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Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise
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We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory
channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all
channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond
previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a
quantum memory channel with Gauss-Markov noise [J. Schäfer, Phys. Rev. A 80, 062313 (2009)]. We evaluate
the enhancement of the transmission rate when using these optimal entangled input states by comparison with a
product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than
90% of the capacity.
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I. INTRODUCTION

A central problem of information theory is to derive the
capacity of communication channels, which is the maximal
information transmission rate for a given available energy. For
quantum channels, which may transmit quantum or classical
information, one can define the quantum or classical capacity.
The present paper is focused on the latter. Just as in classical
information theory, the question of whether or not the classical
capacity is additive is of central importance. If the capacity is
superadditive, then the asymptotic transmission rate can be
higher than the maximal rate achievable for a single use of the
channel. Although some quantum channels were proven to be
additive [1–3], a counterexample was exhibited, proving that
this does not hold in general [4]. The situation becomes rather
different for channels with memory, as then the subsequent
uses of the channel get linked. In particular, if the memory is
modeled by noise correlations between the uses of the channel,
it has been shown that the transmission rate may be enhanced
by using entangled input states [5–19].

A particular interest has been devoted to Gaussian bosonic
channels as they model common physical links such as the
optical transmission via free space or optical fibers. An
overview of these bosonic channels can be found in [20].
Among them the most studied are the additive noise and
lossy Gaussian channels (see, e.g., [3], [21], and [22] and
Refs. therein). For these channels, it was also shown that
correlated noise may lead to superadditivity as the transmission
rate may be enhanced by input states with some degree of
entanglement [12–19]. We remark that all these studies were
restricted to the set of Gaussian input states, so that the derived
quantity can be viewed as a “Gaussian capacity.” However, if
the conjecture that Gaussian states minimize the output entropy
of Gaussian channels could be proven, then this quantity would
turn into the actual capacity. For a particular case, i.e., the
memoryless lossy Gaussian channel with vacuum noise, this
conjecture was proven to hold [3]. In the present paper, we
also restrict ourselves to the set of Gaussian input states, that
is, we investigate the Gaussian capacity.

*joschaef@ulb.ac.be

In a recent work, we have evaluated the Gaussian capac-
ity of a Gaussian quantum channel with additive Markov
correlated noise, restricted to a certain input energy domain
[16]. Correlated Gaussian noise appears, for instance, in the
models of downlink communications between satellites and
terrestrial stations [23], and a simple description of such
correlations can be provided by an underlying Markov process.
We found a quantum water-filling solution to the Gaussian
capacity, similar to the classical water-filling that appears
when considering parallel classical Gaussian channels [24].
This similarity is very surprising, as we must take into account
that a part of the input energy, in addition to being spent on
classical modulation, is spent on the preparation of quantum
information carriers (e.g., squeezed states), something which
has no classical analog. The notion of quantum water-filling
appeared for the first time in the discussion of the capacity of a
memoryless phase-dependent Gaussian channel [21], although
there the quantum information carriers were considered part of
the channel and only the energy cost of classical modulation
was considered, thus making this solution a straightforward
analog to the classical one.

In this paper, we present a solution to the Gaussian capacity
of the Gaussian additive noise channel in the full input energy
domain, where noise correlations are given by stationary
(shift-invariant) Gauss processes. We show that the method
is applicable even to a larger class of noises. We present an
algorithm for a numerical solution of the arising optimization
problem based on the method of Lagrange multipliers. Al-
though the algorithm was derived independently, the validity
of this method is based on arguments which are essentially
equivalent to those presented in [17] for a lossy Gaussian
channel where the quantum water-filling solution was also
obtained. Using this method, we analyze the Gaussian capacity
and the associated optimal input states and encoding as a
function of the noise parameters for the special case of
Gauss-Markov noise, including the limiting case of maximal
noise correlations. In addition, we evaluate the gain from using
the optimal input states, which are entangled and therefore may
be complicated to produce, with respect to easily generated
coherent product states.

The paper is organized as follows. First, we introduce the
notion of classical capacity and Gaussian quantum channels
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in Sec. II. Then we discuss the solution to the capacity for
the one-mode case in Sec. III and for an arbitrary number of
modes in Sec. IV. Finally, in Sec. V we analyze the capacity, the
optimal states, and the gain for Gauss-Markov noise in the full
range of the correlation strength. The conclusions are provided
in Sec. VI and several mathematical proofs and definitions are
provided in the Appendices.

II. CLASSICAL CAPACITY OF QUANTUM
GAUSSIAN CHANNELS

In order to transmit classical information via a quantum
channel, one defines an alphabet with letters associated with
quantum states ρ in

i . The quantum channel T is a completely
positive, trace-preserving linear map acting on the input
“letter” states:

ρout
i = T

[
ρ in

i

]
, (1)

resulting in output states ρout
i . On average, the “letters” ρ in

i

appear in the transmitted messages with a priori probabilities
pi so that the overall modulated input state is ρ in = ∑

i piρ
in
i .

By linearity, the action of T on the overall modulated input
reads T [ρ in] = ∑

i piρ
out
i ≡ ρ, where ρ is referred to as the

overall modulated output. The state ρ in is physical only if it
has finite energy. Therefore it has to obey the energy constraint∑

i

pi Tr(ρ in
i â†â) � n, (2)

where n is the maximum mean photon number per use of
the channel, and â and â† are the annihilation and creation
operators.

The classical capacity of channel T is the maximal amount
of classical bits which can be transmitted per invocation of the
channel via quantum states in the limit of an infinite number
of channel uses. This quantity can be calculated with the help
of the so-called one-shot capacity, given by the Holevo bound
[25],

C1(T ) = max
{ρin

i ,pi }

{
S

(∑
i

pi T
[
ρ in

i

]) −
∑

i

pi S
(
T

[
ρ in

i

])}
,

(3)

with the von Neumann entropy S(ρ) = −Tr(ρ log ρ), where
log denotes the logarithm to base 2. The maximum in (3) is
taken over all ensembles of {pi,ρ

in
i } of probability distributions

pi and pure input states ρ in
i , because it was proven in [26] that

the optimal input states for noisy quantum channels are pure.
The term “one-shot” capacity denotes the maximal amount

of information that can be transmitted by a single use of the
channel T . Furthermore, a number of n consecutive uses of
the channel T can be equivalently considered as one use of
a parallel n-mode channel T (n). Then an upper bound to the
capacity of the channel T is given by the limit:

C(T ) = lim
n→∞

1

n
C1(T (n)). (4)

It has been shown that the latter is the actual capacity for
particular memoryless [3,26,27] and forgetful [5] channels
but, generally, is only an upper bound on the capacity. Here,
we evaluate (4) and find a specific encoding that realizes this
maximal value. For simplicity, we refer to C(T ) as capacity in
the following.

Let us now consider an n-mode optical channel T (n). In the
following, the number of modes of this channel corresponds
to the number of monomodal channel uses. Each mode j

is associated with the annihilation and creation operators
âj and â

†
j , respectively, or, equivalently, with the quadrature

operators q̂j = (âj + â
†
j )/

√
2 and p̂j = i(â†

j − âj )/
√

2, which
obey the canonical commutation relation [q̂i ,p̂j ] = iδij , where
δij denotes the Kronecker δ. By defining the vector R̂ =
(q̂1, . . . ,q̂n; p̂1, . . . ,p̂n)T, we can express the displacement
vector m and covariance matrix γ that fully characterize an
n-mode Gaussian state ρ as

m = Tr[ ρR̂],

γ = Tr[(R̂ − m) ρ (R̂ − m)T] − 1

2
J, (5)

J = i

(
0 I

−I 0

)
,

where J is the symplectic or commutation matrix with the
n × n identity matrix I .

We consider a continuous encoding alphabet, where in-
stead of a discrete index we use a complex number. A
message of length n is encoded in a 2n-dimensional real vec-
tor α = (Re{α1},Re{α2}, . . . ,Re{αn},Im{α1}, . . . ,Im{αn})T.
Physically, this corresponds to a displacement of the n-partite
Gaussian input state defined by the covariance matrix γin (and
zero mean) in the phase space by α and is denoted ρ in

α . The
Wigner function of ρ in

α reads

W in
α (R) = exp

[ − 1
2 (R − √

2α)T γ −1
in (R − √

2α)
]

(2π )n
√

det (γin)
, (6)

where here R ∈ R2n and denotes the coordinates in the phase
space. In the following we refer to this state as quantum input.

At this point, we follow the standard procedure, that is, we
only consider Gaussian distributions so that the overall mod-
ulated input state is a Gaussian mixture ρ in = ∫

d2nαf (α)ρ in
α ,

where d2nα = dRe{α1}dIm{α1} . . . dRe{αn}dIm{αn} with
(classical) Gaussian distribution

f (α) = exp
[ − αT γ −1

mod α
]

(2π )n
√

det (γmod)
.

We refer to the covariance matrix γmod as classical input or
classical modulation. We can set the displacement of the non-
modulated input state and the mean of the classical modulation
to 0 without loss of generality, because displacements do not
change the entropy S(ρ). Thus, since we restrict the set of
ensembles over which C1(T ) in (3) is maximized to Gaussian
states and distributions, we compute the so-called “Gaussian”
capacity. This is a lower bound to the capacity C1(T ) [hence,
for C(T ) too] which would be the actual capacity if the
Gaussian minimum output entropy conjecture could be proven
to hold [28,29].

The action of channel T (n) on an n-mode input state carrying
the message α reads as in [12]:

T (n)
[
ρ in

α

] = ρout
α =

∫
d2nβ fenv(β)

×D̂(βn) ⊗ · · · ⊗ D̂(β1)ρ in
α D̂†(β1) ⊗ . . . ⊗ D̂†(βn),

(7)
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with β = (Re{β1}, . . . ,Re{βn},Im{β1}, . . . ,Im{βn})T and the

displacement operator D̂(βj ) = eβj â
†
j −β∗

j âj . The displacement
is applied according to the (classical) Gaussian distribution of
the noise fenv(β) with covariance matrix γenv (which is also
referred to as the “environment”). If this matrix is not diagonal,
then the environment introduces correlations between the
successive uses of the channel. These correlations model the
memory of the channel.

The covariance matrices of the nonmodulated output state
ρout

α and the overall modulated output state ρ read, respectively,

γout = γin + γenv
(8)

γ = γout + γmod.

Note that the covariance matrix does not depend on the dis-
placement as seen in definition (6). Therefore, the covariance
matrix of ρout

α is the same for all α and the output entropy of
all displaced states is identical. Thus, the one-shot capacity (3)
of this additive channel reduces to

C1(T (n)) = sup
γin,γmod

{
S(ρ) − S

(
ρout

α

)}
. (9)

We use, in the following, the reduced Holevo χ quantity, which
reads

χ = S(ρ) − S
(
ρout

α

)
. (10)

The von Neumann entropy of a Gaussian state ρ is
expressed in terms of the symplectic eigenvalues νj of its
covariance matrix:

S(ρ) =
n∑

i=1

g

(
νi − 1

2

)
,

(11)

g(x) =
{

(x + 1) log (x + 1) − x log x, x > 0

0, x = 0.

We note that for quantum states the symplectic eigenvalues are
always greater than or equal to 1/2.

III. OPTIMIZATION PROBLEM

A. One-mode channel

In this subsection we consider the case of a single use
of channel T (1) in a similar fashion as in [16]. We start
our discussion with the results obtained in [16]. However,
we present the solution for the whole input energy domain.
We consider the noise covariance matrix to have different
variances in the quadratures, denoted γ

q,p
env , where we choose,

without loss of generality, γ
q
env > γ

p
env and off diagonal terms

γ
qp
env = 0. Any 2 × 2 covariance matrix can be reduced to this

form by a symplectic and orthogonal transformation, which
changes neither the entropy of the output state nor the energy
constraint. Therefore, by our choice we do not lose generality.
As already discussed, we restrict ourselves to the optimization
over Gaussian states.

In the following we determine the Gaussian capacity under
the following constraints. The first is the condition that ρ in

is a pure state which, together with definition (5) and the
commutation relation, implies

det γin = 1
4 . (12)

The second is the input energy constraint, (2), which reads

γ q
in + γ p

in + γ
q

mod + γ
p

mod = 2n + 1 ≡ λ, (13)

where γ
q,p
in ,γ

q,p

mod are the diagonal elements of the matrices
γin,γmod and λ is referred to as “input energy” in the following.
Furthermore, in order for γ

q,p
in and γ

q,p

mod to be physical they have
to be positive. The optimization problem is solved by using the
Lagrange multipliers method, with the total Lagrangian being

L = g
(
ν − 1

2

) − g
(
νout − 1

2

) − τ
(
γ

q
inγ

p
in − (

γ
qp
in

)2 − 1
4

)
−μ

(
γ q

in + γ p
in + γ

q

mod + γ
p

mod − λ
)
, (14)

with

ν =
√

γ qγ p − (
γ

qp
in + γ

qp

mod

)2
,

(15)

νout =
√

γ
q
outγ

p
out − (

γ
qp
in

)2
,

where γ
qp
in , γ

qp

mod denote the off-diagonal terms of matrices
γin,γmod, γ q,p, γ

q,p
out denote the diagonal elements of γ ,

γout, and τ,μ are Lagrange multipliers. In the following we
summarize the solution of the system of equations which
correspond to the stationary point of L. The details are
presented in Appendix A. We also prove in Appendix A that
L is concave at this stationary point, which implies that the
found solution is indeed a local maximum of L. Though we
do not have analytic proof that this maximum is global, all our
numerical studies confirm this.

1. Quantum-water-filling solution

First, we find that the solution implies that the input and
modulation covariance matrix cross terms vanish, that is,
γ

qp
in = γ

qp

mod = 0. Therefore, the diagonal elements γ
q,p
in ,γ

q,p

mod
are the eigenvalues of γin,γmod. Then one obtains the quantum
water-filling condition [16] (see Appendix A1 for details)

γ q
in + γ q

env + γ
q

mod = γ p
in + γ p

env + γ
p

mod, (16)

which means that the total output energy

λ ≡ λ + γ q
env + γ p

env (17)

is uniformly distributed between the quadratures, that is

γ q = γ p = λ

2
= νWF. (18)

We see that this value is also equal to the overall output
symplectic eigenvalue, which is referred to as the water-filling
level. The optimal quantum input is found to be determined by
the noise variance ratio, i.e.,

γ
q
in

γ
p
in

= γ
q
env

γ
p
env

. (19)

One of the equations links the Lagrange multiplier μ

g′(νWF − 1
2

) = 2μ ⇒ νWF = 1
2 coth (μ ln 2) (20)

to the water-filling level νWF, where g′(x) denotes the deriva-
tive of g(x) with respect to x and ln (x) is the natural logarithm.
In order for the solution to be physical, all eigenvalues in (16)
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FIG. 1. (Color online) Stacked bar plot: optimal eigenvalues of
both quadratures. Above and below the threshold the optimal input
state is squeezed and the less noisy quadrature is more modulated.
(a) λ > λthr. The optimal eigenvalues are determined by the quantum
water-filling solution. νWF denotes the water-filling level. (b) λ < λthr.
The modulation γ

q

mod = 0 since γ q
env > γ p

env. νWF denotes the “virtual”
water-filling level.

have to be positive. This requires an input energy λ being
above the threshold λthr, i.e.,

λ � λthr =
√

γ
q
env

γ
p
env

+ γ q
env − γ p

env. (21)

The optimal eigenvalues, which are the solutions of (16) and
(19), are schematically depicted in Fig. 1(a) for a particular
noise covariance matrix. The one-shot Gaussian capacity
above the threshold reads

C1 = g

(
n + γ

q
env + γ

p
env

2

)
− g

(√
γ

q
env γ

p
env

)
.

It was shown in [22] that the one-shot Gaussian capacity is
additive for such a tensor product channel and therefore C1 is
the Gaussian capacity C above threshold.

2. Solution below the threshold

If the input energy λ is below the threshold (21), then the
solution of Eqs. (16) and (19) and the purity constraint (12)
might result in negative modulation eigenvalues, which would
be unphysical. Indeed, from the solution given by Eqs. (16) and
(19), one can see that when λ decreases, the water-filling level
νWF as defined in Eq. (18) [see Fig. 1(a)] also decreases, and
at λ = λthr it crosses the level γ

q
in + γ

q
env. For lower λ, in order

to satisfy Eqs. (16) and (19), the modulation eigenvalue γ
q

mod
becomes negative. In this case the solution of the optimization
problem lays on the border of the valid physical region. As
shown in Appendix A2 we have to set γ

q

mod = 0 [see Fig. 1(b)]
and to solve the new optimization problems with a modified L
taking into account this new condition. Here we summarize the
results which are presented in detail in Appendix A2. We find
that the off-diagonal terms again vanish, i.e., γ qp

in = γ
qp

mod = 0.
Now, one obtains a transcendental equation that solves the

problem below the threshold, i.e.,

g′(ν − 1
2 )

2ν

(
γ p − γ q

) = g′(νout − 1
2

)
2νout

(
γ

p
out − γ

p
in

γ
q
in

γ
q
out

)
.

(22)

In Appendix A3 we derive from this equation that

1

2
� γ q

in <
1

2

√
γ

q
env

γ
p
env

,

which means that the noisier quadrature is always anti-
squeezed, and therefore the less noisy quadrature is squeezed.
We remark that in the limit λ → λthr the solution of (22)
coincides with the water-filling solution, (16) and (19). The
lower bound is reached for λ → 1 and thus corresponds to
vanishing modulation eigenvalues (absence of information
transmission). We note that Eq. (20), which determined the
water-filling level, now reads

g′(ν − 1
2

)
2ν

γ q = μ. (23)

This equation now determines μ using the solution of (22).
Although we clearly no longer have a water-filling solution,
we can calculate the quantity νWF following (20) with μ

determined by (23), but refer to it as a “virtual” water-filling
level. This quantity will have an important meaning when
evaluating the solution for the multimode channel. The reason
is that Eqs. (20) and (23) in the multimode channel problem
will govern the distribution of input energy between the
channels, because μ is a monotonically decreasing function
of λ. For λ � λthr this can be seen from the fact that μ is a
monotonically decreasing function of νWF [see Eq. (20)] and
νWF is a monotonically increasing function of λ. For λ < λthr

this is proven in Appendix A4. This property allows us to relate
λthr via Eq. (20) to

μthr = 1
2g′( 1

2

(
λthr + γ

q
env + γ

p
env

) − 1
2

)
(24)

such that if λ � λthr, then the corresponding μ � μthr. More-
over, for the lowest input energy λ = 1 we can define, using
Eq. (23), an upper bound μ0 for all possible values of μ that
correspond to λ > 1, which reads

μ0 = 1

2
g′

(√(
γ

q
env + 1

2

)(
γ

p
env + 1

2

)
− 1

2

) √
γ

q
env + 1

2

γ
p
env + 1

2

.

(25)

In Appendix A3 and A4 we draw additional conclusions
from Eqs. (22) and (23). We show that γ p < γ q and γ p � 1/2.
Furthermore, we find that dγ

q
in/dλ > 0, which means that the

antisqueezing increases with the input energy. Moreover, we
find that dγ p/dλ > 0, which implies, together with dγ

q
in/dλ >

0, that the modulation in the less noisy quadrature increases
with λ.

The optimal eigenvalues follow from the solution of (22)
and are schematically depicted in Fig. 1(b) for a particular
chosen noise. The Gaussian capacity below the threshold
is then calculated by inserting the optimal eigenvalues into
Eq. (10).

B. Multimode channel

We consider in this paper channels with noise correlations
only between the uses of the channel without q-p correlations.
In the equivalent representation of n successive uses of such
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a one-mode channel by an n-mode parallel channel, the
covariance matrix of the noise has the form

γenv =
(

γ
q
env 0
0 γ

p
env

)
, (26)

where γ
q
env, γ

p
env are matrices of dimension n × n. The

absence of q and p correlations is generally considered to
describe a natural noise. If γ

q
env and γ

p
env commute, then

one can diagonalize γenv via a symplectic and orthogonal
transformation which changes neither the output entropy of the
system nor the energy constraint. In the new basis the channel
becomes a tensor product of monomodal Gaussian additive
noise channels, for which it was proven that the Gaussian
capacity is additive [22,30]. Therefore, the optimal input and
modulation covariance matrices are diagonal, as well as the
noise covariance matrix.

Then the symplectic eigenvalues are functions of the
eigenvalues of the corresponding covariance matrices:

νi =
√

γ
q

i γ
p

i , γ
q,p

i = γ
q,p

in,i + γ
q,p

mod,i + γ
q,p

env,i ,
(27)

νout,i =
√

γ
q

out,iγ
p

out,i , γ
q,p

out,i = γ
q,p

in,i + γ
q,p

env,i .

We denote the input energy allocated to channel i as

λi ≡ γ
q

in,i + γ
p

in,i + γ
q

mod,i + γ
p

mod,i . (28)

The energy (or photon number) constraint, (2), (13), for n

modes can now be written as

λ ≡
n∑

i=1

λi. (29)

The total output energy λ of the n-mode channel is the sum
of the input energy λ and the total energy of the noise λenv

(environment),

λ = λ + λenv, λenv =
n∑

i=1

(
γ

q

env,i + γ
p

env,i

)
. (30)

In [16] the equipartition of the total output energy between
the modes was obtained as the solution for such a model which
we called global water-filling, similar to the classical water-
filling solution of n parallel classical Gaussian channels [24].
As in the one-mode case this solution only holds above a
certain input energy threshold. Now we extend the discussion
to energies below this threshold.

The maximum of the Holevo quantity of n parallel channels
is again determined using the Lagrange multipliers method (as
in the one-mode case), where we now have n purity constraints,

γ
q

in,iγ
p

in,i = 1
4 , (31)

and the overall input energy constraint, (29). The Lagrangian
is then constructed by a sum of n Holevo χ quantities, (10), for
corresponding modes, n Lagrange multipliers τi for the purity
constraints, and only one common multiplier μ for the input

energy constraint. The fact that the solution of the system of
equations which results from the Lagrange multipliers method
maximizes the Holevo quantity under the given constraints
follows from the results on convex separable minimization
subject to bounded variables found in [31]. This was first
pointed out for a lossy channel in [17]. In connection to our
problem it follows that the maximum is attained by our solution
in the multimode case provided that, for the one-mode case,
χ is a concave function of λ on the solution. The proof of the
concavity of χ in λ on the one-mode solution is presented in
Appendix A5.

In general, the maximum of the Lagrangian corresponds to
a partion of n modes into three different sets, corresponding
to one of three types of input energy distributions within
each mode: the case of a quantum water-filling solution
with four positive eigenvalues (see Appendix A1), the case
of one vanishing modulation eigenvalue with three positive
eigenvalues (see Appendix A2), or the case when both modu-
lation eigenvalues vanish and the mode does not participate
in information transmission (i.e., unmodulated vacuum is
sent). We denote the corresponding sets N3, N2, and N1. We
denote the number of modes in the sets n1, n2, and n3, with
n = n1 + n2 + n3. Furthermore, we denote the input energies
per set λ(1), λ(2), and λ(3), where

λ(1) =
∑
i∈N1

λi, λ(2) =
∑
i∈N2

λi, λ(3) =
∑
i∈N3

λi, (32)

which sum up to the total input energy λ, (29).

1. Set N3: Modes with a water-filling solution

For all modes that belong to N3 the water-filling solution
described in Sec. III A 1 holds. This means that the input energy
allocated to each mode cannot be lower than its corresponding
energy threshold, i.e.,

λi � λi,thr, i ∈ N3, (33)

where λi,thr reads as in (21) (for all i). Then for all i ∈ N3 the
energy equipartition (16) holds. Moreover Eq. (20) guarantees
that νWF is the common water-filling level for all modes due
to the common Lagrange multiplier μ, which is a monotonous
function of νWF, which now reads

νWF ≡ γ
q,p

i = λ
(3)

2n3
, i ∈ N3, (34)

where λ
(3)

is the total energy at the output of the modes
belonging to set N3.

As the partition of the input energy between the modes is
a priori not known, the distribution of the modes between the
sets is also not defined. However, we can determine whether
a particular mode belongs to set N3 using the Lagrange
multiplier μ. This is possible because, as mentioned before, μ
is a monotonically decreasing function of the input energy λ,
and for λi � λthr,i we have μ � μthr,i defined in (24), which
depends only on the noise eigenvalues of mode i. Then we can
formalize the definition of N3 using μthr,i as

N3 = {i| μthr,i � μ}. (35)
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If μthr,i � μ for all i, then set N3 contains all modes and
we have

λ(3) = λ. (36)

In this case, Eqs. (16), (19), and (34) determine the global
water-filling solution with

νWF = λ

2n
(37)

and

νout,i =
√

γ
q

env,iγ
p

env,i + 1

2
. (38)

If condition (33) is not satisfied for at least one mode, then this
global water-filling solution has no physical meaning because
it will lead to negative values of some modulation eigenvalues.

2. Set N1: Modes excluded from information transmission

Modes for which both modulation eigenvalues are 0 do
not contribute to the Holevo quantity or, consequently, to the
information transmission. The zero modulation eigenvalues
γ

q,p

mod,i = 0, i ∈ N1, imply

γ
q,p

i = γ
q,p

out,i , i ∈ N1. (39)

Obviously if the mode is not modulated, there is no reason
to spend input energy on the squeezing of this mode, which
results in the vacuum state being the optimal input state,

γ
q,p

in,i = 1
2 , i ∈ N1. (40)

This is consistent with (22), from which we obtain Eq. (40)
for λi = 1.

In order to deduce the set of modes that are excluded from
information transmission, we can use the threshold value μ0,i

defined in Eq. (25), which in λi = 1 (vacuum energy)

N1 = {i| μ � μ0,i}.

3. Set N2: Single-quadrature modulated modes

For the modes for which 1 < λ < λthr,i the water-filling
solution no longer holds. We have to set the modulation
eigenvalue of the noisier quadrature to 0 in the same way
as in the one-mode case. Again, as in the one-mode case we
assume that for each mode i the q quadrature is noisier than
the p quadrature. We can do this without loss of generality
because, first, for a one-mode channel a swap of the noise
quadratures does not change the one-shot capacity, and second,
the one-shot capacity of the discussed multimode channel
is additive. Then we have to set the modulation of the q

quadrature for all modes belonging to set N2 to 0, i.e.,

γ
q

mod,i = 0, i ∈ N2. (41)

This implies

γ
q

i = γ
q

out,i , i ∈ N2. (42)

With the functions μthr,i and μ0,i defined in (24) and (25), we
can simply define this set, i.e.,

N2 = {i| μthr,i < μ < μ0,i}. (43)

The eigenvalues that solve the optimization problem for the
modes of this set are found using Eqs. (22) and (23).

We note that both μ0,i and μthr,i depend only on the noise
eigenvalues. Therefore, the partition into the three sets is
completely determined by only one parameter μ. Furthermore,
we recall that μ is the common parameter which enters the
equations for sets N2,N3.

IV. SOLUTION FOR ARBITRARY NUMBERS OF MODES

A. Finite number of modes

Recall that the solution of the problem for n modes is
given by the optimal distribution of the input energy between
the modes. The optimal energy distribution within one mode
depends on its corresponding set, which is given by the noise
spectrum and the global parameter μ.

Now we present the algorithm that allows us to find the
solution of our optimization problem. First, we further develop
the equations that correspond to modes of set N2. We call the
right-hand side of Eq. (22)

f
(
γ

q

in,i

) ≡ g′ (νout,i − 1
2

)
2νout,i

(
γ

p

out,i − γ
p

in,i

γ
q

in,i

γ
q

out,i

)
. (44)

We note that for given noise eigenvalues f is a function of only
one independent variable, γ

q

in,i . Using definition (28) and the
fact that, for the modes belonging to the second set, γ q

mod,i = 0,
we rewrite

γ
p

i − γ
q

i = λi − 2γ
q

in,i − γ
q

env,i + γ
p

env,i . (45)

Furthermore, from (23) we express

g′(νi − 1
2

)
2νi

= μ

γ
q

i

. (46)

Then we insert Eqs. (45) and (46) together into the left-hand
side of Eq. (22) and obtain, with γ

q

i = γ
q

out,i and (44),

λi

(
γ

q

in,i ,μ
) = γ

q

out,i

μ
f

(
γ

q

in,i

) + 2γ
q

in,i + γ
q

env,i − γ
p

env,i . (47)

This means that we have established a relation among the
optimal input eigenvalues γ

q

in,i , i ∈ N2, the global parameter
μ, and the optimal input energy distribution λi between the
modes in N2. Using Eq. (47) and definition (28) we can
now eliminate variable λi from Eq. (45). Thus, we obtain
a transcendental equation that determines the optimal input
eigenvalues γ

q

in,i as an implicit function of μ:

g′

⎛
⎝γ

q

out,i

√
1 + f

(
γ

q

in,i

)
μ

− 1

2

⎞
⎠ = 2μ

√
1 + f

(
γ

q

in,i

)
μ

. (48)

Now we are ready to calculate the input energies of all three
sets for a given μ. First, we evaluate the total input energy of
“water-filling” modes, i.e., modes inN3. Using Eqs. (28), (32),
and (34) we deduce the total input energy used for the modes
in N3 as a function of μ:

λ(3)(μ) =
∑
i∈N3

(
2νWF(μ) − γ

q

env,i − γ
p

env,i

)
. (49)
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Second, the total (vacuum) energy of modes belonging to N1,
using (25), reads

λ(1)(μ) =
∑
i∈N1

1 = n1. (50)

Functions λ(1)(μ) and λ(3)(μ) depend on μ throughN1,N3, and
νWF, which are only functions of μ and the noise eigenvalues.
The total input energy for modes in N2 is the sum

λ(2)(μ) =
∑
i∈N2

λi

(
γ

q

in,i ,μ
)
. (51)

Now we apply the overall input energy constraint,

λ(1)(μ) + λ(2)(μ) + λ(3)(μ) = λ. (52)

Thus, we obtain a closed equation on μ which we can solve by
iterations. The solution of this system of equations provides
us with n2 optimal eigenvalues γ

q

in,i and μ which determine all
other eigenvalues. Once the optimal spectra are obtained one
can calculate the one-shot capacity of n modes (n successive
uses) of the channel using Eqs. (9) and (11),

C1(T (n)) =
n∑

i=1

[
g

(
νi − 1

2

)
− g

(
νout,i − 1

2

)]
, (53)

where here νi,νout,i contain the obtained optimal input and
modulation spectra. This one-shot capacity of the n-mode
channel may be considered as n times the capacity of the
one-mode channel.

B. Infinite number of modes

In order to make the transition to an infinite number of
channel uses we have to consider a parallel channel with
an infinite number of one-mode channels, n → ∞. In this
limit all functions previously labeled with i now depend on a
continuous parameter x defined on a proper domain which
depends on the particular model. All sums that run from
i = 1, . . . ,n now become integrals over the whole domain
of x. The three sets now become sets of continuous variables
and cover the whole domain of x; they read

N1 = {x| μ0(x) � μ},
N2 = {x| μthr(x) < μ < μ0(x)},

(54)N3 = {x| μthr(x) � μ},
where μthr(x),μ0(x) are defined as in (24), (25), with index i

replaced by x. Equations (48)–(51) remain the same, except
for the replacements γ

q

in,i by γ
q
in(x) and the sums over i by

integrals over x.
Once the μ is found which is the solution of (52), we

can determine the optimal spectra γ
q,p
in (x) and γ

q,p

mod(x). The
optimal spectra found are used to evaluate the capacity

C = lim
n→∞

1

n
C1(T (n))

= 1

|A|
∫

x∈A

dx

[
g

(
ν(x) − 1

2

)
− g

(
νout(x) − 1

2

)]
,

(55)

where A is the spectral domain of x and |A| is its size. In the
case of a global water-filling, i.e., if μthr(x) � μ ∀x, then (55)
simplifies, with (37) and (38), to

C = g

(
n + 1

2|A|
∫

x∈A

dx
{
γ q

env(x) + γ p
env(x)

})

− 1

|A|
∫

x∈A

dx g
(√

γ
q
env(x)γ p

env(x)
)
, (56)

where γ
q,p
env (x) are the noise eigenvalue spectra.

V. GAUSS-MARKOV CHANNEL

Now we consider a particular channel where the correla-
tions of the noise are modeled by a Gauss-Markov process.
Note, that for the whole class of noises with correlations given
by stationary (shift-invariant) Gauss processes, the covariance
matrix that describes such noise is a symmetric Toeplitz matrix.
A straightforward example is the Markov process of order P ,
also called the autoregressive process with white Gaussian
noise [32] (see Appendix C). Our above treatment applies to
such channels. However, in the following, we restrict ourselves
to the simplest case of P = 1. We have already introduced the
covariance matrix of such a noise in [16] and state here only
its definition. Essentially this is a classical noise with nearest-
neighbor correlations in the q quadratures (anticorrelations
in the p quadratures). Its covariance matrix contains Toeplitz
matrices for the q quadrature and p quadrature, so that

γenv =
(

M(φ) 0
0 M(−φ)

)
, (57)

with

Mij (φ) = Nφ|i−j |, 0 � φ < 1, N � 0, (58)

where φ is the correlation parameter and N is the variance
of the noise. We remark that a Toeplitz matrix has the same
values on each k = |i − j |th diagonal.

Matrix (57) can be diagonalized in the limit of n → ∞
using a passive symplectic transformation [16], which allows
us to study the channel system in the diagonal, noncorrelated
basis, since entropies and the input energy constraint remain
unchanged by such transformations.

The spectra of the noise quadratures in the limit of infinite
uses of (57) read [16], in Eq. (59)

γ q,p
env (x) = N

1 − φ2

1 + φ2 ∓ 2φ cos(x)
, x ∈ [0,2π ], (59)

with the upper sign for the q-quadrature and the lower sign
for the p quadrature. As this spectrum is mirror symmetric
with respect to x = π , and since the Gaussian capacity of the
channel is additive, we reduce the spectral domain to x ∈ [0,π ]
for simplicity.

In order to find the capacity of the channel for given
noise parameters N,φ, we first check whether the threshold
condition (33) (here with the continuous parameter x replacing
index i) is fulfilled for all x. If this is the case, then the solution
is a global water-filling, depicted in Fig. 2(a), where optimal
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FIG. 2. (Color online) Stacked area plot: optimal input and
modulation eigenvalue spectra γ q

in(x),γ q

mod(x) and noise spectrum
γ q

env(x) (for p in dashed and dotted curves) for a particular φ and N .
(a) Global quantum water-filling solution, where λ > λthr. νWF (solid
bar) denotes the water-filling level. (b) Below threshold: Modes with
x ∈ [α,π − α] belong to N3 with water-filling level νWF (solid bar).
Modes with x ∈ [0,α] and x ∈ [π − α,π ] belong to set N2, where
the modulation is below νWF.

eigenvalue spectra are obtained by (16) and (19) (for all x),
and the capacity (56) can be simplified to [16]

C = g(n + N ) − 1

π

∫ π

0
dx g

(√
γ

q
env(x)γ p

env(x)
)
,

(60)

n � 2φ

1 − φ

(
N + 1

2

)
≡ λthr − 1

2
.

If the threshold condition is violated, then we can apply the
algorithm which is presented in Sec. IV.

We note that for different noise parameters the threshold
functions μ0(x), μthr(x) may have a complicated profile as
depicted in Fig. 3 for different noise parameter values. In Fig. 4
we illustrate, for a particular choice of the noise parameters (N ,
φ), different partitions of the spectral domain between the sets
for different input energies λ corresponding to different μ.
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FIG. 3. Functions μ0(x) (upper curve) μthr(x) (lower curve) for
(a) φ = 0.5, (b) φ = 0.7, (c) φ = 0.9, and (d) φ = 0.99. For all plots
we took N = 1.
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FIG. 4. Functions μthr(x) (lower dashed curve) and μ0(x) (upper
dashed curve) and values for μ (solid bars) for different input energies
λ, and noise parameters φ = 0.85, N = 1. From top to bottom the
values are μ = 1.45 (λ = 1.006),1.34 (λ = 1.04),0.42 (λ = 3), and
0.04 (λ = 35). The numbers indicate the intervals on the x axis that
belong to set N1, N2, or N3.

Our result confirms that the modes belonging to N2 are
squeezed in the less noisy quadrature, which is the one that is
modulated, as depicted in Fig. 5. An example plot of optimal
input and modulation spectra for λ < λthr is shown in Fig. 2(b).
We see the naturally expected behavior of the capacity in
Fig. 6. It decreases with increasing noise variance N and
increases with increasing noise correlations φ. We note that
the capacity increases with φ up to the noiseless capacity at
“full correlations” (φ → 1). This limit is discussed in Sec. V B.

A. Optimal quantum input state

An important issue is to derive the covariance matrix of
the optimal input state in the original “correlated” basis. We
know that in the basis where the noise, modulation, and input
matrices are diagonal, the optimal input spectrum corresponds
to a product of one-mode squeezed states. By using general
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FIG. 5. Optimal input γ q
in(x) (solid curve) and modulation γ

q

mod(x)
(dashed curve) eigenvalue spectra of the q quadrature (p-quadrature
spectra are the same but mirrored with respect to a vertical line at π/2)
vs. the spectral parameter x, for φ = 0.85, N = 1, and λ < λthr. The
partitioning in sets is taken from Fig. 4. (a) λ = 3, which corresponds
to μ = 0.42; (b) λ = 1.04, which corresponds to μ = 1.34.
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FIG. 6. (a) Capacity C (in bits) vs. correlation φ, where, from top
to bottom, N = 1, 2, and 3. (b) Capacity C (in bits) vs. noise variance
N , where, from top to bottom, φ = 0.9, 0.7, and 0.5. The input energy
is λ = 3 for both plots. The dashed part of the curves corresponds to
the global water-filling solution with λ > λthr. One observes that the
capacity for full correlations φ → 1 tends to the capacity of the ideal
noiseless channel N = 0.

properties of Toepltiz matrices we conclude in Appendix B
that, in the limit of an infinite number of modes, the optimal
input covariance matrix in the original basis is also Toeplitz,
and we find that its kth diagonal reads

γ
q,p

in,k = 1

2π

∫ 2π

0
dx eikx γ q,p

in (x), k = 0,1,2, . . . ,∞. (61)

We can express γ
q,p
in (x) exactly in the case of global water-

filling (λ � λthr) which we consider for the rest of this
subsection, that is,

γ q,p
in (x) = 1

2

√
γ

q,p
env (x)

γ
p,q
env (x)

.

Inserting the definition of the noise spectrum of the Gauss-
Markov channel (59), we deduce the spectra for the q and p

quadratures of the optimal input matrix, i.e.,

γ
q,p

in,k = 1

4π

∫ 2π

0
dx eikx

√
1 + φ2 ± 2φ cos(x)

1 + φ2 ∓ 2φ cos(x)
, (62)

where the upper sign is for q and the lower for p. In order to
verify that the overall state is entangled we can check whether
the reduced single mode states are mixed, i.e., whether for the
reduced covariance matrix we have

det γin = γ
q

in,0γ
p

in,0 > 1
4 , φ > 0. (63)

Integration over the whole domain 0 to 2π leads to γ
q

in,0 =
γ

p

in,0. Then we find for γ
q

in,0(φ = 0) = 1/2, which means that
in the absence of correlations, the optimal input state is a
set of coherent states and not entangled. The limit of φ → 1
is unphysical because in this limit each single mode state

becomes a thermal state with its temperature tending to infinity.
This corresponds to an overall maximally entangled state. It is
easy to show that (63) is monotonically increasing from φ = 0
to φ = 1, and therefore we conclude that for all φ > 0 the
optimal input state is entangled.

In order to express the covariance matrix of the overall
modulated output, let us recall that in the global water-filling
case the overall modulated output eigenvalues are identical
[γ q,p(x) is constant in x] and we can express them using
Eq. (37) as γ q,p(x) = n + N + 1/2. Therefore, from Eq. (61)
we easily see that only the main diagonal (k = 0) has
nonvanishing values and these values are identical. Then the
covariance matrix γ is proportional to the identity matrix I ,
and therefore it is diagonal in the initial as well as in the rotated
basis as γ q,p = I (n + N + 1/2). This means that the sum of
the optimal input and modulation covariance matrix has to
cancel the correlations of the noise.

B. Full correlations

We observe in Fig. 6 that for fixed N and λ, the higher
the correlations are, the higher is the capacity. Furthermore,
for φ → 1 the capacity tends to the capacity of the noiseless
channel,

lim
φ→1

C = C0 = g(n), (64)

where the noiseless capacity C0 was calculated in, e.g., [3].
Equation (64) can be deduced by the following reasoning.
For any 0 < φ < 1 the capacity C is upper bounded by C0.
In addition, C is lower bounded by the optimal transmission
rate when using coherent states, which is denoted by R in the
following. Thus, we need to show that for φ → 1, both bounds
fall together.

R is easily calculated, as the restriction to coherent input
states basically leads to the discussion of two classical mul-
timode Gaussian channels with noises γ̃

q,p
env (x) = γ

q,p
env (x) +

1/2. Clearly, the solution of the optimization problem com-
pletely reduces now to the classical water-filling [24] which
determines the optimal modulation spectrum. For the noise
spectrum of the Gauss-Markov channel (59) we find the global
water-filling solution

R = g(n + N ) − 1

π

∫ π

0
dx g

(√
γ̃

q
env(x)γ̃ p

env(x) − 1

2

)
,

(65)

n � 2φ

1 − φ
N.

Since for global water-filling the overall modulated output
state is identical in R and C, (60), the difference in the capacity
comes from the difference in the nonmodulated output only and
is remarkably little. Indeed if we look at the output eigenvalue
spectrum for R in (65), which reads

ν̃out(x) =
√

1

4
+ γ

q
env(x) + γ

p
env(x)

2
+ γ

q
env(x)γ p

env(x)
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instead of

νout(x) =
√

1

4
+

√
γ

q
env(x)γ p

env(x) + γ
q
env(x)γ p

env(x)

for C, (60), we see that the two formulas simply differ by the
terms which are the arithmetic mean of the noise eigenvalues
γ

q
env(x), γ

p
env(x) in the first one and the geometric mean in the

second one. As the geometric mean is always less than or equal
to the arithmetic mean, one confirms that C � R.

Below the energy threshold one has to solve

π − α

π
γ q

env(α) = 1

π

∫ π

α

dxγ q
env(x) + n (66)

for α [depicted in Fig. 2(b), but here with γ
q,p
in (x) = 1/2],

which is the x value that defines the sets N2 and N3 when
restricted to coherent states. For the found value of α we
determine the optimal modulation eigenvalues

γ̃
q

mod(x) = θ (x − α)
[
γ q

env(α) − γ q
env(x)

]
,

(67)
γ̃

p

mod(x) = θ (π − α − x)
[
γ q

env(α) − γ p
env(x)

]
,

where θ (x) is the Heaviside step function. By inserting
γ̃

q,p
in (x) = 1/2, γ̃

q

mod(x), and γ̃
q,p
env (x) into (55), one obtains

R for n < 2Nφ/(1 − φ).
In the limit of full correlations φ → 1 the noise spectra

γ
q,p
env (x) tend to 0 for 0 < x < π and to infinity for x = 0

(for the q spectrum) and x = π (for the p spectrum). Due
to the finite energy of the noise, 1

π

∫ π

0 dxγ
q,p
env (x) = N , these

functions become δ-like distributions. In this limit α → 0 and
the solution to R is given by a classical water-filling over a
vacuum noise spectrum with infinite edges, which, however,
can be shown to give an infinitesimally small contribution and
therefore can be neglected. Thus (64) is proven. The same
result was obtained in [33] for a channel with additive Markov
noise, which becomes a collection of thermal channels when
the noise is diagonalized.

C. How useful are the optimal input states?

In this subsection we evaluate the gain G from the use of
the optimal input states with respect to coherent product states
for the Gauss-Markov channel for two modes and an infinite
number of modes. Our motivation here is that the optimal input
states are entangled and therefore may be not easy to generate.
On the contrary, coherent states are easily accessible in the
laboratory by standard tools of quantum optics. The gain G is
given by the ratio of the capacity C to the optimal transmission
rate using coherent states R (discussed in Sec. V B):

G ≡ C

R
. (68)

The gain was discussed in [12] for the case of a two-mode
additive channel which is identical to our Gauss-Markov
channel with noise covariance matrix (57) taking n = 2. We
remark here that the capacity of two modes with correlations φ

(in q and p, but no q-p correlations) is identical to the capacity
of the monomodal phase-dependent channel discussed in
Sec. III A, because in the two-mode case the diagonalized noise
spectrum leads to two phase-dependent monomodal channels
with inverse variance in q and p. As shown in [12] the gain for
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FIG. 7. Gain G vs. n for an infinite number of modes and for two
modes (inset). For both plots we took SNR = 3 and φ = 0.7 (solid
curve), φ = 0.9 (dashed curve), and φ = 0.99 (dotted curve).

such a channel exhibits a maximum with respect to the input
energy constraint n for a fixed signal-to-noise ratio,

SNR = n

N
,

and correlation φ. Furthermore, it was deduced that the gain
increases with increasing correlations φ between the two
modes.

In the case of an infinite number of modes, we know already
that in the absence of correlations the optimal input states are
coherent states, and therefore there is no gain (G = 1). For
full correlations, the behavior is essentially different from
the two-mode case: since the channel becomes effectively
noiseless, coherent input states are optimal in this limit as
well, whereas for two modes the highest available squeezing
is best. Therefore, an interesting question is where we find
the maximum gain with respect to the noise correlations
in the limit of infinite uses of the channel. In Fig. 7. we
plotted the gain G vs. n for a fixed SNR and different φ

for an infinite number of modes and for two modes. We see
that unlike in the case of two modes, where the gain with
higher correlations is always higher, in the case of an infinite
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FIG. 8. (Color online) Contour plot of the maximal gain maxn G

vs. φ, SNR for two modes. In the area above the dotted line the
quantum water-filling solution holds.
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FIG. 9. (Color online) Contour plot of the maximal gain maxn G

vs. φ, SNR for an infinite number of modes. In the area left of the
dotted line the global quantum water-filling solution holds.

number of modes the maximum of the gain is found for some
intermediate correlations. However, in this plot one does not
see the dependency on the SNR. So the question that follows
is: What is the dependence of the maximal gain (with respect
to n) on φ and the SNR? In order to answer this question we
make a contour plot of maxn G vs. φ and SNR. In the case of
two modes we see in Fig. 8 that the optimal gain is obtained at
φ = 1 for a certain SNR. In addition, in this case, the increase
in gain at high correlations is very strong compared to that at
lower correlations. Furthermore, a low SNR seems to benefit
from entanglement more than a higher SNR.

For an infinite number of modes the situation is different,
as we can see in Fig. 9: instead of a sharp edge toward high
correlations we see an almost-flat area of maximal gain in
the region of high correlations and low SNR. This holds, on
one hand, for a high correlation and low SNR but, on the
other hand, also for less correlated noise and a higher SNR.
Furthermore, the enhancement is rather robust and does not
drop as sharply with decreasing correlations as in the two-
mode case. However, as the region of high gain has input
energies below the global water-filling threshold, where the
optimal input squeezing becomes quite complex [as depicted,
e.g., in Fig. 5(b)], a modulation of coherent states might be
practically more favorable, because it is already quite efficient
and the gain due to entanglement does not exceed 10%.

VI. CONCLUSIONS

We have presented an algorithm for calculation of the
classical Gaussian capacity of the Gaussian channel with
additive correlated noise. This method is applicable to all cases
where there are no q-p correlations in the noise covariance
matrix and, moreover, the q and p blocks commute at least
asymptotically in the limit of an infinite number of uses. This
applies, in particular, to the whole class of channels in which
noise correlations are given by a stationary Gauss process.

We applied this method to a channel with a Gauss-Markov
noise as defined in [16], which has asymptotically commuting
block matrices. We found that in the limit of full correlations
the capacity tends to the noiseless capacity. We calculated

the covariance matrix of the optimal input state not only
in the eigenbasis of the noise covariance matrix but also
in the original, correlated basis. In this correlated basis the
optimal input state is entangled and we found that the degree
of entanglement scales with the correlation parameter of the
noise from no entanglement (i.e., a set of coherent states) to a
maximally entangled state.

Furthermore, we discussed the gain from using optimal
entangled input states with respect to coherent product states
in the case of two modes and an infinite number of modes. We
found that, contrarily to the two-mode case, where the gain
always strongly increases with correlations for any SNR, for
an infinite number of modes a high gain is achieved in a region
of high correlations and low SNR and of lower correlations
and higher SNR. In addition, the gain in the limit of an infinite
number of modes does not drop as sharply with decreasing
correlations as in the two-mode case. We also observed that a
Gaussian modulated coherent-state encoding already achieves
not less than 90% of the Gaussian capacity.
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APPENDIX A: RESULTS FOR ONE MODE

In the following we present the solution via the Lagrange
multipliers method for the optimization problem for the one-
mode channel introduced in Sec. III.

1. Search for the extremum

The extremum of the Lagrangian L defined in (14) must
satisfy

∇ L = 0,

where

∇ =
(

∂

∂γ
q
in

,
∂

∂γ
p
in

,
∂

∂γ
q

mod

,
∂

∂γ
p

mod

,
∂

∂γ
qp
in

,
∂

∂γ
qp

mod

)T

.

This corresponds to six equations:

κ(ν) γ p − κ(νout) γ
p
out − μ − τγ p

in = 0, (A1)

κ(ν) γ q − κ(νout) γ
q
out − μ − τγ q

in = 0, (A2)

κ(ν) γ p − μ = 0, (A3)

κ(ν) γ q − μ = 0, (A4)

−κ(ν)
(
γ qp

in + γ
qp

mod

) + κ(νout) γ qp
in + τγ qp

in = 0, (A5)

−κ(ν)
(
γ qp

in + γ
qp

mod

) = 0, (A6)

where μ,τ are Lagrange multipliers and

κ(x) = g′(x − 1
2

)
2x

.
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From Eqs. (A3) and (A4) we derive Eqs. (16) and (20). Since
κ(x) > 0 for all x > 1/2 we find from Eq. (A6) that γ

qp
in =

−γ
qp

mod. Therefore, Eq. (A5) simplifies to

γ qp
in [κ(νout) + τ ] = 0. (A7)

If one assumes that γ
qp
in �= 0, then the resulting multiplier τ

leads to a contradiction when inserted into Eqs. (A1) and (A2).
Thus, we conclude that γ qp

in = γ
qp

mod = 0. Finally, by combining
equations (A1)–(A3), one deduces Eq. (19).

In order for the solutions to be physical the modulation
eigenvalues γ

q

mod,γ
p

mod have to be positive, which is the case
for an input energy above the energy threshold (21). For such λ

we show now that L is concave on the solution, which proves
that we have indeed found a local maximum. For fixed λ, we
can prove concavity by checking whether the Hessian H (L),
i.e., the 6 × 6 matrix that contains the second derivates of
L with respect to all variables γ

q,p
in ,γ

q,p

mod,γ
qp

in,mod, is negative
definite. First, we find that

∂2L
∂γ

qp
s ∂γ r

s

∣∣∣
γ

qp
in =0,γ

qp

mod=0
= 0, r = q,p; s = in,mod,

which correspond to the derivatives on the left-hand sides of
Eqs. (A5) and (A6) with respect to γ

q,p
in ,γ

q,p

mod. Therefore, we
can write the Hessian H (L) in the block form

H (L) =
(

Hvar(L) 0
0 Hcov(L)

)
,

where Hvar(L) contains only second derivatives with respect to
γ

q,p
in ,γ

q,p

mod, and Hcov(L) contains only second derivatives with
respect to γ

qp

in,mod. By using γ
qp

mod = γ
qp
in = 0 and Eqs. (A1) and

(A2), we find

Hcov(L) = −
(

A + B A

A A

)
, (A8)

where A = κ(ν),B = κ(νout)c, with

c = 2
√

γ
q
envγ

p
env

γ
q
env + γ

p
env

γ
q
env − γ

p
env

. (A9)

The eigenvalues of (A8) read

h
qp

1,2 = −A − B

2
±

√
A2 + B2

4
, (A10)

which are both negative, since A,B > 0.
Now we show that the eigenvalues of Hvar(L) are also

negative. However, instead of considering the Hessian Hvar(L)
we consider equivalently the Hessian Hvar(χ ), where we
embedded constraints (12) and (13) in χ , which then becomes
a function of only two variables γ

q
in,γ

q

mod, and thus Hvar(χ ) is
a 2 × 2 matrix. Then we find that Hvar(χ ) has the same shape
as (A8), where now

A = g′ (ν − 1
2

)
ν

, B = g′ (νout − 1
2

)
γ

q
env

νout4
(
γ

q
in
)3 . (A11)

Since A,B > 0 we conclude again that both eigenvalues
[which read like (A10)] are negative. Therefore, the total
Hessian H (L) on the solution is negative definite, which proves
the concavity of L at the extremal point for an input energy
above the threshold, (21). Thus, we conclude that we have
found a local maximum of L.

2. Below the threshold

If the input energy is below the threshold, (21), then
the extremum of the Lagrangian lays outside the physical
region. In this case the maximum lays on its boundary, which
corresponds to one or both modulation eigenvalues being
0. If both modulation eigenvalues are 0, no information is
transmitted, which is clearly not the optimum for an input
energy λ > 1. Now we put γ

q

mod = 0, which replaces Eq. (A3)
(if we instead put γ

p

mod = 0, we would obtain in the following
the same set of equations up to a permutation of indexes p

and q). Therefore, this degree of freedom no longer exists and
there is no q-p correlation in the modulation: γ

qp

mod = 0. Now
we have to find the extremum of the Lagrangian again, where
the new gradient reads

∇ =
(

∂

∂γ
q
in

,
∂

∂γ
p
in

,
∂

∂γ
p

mod

,
∂

∂γ
qp
in

)T

.

The previous equation, (A5), is now simplified to

−γ qp
in [κ(ν) − κ(νout) − τ ] = 0.

Again, if one takes γ
qp
in �= 0, then the solution for τ when in-

serted into Eqs. (A1) and (A2) leads to a contradiction, namely,
γ

p

mod < 0, which is unphysical. Therefore, we conclude that

γ qp
in = 0. (A12)

By inserting (A4) into (A1) one obtains τ , which, when
inserted into (A2), leads to the transcendental equation, (22).
The Lagrange multiplier μ is given by (A4), leading to Eq. (23).

From Eq. (22) we can deduce a bound on the optimal input
squeezing. From the fact that

g′(ν − 1
2

)
ν

�
g′(νout − 1

2

)
νout

,

as 1/x g′(x − 1/2) is a monotonically decreasing function and
ν > νout, it follows that

|γ p − γ q | �
∣∣∣∣γ p

env − γ
q
env

4
(
γ

q
in
)2

∣∣∣∣, (A13)

where the equal sign holds if both the left- and the right-hand
sides are 0 and the expressions inside the absolute values on
both sides have the same sign. When λ < λthr they cannot
be 0, because otherwise γ

q
in = 1/2

√
γ

q
env/γ

p
env and γ p = γ q ,

leading to λ = λthr, which contradicts our assumption that we
are below the threshold. This proves that

γ q �= γ p. (A14)

Let us recall that up to here the results obtained are invariant
(up to the permutation of indices q and p) with respect to the
choice of which modulation eigenvalue is set to 0.

Now we prove that the choice of which modulation
eigenvalue has to be set to 0 is determined by the relation
between γ

q
env and γ

p
env.

Lemma 1. For an input energy λ < λthr under the condition
γ

q
env > γ

p
env, the maximum of χ given by Eq. (10) is achieved

when

γ
q

mod = 0. (A15)
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Proof. Let us assume that, contrary to the statement of the
lemma, we have γ

p

mod = 0. We know that due to Eq. (A14) we
have two possible cases: γ q > γ p and γ q < γ p.

Let us assume, first, that γ q > γ p and that we have found an
optimal solution. Suppose we remove a fraction of γ

q

mod which
is smaller then half of the difference γ q − γ p and set γ

p

mod
equal to this fraction. This will not change the input energy or
the output entropy (second term in χ ). However, the overall
modulated output entropy (first term in χ ) will increase. The
reason is that for a constant arithmetic mean of a and b, the
geometric mean increases when the difference between a and
b decreases. Therefore, by doing this we increased χ , which
leads to a contradiction because the assumed optimal solution
is in fact not optimal. Thus, for γ q > γ p the lemma is proven.

Now we consider γ q < γ p and assume that we have found
an optimal solution. Then from Eq. (A13) it follows that

γ q
in >

1

2

√
γ

q
env

γ
p
env

, (A16)

and from the condition γ
q
env > γ

p
env we deduce easily that

γ
q
in > 1/2 > γ

p
in . Taking into account that γ

q

mod > γ
p

mod = 0,
we conclude that in fact γ q > γ p, which contradicts our
assumption.

Thus, the lemma is proven. �
A direct consequence of Lemma A2 and Eq. (A13) is that

1

2
� γ q

in <
1

2

√
γ

q
env

γ
p
env

≡ γ
q

in(thr), (A17)

meaning that the squeezing of the input state for λ < λthr is
always smaller than for λ � λthr.

The next step is to prove that the extremum we found is a
maximum. In order to do this we verify that L is concave for
an input energy below the threshold, (21), where λ is fixed.
First, we see again that all cross derivatives with respect to
γ

qp
in and the three variances vanish on the solution. Therefore,

we consider in the Hessian H (L) the second derivative with
respect to γ

qp
in separately. By using Eqs. (A2) and (A4) we find

∂2L
∂
(
γ

qp
in

)2 = −κ(ν) − κ(νout)

(
γ

q
out

γ
q
in

− 1

)
< 0, (A18)

since γ
q
out > γ

q
in.

Again, for the remaining three variables, instead of consid-
ering the Hessian of L we consider equivalently the Hessian
of χ with the constraints (12) and (13) embedded. Nowχ

becomes a function of only one variable, γ
q
in, and thus the

Hessian is only the second derivative of χ with resepct to γ
q
in.

We prove in Appendix A4 that

∂2χ

∂
(
γ

q
in
)2 = ∂F

∂γ
q
in

< 0, (A19)

where F is given by (A31). Therefore, the full Hessian of L
is negative definite for input energies below the threshold as
well. Thus, we have shown that L is concave on the solution,
which proves that we indeed found a local maximum of L.

3. Bounds below the threshold

In the following we deduce bounds on the overall modulated
output variances for λ < λthr. From Eqs. (A13) and (A17) it
follows directly that

γ p < γ q. (A20)

Furthermore, we can find a lower bound on γ p. Suppose
γ p < 1/2; then we have

1

ν
= 1√

γ qγ p
>

1√
1
2γ q

⇒ g′
(

ν − 1

2

)
> g′

(√
1

2
γ q − 1

2

)
, (A21)

since g′(x − 1/2) is a monotonically decreasing function of x.
Thus, we can rewrite Eq. (22),

g′(ν − 1
2

)
ν

(γ q − γ p) >
g′(√ 1

2γ q − 1
2

)
√

1
2γ q

(
γ q − 1

2

)
,

(A22)

and by using (22) and the fact that below the threshold γ q =
γ

q
out, we find

g′(νout − 1
2

)
2νout

� >
g′(√ 1

2γ
q
out − 1

2

)
√

1
2γ

q
out

(
γ

q
out − 1

2

)
, (A23)

where

� = γ
q
env

4
(
γ

q
in
)2 − γ p

env. (A24)

Thus, our assumption that γ p < 1/2 leads to an inequality
which depends solely on γ

q
in,γ

q
env,γ

p
env with the constraints on

γ
q
in given by (A17) and for the noise variances γ

q
env > γ

p
env,

0 � γ
p
env � 1/2 − 1/(4γ

q
in). Since, inequality (A23) is always

violated for the given constraints, we come to a contradiction,
which proves that

γ p � 1/2. (A25)

4. Monotonicity of μ

Lemma 2. The Lagrange multiplier μ is a monotonically
decreasing function of the input energy λ on the solution, and
moreover,

dμ

dλ
< 0. (A26)

Proof. For λ � λthr the proof follows directly from the
definition of μ by Eq. (20), the definition of νWF by Eq. (18),
and the fact that g′(x) is a monotonically decreasing function.

Now we prove the lemma for λ < λthr. Using Eq. (23) we
can write

dμ

dλ
= g′′

(
ν − 1

2

)
dν̄

dλ

γ q

2ν
+ g′ (ν − 1

2

)
2ν2

(
dγ q

dλ
ν − γ q dν

dλ

)
.

(A27)
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We can upper bound this quantity if we use the following
property of g(x):

−g′(ν − 1/2)

ν
> g′′(ν − 1/2). (A28)

This leads to

dμ

dλ
< −g′ (ν − 1

2

)
2ν3 (γ q)2 dγ p

dλ
. (A29)

Since all factors in (A29) except for dγ p/dλ are clearly
positive, the lemma will be proven if we show that

dγ p

dλ
= 1 − dγ

q
in

dλ
> 0. (A30)

This derivative can be expressed in terms of the function

F ≡ g′(ν − 1
2

)
2ν

(γ p − γ q) − g′(νout − 1
2

)
2νout

(
γ

p
out − γ

p
in

γ
q
in

γ
q
out

)
.

(A31)

Indeed, when Eq. (22) holds then we have

dγ
q
in

dλ
= −

∂F
∂λ

∂F

∂γ
q
in

. (A32)

We observe that

∂F

∂λ
= g′′ (ν − 1

2

)
4ν2 γ q(γ p − γ q)

+g′ (ν − 1
2

)
4ν

(
1 + (γ q)2

ν2

)
> 0, (A33)

because g′′(x) < 0, g′(x) > 0, and γ q > γ p. Thus, in order to
prove inequality Eq. (A30) it suffices to prove that

∂F

∂λ
+ ∂F

∂γ
q
in

< 0. (A34)

By carrying out the partial derivatives we rewrite Eq. (A34) in
the form

− η

4ν3 γ p(γ q − γ p)T1 − 1

4ν3
out

T2 < 0, (A35)

where T1 and T2 denote the expressions

T1 = g′′
(

ν − 1

2

)
ν

η
+ g′

(
ν − 1

2

)
,

T2 = g′′
(

νout − 1

2

)
νout ζ

+ g′
(

νout − 1

2

)(
γ

q
env

(γ q
in)3

ν2
out − ζ

)
, (A36)

and

η = γ q + γ p

γ q − γ p , ζ =
(

γ p
env − γ

q
env

4
(
γ

q
in
)2

)2

. (A37)

Observe that all factors in front of T1 and T2 are positive, since
γ p, ν, νout, γ q − γ p > 0. If we prove positivity of T1 and T2,
then inequality (A35) will be proven as well as the lemma.

The positivity of T1 can be verified via its partial derivatives
with respect to γ q,γ p, which lead to

∂T1

∂γ q = {γ q + γ p[3 − 4γ p(γ p + 3γ q)]} T11(γ q,γ p) (A38)

∂T1

∂γ p = (γ q − γ p) T12(γ q,γ p),

(A39)

where

T11(γ q,γ p) = 4
√

γ qγ p

(γ q + γ p)3(1 − 4γ qγ p)2

(A40)

T12(γ q,γ p) = 4(γ q)2[1 + 4(γ p)2]√
γ qγ p(γ q + γ p)2(1 − 4γ qγ p)2

.

Clearly the two functions T11(γ q,γ p) and T12(γ q,γ p) are
positive for all γ q,p > 0. Then (A39) is also positive since
γ q − γ p > 0. From Eqs. (A20) and (A25) we have that
γ p � 1/2, γ q � 1/2. Then for all these values of γ q,γ p

it is easy to verify that the factor in front of T11(γ q,γ p) in
Eq. (A38) is negative. Thus,

∂T1/∂γ q < 0, ∂T1/∂γ p > 0 (A41)

and T1 takes its minimal value at the boundary of the allowed
region for γ q,γ p, namely, at the point where γ q is maximal
and γ p is minimal. Observe that for N2, using Eqs. (A17),
(A20), and (A25), we have

1

2
< γ p < γ q <

1

2

√
γ

q
env

γ
p
env

+ γ q
env. (A42)

Then T1 takes its minimal value for γ p
min = 1/2 and γ q

max =
1
2

√
γ

q
env/γ

p
env + γ

q
env. Therefore, if T1 at this point is positive for

all values of γ
q
env,γ

p
env, then it is positive in the whole allowed

region of γ q and γ p.
In order to evaluate T1 at this point we derive it with respect

to γ
q
env,γ

p
env and we find that

∂

∂γ
q
env

T1|γ q
max,γ

p
min

< 0,

(A43)
∂

∂γ
p
env

T1|γ q
max,γ

p
min

> 0.

Then, again T1 takes its minimal value at the point where γ
q
env

is maximal and γ
p
env is minimal. At this limit point we find

T1|γ q
env→∞,γ

p
env→0 → 0,

where the limit is reached from above. This proves that T1 > 0.
Now we show that T2 > 0 as well. We rewrite T2 as

T2 = ξ

[
(z2 − 1)2β(νout) + 8ν2

outz

νenv

]
, (A44)

where

z = γ
q
in

γ
q

in(thr)

, ξ = g′ (νout − 1
2

) (
γ

p
env

)2

z4
,

(A45)

β(νout) = g′′ (νout − 1
2

)
g′(νout − 1

2

) νout − 1,
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where γ
q

in(thr) was defined in Eq. (A17), and therefore, 0 � z <

1. Using these notations we express

νout =
√

1/4 − νenv/2(z + 1/z) + ν2
env, (A46)

and since ξ > 0 we can rewrite the desired inequality T2 > 0
in the equivalent form

h(z,νout) > −β(νout)

ν2
out

, (A47)

where

h(z,νout) = 32z2

[
√

(1 − z2)2 + 16z2ν2
out − 1 − z2](1 − z2)2

.

(A48)

We observe that

lim
z→0

h(z,νout) = 16

4ν2
out − 1

. (A49)

It is easy to check that the inequality,

16

4ν2
out − 1

> −β(νout)

ν2
out

, (A50)

holds, ∀νout � 1/2. Thus, if ∂h(z,νout)/∂z > 0 holds for all
νout and z in the allowed region, then the desired inequality,
(A47), holds. We find that

∂h(z,νout)

∂z
= 64z

a(z,νout)

b(z,νout)
, (A51)

where

a(z,νout) = −1 − 8z2ν2
out − 3z4

(
8ν2

out − 1
) − 2z6

+ l(z,νout)(1 + z2 + 2z4),
(A52)

b(z,νout) = (z2 − 1)3l(z,νout)[1 + z2 − l(z,νout)]
2,

l(z,νout) =
√

1 + z4 + 2z2
(
8ν2

out − 1
)
.

Clearly b(z,νout) is negative, and therefore, if a(z,νout) is
negative as well, then ∂h(z,νout)/∂z > 0. Since the first line
in a(z,νout) in Eq. (A52) is negative in the allowed region
of νout and z, and the second line is positive, we can make
a comparison of squares of the first and second lines, which
confirms that indeed a(z,νout) < 0. Thus, T2 > 0, as well as
T1 > 0, which proves (A34), meaning that (A30) holds and
thus, the lemma is proven. �

Additionally, by combining Eqs. (A32), (A33), and (A34),
we conclude that

dγ
q
in

dλ
> 0. (A53)

This means that the antisqueezing in the more noisy quadrature
is always increasing until the squeezing value at λ = λthr is
reached.

5. Concavity of the Holevo χ quantity in λ

Lemma 3. The Holevo χ quantity given by Eq. (10) is a
concave function of λ, on the solution of the optimization
problem.

Proof. For λ � λthr we find that γ
q
in is given by (19) and

independent of λ. Therefore, we conclude from Eq. (18) that
χ is a function of only one variable, λ, on the solution. Then
at the extremum of L the second partial derivative of χ with
respect to λ is equal to the total second derivative, which reads

d2χ

dλ2
= ∂2χ

∂λ2
= g′′(νWF − 1

2

)
4

< 0. (A54)

Thus, we have shown that above the threshold χ is a concave
function of λ.

For an input energy λ below the threshold, γ
q
in depends on

λ via the implicit function given by Eq. (22). Therefore, the
total second derivative of χ with respect to λ has to take this
dependence into account. Now this reads

d2χ

dλ2
= ∂2χ

∂λ2
+ ∂2χ

∂λ∂γ
q
in

dγ
q
in

dλ
+ ∂χ

∂γ
q
in

d2γ
q
in

dλ2

+
(

∂2χ

∂λ∂γ
q
in

+ ∂2χ

∂(γ q
in)2

dγ
q
in

dλ

)
dγ

q
in

dλ
. (A55)

One can easily show using Eq. (A4) that ∂χ/∂λ = μ, and
by Eq. (A31) it follows that ∂χ/∂γ

q
in = F . Thus, Eq. (A55)

simplifies on the solution to

d2χ

dλ2
= dμ

dλ
< 0, (A56)

as proven in Appendix A, which proves the lemma. �

APPENDIX B: EIGENVECTORS AND EIGENVALUES OF
TOEPLITZ MATRICES

In the following we derive the optimal input covariance
matrix in the case of global water-filling.

All Toeplitz matrices that belong to the Wiener class
commute asymptotically, because in this limit they commute
with circulant matrices which all commute between each
other (using [34] and [35]). A circulant matrix A with
dimension n × n is defined as Aij = ai−j mod n. Therefore, we
can introduce the notation k = (i − j ) mod n, which indicates
the kth diagonal of A. From [34] we state that the eigenvalues of
A are ψm = ∑n−1

k=0 ak e−i2πmk/n, m = 1,2, . . . ,n. If we take
the limit n → ∞, the latter becomes the valid solution for the
eigenvalue spectrum of all Toeplitz matrices (that belong to
the Wiener class). As argued in Sec. III B, the optimal input
covariance matrix γin is diagonalized in the same basis as
the noise covariance matrix γenv. Thus, γin is asymptotically
Toeplitz with quadrature spectra

γ q,p
in (x) =

∞∑
k=0

γ
q,p

in,k e−ikx, x ∈ [0,2π ],

where γ
q,p

in,k is the kth diagonal of γ
q,p
in (and the Fourier

coefficient of a Fourier series) in the original basis. Since
γ

q,p
in (x) are Riemann integrable we conclude that

γ
q,p

in,k = 1

2π

∫ 2π

0
dx eikx γ q,p

in (x), k = 0,1,2, . . . ,∞, (B1)
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which provides the covariance matrix of the input state in the
case of a global water-filling.

APPENDIX C: GAUSS-MARKOV PROCESS OF ORDER P

Here we state the extension of the Gauss-Markov process
to a Markov process of order P , which is also called
autoregressive (AR) process with white Gaussian noise. The
underlying stochastic process is defined as [32]

Zt =
P∑

k=1

φk Zt−k + Wt, t = 1, . . . ,n (C1)

where φ1,φ2, . . . ,φP are the correlation parameters and Wt are
identically and independently Gaussian-distributed random

variables. This process is stationary (shift invariant) iff all
roots of the characteristic polynomial

p(y) = 1 −
P∑

k=1

φk yk (C2)

lie outside the unit circle |y| = 1. If the process is stationary,
then the covariance matrix of the stochastic process (C1) is
Toeplitz. Its spectrum is given by [32]

γAR(x) = Var(Zt )∣∣1 − ∑P
k=1 φk eikx

∣∣2 , (C3)

where Var(Zt ) is the variance of Zt . Thus, if the noise
correlations in both quadrature blocks in (26) are given by
an AR process of order P , one immediately can compute the
capacity using (C3) and the algorithm presented in Sec. IV.
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