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Methods for Estimating Capacities and Rates
of Gaussian Quantum Channels

Oleg V. Pilyavets, Cosmo Lupo, and Stefano Mancini

Abstract—Optimization methods aimed at estimating the ca-
pacities of a general Gaussian channel are developed. Specifically
evaluation of classical capacity as maximum of the Holevo infor-
mation is pursued over all possible Gaussian encodings for the
lossy bosonic channel, but extension to other capacities and other
Gaussian channels seems feasible. Solutions for both memoryless
and memory channels are presented. It is first dealt with single-use
(single-mode) channel where the capacity dependence on channel’s
parameters is analyzed providing the full classification of possible
cases. Then, it is dealt with multiple uses (multimode) channel
where the capacity dependence on the (multimode) environment
state is analyzed when both total environment energy and envi-
ronment purity are fixed. This allows a fair comparison among
different environments, thus understanding the role of memory
(intermode correlations) and phenomenon like superadditivity of
the capacity. The developed methods are also used for deriving
transmission rates with heterodyne and homodyne measurements
at the channel output. Classical capacity and transmission rates
are presented within a unique framework where the rates can be
treated as logarithmic approximations of the capacity.

Index Terms—Classical capacity of quantum channels, classical
transmission rates of quantum channels, Gaussian quantum chan-
nels, quantum information.

I. INTRODUCTION

Q UANTUM channels are every means that convey
quantum systems on whose states information is en-
coded. Formally, they are quantum maps from input to

output states [1]. The maximum rate at which information can
be reliably transmitted through a quantum channel defines its
capacity. Actually, one can define several capacities depending
on the kind of information transmitted (classical or quantum)
and on the additional resources used in the transmission [2].
Evaluation of quantum channel capacities is one of the most

important and difficult problems of quantum information theory.
Gaussian channels,whichmaps inputGaussian states into output
Gaussian states, are among the simplest models allowing capaci-
ties investigation [3]. They are also relevant for experimental im-
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plementations in quantum optics [4] and for security analysis in
continuous variables quantum key distribution [5], [41].
A paradigmatic example of Gaussian quantum channel is the

lossy bosonic channel [3], [6], [45] where states lose energy
“en route” from the sender to the receiver. The term bosonic
arises because each input (respectively, output) is represented
by an optical bosonic field mode. In turn, the effect of losses
is usually modeled by letting each input mode interact with an
environment mode through a rotation (beam splitter) transform
whose angle (transmissivity) determines the loss rate [4].
The classical capacity and the classical assisted capacity for

such a channel were evaluated in [7] and [8] by assuming each
environment mode in the vacuum state. Subsequently, also the
quantum capacity has been derived [9]. However, when more
general states of the environment are taken into account, e.g.,
nonseparable ones giving rise to memory effect [10], the eval-
uation of capacities becomes much more demanding. Attempts
have been carried out in [11] and [12] by resorting to specific
parameters’ ranges and numerics.
There are different ways to introduce memory effects in such

channels (see, e.g., [11] and [13]). Here, we shall refer to the
method first presented in [10]. Moreover, we will solely con-
sider classical capacity and classical information transmission
rates.
Finding classical capacity results in the constrained maxi-

mization of Holevo information [14]–[16] over input states,
where constraints appear due to the restriction on input energy.
We shall confine our attention to Gaussian inputs which, in
practice, are the most important set of states and are also
conjectured to be optimal [17], [42]–[44]. However, this gives
rise to a maximization problem which in general might be not
spectral; therefore, we shall consider only that class of memory
models which result in a spectral problem. The latter will allow
us to split the maximization for memory channel in two steps:
the maximization inside each channel’s mode (use) respecting
its own energy restriction [it gives the capacity for the single
channel use (single-mode)], and a further optimization of the
distribution of total input energy over different channel modes
(uses). This essential simplification is possible thanks to the
obtained proof of concavity for one shot capacity over input en-
ergy. Such a proof will also allow us to make an important step
towards the additivity property for the capacity of memoryless
channel (see also [18]).
As far as the first maximization step involves the optimiza-

tion inside each channel mode separately, we shall first discuss
the single channel use (single-mode). It can be shown that its
environment is characterized by two parameters: the amount of
squeezing and the average amount of thermal photons. To com-
pletely specify the channel usage we also have to consider the
transmissivity value and the input energy restriction. Thus, the
classical capacity is found to be amonotonic function of all these
parameters except of the environment squeezing. Thismakes the
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latter a specific parameter indicating different channel’s regimes.
In particular, it turns out that the capacity does not depend on any
parameters except the input energy if the environment squeezing
tends to infinity (see also [11] and [12]). Then, we shall deeply
study this behavior putting forward the existence of critical pa-
rameters that characterize the general behavior of the channel.
We will also find out supercritical parameters, which in turn
characterize the behavior of the critical parameters, and can be
somehow regarded as fundamental constants.
We shall then move to the multimode channel setting to

address the second maximization step. This will be done by
resorting to convex separable programming techniques [19],
[20] and will allow us to draw conclusions about the memory
channel. This has became a palatable subject because of the
possibility of enhancing the memoryless capacity [21]. This
fact gives evidence of the superadditive phenomenon for
quantum memory channels. However, in order to establish
the superadditivity of the memory channel, one has to fairly
compare different environments, by, e.g., using the same en-
ergy constraints and purity. We shall investigate this problem
showing optimality of nonhomogenuous distribution of energy
over modes for some channel’s parameters, which happens
due to nonmonotonic dependence of the one-shot capacity
from the environment squeezing discussed previously. That
can be interpreted as violation of mode symmetry, because the
optimization problem is completely symmetric over channel
modes. In turn, this mode symmetry violation can be related to
the quadrature symmetry violation occurring in the single-mode
channel. Then, we can conclude that capacity is superadditive
if mode symmetry is violated and additive otherwise.
It worth noticing that also the recent study [22] about the

effect of noise correlation on the capacity of additive Gaussian
noise channel can be brought back to the previously sketched
approach.
Finally, we will make use of the developed methods for

deriving transmission rates which are even more relevant than
capacity for practical purposes. Specifically, we will account
for the most common continuous variable measurements at
the channel output, namely heterodyne and homodyne mea-
surements [23]. Preliminary studies on such rates for lossy
memory channel have been performed in [24] (see also [45]).
Here, throughout this paper, capacity and transmission rates
are presented in the same framework showing an unexpected
parallelism between these quantities. Actually, within this
framework, the rates result as logarithmic approximations to
the capacity. Similarly to the capacity, in general, they are
also subjected to violation of quadrature and mode symmetry,
which will allow us to pose the optimal memory problem and
calculate the critical parameters for the rates as well.
This paper is organized as follows. In Section II, Gaussian

channels are introduced. In Section III, the classical capacity
together with the information transmission rates is defined. In
Section IV, classical capacity and transmission rates for single-
mode lossy bosonic channel are evaluated. In Section V, the role
of single-mode channel parameters is discussed by evaluating
critical and supercritical parameters for capacity and rates. In
Section VI, the capacity and rates for the multimode channel are
evaluated and a particular memory model is studied. Section VII
draws conclusions.

II. GAUSSIAN QUANTUM CHANNELS

Quantum mechanics in continuous variables can be intro-
duced independently from Dirac approach as Weyl star-product
(also known as Weyl calculus [25]) which operates with Weyl
symbols defined on system’s phase space . Quadratures
and for the system with degrees of freedom are -dimen-
sional vectors of canonical variables. In the following, it will be
useful to consider a vector

(1)

Any quantum state, usually represented as a density operator
in the Hilbert space , can be specified in

the aforementioned framework by itsWigner function ,
which is a Weyl symbol of . Its relation with the density matrix
in the representation reads1

In this study, we apply Weyl calculus to the system of
1-D harmonic oscillators; therefore, we will call these degrees
of freedom as modes. Furthermore, we restrict all possible
quantum states of these oscillators by Gaussian ones, which are
defined as follows. The quantum state is called Gaussian if its
Wigner function is Gaussian, i.e., such state can be completely
specified by quadratures covariance matrix and vector
which are parameters (the second and first moments) of its
Wigner function2:

(2)

where stands for the real scalar product. The quantities to
be studied do not depend on the displacement ; therefore, each
quantum state and each classical3 Gaussian distribution will be
solely labeled by their quadratures covariance matrices, e.g.,

.
Notice that any Gaussian distribution of the form (2) is the

Wigner function of some quantum state if its covariance matrix
satisfies the Heisenberg uncertainty condition [25], [26]

(3)

where

(4)

1Throughout this paper, it is assumed commutation relations between canon-
ical operators , belonging to to be (with the Kro-
necker symbol and ), and normalization of a -mode Wigner function to
be .
2Notice that (2) completely specifies the ordering of covariances in matrix

as corresponding to the vector (1).
3We will use convention accepted in quantum information theory, where

random variables and probability densities of standard (classical) information
theory are called classical to distinguish them from quasi-probability distribu-
tions (and variables associated with them) appearing in quantum setting.



6128 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 9, SEPTEMBER 2012

is the symplectic form with and the null and
identity matrices, respectively. The eigenvalues of are
purely imaginary numbers , where
are called symplectic eigenvalues of . Condition (3) can be
equivalently written as inequalities , which are satu-
rated by pure Gaussian states [4], [25].
A Gaussian quantum channel acting on modes is by def-

inition a completely positive and trace preserving map defined
on the set of quantum states, which maps any -mode Gaussian
state into a -mode Gaussian state. As a consequence, it is any
map of moments [6]

(5)

characterized by the triad , where and are
two real matrices obeying the inequality

with and symmetric and a displacement
vector.
A very special case is that of the memoryless channel, for

which is the direct product of identical maps,
i.e., a single-mode Gaussian channel used times. It is, hence,
characterized by a triad

where we have denoted

Notice that and are 2 2 matrices, whose entries are
scalars, and the direct sums and are 2 2 ma-
trices, whose entries are diagonal matrices.4 Loosely
speaking, the memoryless channel acts equally and indepen-
dently on each of its use.
More generally, we can consider the case of a quantum

channel with memory (or simply a memory channel). It is
any channel which is not memoryless. Making no assumption
on additional structures that might be present (e.g., causality,
invariance under time translations), we can only say that

or

The memory channel can be interpreted as a framework to de-
scribe correlations between channel actions corresponding to
different channel uses.

III. CLASSICAL CAPACITY

The Gaussian quantum channel can be used to transmit clas-
sical information by encoding a classical stochastic continuous
4Such a convention was chosen to be consistent with the ordering (1) and the

symplectic form (4).

variable , distributed according to a probability den-
sity , into a set of quantum states (Wigner functions) .
The maximum rate at which classical information can be reli-
ably sent through the channel defines its classical capacity. In
the case of a memoryless quantum channel, its classical capacity
is given by [15], [16]

(6)

where the Holevo function evaluated on channel uses is
defined as5

(7)

with and is the von Neumann entropy. Thus, the
computation of the memoryless capacity6 is based on the opti-
mization over all input ensembles , including those made of
states which are entangled among different channel uses.
If the input states are restricted to an ensemble of product

states, it is reasonable to consider the so-called one-shot
capacity

obtained from (6) and (7) by assuming . Clearly, the
one-shot capacity is a lower bound on the memoryless capacity.
If these two quantities coincide, the Holevo function is said to be
additive. In turn, additivity of the Holevo function dramatically
simplifies the problem of evaluating the memoryless capacity.
Even though the Holevo function has been shown to be addi-
tive for several relevant channels, this property does not always
hold [27].
Moving to the general case, one could be tempted to gener-

alize the formulas (6) and (7) to the case of memory channels
by applying them for . Quite generally, we can say
that relation (6) only provides an upper bound for the capacity
of the memory channel [28]. Indeed, it has been proven [29] that
it coincides with the memory channel capacity for the class of
so-called forgetful channels.
Thus, on the one hand, we can define the upper bound

On the other hand, for any , one can look at uses of the
channel described by as a single -mode memoryless
channel. Its one-shot capacity found as maximum over the set
of Gaussian states provides a lower bound on the capacity of
the memory channel [12]

(8)

5Contrarily to the original definition [16], in this paper, we incorporate the
maximum over input states in the Holevo function.
6As far as we consider only classical channel capacity, it will be often called

simply the capacity.
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Taking the limit over , we can as well define the lower bound7

(9)

Since the capacity (in sense of aforementioned definitions) in
continuous variables case turns out to be infinite, some phys-
ically motivated constraints must be specified to avoid mean-
ingless results. A typical choice in the framework of Gaussian
channels is to impose a restriction on the maximal average input
energy per channel use. As far as we are considering the system
of single-mode oscillators (see Section II) with channel uses
corresponding to oscillators modes, this constraint reads8

(10)

where represents the maximum number of excitations (pho-
tons) per mode in average.
Finally, let us consider Gaussian encoding , used to

calculate . For uses of the quantum channel, we fix a ref-
erence -mode Gaussian state, with zero mean, which is de-
scribed by the Wigner function [see definition (2)]. A
classical variable will be encoded by applying a displacement
operation on the reference state, thus obtaining Wigner function

. We assume the stochastic variable to be itself
distributed according to the Gaussian probability density distri-
bution with zero mean:

Hence, the corresponding ensemble state

is also Gaussian and described by a Wigner function ,
where

(11)

Quadratures covariance matrices of output state and output av-
erage state below will be labeled by and , respectively:

(12)

The restriction to Gaussian states, which are mapped into
Gaussian states by Gaussian channels, dramatically simplifies
the problem, since the complexity of specifying Gaussian
states is polynomial in the number of modes [see (2)]. More-
over, Gaussian states are conjectured to be optimal inputs for
Gaussian channels [17], [42]–[44].

7Throughout this paper, for the sake of simplicity, we will often refer to this
lower bound as simply the capacity.
8We assume quantum states to have zero mean, i.e., .

The von Neumann entropy of an -mode Gaussian state
is function of symplectic eigenvalues of matrix [4],

[46]:

(13)

where is defined as

The Holevo- quantity for the set of Gaussian states can be
derived from (7) and (13). It equals [3]

(14)

where is a shorthand notation for . In turn, the quan-
tities and are the symplectic eigenvalues of and

, respectively. Finally, the input energy constraint (10) for
Gaussian states can be written in terms of the covariance ma-
trices as

(15)

A. Estimating the Classical Capacity

Aswe have seen, the evaluation of the classical capacity prac-
tically reduces to the evaluation of the function (13). Notice
that is not analytic in the neighborhood of zero where its
asymptotic value is . Also, the function is
not analytic in the neighborhood of infinity, where its asymp-
totic value is . By subtracting this logarithm part, we get
the analytic function in the region which has its Laurent
series (see also [30])

(16)

written in the neighborhood of infinity. In particular, to the ze-
roth-order approximation, it is

(17)

where we have neglected terms of the order . Allowing
perturbation of logarithm by the first terms in the series (16) we
can also construct next-order approximations.
In what follows, it will be convenient to introduce the

function

(18)
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where . Thus

(19)

and so on. It also has simple rules for derivatives, e.g.,

In particular, we have to zeroth-order approx-
imation and

(20)

to first-order approximation. Notice that by using (17), we have,
at the lowest order

(21)

The value calculated through approximation (21) belowwill
be denoted as and called logarithmic approximation to
capacity. In turn, the quantity will be called zeroth-order
approximation to capacity and denoted by , if actual max-
imum over and is not taken in (14), but symplectic
eigenvalues and are chosen instead to be those at which
the maximum in (21) is achieved. Thus, is given by substi-
tution of the approximate symplectic eigenvalues into the exact
relation for Holevo- quantity.

B. Examples of Gaussian Channels
There are two types of noises that are mostly relevant for ex-

perimental setups: attenuation and addition of classical noise.
The so-called lossy (bosonic) channels describe the attenua-
tion, while the additive (classical) noise channels take into ac-
count only the addition of classical noise. For a discussion of
the capacity of the other classes of Gaussian channels, in the
single-mode case, see [31]. The lossy channels play a promi-
nent role and below we will focus our attention to them. They
are characterized by the map (5) with the matrices

(22)

Here, denotes the covariance matrix of the channel
environment that “contaminates” the input signal, which is at-
tenuated by the channel’s transmissivity . In particular,
the lossy bosonic channel acts as a rotation (beam splitter) on
the canonical quadratures and gives rise to the following rela-
tion among the covariance matrices [6]:

(23)

(24)

In fact, these transformations follow from the definitions (5),
(12), and (22). Next [see (112)], it will be shown that the ca-

pacity is a monotonically increasing function of the average
number of input photons per mode (channel use) ; therefore,
we shall constrain the input energy using the equality in (15),
i.e.,

(25)

The additive noise channels are described by similar transfor-
mations [6]

(26)

(27)

following from (5) if and , where
and correspond to classical distribution, while should
satisfy the uncertainty relation. Notice that similarity between
(26), (27) and (23), (24) makes the extension of the method we
are going to develop to the additive noise channel straightfor-
ward. In particular, a similar approach has been recently used in
[22].

C. Heterodyne and Homodyne Rates
As far as the general optimization approach to find the

Holevo function (14) is also applicable to information trans-
mission rates, we are going to consider these as well and
compare them with the capacity.
Suppose that the matrices , , and are block di-

agonal, i.e., can be written in the form

(28)

where was defined by (4) and “ind” may stand for “in,”
“mod,” or “env.” Moreover, let us assume that their diagonal
blocks mutually commute (including blocks taken from dif-
ferent matrices). In such a case by considering the average
information accessible by performing heterodyne measurement
on each single channel output (joint measurement of and
quadratures), one can get the heterodyne rate [11]

(29)

(30)

Analogously, by considering homodyne measurement on each
single-channel output (measurement of quadrature, where
is a placeholder for or ), one can find the homodyne rate [11]

(31)

where notations of matrix blocks are the same as in (28).

IV. SINGLE CHANNEL USE

Let us consider single use (single mode) of the lossy bosonic
channel. Its description requires the consideration of 2 2 co-
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variance matrices of the general form to solve the optimization
problem. However, all the properties can be found by taking all
involved matrices in the diagonal form. This can be done thanks
to the following input purity theorems:

Theorem 1: For the single use of the lossy bosonic channel,
the 2 2 matrices and , at which the maximum of the
Holevo function over Gaussian states is achieved, are simultane-
ously diagonalizable together with . Moreover, the optimal
matrix corresponds to a pure state.

Proof: The proof9 is reported in Appendix A.

Theorem 2: Let us consider the single use of the lossy bosonic
channel characterized by 2 2 diagonal covariance matrices

, , and ; then, the maxima for both heterodyne and
homodyne rates are provided by pure input states.10

Proof: The proof is reported in Appendix B.

Let us discuss these theorems in the context of rates. Re-
member that in the case of 2 2 matrices, the assumptions used
to derive general relations (30) and (31) are equivalent to di-
agonality of all involved matrices; therefore, optimality of pure
input states for rates is guaranteed by theorem 2. Moreover, if
one conjectures that the relations (30) and (31) hold also for
2 2 matrices of general form (i.e., nondiagonal), then com-
mutativity of matrices together with input purity are guaranteed
by theorem 1, whose extension to the case of rates is straight-
forward.
Thus, below, it is always assumed without loss of generality

that all the matrices are already diagonalized and the input state
is pure. Furthermore, unless otherwise stated, in the following,
it is assumed11 that .

A. System of Notations

Let us introduce the system of notations that will be used
hereafter. Any single-mode state labeled by index “ind” will be
referred to by its quadratures covariance matrix parame-
trized byN and as

N N

(32)

In particular, “ind” may stand for “in,” “mod,” “env,” or “out”
for the cases of input, modulation, environment, or output
covariance matrices, respectively. The quantity will be re-
ferred to as squeezing in “ind.” The quantityN will always
be written in “Lucida Calligraphy” font and called average
amount of thermal photons in the state “ind.” We also define
the average amount of photons in the state “ind” as

(33)

9In the generic setting, the optimality of pure input states has been proven in
[15]. However, in our case, the Holevo function has to be optimized under the
constraint of Gaussian input states and energy restriction. For these reasons, it
is worth proving this property explicitly for the considered setting.
10Notice that extension of Theorem 2 to the case of Holevo function is

straightforward, being it a particular case of Theorem 1.
11This is done because the limit case (noiseless channel) is considered

separately in Section IV-I and the limit case (infinitely noisy channel) is
trivial giving zero capacity and rates.

which is equivalent to the relation

N (34)

In the following, we will usually omit the word “average” refer-
ring to the quantitiesN and . All the quantities related
to some overlined matrix will be also overlined, i.e., equals

N and has amount of photons . In order to in-
dicate that some channel parameters are related with homodyne
or heterodyne rates (they are defined later in Section IV-B) the
upper indices “(hom)” and “(het)” will be used. The only ex-
ceptions from the previous rules are: the index “env” will be
omitted for quantities which represent the squeezing (or its par-
ticular values) in channel environment, e.g., ; the index
“in” and overlining will be omitted for the quantities which rep-
resent the average amount of photons (or its particular values,
e.g., thresholds) in averaged input state [see (11)] and its
“heterodyne analog” , e.g., .
Notice that the state N is pure ifN and

mixed otherwise, is squeezed if , is thermal ifN
and , is thermal squeezed if bothN and
, and is vacuum if bothN and .
The eigenvalues of each matrix will be denoted by the first

character of matrix index. Then, the eigenvalue which is the first
diagonal element corresponds to quadrature ; therefore, it will
be labeled by index (analogously, by for the second diag-
onal element). However, as far as both quadratures enter all the
relations in the same way, instead of specifying the quadrature
or usually, we will use index as a placeholder for or .

Also, we will use the rule: if , then , and vice
versa. In particular, we will refer to the eigenvalues of matrices
, , , , and as , , , , and , re-

spectively. For instance, we have for the
environment matrix. Also, without loss of generality, in the fol-
lowing, it is always assumed that if environment eigenvalues are
nonequal, then . As far as only the single-mode case
is discussed in this section, index will be omitted for sym-
plectic eigenvalues and [they were introduced in (14)].
Also, index will be omitted for - and - and -quantities
[e.g., see (8), (14), (21), (30), and (31)]. To simplify the nota-
tions, in what follows, we allow each of these quantities to stand
either for the result of the maximization or for the function to
maximize, depending on context.
Taking into account that the symplectic eigenvalue for 2 2

matrix is , we have for the matrices and the
relations

(35)

where

(36)
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B. Heterodyne Variables
In the following, it will be convenient to introduce the het-

erodyne environment matrix

whose eigenvalues are

(37)

Replacing by in the relations (23) and (24), one can
also define the “heterodyne version” of the other matrices:

(38)

(39)

where the eigenvalues of matrices , , , and
are related as follows:

Then, one can define symplectic eigenvalues in the heterodyne
setting (similarly to (35)) by the relations

(40)

The average amount of photons in the heterodyne en-
vironment

N

[see (32)] can be introduced using the standard relation (33). The
parameters of the environment matrices N
and are related by

N N
N

(41)
N
N

(42)

N

N
(43)

(44)

In particular, for thermal environment N , we have
N and

N N

Notice that the heterodyne environment is squeezed if
and only if is squeezed.
The quantities with upper index “het” defined in this section

will allow us to simplify the relations for the heterodyne rate.
We shall refer to them as heterodyne variables. The latter, which

are eigenvalues, will be also called heterodyne eigenvalues to
distinguish them from standard eigenvalues (of , , ,
etc.).

C. Heterodyne and Homodyne Rates
Let us consider the homodyne rate (31). It corresponds to a

measurement of the -quadrature, which is the less noisy ac-
cording to the convention (obviously, there is no
difference in the choice of quadrature if ). Such a
choice gives higher rate in comparison with the measurement
of -quadrature. In what follows (see Section IV-E), it will be
shown that this case corresponds to eigenvalue be op-
timal for homodyne rate. In explicit form, it is

(45)

which coincides with if . This property gives
rise to the relation [see (21) and (35)]

(46)

if the optimal is zero for logarithmic approximation to ca-
pacity12 (we equalize the quantities and for the
same channel parameters). This holds true for small values of
[see (81)]. Thus, in this case, the homodyne rate coincides

with the logarithmic approximation to capacity.
Analogously, (30) gives

(47)

for heterodyne measurement [see (40)], i.e., the heterodyne rate
is equal to the logarithmic approximation to capacity calculated
with . One can also get for a fixed that

N
(48)

Equation (46) and (48) define the values of parameters and
N for which the rates approach the capacity (the compar-
ison between capacity, homodyne and heterodyne rates was dis-
cussed earlier in [7]).
The simple form of (47) explains why the description of

heterodyne rate using heterodyne variables introduced in
Section IV-B is the most natural one. Keep in mind that the het-
erodyne rate can be described using both approaches: standard
variables used for capacity and homodyne rate, or heterodyne
variables. Despite, we shall usually work with heterodyne
variables, sometimes standard variables will be used.
As far as quantities (30) and (47) are identical as functions of

input and modulation eigenvalues, the latter do not depend on
representation (type of variables) used for . It means that
upper indices “(het)” written for input and modulation eigen-
values are used only to indicate that they are optimal for het-
erodyne rate (to distinguish them from those optimal for ca-
pacity and homodyne rate). However, index “het” written for
environment, output, and average output eigenvalues indicate
both different variables used and optimality for heterodyne rate.

12It will be shown in Section IV-F that if is optimal for one of the
quantities and , then it is optimal also for the other. Also, remember
(see Section III-A) that the optimal eigenvalues for and are always
the same by definition.
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Loosely speaking, and , while
, , as abstract variables,

but in our convention all of them are different, because
and are used only for heterodyne case and are optimal
for it.13
In the following, we shall usually write the relations for ca-

pacity and then explain which replacements should be applied
to get analogous relations for rates. These replacements can be
some of the following:

(49)
(50)
(51)
(52)
(53)

N N (54)
(55)
(56)

Each of the above numbered lines specifies two replacements.
However, only those replacements, which correspond to explicit
variables of the relation (subjected to replacements) must be
applied. Finally, when discussing about the rates, if we refer
to relations written for the capacity, we should first apply the
proper replacements.

D. Optimization Problem

The optimization problem for the heterodyne rate can be for-
mulated as follows. One needs to find the matrices and

[see (38) and (39)], which provide the maximum for the
function (47) and satisfy the energy constraint

(57)

where

By substituting (38) into (33) written for and taking into
account the energy constraint (57), we get the amount of photons
in the average output state

(58)

Analogously, for the case of capacity, the relations (24) and (25)
give

(59)

Notice that Theorems 1 and 2 allow us to exclude the vari-
ables and from the optimization problems due to the
purity of the input states:

13Writing, e.g., would be misleading, as are those eigenvalues
optimal for capacity, but not optimal for heterodyne rate. This is less problematic
for homodyne rate, because its optimal eigenvalues coincide in some cases with
that of the logarithmic approximation to capacity [see (46)] and therefore can
be treated as a particular case of eigenvalues optimal for capacity.

Then, the optimization problems for the single-mode channel
can be formulated as follows. One needs to find the maxima of
functions [see definitions (8), (14), (45), and (47)]

(60)

(61)

(62)

over the variables , , and in the case of and
, and over the variables , , in the case

of , taking into account the constraints

(63)

(64)

(65)

in the case of and , and the constraints (63)–(65) after
the replacements (49) and (50) in the case of . In Sec-
tions IV-F and IV-G, we shall solve it using the Lagrange mul-
tipliers method.
It is interesting to note that the relations for symplectic eigen-

values (35) and (40) allow the capacity (60) and heterodyne rate
(61) to be represented as

N N (66)

N N (67)

where N , N , N , and N are the amounts of
thermal photons for the states , , , and ,
respectively.

E. Solution Stages

Let us consider the capacity and the homodyne rate. In Sec-
tions IV-F and IV-G, it will be shown that all the solutions of La-
grange equations, associated to the optimization problem stated
in Section IV-D, give positive , i.e., are the only
inequalities to satisfy. This allows us to classify the solutions de-
pending on the amount of positive optimal -eigenvalues. The
following terminology is used for this purpose.

Definition 1: The solution belongs to the first stage if the
optimal , are both equal to zero, to the second stage
if the optimal , are one equal to zero and the other is
positive, and to the third stage if the optimal , are both
positive.
As far as does not depend on , due to the condition

(65) the maximum is achieved for , which shows the
absence of the third stage in homodyne rate. In other words,
energy should not be wasted in the quadrature unused for
information transmission.
The first stage holds if and only if capacity is equal to zero,

which can only be if (if one can always get
nonzero capacity and rates by taking , ).
In particular, (65) applied for the first stage gives . The
same consideration holds true also for the homodyne rate.



6134 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 9, SEPTEMBER 2012

Proposition 1: Given in the second stage, the
eigenvalues and are optimal for capacity14 if
and only if .

Proof: Suppose that and are optimal in
the case of . The energy constraint (65) is preserved
by the change of variables , .
The new variables do not change the second term in (60) but
increase the first term.15 Thus, they give higher maximum for
capacity. Similarly, one can prove that and
are not optimal if . Hence, the proposition is proved
by contradiction.

Proposition 2: If , then in the second stage,
and are optimal for capacity.

Proof: The proof is reported in Appendix C.

It follows from Propositions 1 and 2 that the case of
requires and

(68)

in the second stage.
Similar consideration gives in the third stage (by

supposing one can always redistribute the energy
among -eigenvalues so to decrease the difference
thus giving higher maximum for capacity). Taking into account
(65), we get in this case

(69)

The equality is equivalent to the equation N
, where the latter is given by (59). Thus, for the third stage,

the first term in the relation (66) is already found.
Notice that the previous considerations for the capacity

[including definition 1, Propositions 1 and 2, (68) and (69)]
hold true also for the heterodyne rate if the replacements
(49)–(54) and are applied, and if (58), (61), and (67)
are mentioned instead of (59), (60), and (66), respectively. In
the following, the solutions for the third and second stages are
presented.

F. Third Stage

In the case of third stage, the Lagrange multipliers method
applied to the function with the constraint (65) leads to the
following system of equations [see definition of in (18)]:

(70)

(71)

(72)

14This proposition holds for both cases and .
15The area of a rectangle with fixed perimeter is higher if the length of sides

differs less. In the considered case, but
. In addition, is monotonically increasing and concave function.

where the Lagrange function is

with the Lagrange multiplier.
Equations (71) and (72) give which was obtained

earlier from qualitative considerations. By substituting (71) and
(72) into (70), one can find that squeezing in input equals
that of environment and output :

(73)

which allows us to find optimal input eigenvalues

(74)

Thus, given the environment state N , the op-
timal input state is . Combining (69) with (74),
one can obtain optimal -eigenvalues

(75)

In order to get analogous relations for the heterodyne rate, the
replacements (49)–(54) and (56) must be applied to (70)–(72)
and (73)–(75). In particular, it gives

and . Notice that (37) and (44) give

for the relations (75).
Finally, the explicit relations for capacity and heterodyne rate

in the third stage read

N (76)

N (77)

where (77) becomes

N
(78)

for the case of thermal nonsqueezed environment. Relation
(76) (originally was found in [12]) generalizes the one obtained
for lossy bosonic channel with vacuum environment [7]
and, later, with thermal nonsqueezed environment [10]. In
turn, (77) generalizes the relation for the heterodyne rate,
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, found in [32] for vacuum environment (see also
discussion in [7]).
By comparing (21), (60), and (76), we get the logarithmic

approximation to the capacity16

N (79)

which coincides with the heterodyne rate (77) after the replace-
ments (54) (it follows from (41) and (44) that the limits of the
ratios andN N forN are equal
to one). Thus, the limit (48) actually holds. Notice, that eigen-
values (74) and (75) are optimal also for the quantity ;
therefore, we have in the third stage.
In the case of pure environment, the capacity (76) can be

written as

(80)

where is given by (59). The form of the relation (80) pro-
vides the most natural generalization of the noiseless channel
capacity . Thus, in the third stage, the capacity of the
channel with pure environment is completely defined by the
average amount of photons contained in the channel (i.e., in the
system “environment plus input”), where probability weights
and specify the contribution of input and environment

states into the channel capacity.
Previously, it was proved (see proposition 2) that

is optimal for the chosen convention ; therefore, the
third stage holds if . This is the case for the capacity
(quantities , , and ) if the amount of input pho-
tons is higher than the threshold17

(81)

where is defined by the first of (74). It is equivalent to the
restriction for given values of , andN , where

with

N
(82)

Notice that the quantity has the limits

(83)

The threshold (81) holds also for the heterodyne rate if the re-
placements (49) and are applied, where
expressed through the standard eigenvalues reads

(84)

16Remember that according to (17), .
17A similar optimization problem considered in [30], [45] also has different

types of solutions depending on the relation between the amount of input pho-
tons and the parameters of the channel environment.

Fig. 1. (Left) Two regions of the plane corresponding to the third (darker
background) and the second stage for andN . The regions are
separated by the curve [see (85)] plotted versus (black curve); it splits
the whole plane into two regions marked with different gray-scale backgrounds
(the darker background corresponds to third stage). The curve reaches the
value at squeezing value . The horizontal dashed line
plotted for corresponds to noiseless channel. (Right) Eigenvalues and
for the noiseless channel are plotted versus for . The area of the

square of gray color is equal to which defines the capacity
. Depicted braces show that each value of corre-

sponds to two different methods to distribute the energy between input
and modulation quadratures.

The threshold is a nonnegative number which equals
zero only for the vacuum environment. As far as the third stage
holds only if and the first stage holds only if ,
the second stage must correspond to values .
Thus, the type of solution increases its stage in sequence starting
from the first stage and ending to the third one if grows
from zero to infinity. This explains the origin of the adopted
term “stage.” Also, it can be interpreted as “the third stage is
always the most preferable if energy is sufficiently high, oth-
erwise the second stage should be taken, and the first stage
holds if only both the third and the second stage fail to sat-
isfy the constraint.” This mnemonic rule, although trivial for the
single-mode channel, will be useful when applied to the multi-
mode memory channel. The previous consideration is also valid
for the heterodyne threshold .
Similarly to the quantity , given the values of , ,

and N , the relation for transmissivity corresponding
to transition from the second to third stages can be written as

(85)

where and is defined by the first of
(74). Taking into account that , , the limit (83) and
monotonicity of with respect to , one can see that

(86)

where higher values of correspond to higher values of .
The transmissivity is plotted versus in Fig. 1(left).

G. Second Stage
One can show that the Lagrange equations for the capacity

(and heterodyne rate) in the second stage can be obtained from
the system (70)–(72) by substituting in
all equations and by removing (71) corresponding to derivative
with respect to . This is because unknown variables
enter in the Lagrange equations as linear combinations. For the
homodyne rate, the Lagrange equations are the same as for the
capacity in the second stage if the replacement (56) is applied.
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Then, solving the Lagrange equations for the homodyne rate,
one can find the ratio

(87)

which also holds for the heterodyne rate after replacements (49),
(52), and (53). For the capacity, the Lagrange equations give a
mode transcendental equation on

(88)

where

(89)

Notice that (88) results to (87) if the function is taken to ze-
roth-order approximation (i.e., ). Remember that
in the second stage, the optimal eigenvalues for , ,
and [see (21) and (46)] are the same. They follow from
(87) solved for the variable and equal to

(90)

(91)

(92)

(93)

where

(94)

is equal to [see (82)] in the case of thermal environment
. The exact values of the optimal eigenvalues for the

capacity are given by (88), (90), (91), and (93). As far as
eigenvalues (90)–(93) are optimal for the quantity , later,
we will call them as the zeroth-order solution (or the zeroth-
order eigenvalues) for capacity. Thus, similar to the third stage,
in the second stage, the quantity is also expressed in an
explicit form. In turn, the condition [see (91)] restricts
the admissible region for to the interval

The optimal eigenvalues for the heterodyne rate are given by the
same relations (90)–(93) if the replacements (49), (50) and

(95)

with

(96)

are applied.
By comparing (62) with (87), one can get the homodyne rate

(97)

Remember that [see (46)] in the second stage.
Then, similarly, by comparing (61) and (87), we get the same
relation (97) for the heterodyne rate if the replacements (49) and
(95) are applied to it.
The first-order approximation for mode transcendental (88)

can be obtained by replacing the function with its first-order
approximation (20). Since (88) cannot be exactly solved within
this approximation, we will solve it in the neighborhood of the
zeroth-order solution (90)–(93) as linear perturbation. In partic-
ular, by denoting input zeroth-order eigenvalue (92) as and
substituting with in the first-order approximation of
(88), we get a linear equation for small deviation . Its solution
is

(98)

whose variables are the zeroth-order eigenvalues. Thus, we have
found the first-order solution18 . Remember that
in the second stage, by virtue of (90), (91), and (93), the only
degree of freedom is represented by . Hence, it is sufficient to
specify its value in order to have the complete solution of the
optimization problem.
Similar to the quantity whose variables are the ze-

roth-order eigenvalues (90)–(93), the first-order solution has
to be substituted into the exact19 relation (60) instead of
its first-order approximation which was used to derive the
first-order eigenvalues. Otherwise, the loss in accuracy be-
comes significant. In particular, although input and modulation
eigenvalues calculated through exact and approximate ap-
proaches essentially differ each other, they give rise to almost
equal values for capacity. This can be explained by the fact that
the quantity (60), considered as a function of only one unknown
variable20 , has zero derivative in the neighborhood of its
optimal value (i.e., the deviation of affects the maximum of
capacity only in the second order). The quantity (60) considered
as a function of the first-order eigenvalues below will be called
the first-order approximation to capacity .
The homodyne rate was found in [32] by

supposing both the environment and input states to be vacuum
(see also the discussion in [7]). Indeed, it can be obtained
without solving the optimization problem, by substituting in
(62) and as it follows
from the constraint (65). However, since optimal input state is
never vacuum according to (92), that rate holds (approximately)
only if the value of is close to zero.

H. Representation

We have solved the problem of finding the optimal eigen-
values , , , and for given values of , , , and
. It is interesting to note that the eigenvalue can be used

18Similarly, another first-order solution can be obtained if exact relation for
function is used instead of approximation (20).
19Notice that in order to get the zeroth-order and the first-order approximate

solutions we replaced the exact function and its derivatives (everywhere in
optimization problem) by their zeroth-order and first-order approximations, re-
spectively.
20The other input and modulation eigenvalues have to be expressed through
using (90), (91), and (93).
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as the equivalent replacement21 of the quantity . In fact, (69)
makes it evident in the third stage. Let us show this also for the
second stage. Combining (36), (91), (93), and (94), one can get
the relation

(99)

By substituting it into (92) and then solving the latter for , one
can obtain

(100)

Hence, (97) can be equivalently rewritten through variable
as

(101)

which coincides with the quantity in the second stage.
Notice that eigenvalue can be expressed through as

(102)

Thus, the eigenvalues (90), (93), (100), and (102) are optimal
for the quantities , , and in the second stage
and expressed through the quantity instead of . Equations
(99)–(102) hold also for the heterodyne rate if the replacements
(49), (50), (53), and (95) are applied.
Similarly, the mode transcendental equation (88) also does

not depend on if eigenvalue is assumed to be a known
constant. In this case, the admissible region for the eigenvalue
[root of (88)] can be estimated using inequalities and

[see (102)], which can be rewritten as

and

respectively. Analogous to (98), by expressing through
in (88) and using approximation (20), one can get the first-order
solution in terms of . In this case, is given
by the relation

(103)

whose variables are the zeroth-order eigenvalues (93), (100) and
(102). Notice that despite (92) and (100) are equivalent (one can
be obtained from another), this is not the case for relations (98)
and (103).

I. Noiseless Channel
Let us demonstrate the aforementioned results on the partic-

ular case of noiseless (i.e., ideal) channel . Its capacity

21This fact will be used in Section VI for discussing memory channels.

equals [47]. The optimal eigenvalues for its homo-
dyne rate can be found from (87), (91), and (93) by substituting

, which gives

(104)

(105)

The optimal eigenvalues for its heterodyne rate can be obtained
from (75) and (84) by substituting , which results in

and . Hence, we
have (see (81)), i.e., the second stage does not exist
in this case.
Relations (78) and (97) applied to the noiseless channel give

the inequalities [7]
(106)

where and
[32]. It means that both heterodyne and homodyne rates never
achieve the capacity for finite even for the noiseless channel.
22 In particular, for large values of , inequalities (106) read

where the ratio between the rates and the capacity disappears
in the limit . In addition, both capacity and rates of
the noiseless channel are always higher than their values in the
presence of losses (environment), i.e., when .
One can also notice that despite optimal input and modulation

eigenvalues are unique for heterodyne and homodyne rate; this
is not the case for noiseless channel capacity. The latter has in-
finite amount of solutions [30], which can be shown as follows.
At first, since Theorem 1 holds also for , the optimal input
state must be pure. At second, any pure input state zeros the
second term in Holevo- quantity. As far as the area of a rec-
tangle with fixed perimeter is maximal if and only if rectangle’s
sides are equal (see proof of Proposition 2), we have the system
of equations

(107)

where the energy restriction (65) is the “perimeter.” Thus, by
taking any input eigenvalue from the interval

(108)

and obtaining the eigenvalues , , and from the re-
lations (93) and (107), we arrive at the same value of capacity

.
Taking into account that the capacity is symmetric over

quadratures and considering as usual only positive values of
, we can parametrize the interval (108) as [see similarity

with (86)] , where [30]. Notice
that is the only solution corresponding to second stage

22It is discussed in [32] that the capacity of the noiseless channel can be
achieved by using Fock states for encoding and photon counting measurement
for decoding.
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in this interval. Then, the optimal eigenvalues can be expressed
as functions of as

(109)

The set of eigenvalues optimal for noiseless channel are
plotted in Fig. 1(right). The black point at the left part of the
graph corresponds to well-known solution ,

which is the particular case of in (109).
Two black points at the right part of the graph correspond to
solution (104), (105) following from (109) for . Thus
if , then the same input and modulation eigenvalues
are optimal for both the capacity and the homodyne rate [30].
Moreover, this case corresponds to the maximum signal-to
quantum noise ratio [30], [48]:

Let us consider how the solution (i.e., the optimal input and
modulation eigenvalues) changes if noise in the channel disap-
pears . The loci corresponding to different stages
are shown in Fig. 1(left). One can see that if belongs to the in-
terval , then by increasing from 0 to 1, we al-
ways change the second stage to the third one. As far as
in the third stage, the solutions for different values of for noisy
channel tend to different solutions for noiseless channel and re-
main in the third stage. These solutions of noiseless channel
correspond to the interval . Then, all solutions for

of noisy channel tend to the same solution of
the noiseless channel which corresponds to the second stage and
to .

J. Universal Limit

Let us analyze the behavior of the capacity and rates in the
limit of infinite environment squeezing if channel pa-
rameters , , andN are fixed. Notice that only the second
stage is possible in this case according to (81). By substituting
eigenvalues (90), (91), and (93) into mode transcendental equa-
tion (88) and then solving it for in the case of , one
can get the result (104). Thus, the eigenvalues maximizing the
capacity in the limit of are the same as for the noise-
less channel and given by (104) and (105). Substituting them
into (35), one can see that both symplectic eigenvalues and
tend to infinity if . This allows us to use the logarithmic
approximation to the capacity to find the limit. Hence, by com-
paring (46), (97), and (104), we obtain the result [12]

N (110)

which will be called below as the universal limit.
As far as [see (92)] gives the relation (104), the

limit (110) also holds for homodyne rate [24].

Analogously, taking into account that [see
(96)], we get the limit

(111)

Notice that the limiting value (110) of the capacity equals
the homodyne rate in the case of perfect (noiseless) channel
[see (106)]. This fact can be understood by considering that, for

, the quadrature becomes infinitely noisy while the
quadrature becomes noiseless. Thus, by encoding the infor-
mation in the quadrature , the information transmission be-
comes noiseless.

K. Concavity of Solution
The concavity over for the capacity and rates will be es-

sential below for discussing multiple channels uses. It is also
the important property allowing to show additivity of the ca-
pacity and rates for the memoryless channels. Let us show the
concavity of the function . In the second stage, the latter
can be represented as ; therefore, the first deriva-
tive with respect to is

However, since only the eigenvalues maximizing are of in-
terest, we have [see definition (89)];
therefore

Then, one can show that for all values of and for both second
and third stages

(112)

which proves that is a monotonically increasing function
of its argument. Notice that

(113)

where equality is achieved only by the pure environment state
.

It is shown in Appendix E that

(114)

Then, we deduce from (112) and (114) that the function
is concave on the whole region of . Thus, the single-
mode (one-shot) capacity for fixed values of and can
be considered as the concave function:

(115)

i.e., as a “blackbox” returning the value of upon “input”
while respecting the concavity property.
Derivative (112) holds also for rates if the replacement (56)

is applied. Besides it, for the heterodyne rate, the replacements
(53) and (55) must be applied. The concavity of both rates and
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logarithmic approximation to capacity can be deduced from ex-
plicit relations (77), (79), and (97). Hence, both heterodyne and
homodyne rates are also concave functions which can be treated
in the same “blackbox” form.

L. -Representation

As far as the function is concave and monotonically
increasing, the value of the derivative (112) can be used as the
equivalent replacement for the amount of photons granted for
the channel input. Such an approach below will be called the
-representation to distinguish it from the standard approach
using the quantity ( -representation). Thus, we can specify
an input energy for capacity using

(116)

(116) can be equivalently rewritten23 in the form of Planck
distribution24

N (117)

whereN , (“temperature”), and
(“frequency”). We will also use the “temperature”

for the ideal channel

(118)

obtained from the relation for with .
In the third stage, and N (see Sec-

tion IV-E), i.e., the quantities and completely define the
average amount of photons (59) contained in channel and, if
the environment is pure, its capacity [see (80)]. Moreover, the
dependence given by (117) is expressible in explicit
form:

(119)

Let us now consider the second stage. Following [22], one
can substitute [see (116)] in the relation (88).
That leads to

(120)

where we used the relation (remember, that in the
second stage we have ). Then, by substituting (120) and
the relation in (117), we get a transcendental equation
which relates and . Hence, (117) (after all substitutions) be-
comes the mode transcendental equation (88) written in -rep-
resentation. If the value of is found for a given value of , the
input energy reads

(121)

23Here, we use the property: if , then .
24Similar result was presented in [32] for a number-state channel, where the

optimal photon-number distribution is the Planck distribution parametrized by
a Lagrange multiplier.

which is the relation (99) with . Thus, in any repre-
sentation ( -, -, or -representation), we have to solve only
a single transcendental equation to find all variables.
Similar to the threshold value defined by (81), one can

consider the threshold which defines the amount of
photons corresponding to the transition from the first to second
stage. These thresholds in the -representation will be denoted
by and and can be obtained as follows.
The threshold is the limit of for . Remember

that is the case of the first stage with optimal eigenvalues
and (see Section IV-E). Then,

the convention means for the first stage that is the
quadrature corresponding to for infinitesimal nonzero
values of . Hence, the general relation (116) gives

(122)

where the input eigenvalues are those of vacuum. Analogously

(123)

where is given by (74).

Proposition 3: The function is monotonically
decreasing over each of its arguments.

Proof: The dependence is proportional to the
function , and the dependence is proportional
to the function . Both these functions are monotoni-
cally decreasing over the argument . In turn, is monotonically
increasing over and which are linear functions of and
, respectively. Taking into account that the composition of

monotonically decreasing and monotonically increasing func-
tions is monotonically decreasing, the proposition is proved.

Using the zeroth-order approximation for the -function in
(116), one can consider the quantity

(124)

which will play the role of for both25 the approximated quanti-
ties and . Analogous to (118), we will use the notation

Then, the thresholds and can be defined like the
quantities (122) and (123).
Similar to capacity (the derivatives and

were defined in Section IV-K), one can introduce
the quantities

(125)

(126)

25Our purpose is to get (as much as possible) analytical relation for capacity
in multimode setting discussed in Section VI. If the first-order approximation
for function is used [see (20)], then the inversion of the dependence
given by (116) gives rise to algebraic equation of high order; therefore, we use
the quantity also to derive .
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for homodyne and heterodyne rates, respectively. Their
threshold values will be denoted as , , and .
The “temperatures” for rates can be defined analogously to
(118) as

(127)
Then, in the third stage, the quantities and are related
by

It follows from (99) and (100) that in the second stage,
depends on (for capacity ) as

(128)

where

(129)

Notice the similarity between (121) and (128). In fact, the first
term in (121) is equal to , which can be rewritten as [see
(116)] . The latter is equal to if the replace-
ment (56) is applied and is set to 1. Taking into account the
definitions (125)–(127), one can see that (128) and (129) hold
also for rates if is replaced by or , is given
by (94) or replaced by [see (96)], for homodyne and het-
erodyne rate, respectively.

M. Stage Transition and Quantum Water Filling

Finally, let us discuss the point of stage transition. As far
as different stages correspond to solutions of different systems
of Lagrange equations, it is natural that some properties (e.g.,
smoothness; see (192) and (194) in Appendix E) are violated at
this point. In fact, this can be seen from Fig. 2(left), where the
loci and are plotted for different values of
and fixed values of , , andN . The dependence of versus
given by the locus has a kink in the point of transition

from second to third stage. Similarly, the function has a
kink and the function is discontinuous at
this point (see Fig. 3). However, the function is smooth
at the point of stage transition, because its derivative (112) is
continuous [see Fig. 2(right)].
In the third stage, we have equality (69), which can be written

as

It means that the energy spent for modulation is distributed be-
tween quadratures in a way to equalize the eigenvalues of the
state . This type of solution is typical for optimization prob-
lems and it appears also for classical channels [35], where it
was called “water filling.” Later, such a solution was shown to
hold for some parameters also for quantum channel with addi-
tive noise [22], [30], [36], where it was called “quantum water
filling.” For the case of lossy channel, this type of solution was
presented in [12].

Fig. 2. (Left) Loci (bottom curve) and (top
curve) for values of are plotted. The values of other parameters
are N and . Different gray-scale backgrounds indicate
the parameters’ regions corresponding to different stages for given curves (the
higher the stage, the darker the color). The first stage is a single point at ,
where . In the third stage, the locus is mapped into
a single point (situated at the border between the second and the third stages)
for all values of , since does not depend on . In turn, the locus
in the third stage is the line . On the right, the quantity is plotted
versus . One can see that the dependence is actually concave. The
values of (marked using light gray color) corresponds to the
second stage, and the values of (marked with dark gray color)
corresponds to the third stage.

Fig. 3. Quantity is plotted versus (the right is a magnification of the stage
transition point ). The values of other parameters are , , and
N . One can see that . On the right, the left
and right tangents are plotted at the point of (the left and
right derivatives are different as it follows from (192) and (194) in Appendix E).

Quite generally, one can call “quantumwater filling” all types
of solutions for the optimal distribution of input energy between
quadratures. It will be shown later in Section VI for memory
channels that the input energy has to be distributed between
many modes. In addition, all modes belonging to the third stage
must possess equal average number of photons , and for
all of them equality must hold. Furthermore, if al-
most all modes are in the third stage, the solution can be inter-
preted as a small perturbation of water filling. Thus, the term
“quantum water filling” used for all types of solutions under-
lines the “physical” meaning of the performed optimization.

V. ROLE OF CHANNEL PARAMETERS

In this section, we discuss the dependence from parameters of
capacity and rates found in Section IV (i.e., for single channel
use). Apart from characterizing the one-shot capacity, this study
is also relevant for the case of multiple channel uses and addi-
tivity problem discussed below in Section VI.
It is evident that both capacity and rates must be monotonic

functions of parameters , , andN . In fact, higher trans-
missivity and input energy cannot result to less capacity or rates
from physical point of view. In addition, it was explicitly shown
in Section IV-K that both capacity and rates are monotonic con-
cave functions of .
In turn, monotonic dependence of capacity from N can

be shown as follows. Given the valueN N the lossy
channel for the parameters , , andN can be represented
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as a channels composition , where is a lossy channel
with parameters , , N and is an additive (classical)
noise channel [see (26) and (27)] with environment matrix

N N

Since the capacity of the composition of two channels cannot
exceed that of each individual channel, we deduce that the ca-
pacity is nonincreasing function ofN . Furthermore, the fol-
lowing environment purity theorem states that the optimalN
is zero:

Theorem 3: The maximum of capacity on the set of envi-
ronment states whose elements have the same average
amount of photons is achieved on pure environment state,
i.e.,

Proof: Proof is given in Appendix D.

Extension of this theorem to the case of rates is straight-
forward.
Thus, the only parameter which can make capacity and

rates nonmonotonic is the environment squeezing . In this
section, we investigate this nonmonotonic dependence. Next,
Sections V-B and V-C are mainly devoted to definitions,
properties, and numerical results on channel parameters, while
the other subsections contain analytical results justifying the
numerics.

A. Role of Input and Environment Squeezing

Using representation (32) for input covariance matrix
N , one can relate the optimal degree of input

squeezing to the degree of environment squeezing . It
follows from (73) and (92) that for the third stage (for
, , , and ) and

(130)

for the second stage (for and ). Analogously, it fol-
lows from (73) that [see (42)] for the heterodyne
rate in the third stage. In the second stage, both homodyne and
heterodyne rates result to the same relation (130), where the re-
placement (95) must be applied for the heterodyne case. At the
transition point between different stages, there is a kink in the
function [see Fig. 4(left)]. It reflects the fact that different
stages correspond to solution of different systems of equations.
The dependence is shown in Fig. 4(right) (this is discussed
in the following sections in a more detailed way).
The capacity found by the exact analytical solution is

shown in Fig. 5 for fixed as function of and for different
values of (at left) and N (at right). One can see that
the squeezed environment may result to capacity
enhancement. This phenomenon shows similarity with the
improvement of the signal to noise ratio achieved by squeezed
vacuum injection in an optical waveguide tap [33]. The highest
enhancement occurs at either finite value of or at
depending on the value of . In any case, the capacity in the
limit of large becomes only function of the energy constraint
[see (110)] explaining why all curves flow together

Fig. 4. (Left) Optimal input squeezing is plotted versus , for values of
going from 0.1 (bottom curve) to 0.9 (top curve) with step 0.2. The values of
the other parameters are and N . (Right) Both the capacity
and optimal input eigenvalue are plotted versus . The value of the other

parameters areN , , and .

Fig. 5. (Left) Capacity versus , for values of going from 0.15 (bottom
curve) to 0.95 (top curve) with step 0.2. The values of the other parameters
are and N . (Right) Capacity versus for values ofN
going from 0 (top curve) to 4 (bottom curve) with step 1. The values of the other
parameters are and .

Fig. 6. (Left) Quantities (black) and
(gray) are plotted versus for , ,

andN . (Right) Quantities , , and are plotted versus
for , , andN .

to the same value26 when . Similarly, tends to the
value (104) for because it follows from (130) (see also
Fig. 4).
The difference among quantities , and is shown in

Fig. 6(left). In Fig. 6(right), the quantities , , and
are shown together. One can see that coincides with ho-
modyne rate in the second stage [see (46)].
The rates and together with the exact solution

for capacity are shown in Fig. 7 for fixed as functions of and
for different values of . One can see that in the second stage,
both rates are monotonically growing functions of which is
in agreement with (97). In the third stage, the heterodyne rate
may be nonmonotonic achieving its minimum. As it can be seen
from Fig. 7, the optimal heterodyne rate is achieved at either

or . Analytical description of this behavior is
given in Section V-J. A similar (to Fig. 7) family of curves can
be obtained if or is plotted versus for different

26This behavior originally was observed in [11] for the capacity of particular
memory channel found as maximum over a small subset of Gaussian states.
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Fig. 7. Classical capacity (solid curves), homodyne (thin gray
curves), and heterodyne (bold gray curves) rates versus , for values of
going from 0.15 (bottom curve) to 0.95 (top curve) with step 0.2. The values

of the other parameters are andN .

Fig. 8. Dependence for channel parameters and N belonging to
the first domain N is plotted for values of transmis-
sivity , and 0.424 (from bottom to top), which approx-
imately correspond to border values between different regimes ( , , , and
, respectively). Regimes are indicated with roman numbers (I–V) and dif-

ferent gray scale colors. Any curve corresponding to a particular regime
would completely lie in the area with the background color corresponding to
that regime.

values ofN and fixed . One can see that the universal limit
(110) holds also for this case.
Despite the behavior shown in Fig. 5 is the most typical, there

are parameters values giving more complicated dependence for
(all possible cases are plotted in Figs. 8–11). In particular,

the capacity may have both minimum and maximum each of
them attained at finite environment squeezing .
Such behavior and the parameters related with its description
are discussed in the following sections.

B. Role of Transmissivity for Capacity

It was shown in Fig. 5 that both andN can be chosen to
parametrize the family of curves . In order to completely
characterize how capacity depends on squeezing we will use
. All “qualitative” possibilities for the dependence are
shown in Figs. 8–11. Such a dependence can be interpreted as
crossing different regimes by increasing from zero to one. In

Fig. 9. Dependence for channel parameters and N belonging to
the second domain N is plotted for values of trans-
missivity (from bottom to top), which approx-
imately correspond to border values between different regimes ( , , , and
, respectively). Regimes are indicated with roman numbers (I–V) and dif-

ferent gray scale colors. Any curve corresponding to a particular regime
would completely lie in the area with the background color corresponding to
that regime.

Fig. 10. Dependence for channel parameters andN belonging to
the third domain N is plotted for values of transmissivity

(bottom curve) and 0.919 (top curve), which approximately corre-
spond to border values between different regimes ( and , respectively).
Regimes are indicated with roman numbers (I, IV, and V: other regimes do not
exist in the third domain) and different gray scale colors. Any curve cor-
responding to particular regime would completely lie in the area with the back-
ground color corresponding to that regime.

turn, the set of regimes depend on the domain which and
N values belong to [see Fig. 11(bottom-right)]. Let us con-
sider this behavior in more detail (in the relations below, the
argument of is assumed to be ).
Let us define the specific values of squeezing and transmis-

sivity in a formal way. First, supported numerical calculations
we state the following.

Proposition 4: The function may have at maximum two
extrema for the values of squeezing .
Evidently, if the function has two extrema, then one of

them must be maximum and the other minimum. They can be
formally defined as follows.
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Fig. 11. Dependence for different values of and fixed values of
andN . In particular, andN (corresponding to the first
domain), goes from 0.275 (bottom) to 0.475 (top) with step 0.05 (top-left
figure); andN (corresponding to the second domain), goes
from 0.3 (bottom) to 0.5 (top) with step 0.05 (top-right figure);N and

(corresponding to the third domain), goes from 0.15 (bottom) to 0.95
(top) with step 0.2 (bottom-left figure). The parts corresponding to different
backgrounds belongs to different stages (lighter color states for second stage,
and darker color states for third stage). Bottom-right: the loci N
(bottom curve) and N (top curve), corresponding to transitions be-
tween different channel domains. The points N belonging to the area
between these curves correspond to the domains indicated with different gray
scale backgrounds colors.

Definition 2: The finite positive value of squeezing will be
denoted by or if the function has its local maximum
or minimum at that values, respectively:

One of our purpose is to study the value of squeezing giving
highest capacity, which can be defined as written below.

Definition 3: The value of squeezing will be denoted by
and called optimal if it corresponds to global maximum of the
function :

Finite values of squeezing providing the same value of ca-
pacity as infinite squeezing can exist.

Definition 4: The finite positive value of squeezing will be
denoted by if both the value of function at that
squeezing coincides with the value at infinity and is an
increasing (decreasing) function at this point:

As far as belongs to the third stage for small values of
and is always increasing function of in the third stage,
the extremum corresponding to the smallest value of squeezing

must be the maximum. Hence, the minimum must correspond
to higher value of squeezing which exists only if the maximum
does. This also makes the function increasing in and
decreasing in . Thus, if both extrema exist, we have
and which explains the notations introduced in the def-
initions 2 and 4). In the general case, it follows from numerical
results that the function in the interval can be
one of the following:
1) monotonic function without stationary points;
2) monotonic function with single saddle-point;
3) function with one maximum;
4) function with one maximum and one minimum.
In order to study the case with the saddle-point, we define the
following transmissivity:

Definition 5: The transmissivity will be denoted by and
called saddle-point transmissivity if has saddle-point in
some finite positive value of squeezing:

It follows from the results of numerical study that exists if
and only if the following transmissivity does.
Definition 6: The transmissivity will be denoted by and

called -transmissivity if a finite positive value of squeezing
exists such that has maximum at that squeezing and the
value of maximum is equal to :

Then, by considering the behavior of for zero and infi-
nite squeezings, the following definitions can be introduced.

Definition 7: The transmissivity will be denoted by and
called -transmissivity if the values of for zero and infi-
nite squeezing coincide: .

Definition 8: The transmissivity will be denoted by and
called -transmissivity if , i.e., in the neighbor-
hood of infinite squeezing is decreasing for and
increasing for .
One can note that some properties (e.g., saddle-point) can

be observed only for particular “domains” of the parameters
andN , which requires to introduce further classification. It
follows from the results of numerical study that the following
definitions allow us to divide the quadrant ,N
into three nonoverlapping domains [see Fig. 11(bottom-right)],
thus providing consistent classification of all possible cases.

Definition 9: The parameters N belong to the first
or to the second domain if or , respectively.

Definition 10: The parameters N belong to the third
domain if the function has at maximum one extremum
in the interval for all values of transmissivity

.
These domains correspond to the following relations between

transmissivities:
1) First domain: ;
2) Second domain: ;
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3) Third domain: ( and do not exist).
In order to characterize the transitions from one domain to

another, we will use the following definitions.

Definition 11: The value of will be denoted by and
called supercritical for a given value of N , if the point

N corresponds to the transition from first to second
domain. Similarly, the value of N will be denoted by
N and called supercritical for a given value of , if the
point N corresponds to transition from first to second
domain.

Definition 12: The value of will be denoted by and
called supercritical for a given value of N , if the point

N corresponds to transition from second to third
domain. Similarly, the value ofN will be denoted byN
and called supercritical for a given value of , if the point

N corresponds to transition from second to third
domain.

Definition 13: The function N will be denoted
by and called supercritical if it corresponds to the boundary
between the first and second domains. Similarly, the function

N will be denoted by and called supercritical
if it corresponds to the boundary between the second and third
domain.
As far as the boundary between domains characterizes the

critical parameters (transmissivities), e.g., appearance of some
critical parameters or the relations between them, the term “su-
percritical” was used in Definitions 11–13. One can also say
that supercritical parameters are those critical parameters which
characterize the other critical parameters.
The mnemonic rule to remember the notations used for the

critical and supercritical parameters is the following. The quan-
tities and are defined by considering the behavior of ca-
pacity at the points of zero and infinite squeezing; therefore,
these values are used as subscripts. The supercritical values
andN correspond to transition between the domains which
have different relations between and ; therefore, subscript
zero is used. The -transmissivity corresponds to the case when

decays into maximum to the left and minimum to the right
if transmissivity is slightly above the value , i.e., forms
a “wave” in such a case. This explains the usage of tilde sign.
The transmissivity corresponds to the case when the curve

“touches” the upper line ; therefore,
overlining is used. Finally, the transition from the third to the
second domain corresponds to the appearance of the quantity ,
i.e., “wave” behavior of the curve ; therefore, the tilde sign
is used for supercritical parameters andN .
Thus, we have defined four critical transmissivities ( , , ,

and ) and four specific values of squeezing ( , , , and
). Similarly, by considering the family of functions pa-

rametrized byN (for fixed values of and ) or by (for
fixed values of andN ), the corresponding critical values
for environment thermal or input photons can be considered,
respectively. All these approaches can be generalized and con-
sidered as particular cases of critical functions. The latter are
functions of the form N , where any of the pa-
rameters , , andN is critical if the others are considered

to be constants. In particular, by assuming and N to be
constants and using notations for critical functions similarly to
transmissivities, we get the following relations:

N
N
N
N

Now, once we have introduced all necessary definitions we
can discuss how is varying by increasing from zero to
one. As one can see from Figs. 8–11, it passes in sequence the
following five regimes:
I. (for the third domain one can consider
instead of ).
Capacity is monotonically increasing function of
and tends to its universal limit (110) from the bottom.
Optimal squeezing is equal to . In particular, when

, capacity has its saddle-point for the value of
squeezing .

II. (this regime does not exist for the third
domain).
The saddle-point decays into two extrema—the capacity
maximum to the left at the point of and the ca-
pacity minimum to the right at the point of , where
it is

Higher values of correspond to lower values and to
higher values of . Thus, despite we still have ,
the value of could be more preferable because it
is finite. When , the local maximum at the point

reaches the value of global maximum:

III. or for the first and the second
domains, respectively (this regime does not exist for the
third domain).
Optimal squeezing becames finite and equal to .
Two values of squeezing and providing the same
capacity as in the universal limit appear:

Higher values of correspond to higher and lower .
Capacity approaches its universal limit from the bottom:

.
a) The first domain. With the increasing of the value
of is decreasing. It tends to zero when tends to
and then disappears (does not exist for ).

The global capacity minimum for is
achieved at the value .

b) The second domain. When both values of
and tend to infinity, i.e.,
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Fig. 12. Dependence of the quantities , , , , and versus for ca-
pacity . The value of the other parameters are andN
(corresponding to the first domain). Different gray scale backgrounds corre-
sponds to transmissivities from different regimes (indicated with roman num-
bers). Vertical asymptotes are plotted for the critical transmissivities, and the
horizontal asymptote shows the limit . The part of the curve
coinciding with is shown with dots. At the point the quantity
jumps to infinity and for all values of is equal to infinity.

and one of capacity extrema disappears. The global
capacity minimum is still achieved at ;
therefore, any squeezed environment is still more
preferable.

IV. (for the first domain) or (for
the second and the third domains).
a) The first domain. The capacity has two minima at
values of zero and , where .
When tends to , both and tend to infinity
and the right extremum of disappears.

b) The second and the third domains. The capacity has
two minima at values of zero and infinite squeezing,
where . Starting from this regime
it will have only one extremum for finite nonzero
values of which is maximum at . When
reaches , we have

V. (for the first domain) or (for the second
and the third domains).
The global capacity minimum is at infinite squeezing, i.e.,

.
The notion of regime can be also clarified by considering spe-

cific values of squeezing as functions of transmissivity for fixed
values of andN . In fact, one can see that these values of
squeezing appear and disappear at some critical values of trans-
missivity which can also correspond to asymptotic lines (see
Figs. 12–14). In particular, the optimal squeezing equals

if
if

(131)

where for the case of first and second domains and
for the case of third domain. Moreover, the optimal

squeezing asymptotically tends to infinity for the case of third
domain, but discontinuously jumps to infinity for first and

Fig. 13. Dependence of the quantities , , , , and versus for ca-
pacity . The value of the other parameters are and N
(corresponding to the second domain). Different gray scale backgrounds corre-
sponds to transmissivities from different regimes (indicated with roman num-
bers). Vertical asymptotes are plotted for the critical transmissivities, and the
horizontal asymptote shows the limit . The part of the curve
coinciding with is shown with dots. At the point the quantity
jumps to infinity and for all values of is equal to infinity.

Fig. 14. Dependence of the quantities , , , , , and versus
for capacity . The value of the other parameters are andN
(corresponding to the third domain). Different gray scale backgrounds corre-
spond to transmissivities from different regimes (indicated with roman num-
bers, the second and third regimes do not exist). Vertical asymptotes are plotted
for the critical transmissivities, and the horizontal asymptote shows the limit

. The part of the curve coinciding with is shown with
dots [ coincides with on the whole region of transmissivities where is
defined, i.e., for , and equals infinity if )]. At the
point , the quantity together with asymptotically tends to infinity.
Also notice that in the limit .

second domains. This transition behavior of optimal squeezing
is shown in Fig. 15(left) and Fig. 16(left), where is
plotted as function of for different values of N and ,
respectively. The capacity corresponding to these finite values
of is plotted in Fig. 15(right) and Fig. 16(right), respectively.
Finally, let us consider how critical transmissivities depend

on andN . One can see that does not depend on and
has nontrivial minimum forN [see Fig. 17(top-right)].
Then, both and (we have always ) are mono-
tonically growing functions of which disappear for
the values of and tend to if tends to from the
left. Notice that the values of and do not tend to zero for

ifN .
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Fig. 15. Optimal environment squeezing (left) and capacity
(right) are plotted versus for values of N equal to 0, 0.0055, 0.0165,
0.0413, 0.066, 0.0898, 0.1403, 0.2393, and 0.3879 (from bottom to top at left,
and from top to bottom at right). The value of the other parameter is .
Curves corresponding to different backgrounds belongs to different domains
(darker background corresponds to higher domain). The curves corresponding
to transition between different domains are plotted using gray color. (Left) Each
curve belonging to the first or the second domain jumps to infinity at some finite
value and equals infinity for all transmissivities to the left of that jump. Then,
curves, corresponding to the third domain tend asymptotically to infinity and
are equal to infinity for all values of which are to the left of that asymptote.
The whole region occupied by the finite dependences is bounded to the
left by the locus . The values of corresponding
to borders between different domains are indicated with gray points. It is
interesting to note that the area corresponding to the second domain is bounded
by finite value from the top, i.e., for the values of andN corresponding
to transition from second to third domain, the value of is still finite at the
point . The area occupied by curves is bounded from the bottom by the
curve forN which is not zero. (Right) Whole region occupied
by family of possible curves is bounded from the bottom by the
limit (110). Here, we plotted capacity corresponding to finite values of (for
small values of , we have ; therefore, each curve is equal
to —this is not plotted). By increasing from zero to one, we
reach the point of (for the first and second domains) or (for
the third domain) where the curve is detached from horizontal line

. And finally, when tends to 1, all curves tend to
the same value . One can see from numerics that this value
does not depend onN .

Fig. 16. Optimal environment squeezing (left) and capacity
(right) are plotted versus for values of equal to , 0.0149, 0.0298,
0.1127, 0.1956, 0.2755, 0.4443, 0.7760, and 1.2734 (from bottom to top for
both: left and right graphs). The value of the other parameter isN .
Curves corresponding to different backgrounds belongs to different domains
(darker background corresponds to higher number of domain). The curves
corresponding to transition between different domains are plotted using gray
color. (Left) Each curve belonging to the first or the second domain jumps to
infinity at some finite value and equals infinity for all transmissivities which are
to the left of that value. Then, curves corresponding to the third domain tend
asymptotically to infinity (when tends to from the right) and are equal to
infinity to the left of that asymptote. The whole region occupied by the finite
dependences is bounded to the left by the locus . The values
of corresponding to borders between different domains are
indicated with gray points. It is interesting to note that the area corresponding
to the second domain is bounded by the finite value from the top, i.e., for the
values of and N corresponding to transition from the second to third
domains, the value of is still finite at the point . The area occupied by
curves is bounded from the bottom by the curve for which is not
zero. One can see that in the third domain the value of is the same for
all curves. This is in fact in agreement with the analytical result (obtained in
subsequent subsections) that does not depend on . (Right) Whole region
occupied by family of possible curves is bounded from the bottom
by the zero. Here, we plotted the capacity corresponding to finite values of
(for small values of we have ; therefore, each curve

should be continued horizontally to the left being at the same level as in left
border—this is not plotted).

Fig. 17. (Top-left) Quantity is plotted versus for the values of
N equal to 0, 0.2, 1, 10 (from bottom to top). (Top-right) Quantities (black
solid), (gray), and (horizontal dashed black lines) are plotted versus for
the valuesN equal to 0, 0.02, and 0.05 (from bottom to top for all curves).
The points where and touch the line corresponding to are indicated
with bold points. (Bottom-left) Function versus N as
exact [black curve; see (142)] and approximate [gray curve; see (145)] quan-
tities. (Bottom-right) Function as exact [black curves; see (146)]
and approximate [gray curve; see (148)] quantities. The values of all the quan-
tities for all the graphs for zero argument are shown by bold point.

The -transmissivity is plotted versus for different
values of N in Fig. 17(top-left). One can see that has
nontrivial limits for the values of tending to zero and infinity.
These limits are plotted in Fig. 17(left) and (right), respectively.
It is interesting to note that the quantity also has
nontrivial minimum.
The next sections will be devoted to analytical estimation of

critical and supercritical parameters as well as to estimation of
the specific values of squeezing. This will eventually allow us
to prove most of their properties discussed in this section.

C. Stationary Points for Capacity

Let us consider the quantities , , , and analytically.
The critical function which characterize the behavior of the
channel in the neighborhood of infinite environment squeezing

can be found as follows. We first note that only eigen-
values maximizing are of interest; therefore, it is

, where is the mode transcendental (88).
This allows us to simplify the derivative over as

Its asymptotic behavior is

N

where

N (132)

Thus, and N are the only parameters which define how
capacity tends to its universal limit (110). In particular, given a
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value ofN , the capacity tends to this limit from the top if
and from the bottom if , where transmissivity

can be found from the relation

N (133)

In particular, for the vacuum environment, it is

Analogously, if the value of is fixed, the capacity tends to
the universal limit (110) from the top or bottom depending on
the value of N , which follows from (133). Consequently,
this value plays a role similar to critical transmissivity if the
family of curves parametrized by N for fixed and
is considered [compare the curves in Fig. 5(left) and (right)].

It is interesting to note that this effect also exists for additive
noise Gaussian channel where the quantityN has the same
meaning and its critical value equals [34]. Thus, the crit-
ical parameters and the behavior shown in Fig. 5 may be rele-
vant for a general Gaussian channel.
In order to specify the region where environment squeezing

increases the capacity, in the following, we estimate the values
of corresponding to extrema of function . Following
[34], let us consider the system of equations27 ,

taken for the eigenvalues maximizing and
belonging to the second stage [extremum cannot be in the third
stage since according to (76)]. Its solution results
to the value and the value of defined by

(134)

where

Thus, we have the same value of for both local extrema of
and the point of .

Solving (134) in the neighborhood of zero or infinite values of
one can estimate both its roots ( and ). In particular, after
the expansion of (134) in powers of in the neighborhood of

, where terms higher than the second order are neglected,
it takes the form with (
and are some constants). The function is the partial
sum for Laurent series of the function , where is
the (134). Both functions and are concave in
the neighborhood of [see Fig. 18(top-right)]; therefore,
their nontrivial28 roots are close each other. The latter property
explains why the approximation is applicable and
leads to the result

N
(135)

27Since in the second stage all input and modulation eigenvalues are the ex-
plicit functions of , by substituting them in the relation for capacity one can
represent it as function of only one variable . Then, as the dependence on
squeezing is also analyzed, we consider the capacity as function .
28The trivial solution which we imply is corresponding to .

Fig. 18. Top-left (analytical method of estimation of ): quantity versus
together with its linear and quadratic approximations at the point .

The value of parameters are , , and N . Top-right
(analytical method of estimation of ): quantity versus for the values

(bottom black curve, its quadratic and cubic approximations at
point through partial Taylor sum—gray color) and (top
black curve and its third approximation at point —gray color). The
value of other parameters are and N . The points, where
quadratic and linear approximations cross the line , defines quadratic and
liner approximations for the corresponding -quantities: approximations
and for the quantity , and approximation for the quantity . Sim-
ilarly, the value of transmissivity at which cubic approximation has two roots
(touches the line ) defines approximation for . Bottom-left (method of
estimation of and ): versus for the values of , ,
andN . Bottom-right (method of estimation of ): versus for the
values of (bottom black curve) and (top black curve).
The value of other parameters are andN . For the top black
curve, its cubic approximation gives an estimation for the quantity .

where critical function is given by (132) and characterizes
the “criticality” of the given channel parameters (their vicinity
to the transition point). Notice that according to estimation
(135), we have

Analogously, considering the next-order approxima-
tion for (134), one can construct the function

and find the condition when both non-
trivial roots of the equation coincide. This is the
case of (both and are taken from approximation
, see Fig. 18), i.e., the saddle-point of the curve where

both the derivatives and equal zero. In
Section V-A, this approach will be used in order to provide
analytical estimation of the saddle-point transmissivity .
Similarly, expanding (134) in powers of in the neighbor-

hood of , we get an equation of the form
( , , and are some constants depending on channels param-
eters), whose nontrivial root is an estimation for the left ex-
tremum (see Section V-E for its value and derivation).
Analyzing the equation instead of (134) and ap-

plying the same method (expansion in powers of in the
neighborhood of and in powers of in the neighbor-
hood of ), one can estimate both left and right
roots. In particular, one can get the relation
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Estimation of is given in Section V-G. The case when and
(considered for this approximation) coincide corresponds to
transmissivity, which is estimated in Section V-H.

D. Estimation of

Let us estimate the quantity . Our purpose is to solve (134)
in the neighborhood of taking into account that all eigen-
values in extrema points are known. At first, notice that squares
of symplectic eigenvalues as functions of in the extrema points
read

N

N

where

In the following, we use the notations and
. Let us define the function

y

and introduce the following notations:

X N

By representing (134) as , we can
find both linear (supposing ) and quadratic ap-
proximations. They result as estimations of squeezing in left ex-
tremum of (denoted as for linear approximation and

for quadratic one):

K K K K

where

K Xy (136)

K Xy X y y

(137)

Approximation is applicable only if K and is
applicable only ifK K (it is equivalent to
if ). These regions of applicability follow from the con-
dition that proper equations must have their roots positive.
Let us consider the limit . First, note that both

second and third terms in relations (136) and (137) disappear
when ; therefore, we have

(138)

Fig. 19. Top: Dependence of the quantities , , and versus (left)
and versus (right). The value the other parameters are: andN
(left), andN (right). Bottom (left and right): the quantity

versus (the value ofN was set to zero, but numerically this
limit does not depend onN ). To the left it is plotted together with the ap-
proximations , , , and to the right it is plotted together
only with [see (138) and (139)]. Approximations and
are plotted only for those values of the argument where they are applicable.

where

The quantity , in turn, tends to 1 for and
to zero for . Analogously

(139)

Notice that approximations (138) and (139) do not depend on
thermal photons N . This is an argument in support of the
behavior observed numerically in Fig. 15 for the exact limit.
The dependence of and its approximation from parame-

ters is shown in Fig. 19. One can see that is monotonically
decreasing function of , which indeed has nontrivial limit for

.

E. Estimation of
As it follows from Definition 7, the transmissivity is given

by

(140)

where

N
N (141)

Note that for , we have the case of the third stage and
N . We can have the following cases: (see

Fig. 8), (see Fig. 9), and . The latter case
corresponds to transition from first to second domain and de-
fines the locus N where equality holds. One
can see from Fig. 11(bottom-right) that the limit valueN
N , which still can have , is achieved at .
However, since (140) is satisfied by any values of andN if
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, we have to solve it for the limit . By expanding
(140) over , we get the equation . Then, by
substituting into , we get

N
(142)

The joint solution of the system of (142), (133), and
results to

N
N

Its solution is the supercritical value

N

Limit Values ofN : For high values ofN , (140) has its
asymptotic behavior given by the relation

N
N

from which one can get

N

i.e.,

N
(143)

In the case of pure (i.e.,N ), environment is equal
to [see (140)]

(144)

In turn, by supposing , we get the equation for

whose solution is the supercritical value

N

Thus, if , and if
(see examples in Figs. 8–10). In other words, if and only if

, we have

In particular, if the environment is pure, and
, then the universal limit gives the global minimum for
, and gives the global maximum:

The Case : By considering (142) forN , we
obtain, to linear approximation inN , that

N
N

N
(145)

Using (144), we get for pure environment

N

The Case : By taking the limit in (140) (we
use expansion of -function), one can get that it is equivalent to

N (146)

In particular, for pure environment, we get

N (147)

The function behaves like for small values of
. Using this property and expanding the logarithm in the first
term of (146) in powers of up to the first order, one
can obtain the equation

N N

Its solution gives an estimation of :

N N (148)

where is branch of Lambert function which is so-
lution of and whose properties are well known
[37]. One can show that the approximation (148) has the limits

N

N
(149)

The first limit coincides with the exact value [see (143)], but
the second one is different [see (147)]. Maximal error of esti-
mation (148) is about 5% and achieved byN . As far as

is monotonic over N [see (148)], (147) gives
its minimum:

Equation (149) can be obtained as follows. First, note that the
following limit holds:

(150)

It can be obtained by applying logarithm to both parts of
equation

and then dividing it by . Notice that for
and has the limit

Let us define a new variable to be equal to the argument
of in (148) and consider the limit of (148) for
which corresponds to N . Taking into account (150),
we arrive at the result (149).
The dependence of on parameters is shown in Fig. 17.
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F. Estimation of

The definition results to

N
N

which for pure environment reads

(151)

where N is given by (144). In particular, it is
clear from (151) that

which is in full correspondence with the definition and proper-
ties of .

G. Full-Channel Characterization

Let us summarize the results that we obtained for channel
characterization. We started from the point that squeezing is
the only parameter which gives rise to nonmonotonic depen-
dence of capacity . We have analyzed this behavior for typical
values of andN (see Fig. 5) and found that has max-
imum in the interval if , and is monotonic
otherwise. Then, we have shown that the family of curves
can be considered also for different values ofN and fixed .
Both these cases can be described using the parameter [see
(132)]. Thus, we get the pair of parameters N char-
acterizing the behavior of in the neighborhood of infinity.
Then, we considered also other critical parameters, namely, ,
, and by analyzing the family of curves for different
values of and fixedN . However, by considering the family
of curves for different values of N (or ) and fixed
one can also introduce analogous critical parameters as the

values ofN (or ). Hence, we finally have four triads of crit-
ical parameters to characterize the channel. After that we have
analyzed how these critical parameters depend on andN
by introducing supercritical parameters.
On the other hand, one can also say that critical

parameters have allowed us to split the total space
N into regimes

with different properties of the dependence , while
supercritical parameters have allowed us to split the total space

N into domains with different
properties of the critical parameters. Finally, note that given
the type of domain, regime, and stage for parameters , ,

, one can qualitatively plot the family of curves (for
different values of ) without numerical calculations and put
forward all important points and extrema of these curves.
This classification completely characterizes the role of en-

vironment squeezing. For example, “supernonmonotonic” be-
havior of (when it has two extrema in the interval

) is only possible in the first and second domains, since
in the third domain, has at maximum a single extremum.
Most of practically interesting channel parameters belong to the

third domain; however, this classification is useful, as it provides
exact conditions when it is so (expected behavior of from
the third domain). The global optimal squeezing has sudden
jump to infinity at in the first and second domains, but tends
asymptotically to infinity in the third domain.
It is quite nontrivial that despite this difficult classification

scheme the existence of supercritical parameters can be shown
analytically (see Section V-H). Moreover, in some important
cases, they can be found exactly and analytically (being ex-
pressed through radicals). Thus, despite we have started from
numerical analysis of the dependence , there are analytical
results which support the found properties (see Section V-H).

H. Supercritical Parameters
First, we have to remember that tends to when channel

passes from second to third domain [see Fig. 17(top-right)]. In
particular, the limits

N N
(152)

N N
(153)

are supported by numerical calculations (here, the notation
“ N N ” means that we consider the values

N belonging to the second domain and tending to the
border between second and third domain). Relations (152) and
(153) are equivalent to the following statement: the value of
squeezing corresponding to saddle-point transmissivity tends
to infinity if the values of the channel parameters N
tend to those from the third domain. Consequently, in this case,
the quantities tend to zero. Thus, we can say that
the transition between second and third domains is completely
characterized by the behavior of the function (134) in the
neighborhood of the point [remember, that and

are zeros of the function (134)]. Let us now consider the
Taylor expansion of (134) in the neighborhood of that point. To
the third order, it gives rise to the relation

(154)

which is an approximate form of (134) in the neighborhood of
. Remember that the coefficient is proportional to

[see (132)] and defines the transition from “undercritical”
to “uppercritical” parameters of transmissivity and thermal pho-
tons. If we neglect a constant factor, is just a denominator of
the fraction under logarithm in [see (135)]. The case when
disappears corresponds to the case when the function (134)

has no roots in the neighborhood of except of the
point itself. As far as (134) in this neighborhood is
the polynomial (154), this condition is equivalent to the state-
ment that this polynomial has no other extrema except of the
point . It is exactly so if both . Thus, by
substituting and in the relation [up to a
constant factor is a numerator in the fraction under logarithm
of (135)], we get

N
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This relation between the values of andN is that defined
by the function N ; therefore, it can be rewritten
as [see the parallelism with relation (133)]

N

where the supercritical transmissivity is

The quantity N as a function of was plotted in
Fig. 11(bottom-right). Finally, let us write down explicitly
the aforementioned supercritical values for the particular im-
portant cases:

N

(155)

N (156)

where the value (155) is the maximum amount of thermal pho-
tons admissible in environment which still allows us to ob-
tain effects from first and second domains (e.g., existence of
saddle-point transmissivity), and the value (156) is the max-
imum amount of input photons which still allows to observe
the same behavior. These are fundamental constants of lossy
bosonic channel providing its description on the top level of “hi-
erarchy of characterization.”
Remember that (134) [and hence its approximation (154)] is

the derivative of the equation . Therefore, the analo-
gous expansion of equation in the neighborhood of

has the form

(157)

where , and . Equation (157) allows
to interpret both critical and supercritical parameters in the same
framework. In particular, zero-order coefficient is
the universal limit (110), zero-equal linear coefficient
defines critical parameter , and if both linear and quadratic
coefficients are zero , we get supercritical param-
eters andN . In explicit form, they read

where and

N

with . The equation (discriminant)
can be rewritten as

Similarly, for the function [see (134) and Section V-C]
we have decomposition over , which reads

N

Recall, that [see (134)] is equal to derivative taken on
the solution of optimization problem, where the input and mod-
ulation eigenvalues are equal to those corresponding to extrema
of . The equation (discriminant) can be
rewritten as

Roots of these discriminants provide approximations for the
quantities and .
Notice that all of these results (universal limit and critical and

supercritical parameters) are given by exact explicit analytical
relations.
In turn, the supercritical parameters andN are found

in Section V, where the values

N
N

are obtained as numerical solutions of a transcendental
equations.

I. Critical Parameters for Heterodyne Rate
Let us analyze the behavior of the function versus
(below, the argument of is assumed to be ) for dif-

ferent values of and fixed N (see Fig. 20). By solving
in the third stage [see (77)], one can show that

is monotonically increasing function if transmissivity
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Fig. 20. Heterodyne rate (black) versus for the values of equal
to 0.4, 0.4774, 0.5356, 0.623, 0.75, and 0.9 (from bottom to top). The values
of other parameters are and N . The gray curves are the
loci , , and

, where parameter is varying over whole
definitional domain of the quantities , , and , respectively.
Dotted black curve divide this quadrant into areas corresponding to different
stages. The curves corresponding to the same regime have the same
gray background color (the higher the regime the darker the color).

belongs to the interval29 (we will call this the
first regime analogously to capacity), where

N

N

N N (158)

which is equal to in the case of squeezed vacuum
state [one needs to take the limit N in (158)]. Then,
by equating the heterodyne values taken for and
[see (78) and (111)], we obtain the corresponding transmissivity
value

N N

N N

N N (159)

which becomes in the case ofN . The latter
can be obtained by taking the limitN in (159) or by
equating the relations and (111).
If (the second regime), one can

consider squeezing value defined by the equality

. In the second stage, it equals

29Notations for critical parameters of heterodyne rate are chosen to be similar
to those for capacity if saddle-point is imagined at .

Fig. 21. (Left) Quantities , , (black), and (gray) are
plotted versus for and N . (Right) and are
plotted versusN for the values of equal to 1, 10, and 100 (from top to
bottom).

where is defined similarly to [see (82)] as the value
of [see (96)] taken in the point . In explicit form,

reads

N

In the third stage, is given by the relation

where

One can show that if , and
if (see also Fig. 21). If the environment is pure
(N ), can be rewritten as

in second stage and as

in the third stage.
Analogously, if (the third regime), one

can consider the quantity , such that

. Due to the monotonicity of in the second
stage, the value can only correspond to the third stage,
and it is equal to

where

In particular, we have the limits
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and

Also, if , there is a minimum of in the third
stage corresponding to the value

N N

N

which has its limits

and

Taking into account the previous considerations, we have for
optimal squeezing in environment (providing the highest
heterodyne rate for a given transmissivity) the equality

if
if

which is similar to the analogous relation for capacity (131).

VI. MULTIPLE CHANNEL USES

Let us now move to the case of multiple uses (multimode)
of the lossy bosonic channel. We will consider those types of
memory channel environments which give rise to spectral prob-
lems (in general, symplectic eigenvalues are not functions of
matrix spectrum). One of the simplest models of this class is

(160)

where each N [see (32)] is the single-
mode environment corresponding to channel use. It follows
from [18] that optimal matrices and have the same
form as (160), i.e., they are direct sums of some single-mode
matrices. Then, the average amount of photons per mode in
is related with the amount taken for each mode [see (33)] as

(161)

In the following, it will be useful to work with total amount of
input photons

which will always be written in calligraphic font. Note that
for the single channel use. Similarly, we will search

the maximum for total capacity

where

(162)

with being the capacity of the single channel use
(mode) as studied in Section IV. In the following, we use the
system of notations introduced in Section IV-A for the case of
single channel use by adding extra index (usually, ) to all quan-
tities in order to indicate which channel use the quantities are
referred to.
Notice that apart from the model (160), also environment

model of the form (28) (with commuting blocks and
) gives rise to spectral problem. It particular, in this case

we conjecture that the maximum of -quantity (14) is achieved
with matrices and of the same form as (28), i.e., with
null off-diagonal blocks. Furthermore, all diagonal blocks of
all matrices will be mutually commuting. This conjecture is
supported by numerical investigations relying on environment
models of the form (28). Moreover, it was proved in [18]
analytically for the case of all modes belonging to the third
stage. Such form of covariance matrices makes symplectic
eigenvalues functions of the usual eigenvalues, specifically

(163)

where

Both energy constraint (25) and symplectic spectrum (163) are
preserved under orthogonal transformations. Thus, without af-
fecting the final result, in the following, we can consider all the
involved matrices to be diagonal (see also the discussion in the
appendix of [12]). Notice that if all matrices are diagonal, then
the optimal input state is pure (it straightforwardly follows from
Theorem 2 applied to each channel use).
More generally, according to the Williamson decomposition

theorem, any covariance matrix can be put in a diagonal form
by acting with a symplectic transformation [39]. However, such
a symplectic transformation may not preserve the energy con-
straint. One can hence restrict the consideration to the class of
models for which the symplectic transformation preserves the
energy constraint (these are jointly symplectic and orthogonal).
In particular, the models (28) belong to this class. The general
form of such matrices is presented in the appendix of [12]
(see also [38]).
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A. Convex Separable Programming

The optimization problem for multiple channel uses is for-
mulated as follows. One needs to find the maximum over the
variables , , and for the following functions30:

with the constraints

Then, the problem of finding the capacity31 can be reformulated
as finding the maximum for sum of concave32 functions (each
of them depending on one variable)

(164)

over the distribution of positive numbers satisfying
the constraint

(165)

where is the amount of energy granted for mode [see
(161)], and [see the definition (162)]
is parametrized by fixed parameters , , and , i.e.,
only depends on the eigenvalues belonging to mode. Thus,
the total optimization problem is split in two tasks: the first task
is the “internal optimization” solved in Section IV, i.e., opti-
mization inside each mode [see “box”(115)] and the second task
is the “external optimization”, i.e., finding the optimal distribu-
tion of the total energy over “boxes” to get maximal
output sum :

30Here, the homodyne rate corresponds to the measurement of (generally)
different quadratures for different channel uses, where less noisy quadratures are
used for information transmission. Such definition of homodyne rate is different
from that given by the relation (31), where the same quadrature is measured in
all modes.
31The case of rates is completely analogous to that of capacity; therefore, here

it is omitted.
32The concavity of single-use capacity over its energy constraint was

proved in Section IV-K.

This “external optimization” problem is known in mathe-
matics as convex separable programming which was solved in
[19] and [20]. In particular, the following theorem based on con-
cavity of target function was proved [19].
Theorem 4: A feasible solution is an optimal solution

to the problem (164), (165) if and only if there exists a
such that

(166)

(167)

Thus, the theorem states that any solution of “external opti-
mization” problem satisfying its Lagrange equations is optimal
because it is unique. Also, it follows from the theorem that the
dependence is monotonic. Indeed, if is increasing, then
some modes can change their “case” from (167) to (166), which
results to zeroing their contribution to . Even if
some modes remain in the case (167), their contribution is
decreasing because of the concavity and the monotonically in-
creasing behavior of functions . Analogously, lower
corresponds to higher .
In the following, it will be convenient to use the threshold

functions (see also [22])

(168)

defined analogously to single-mode relations (122) and (123),
where quantity is given by (81) applied to th mode.
Thus, the threshold functions are generalizations of the
single-use threshold values written in -representation (see
Section IV-L). Taking into account (113), one can see that

for , where

In the following, the notion of stage will be referred to each
mode (in complete analogy with the single use case presented
in Section IV). It allows the optimization problem to be inter-
preted as the search for the optimal distribution of modes across
stages. In particular, the case holds if and only if th
mode belongs to the first stage, and the case corre-
sponds to zero capacity, where all modes are in the first stage.
Analogously, it follows from Theorem 4 that if it is

only the second and third stages exist (by comparing granted
for mode with its threshold value one can obtain
its actual stage). The proposition 3 (see Section IV-L) applied
to multiple uses threshold functions (168) shows the relation-
ship between the level of noise in particular quadratures and
their participation to information transmission. For example, for
fixed value of total energy , the mode can change its stage
from first to second if the noise in quadrature or is suffi-
ciently decreased. More generally, one can say that it is the most
optimal case when less noisy modes get more input energy and
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thus transfer more information, which is similar to the case of
classical channels.
The “external optimization” problem is reducible to single

transcendental equation on

(169)

which has single root because of Theorem 4. It can be solved
by using, e.g., method of bisection. Remember that
if . Then, is given by (121) if

. Finally, is given by (119) if .
Thus, (169) can be considered as giving feasible solution for
any , the only difference is that such a solution corresponds to
another value of .
As far as the solution is unique, it is sufficient to prove the

convergence of the bisection method applied to (169), which
can be done as follows. Notice that and are related each
other by one-to-one correspondence, and the dependence
is monotonic. In particular, the limit corresponds to the
limit , and the value corresponds to .
Thus, as far as a unique corresponds to a given , the method
of bisection applied to the transcendental equation (169) for the
variable always converges to the solution.
Apart from the considered “blackbox” approach, the given

optimization problem can be also interpreted in the following
way. There are two effective unknown “variables” for the
systems of Lagrange equations33: distribution of modes across
stages and . In the simplest case, one of these variables can be
set as internal and the another one as external during optimiza-
tion process. The algorithm proposed in [19] uses as internal
variable, while the aforementioned algorithm uses distribution
of modes across stages for that. Since the latter algorithm is
usually faster, below we will make use of it.

B. Classical Capacity and Rates
Remember that explicit analytical solution of the optimiza-

tion problem is not possible and depends on the form of the
threshold functions , defined by environment
matrix and transmissivity . However, if we are interested
in finding approximate values of capacity, e.g., or
relying on quantity [see (124)], a simplification of
the general method is possible. In the following, we show this
using and as examples, but the generalization to the
case of rates is straightforward.
Notice that mode transcendental equation (88) can be for-

mally written as the dependence for the th
channel use. Then, remember that (which is the amount of
input photons granted for each channel use in the -representa-
tion) is the same for all modes in the third and the second stages.
As far as the variable for any mode can be used as an
equivalent replacement of [see (124)], we can introduce a
new variable

(170)

33Note that each distribution of modes across stages results to its own system
of Lagrange equations, where unknown variables are the eigenvalues of
and . As far as the system of Lagrange equations itself does not provide
an effective method to find distribution of modes across stages, some a priori
properties are necessary to write a fast algorithm. In particular, concavity and
monotonic behavior of capacity are such properties for the given problem.

getting a chain of equalities linking allmodes of the second and
third stages. Here, modes and belong to the third stage,
while modes and to the second stage .
Modes of the first stage are not included in (170) and all give

eigenvalues equal to . If some mode belongs to the third
stage, its eigenvalues can be found from the relations (74).
If some mode belongs to the second stage, its input eigenvalues
are given in Section IV-G [see (100) and (103)].
Taking into account stages discrimination, (24) can be

rewritten as

(171)
where is the number of modes belonging to th stage

and stands for the
summation over all eigenvalues of second and third stages, ex-
cept for the th ones corresponding to . Also, the
energy constraint (25) can be rewritten as

(172)
where and the double prime sum extends over
th eigenvalues of the second stage, such that . Sub-

stituting (172) into (171), we get a transcendental equation for
the single variable . Since all unknown eigenvalues can be ex-
pressed through [see (170)], we can formally arrive at
and .
Notice that as far as the relation is explicit in

the zeroth-order and the first-order approximations [see (100)
and (103)], one can express the quantities and as func-
tions of solution of only one algebraic equation [see (171) and
(172)] for one variable .
When all modes are in the third stage, we have the explicit

analytical solution and the equalities . In
particular, it is

N

(173)
where

(174)

is the average number of photons in the multiple uses environ-
ment. The analytical lower bound given by (173) generalizes
the expression presented in [12]. Analogously, in the case of all
modes belonging to the third stage, the heterodyne rate reads

N

where is defined similarly to (174).
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If all modes are in the second stage, the homodyne rate reads
[see (101)]

where [see (127)] is given by the root of equation [see
the relations (128) and (129)]

with

If the number of channel uses tends to infinity, the discussed
procedure can be properly generalized by changing the tran-
scendental equations [see, e.g., (171) and (172)] to equations on
functions (spectral densities). However, if the considered model
has some symmetry over stages, the general solution can be
further simplified by considering some parameters which mark
the boundaries between regions of modes belonging to different
stages. In Section VI-C, we will show an example along this
line.

C. Application to a Particular Memory Channel

In this section, we look for the capacity of channels whose
environment is described by a covariance matrix of the form

N (175)

where is a real symmetric matrix and is a pa-
rameter describing the environment properties. In particular, we
will consider the case of environment model (175) with

describing a specific lossy bosonic channel with memory [11],
which will be referred to as -model of the environment. Notice
that by taking , we recover the case of the memoryless
channel.
The parameter in (175) represents the degree of correlation

among environment modes. We are interested in the asymptotic
behavior of this channel. That implies to take the limit
in the equations of Section VI-B. It can be treated for some re-
lations as the limit of Riemann sums resulting to the integral
expressions. Thus, instead of a set of equations on eigenvalues,
we get a set of equations on functions which are spectral densi-
ties for the involved (infinite-dimensional) matrices. In the fol-
lowing, we denote the spectral densities by the same symbols as
proper eigenvalues, but written in calligraphic and replacing the
mode number by a continuous parameter , i.e., ,

, etc.
It is convenient to use the parameter as arising from the

spectrum of matrix [11]

N (176)

Fig. 22. Threshold functions and versus for -model. The
value of other parameters are , , and N . The
horizontal dashed lines correspond to different values of , where the top line
is the case of and the bottom line is the border case when all modes
are in the third stage (below it, we have “waterfilling solution”). The points
at which horizontal lines (corresponding to some values of or, equivalently,
) cross threshold functions and mark borders between modes

with different stages. The regions corresponding to different stages are filled by
different gray colors.

labeling both modes (if ) and eigenvalues (if
). Plus and minus in (176) stand for and ,

respectively. Due to the mirror symmetry of eigenvalues (176)
over quadratures, the symplectic spectrum and the distribution
of modes across stages have to be symmetric with respect to
the point ; therefore, we restrict ourselves to consider spectral
densities only defined in the interval .
Threshold functions and (and also their

analogs for rates) for -model are shown in Figs. 22–25. In
general, the equation (for the variable ) can
have up to three different roots in the interval . In the
following, we will calculate the capacities and which
are essentially simpler as the equation has at
maximum a single root which marks the boundary between
the modes belonging to the first and second stages (the equation

has at most one root).
Suppose that all modes belong to the third stage, which holds

true if (it can be obtained, e.g., from (75) or(81) by combining
it with (176), see also Appendix in [11])

where is the modified Bessel function of the first kind and
zero order. The capacity in this case is given by (76), where
the amount of environment photons is given by (34) after
a formal replacement . This example explicitly
shows the possibility of an enhancement of the capacity with in-
creasing degree of memory (however, at the cost of increasing
the amount of environment photons ).
If , we can have one of the following distributions of

modes across stages according to the properties of the threshold
functions and (see Fig. 23):
1) a mixture of the second and the third stages (2,3,2);
2) a mixture of the second and the first stages (2,1,2);
3) all modes belonging to the second stage (2,2,2) which hap-
pens for a single value34 of the parameter , given ,
andN .

34Do not confuse this definition of with that used in Section VI-A.



PILYAVETS et al.: CAPACITIES AND RATES OF GAUSSIAN QUANTUM CHANNELS 6157

Fig. 23. Schematic representation of the “quantum water filling” for the ca-
pacities and and the environment model (it
follows from the threshold functions and of variable ). The
angle parametrizing the spectral density corresponds to polar angle. White,
gray, and black sectors correspond to the first, second, and third stages, respec-
tively. Arrows show change of stages with increasing of . The parameter
marks the points of stage change.

Fig. 24. Threshold functions (black) and (gray)are plotted
versus for capacity of the channel with the -model of environment. The
values of parameters at the left areN , , and (from bottom
to top): 0.15, 0.35, 0.55, and 0.75. The values of parameters at the right are
N , , and (from bottom to top): 0.29, 0.32, 0.35, and 0.4.
Horizontal lines correspond to particular chosen values of input energy.

Fig. 25. Threshold functions for heterodyne (left) and homodyne (right) rates
are plotted for the parameters N , , and (channel
environment is given by -model). Horizontal lines correspond to particular
chosen values of input energy. These lines cross threshold functions at the points
(marked by if ) corresponding to stage change.

If or , we have the (2,3,2) or (2,1,2) case with
the center of the interval filled by the third or the first stage,
respectively. We label by the point corresponding
to the boundary between the regions of modes corresponding
to different stages. The possible distributions of modes across
stages and the dependence of from are sketched in Fig. 23.
Notice that at the point , we must have which can
be rewritten as

(177)

Here, gives [see (74)] for (2,3,2) case
and gives for (2,1,2) case (we use different
quadratures in these cases because of either or quadrature
changes its stage in the interval which contains ).
Then, the transcendental equation for [see (171) and (172)]

can be rewritten as an equation for

(178)

where is equal to for (2,1,2) and to
for (2,3,2). Moreover, is given by (177) and is the spec-
tral density for the second stage which can be found as solution
of functional equation obtained from (100) (or (103) in the case
of ) after the replacements discussed at the beginning of
this section. By substituting in (178), we find . Com-
paring it with the actual energy restriction , we get the correct
value of and the distribution of modes across stages. Then,
solving (178) with the found distribution of modes across stages
we arrive at and . Finally, is expressed through these pa-
rameters as follows [see (8), (9), and (14)]:

N

where

is equal to for (2,1,2) and to for (2,3,2).
The solution of the optimization problem for multiple

channel uses can be interpreted as “quantum waterfilling” in
analogy with usual (classical) “waterfilling” introduced for
classical Gaussian channels with memory (see, e.g., [22], [30],
and [35]). The dependence of the found spectral densities (also
symplectic ones) from is similar to filling a vessel with
water. The form of the vessel is defined by the model
and transmissivity . The symplectic spectral density goes
always up by increasing [with respect to ], while
goes always down (or does not change). For environment

models showing correlation (memory) among modes, the pres-
ence of the second stage gives rise to capillary effects on the
edges of the vessel resulting to a “water level” with meniscus
form. This “quantum water filling” effect for the considered
model is shown in Fig. 26 for symplectic spectral densities ,
and spectral densities , . Graphs of calculated

through exact mode transcendental equation, zeroth-order and
first-order approximations are shown in Fig. 27. Despite some
visible difference between exact and approximate spectral
densities, the corresponding symplectic spectral densities are
almost equal, thus resulting to a difference less than 0.05%
between the capacities. The small value of this difference
comes from the fact that the Holevo- has zero derivative with
respect to the eigenvalues of and in the neighborhood
of the solutions of Lagrange equations (as they are equations
for optimization problem).
In Fig. 30(left), the capacity for -model is plotted

versus for different values of . The universal limit (110) for
is still valid.

D. Optimal Channel Memory and Superadditivity

Finally, let us discuss the role of squeezing and memory in
lossy bosonic channel. Considering the capacity (76) as a func-
tion on the set of environment models with fixed , one can
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Fig. 26. Going from top-left clockwise, the spectral densities , , ,
and (for ) are plotted versus the parameter for

(from bottom to top curve for quantities
, , , and from top to bottom curve for quantity ). Solid, dotted, and

dashed parts of curves correspond to third, second, and first stages, respectively.
Dash-dotted curve corresponds to the case of all modes belonging to the second
stage. The values of other parameters used areN and .
Numbers 1, 2, and 3 are used to indicate the regions with corresponding stages.

Fig. 27. Exact solution and first-order and zeroth-order approximations for
spectral density versus for (left) and (right). The
values of other parameters are N , , and . Solid,
dotted, and dashed parts of curves correspond to third, second, and first stages,
respectively. Functions with maximum and minimum variations correspond to
exact solution and zeroth-order approximation, respectively.

see that it shows violation of quadrature symmetry. In fact, de-
spite the symmetry of all equations over quadratures, the max-
imum of is achieved when (see also [30]). This
also follows from the environment purity theorem proved for
the single channel use (see Appendix D). By applying this the-
orem to each channel use for the case of memory channel, one
can see that optimal environment can always be chosen pure.
Now, let us analyze the symmetry of the capacity over modes.

Suppose that the average (per mode) amount of photons in the
environment is fixed and the capacities for the single use of
memoryless channel and multiple uses of memory channel (e.g.,
for -model) are compared. As far as the Holevo- quantity
(14) is symmetric over modes, one can expect that the capacity
for the single channel use will always be higher. However, this
is not true as results from the violation of mode symmetry. In-
deed, this can be seen in Fig. 30(right) where the capacity
maximized over parameters andN (thus, we have always
N ) for memory and for memoryless cases is plotted
versus . We can see that the -model for some parameters
values provides higher capacity than memoryless model. Unfor-
tunately, the form of the optimal (in terms of capacity) memory
for the channel is still unknown. We consider the finding of the
optimal channel memory to be an important and challenging
problem.

Fig. 28. Nontrivial behavior of optimal memory for capacity. Amounts of pho-
tons (top-left) and (top-right) corresponding to optimal memory for
capacity are plotted as functions of transmissivity . The values of other pa-
rameters are , , and . The lighter and the darker back-
grounds indicate the additive and superadditive regions of transmissivity, cor-
respondingly. Vertical dashed lines at mark the analytically estimated
boundary between additive and superadditive regions. Bottom: capacity for op-
timal memory model is plotted versus amount of channel uses . The values of
other parameters are , , and .

Fig. 29. Nontrivial behavior of optimal memory for heterodyne rate. Amounts
of photons (top-left) and (top-right) corresponding to optimal
memory for heterodyne rate are plotted as functions of transmissivity .
Bottom: heterodyne rate for memoryless model (gray curve) and for optimal
memory model (black curve). The values of other parameters for all three
graphs are , , and . The lighter and the darker
backgrounds indicate the additive and superadditive regions of transmissivity,
correspondingly. Vertical dashed lines at mark the analytically
estimated boundary between additive and superadditive regions.

Since the environment purity theorem always allows to
choose the optimal environment in pure state, each its
mode can be completely characterized by its squeezing .
Hence, the problem of finding optimal channel memory can be
reformulated as finding the form of the function (or
for the case of ). This function is not a constant, but
numerical study of this problem in simplest situations shows
that only two different values of are possible for all and
given values of , , and .
The aforementioned properties can be also treated from the

superadditivity viewpoint. First, let us discuss the memoryless
channel capacity. It was proved in Section IV-K that the one-
shot capacity is monotonically increasing and concave function
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Fig. 30. (Left) Quantity is plotted versus for values of going from
0.1 (bottom curve) to 0.9 (top curve) with step 0.1. The values of the other
parameters are N . Solid parts of curves correspond to the third
and first stages, respectively. Dotted part of curves correspond to the second
stage. Numbers 1, 2, and 3 are used to indicate the regions corresponding to
the cases (2,1,2), (2,3,2), and (3,3,3), respectively. (Right) Maximum of
over (i.e., over parameters andN ) is plotted versus for values
of going from bottom to top curve. Solid and dotted curves
corresponds to and , respectively. The value
of the other parameter is .

of . In this case, the convex separable programming method
(see Section VI-A) guarantees that optimal input state is the di-
rect sum of identical single-use matrices. It automatically im-
plies additivity of memoryless capacity. As far as concavity
was also proved for rates, the conclusions valid for capacity
are also applicable to rates. However, the problem of additivity
can be posed in another way. Quite generally one can compare
different multimode environments containing (in average) the
same amount of photons and having the same purity. In partic-
ular, the optimal environment can be always realized by pure
states as it is supported by environment purity theorem. In this
case, it straightforwardly follows from the dependence
studied in Section V that the dependence of [e.g., for
pure environment state, see (34)] is in general nonmonotonic,
which guarantees optimality of nonhomogenuous distribution
of photons over environment modes for some channel
parameters.
In particular, one can expect that if and

, then capacity is additive. In fact, in this case, the de-
pendence corresponds to the concave and monoton-
ically growing functions. Numerical calculations show that in
this region of parameters, capacity is indeed additive. Similarly,
if , then has local maximum in the interval

and numerical calculations shows that capacity
is superadditive (nonhomogeneous distribution of environment
energy of modes is optimal) for some values of input energy.
This allows us to conjecture that the transitions between super-
additive and additive cases happen at critical and supercritical
parameters of single channel use. Notice that heterodyne rate is
in general also nonmonotonic function of ; therefore, it is
also subjected to superadditivity property (see Fig. 29).
The value of transmissivity [we consider and

corresponding to transition from additive to superaddi-
tive region for given parameters , can be qualitatively
estimated in the following way. In the case of capacity, let us
consider a family of curves (or, equivalently, be-
cause of purity) parametrized by the transmissivity and plotted
for fixed value of (see Fig. 5(left) and Fig. 10). Each of these
curves has maximum at the point of
[see the relation (34) and Definition 3]. Recall that is a mono-
tonically decreasing (over ) quantity which tends to infinity if

tends to from the right (see Fig. 14). Hence, one can find
a value of corresponding to the curve which
achieves a maximum at the given value of . The quantity
is shown in Fig. 28, where the optimal distribution of photons in
environment as a function of transmissivity is plotted. Similarly,
in the case of heterodyne rate, one can roughly use
[see (158)] to estimate the transition point (see Fig. 29).

VII. CONCLUSION

In this paper, we have developed powerful and versatile opti-
mization methods for the estimation of Gaussian quantum chan-
nels’ capacities and rates. We have applied them to the lossy
bosonic channel in both memoryless and memory setting by re-
stricting to Gaussian states.
First, we have thoroughly characterized the memoryless

channel, thus generalizing the results of [3] and [7]. To do
that we have exploited the single-mode channel whose envi-
ronment’s covariance matrix can be described by two
parameters: squeezing and average amount of thermal pho-
tonsN . Then, to completely specify the channel usage, we
have fixed the values of transmissivity and input energy .
It is the latter value that defines the kind of solution for the
capacity . For increasing from 0 to we have found
three different stages, each characterized by a solution of a
given form.
We have proved that the one-shot capacity is a concave and

monotonically increasing function of . Thus, as byproduct
we have gotten the additivity of the memoryless capacity as-
suming covariance matrices for modulation, channel environ-
ment and input states to be mutually commuting. Moreover, due
to this property, the derivative can be used as the
equivalent replacement for the amount of photons granted for
channel input, thus providing another channel’s representation.
Within this representation (called -representation) is easily vi-
sualizable the geometry of the stages transitions.
The one-shot capacity turns out to be a monotonic function

of all parameters, except of environment squeezing. This makes
the latter a special parameter. In particular, taking the limit

, we have defined different regimes depending on how
the capacity tends this limit. This is determined by the value
of transmissivity and amount of environment thermal photons.
Critical values for these parameters can be defined at boundary
of different regimes. Similarly, other regimes and critical pa-
rameters can be considered analyzing the other properties of

function. Totally, we have defined five different regimes
and four triads of critical parameters, which characterize the
existence and values of specific points of .
Already from that we can draw some general conclusions

about the channel’s properties. For instance, if

(179)

then is always monotonic over if

(180)
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and has no more than one maximum in this interval otherwise.
Also, has no more than one maximum if

N (181)

Another example is the case of for ,
which is possible only if

(182)

where inequality is saturated by pure environment state. As
far as the critical parameters, in general, depend on , N
[or —depending on the parameter varied in analyzing the
behavior of ] and not all of them exist in all the regimes,
we have defined three domains. Each domain is characterized
by existence and/or relations among critical parameters. In
turn, supercritical values for andN can then be defined
at boundary of different domains. The nontrivial global max-
imal or minimal values of critical and supercritical parameters
must be intended as fundamental constants characterizing the
channel. Few of such constants which can be expressed in
radicals are the above numbers (179), (181) for supercritical
and (180), (182) for critical parameters.
Summarizing, in the space of parameters ,N , we have

defined two functions and by equating them to zero, we have
divided the space into three parts (domains). The boundaries of
domains define the supercritical parameters. In turn, domains
define the possible regimes (five at maximum). Critical parame-
ters come out at the boundaries of regimes (this time in the space
of parameters , , andN ). Then, the towering achievement
is the following route to determine the channel’s “state”:
1) find the channel domain by comparing the actual ,N
with their supercritical values (it gives the set of possible
regimes);

2) find the channel regime by comparing the actual ,N
with their critical values;

3) find the relevant values of squeezing parameter for the
given channel regime and compare them with the actual
;

4) find the channel stage.
The aforementioned steps tell us the type of the curve ,

how many extremal and specific points it has, in which interval
we are in this curve and what is the type of solution (stage).
This is particularly relevant to characterize channels and might
be useful in practical situations to determine the optimal “work
point” of a channel by having some freedom in its parameters
values.
Then, we have presented the solution for the memory

channel, thus generalizing the results of [10]–[12] and [24].
Here, the problem of finding the capacity has been reformu-
lated in a multimode setting as a total optimization problem
split in two tasks: the first task is the “internal optimization,”
i.e., optimization inside each mode and the second task is the
“external optimization,” i.e., finding the optimal distribution
of the total input energy over “boxes” (modes)
to get maximal output sum . Then, the first

task has been addressed using the techniques developed for
the single-mode channel, while the second one using convex
separable programming techniques [19], [20]. For the latter,
we have also given formal proofs of both the uniqueness of the
solution and the convergence of the proposed algorithm.
The previous splitting has become possible because we were

confined to the class of memory models which make the opti-
mization problem spectral.
In the case of single-mode channel, we have derived theo-

rems about the optimality of pure states showing that for any
given , the optimal input channel state is pure, and for any
fixed , the optimal is pure. In particular, purity of

, once , is fixed results in a violation of quadrature
symmetry. When this result is extended to the memory channel
(i.e., nonidentical multiple modes environment), with optimiza-
tion over distribution of input energies, we have discovered vio-
lation of mode symmetry too. That is to say that optimization in-
side each box gives us “violation of quadrature symmetry” with
“input and environment purity theorems”; then, maximization
over our blackboxes gives us “violation of mode symmetry” and
“optimal channel memory.”
In this context, the enhancement (superadditivity) of clas-

sical capacity is possible (for only some values of the memory
channel parameters), if energy is redistributed between environ-
ment modes to become (in general) different in different modes.
This possible violation of mode symmetry points out the exis-
tence of nontrivial optimal channel’s environment (memory).
Such environment can always be chosen pure. One can also say
that capacity is superadditive if mode symmetry is violated and
additive otherwise, where transition between additive and su-
peradditive cases is related with critical and supercritical pa-
rameters found for the single-use of the single-mode channel.
Notice that the main feature of the considered memory model

is to be symbol independent, i.e., the action of the channel at a
given use does not depend on the previous inputs, and without a
causal structure. That made its characterization a daunting task,
which nevertheless has been accomplished.
Transmission rates for heterodyne and homodyne measure-

ments have been treated parallelly to the capacity because they
can be considered as its logarithmic approximations. In the case
of heterodyne, it has done by introducing heterodyne variables.
Thus, most of the capacity properties can be also found ana-
lyzing the rates. In particular, it was shown that homodyne mea-
surement for the single-use of the single-mode channel gives
a rate which is always monotonically growing function of en-
vironment squeezing. However, this is not the case for hetero-
dyne measurement which is monotonically growing function of
squeezing only in neighborhood of ; therefore, its critical
parameters were also calculated and its regimes were studied to
provide complete characterization.
Finally, besides a thorough characterization of the lossy

channel, we have provided mathematical techniques for the
solution of optimization problems in information transmission
with Gaussian channels. The machinery developed herein
seems applicable to other capacities and other Gaussian chan-
nels as witnessed by the similarities with a recent study on
additive Gaussian noise channel [22], which can be character-
ized as well by critical parameters [34]. Above all, extension
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to the amplification channel seems within reach and is planned
as a future work.

APPENDIX A
PROOF OF THE INPUT PURITY THEOREM FOR CAPACITY

Let us prove Theorem 1. Since the dimension of matrices is
2 2, there is a symplectic transformation which is orthog-
onal and diagonalizes . Let us apply to matrices and

[see (23) and (24)]. The transformation preserves en-
ergy constraint (25), symplectic eigenvalues35 , and does not
change the Holevo function. If is applied, then the matrices
, , and can be represented in the form

Hence, we get for symplectic eigenvalues the relations

where the latter can also be represented as

Then, the energy constraint (25), can be equivalently written as

(183)

First, let us show that the case of mixed input
is not optimal. Indeed, in this case there are values and

such that the constraint (183) is preserved
and the input state is pure: . New

variables give the symplectic eigenvalues and
. Since new variables increase the Holevo function (14) we
conclude that the optimality of input pure state is proved by
contradiction.
Next, we notice that cannot be optimal. Indeed,

if and have the same signs, then by changing to
we do not violate the positivity of , but preserve the

value of and increase the value of . Since the Holevo func-
tion can be increased, we get the proof by contradiction. Thus,
it is always true that . In particular,
without loss of generality for the optimal solution we can as-
sume that

in the relation for .
Finally, let us prove that . If this is not true,

only three following cases are possible:
1)

35As far as only the single-mode case is discussed, index [see (14)] is
omitted for symplectic eigenvalues.

2)
3)
Below we always assume that and
because it is already proved.
In the first case one can always replace the value of by

. This replacement preserves positivity of and
the value of the contraint (183). Also, it increases the value of
and does not change the value of . Hence, this replacement
gives higher value for the Holevo function and the first case
cannot be optimal.
In the second case one can choose the values and

which preserve the purity of input state:
. Since the input eigenvalue is decreased, let

us put the excess of energy in the modulation eigenvalue by
taking . As is not changed and

, the value of is decreased. Then, the value of is
increased because becomes zero and the value of
the first part of the expression for is unchanged. Hence, such
replacements increase the Holevo function and the second case
cannot be optimal too.
In the third case one can consider new values

and apply the replacements used above (for the first and the
second cases) together. If is set to zero, then neither posi-
tivity of nor energy constraint is changed. We also do not
change the value . Since

we may also replace by such that the purity
of input is preserved and excess of energy is moved to . If all
these transformations are applied, the value of is unchanged,
but the value of is decreased. Thus, the third case also cannot
be optimal.
We have considered all three cases and provided methods to

get higher values for the Holevo function. Hence, the case of
diagonal matrices and is the only possibility if is
diagonal.
Notice, that for scalar matrix corresponding to

1-D probability density, the quantity cannot be defined. In
such a case the proof reduces to the consideration of only one
(second) case, where it is sufficient to put . The
case can be proved analogously.

APPENDIX B
PROOF OF THE INPUT PURITY THEOREM FOR RATES

Let us prove Theorem 2. If quadrature is measured for ho-
modyne rate (31) (the case of -quadrature is analogous), then
one needs to maximize the quantity

(186)

where and are diagonal elements of matrices
and [see (23) and (24)]. Sim-

ilarly, we shall denote input and modulation matrices as
and . Analogously, to find

the heterodyne rate (30), one needs to maximize the quantity

(187)
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The maximum for both functions (186) and (187) is taken over
the variables , , , and .
Suppose that the maximum is achieved with a nonpure state

having . This means that some real number
exist, such that , where . New variables
denoted with primes and defined by transformations

make pure and preserve the energy constraint (25). They
also preserve the values of the first terms and decrease the values
of the second terms in (186) and (187), thus providing higher
maximum than initial variables. Hence, the theorem is proved
by contradiction.

APPENDIX C
PROOF OF THE PROPOSITION

Let us prove Proposition 2. Suppose that and
are optimal for in the second stage. We will consider
three possible cases , and sepa-
rately. If , then our assumption leads to contradiction
due to proposition 1. In what follows, we will use the equiva-
lence between and , where

Notice that our condition leads to , where
the latter is equivalent to due to optimality of pure input
state (see Theorem 1). For the interval , one can show that
is a decreasing function of . In addition, for ,

one can see that is a decreasing function of . Indeed, for
these intervals, the derivatives of and are negative:

(188)

First, let us consider the strict inequality . If the vari-
ables , , and are changed according to transformations

(189)

(190)

where , then the energy constraint (65)
is preserved (the variable remains unchanged). Since

and the new symplectic eigenvalues satisfy
and [see (188)]. As far as is an increasing

function, the new variables increase the first term in (60) and
decrease the second term, thus providing higher capacity.

Next, we consider the case . Now, we change the
variables , according to transformations (189), (190) and
variables , as follows:

where we choose [also for (189) and (190)] from the interval
. Since and we have

. In addition, the equalities lead
to . Thus, the new variables preserve the first term and
decrease the second term in (60), thus providing higher capacity.
Finally, we have shown that for all possible cases ( ,

and ), the capacity can be increased by a
suitable change of variables. Hence, the proposition is proved
by contradiction.

APPENDIX D
PROOF OF THE ENVIRONMENT PURITY THEOREM

Let us prove Theorem 3. At first, notice that the following
Lemma holds.

Lemma 1: Suppose one has real positive numbers ,
where , and is a monotonically growing
concave function in the interval , then

In the case of the first stage . In the case of the third
stage

N
N

i.e., it is optimal to make the environment pure. Then, suppose
that we have the case of second stage and environment in mixed
state is optimal. Remember that it was proved for that

and [see Proposition 2 and (68)]. Let
us now change the environment variables by preserving
and making the new environment state pure N . It
corresponds to the change of variables , (the
eigenvalues and remain the same), where the new value
of squeezing is given by the relation

N

This results to and , i.e., ,
while . It means that (see analogous
proofs in Section IV-E). One can then write down:

which is equivalent to . Taking into account the above
inequality and applying the Lemma for , one gets
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i.e., . Finally, applying again the Lemma for
the function , one gets . Hence, the
theorem is proved by contradiction.

APPENDIX E
SECOND DERIVATIVE OF SOLUTION OVER INPUT ENERGY

Let us show that . In the second stage, it is

(191)

Taking into account that for any values of , we
get an equality

which allows us to rewrite the derivative (191) as

(192)

where

and

One can show that

(193)

where

Since it always is , and [see (19)], the
quantity and the derivatives (193) are positive. Also it can be
found that

It was shown in [22] for additive noise channel that

in the second stage, which can be similarly proved also for lossy
channel. In addition, it is evident from (92) that
in the zeroth-order approximation. Then, in the third stage, we
have

(194)

Thus, we have shown that the second derivative of capacity is
negative in the case of both the second and third stages.
Derivative (194) also holds for rates if the replacement (56)

is applied. Besides it, for the heterodyne rate, the replacement
(55) must be applied.
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