to

be three-dimensional, with basis {|0B〉,|1B〉,|2B〉}. The dilation
of N̂ (or N ) is

|0〉A → √
1 − s|0〉E|0〉B + √

s|0〉E|1〉B, (C3)

|1〉A → √
1 − s|1〉E|0〉B + √

s|0〉E|2〉B. (C4)

From this, we obtain the Kraus operators of N ,

E0 = √
1 − s|0〉〈0| + √

s|1〉〈0| + √
s|2〉〈1|, (C5)

E1 = √
1 − s|0〉〈1|. (C6)

Using the expression for X†
ρXρ in terms of an arbitrary choice

of Kraus operators,

X†
ρXρ =

∑
ij

Eiρ
2E

†
j Tr(EjσE

†
i ), (C7)

we obtain (in our case σ = |0〉〈0|)
X†

ρXρ = E0ρ
2E

†
0. (C8)

For ρ = ρ0 = |1〉〈1|, we have

|Xρ0 |2 = s|2〉〈2|. (C9)

However, if we take, for example, ρ = |0〉〈0|, we obtain

X
†
|0〉〈0|X|0〉〈0| = |φ〉〈φ|, (C10)

where

|φ〉 = √
1 − s|0〉 + √

s|1〉. (C11)

We therefore see that the support of |Xρ0 | in this case does not
contain the support of |Xρ | for all ρ.

Let us show that due to this fact, not every unitary one
obtains from the polar decomposition of X†

ρ0
is a saddle

point. Denote the left and right ancilla systems (in state |0〉)
displayed in the main circuit diagram by C (of dimension 2)
and C ′ (of dimension 3), respectively, and denote the system
corresponding to the middle wire by D (the latter has
dimension 3). Now, consider the case ρA = |1〉〈1|A (the state
|ψρ〉AR can be taken to be |1〉A|1〉R). The action of the isometry
VN is given by (C4), and U ′ in this case realizes this isometry
on the input E′ when the ancilla C ′ is in state |0〉C ′

. The input
(from the right) at E′ is in the state |0〉E′

since by definition
this is the output of M̂. Using that, one easily obtains that the
overlap reduces to

g|1〉〈1|(U,U ′) = √
s〈1|B ′ 〈φ|DU |2〉B |0〉C. (C12)

The real part of g|1〉〈1|(U,U ′) is maximized when

U |2〉B |0〉C = |1〉B ′ |φ〉D. (C13)

However, we have a freedom of choosing how U acts
on Span{|0〉B |0〉C,|1〉B |0〉C}. To see that not every unitary
satisfying (C13) yields a saddle point, consider the case of
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ρA = |0〉〈0|A. In this case, the overlap reduces to

g|0〉〈0|(U,U ′) = 〈0|B ′ 〈φ|DU |φ〉B |0〉C. (C14)

Since the action of U on |φ〉B |0〉C is completely undetermined
by condition (C13), we could choose U0 such that it satisfies
both (C13) and, e.g.,

U0|φ〉B |0〉C = −|0〉B ′ |φ〉D. (C15)

Then we obtain that Re g|0〉〈0|(U0,U
′) = −1 <

Re g|1〉〈1|(U0,U
′) = √

s, i.e., (U0,|1〉〈1|) is not a saddle
point of Re gρ(A,U ′) since ρ0 = |1〉〈1| does not minimize
Re gρ(U0,U

′).
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[14] C. Crépeau, D. Gottesman, and A. Smith, Lect. Notes Comput.

Sci. 3494, 285 (2005).
[15] F. Buscemi, Phys. Rev. A 77, 012309 (2008).
[16] H. K. Ng and P. Mandayam, Phys. Rev. A 81, 062342 (2010).
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