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Gaussian matrix-product states for coding in bosonic communication channels
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The communication capacity of Gaussian bosonic channels with memory has recently attracted much interest.
Here, we investigate a method to prepare the multimode entangled input symbol states for encoding classical
information into these channels. In particular, we study the usefulness of a Gaussian matrix-product state
(GMPS) as an input symbol state, which can be sequentially generated although it remains heavily entangled for
an arbitrary number of modes. We show that the GMPS can achieve more than 99.9% of the Gaussian capacity
for Gaussian bosonic memory channels with a Markovian or non-Markovian correlated noise model in a large
range of noise correlation strengths. Furthermore, we present a noise class for which the GMPS is the exact
optimal input symbol state of the corresponding channel. Since GMPS are ground states of particular quadratic
Hamiltonians, our results suggest a possible link between the theory of quantum communication channels and
quantum many-body physics.
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I. INTRODUCTION

Quantum communication channels are at the heart of
quantum information theory. Among quantum channels, the
bosonic Gaussian channels describe very common physical
links, such as the transmission via free space or optical
fibers [1]. The fundamental feature of a quantum channel is its
capacity, which is the maximal information transmission rate
for a given available energy. The capacity can be classical
or quantum, depending on whether one sends classical or
quantum information (here we focus on the former). In
previous works, it was shown that for certain quantum memory
channels, in particular channels with correlated noise, the
optimal input symbol state is entangled across successive uses
of the channel; see Refs. [2–11] and references therein. In
general, such multimode entangled states may be quite hard to
prepare, which motivates the present work.

In this paper, we address the problem of implementing the
(optimal) input symbol state for Gaussian bosonic channels
with particular memory models. For this purpose, we study
the usefulness of the so-called Gaussian matrix-product state
(GMPS) [12,13] as an input symbol state for the Gaussian
bosonic channel with additive noise [9,11] and the lossy Gaus-
sian bosonic channel [7,8,10]. This translationary-invariant
state is heavily entangled and can be generated sequentially,
which happens to be crucial for its use as a multimode input
symbol state in the transmission via a Gaussian bosonic
channel. The GMPS are known to be a useful resource
for quantum teleportation protocols [14,15], but, to our
knowledge, they have never been considered in the context
of quantum channels.

In Sec. II, we give an overview of the method used to
derive the Gaussian capacity of Gaussian bosonic memory
channels, following our previous work [3,9,11]. Our original
results are presented in Sec. III, where we address the use
of GMPS in this context. In Sec. III A, we show that the
GMPS, though not being the optimal input state, is close-
to-capacity achieving for Gaussian bosonic channels with a
Markovian and non-Markovian noise in a large region of noise
correlation strengths. In Sec. III B, we provide a class of noisy
channels for which the GMPS is the exact optimal input state.
Since the GMPS is as well the ground state of particular

quadratic Hamiltonians, this suggests a direct link between
the maximization of information transmission in quantum
channels and the energy minimization of quantum many-body
systems. In Sec. III C, we also observe that the squeezing
strengths that are needed to realize the GMPS in an optical
setup are experimentally feasible. Finally, our conclusions are
provided in Sec. IV.

II. GAUSSIAN CAPACITY OF MEMORY CHANNELS
WITH CORRELATED NOISE

A. Gaussian bosonic channels

Let us now consider an n-mode optical channel T (n),
which can either be a bosonic additive noise channel or
a lossy bosonic channel. In the following, n single-mode
channel uses will be equivalent to one use of an n-mode
parallel channel [16]. Each mode j is associated with the
annihilation âj and creation â

†
j operators or, equivalently,

with the pair of quadrature operators q̂j = (âj + â
†
j )/

√
2 and

p̂j = i(â†
j − âj )/

√
2, which obey the canonical commutation

relation [q̂i ,p̂j ] = iδij . By defining the vector of quadratures
R̂ = (q̂1, . . . ,q̂n; p̂1, . . . ,p̂n)T , we can express the displace-
ment vector m = Tr[ ρ R̂] of any state ρ, along with its
covariance matrix (CM)

γ = Tr[(R̂ − m) ρ (R̂ − m)T] − J/2,

with J = i

(
0 I

−I 0

)
,

where I is the n × n identity matrix. In phase space, a Gaussian
state is defined as a state ρ having a Wigner distribution that
is Gaussian; hence, it is fully characterized by its mean m and
CM γ .

For the channel encoding, we consider a continuous
alphabet, that is, we encode a complex number q + ip instead
of a discrete index into each symbol state. We encode
a message of length n into a 2n-dimensional real vector
r = (q1,q2, . . . ,qn; p1,p2, . . . ,pn)T. Physically, this encoding
corresponds in phase space to a displacement by r of the
n-partite Gaussian input state defined by its mean min and CM
γ in. The modulation of the multipartite input state is taken as
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SCHÄFER, KARPOV, AND CERF PHYSICAL REVIEW A 85, 012322 (2012)

a (classical) Gaussian multipartite probability density pmod(r)
with mean mmod and CM γ mod. The means of the input state min

and classical modulation mmod can be set to zero without loss of
generality because displacements leave the entropy invariant;
hence, they do not play any role in the capacity formulas
defined in Sec. II B. The action of the channel T (n) is, thus,
fully characterized in terms of covariance matrices, that is,

γ out = κ γ in + κ ′ γ env,
(1)

γ = γ out + κ γ mod,

where γ out and γ are the CM of the individual output and mod-
ulated output states, respectively. For κ = κ ′ = 1, Eq. (1) de-
fines the bosonic Gaussian channel with additive noise, where
γ env is the CM of a (classical) Gaussian multipartite probability
density penv(r) describing noise-induced displacements in
phase space (see Ref. [11] for details). For κ = η and κ ′ = 1 −
η, with a beam-splitter transmittance η ∈ [0,1], Eq. (1) defines
the lossy channel where γ env stands for the CM of the environ-
ment state (see Ref. [10] for details). Both channels obey the
physical energy constraint that reads Tr(γ in + γ mod)/(2n) −
1/2 = n, where n is the mean photon number at the input.

B. Gaussian capacity

In recent works, we found the Gaussian capacity (i.e., the
capacity when restricted to Gaussian input states according
to the usual Gaussian channel minimum entropy conjecture)
and optimal input encoding for the additive Gaussian channel
with noise correlations between subsequent uses of the channel
modeled by the CM [9,11]

γ env =
(

γ
q
env 0

0 γ
p
env

)
, (2)

where γ
q
env and γ

p
env are commuting matrices of dimension

n × n. The absence of correlations between q and p in Eq. (2)
is generally considered to describe a natural noise. We found
that the optimal input and modulation CM γ ∗

in and γ ∗
mod are

diagonal in the same basis as the noise CM γ env and have
the same block structure. Thus, γ ∗

in = γ
q∗
in ⊕ γ

p∗
in and γ ∗

mod =
γ

q∗
mod ⊕ γ

p∗
mod. In addition, the optimal input state is pure, i.e.,

det (2γ ∗
in) = 1, which implies

γ ∗
in =

(
γ

q∗
in 0

0 1
4

(
γ

q∗
in

)−1

)
. (3)

From now on, we consider the optimal input and modulation
eigenvalue spectra in the limit of an infinite number of channel
uses n → ∞, so all matrices must be expanded to infinite
dimensions, see Ref. [9].

For an input energy n above a certain threshold nthr, the op-
timal eigenvalue spectra are linked via a global quantum water-
filling solution [9], that is, γ q∗(x) = γ p∗(x) = const.,∀x ∈ A,
where x is a continuous spectral parameter within a spectral
domain A and γ q,p∗(x) is the spectrum of the q and p

blocks of the optimal modulated output CM γ ∗ = γ q∗ ⊕ γ p∗.
Furthermore, the optimal input state was determined as [9,10]

γ q,p∗
in (x) = 1

2

√
γ

q,p
env (x)

γ
p,q
env (x)

, (4)

which corresponds more precisely to the spectrum of the q and
p blocks of the optimal input CM, γ ∗

in. We remark that this
holds for both the additive noise [9] and lossy channel [10].

In the following, we will consider noise models (see
Sec. II C) characterized by a CM with symmetric spectrum,
i.e., γ

q
env(x) = γ

p
env(|A| − x), where |A| is the size of the

spectral domain A. Furthermore, the noise models fulfill
maxx{γ q

env(x)} = γ
q
env(0). For this case, the input energy n that

is required to fulfill the global quantum water-filling solution
and Eq. (4), for all x, is given by

n � nthr ≡ γ q∗
in (0) + γ q

env(0) − 1
2 − N̄, (5)

where N̄ = 1
|A|

∫
x∈A dx γ

q
env(x) stands for the added noise

energy. Throughout this paper, we only consider the case above
threshold, when n � nthr. Then, the Gaussian capacity of the
channel with additive noise is given by [11]

C = g(n + N̄ ) − 1

|A|
∫

x∈A
dx g

(√
γ

q∗
out(x)γ p∗

out (x) − 1

2

)
,

(6)

where γ
q,p∗
out (x) = γ

q,p
in

∗(x) + γ
q,p
env (x) according to Eq. (1).

The function g(x) stands for the entropy of a thermal state with
x photons. It is defined as g(x) = (x + 1) log (x + 1) − x log x

if x > 0 and g(x) = 0 if x � 0, where log(x) denotes the
logarithm to base 2.

Now, if one restricts the input states to independent coherent
states in the case of global water filling, one may also define the
coherent-state rate [11], which is given by Eq. (6) replacing
γ

q,p∗
out (x) by 1/2 + γ

q,p
env (x). For the lossy channel the quantities

given by Eqs. (5) and (6) as well as the coherent-state rate
are obtained by replacing n → ηn,γ

q,p
env (x) → (1 − η)γ q,p

env (x)
and γ

q,p
in

∗
(x) → ηγ

q,p
in

∗
(x). Note that all these expressions

also rely on the assumption that the Gaussian capacity of
independent Gaussian channels is additive, see Ref. [17].

C. Noise models

Let us introduce two different noise models which will
be used to model the Gaussian memory channels, namely a
Markovian and non-Markovian model.

1. Markov additive noise

In Refs. [9,11], we considered a classical Markov noise
with variance NM � 0, given by

γ envM = NM

(
M(φ) 0

0 M(−φ)

)
, (7)

where M(φ) is an n × n matrix defined as Mij (φ) = φ|i−j |,
with the correlation parameter 0 � φ < 1. Note that M(φ)
and M(−φ) commute in the limit of an infinite number of
channel uses. In this limit, the spectra of the quadrature blocks
γ

q,p
env M ≡ NM M(±φ) are given by

γ q,p
env M (x) = NM

1 − φ2

1 + φ2 ∓ 2φ cos(x)
, x ∈ [0,2π ], (8)

with the upper (lower) sign standing for the q (p) quadrature.
By using Eq. (4), we find that the optimal input state is an
infinite product of squeezed states. Then, when rotated back to
its original basis, the optimal input state becomes a multimode
entangled state [9,11].

012322-2



GAUSSIAN MATRIX-PRODUCT STATES FOR CODING IN . . . PHYSICAL REVIEW A 85, 012322 (2012)

2. Non-Markovian noise

A non-Markovian channel noise model was considered in
Refs. [8,10], given by

γ envN = NN

(
es� 0
0 e−s�

)
, (9)

with NN � 1/2 for the considered lossy channel (NN � 0 for
a non-Markovian additive noise channel), s ∈ R, and where �

is a n × n matrix defined as 	ij = δi,j+1 + δi+1,j . The spectra
of the quadrature blocks γ

q,p
env N ≡ NNe±s� read

γ q,p
env N

(x) = NN e±2s cos(x), x ∈ [0,2π ], (10)

with the upper (lower) sign standing for the q (p) quadrature.
In the case of a global water filling, it was shown that the
optimal input state [Eq. (4)] is also entangled in the original
basis [8,10], as for the Markov additive noise.

Since the optimal input state for both noise models
exhibits multimode entanglement across the subsequent uses
of the channel, with n → ∞, its preparation may be a very
challenging task. This is what we investigate in the next
section.

III. GAUSSIAN MATRIX-PRODUCT STATE

We now address the question of how to optically implement
the optimal input states. In this context, we examine the
so-called GMPS, which is heavily entangled just as the optimal
input state, has a known optical implementation, and can
be generated sequentially. This state was first discussed in
Ref. [12] as the ground state of particular Hamiltonians of
harmonic lattices. In general, GMPS are constructed by taking
a fixed number M of finitely or infinitely entangled two-mode
squeezed vacuum states shared by adjacent sites and applying
an arbitrary 2M to 1 mode Gaussian operation on each site i.

In what follows, we restrict our discussion to a pure,
translationally invariant, one-dimensional GMPS, and, further-
more, to a single finitely entangled two-mode squeezed (TMS)
vacuum state per bond between adjacent sites (M = 1). We
use the protocol introduced in Ref. [13], depicted in a slightly
modified form in Fig. 1(a). Each GMPS mode i is obtained by
operating on a three-mode entangled state (called a “building
block”; see Refs. [13,18] for details) together with the shares
(l and r) of the two TMS vacuum states connecting site i to
the left and right sites, respectively. As shown in Fig. 1(a), a
first teleportation is performed by making a Bell measurement
on modes l and 1, followed by a conditional displacement
on mode 1′. A second teleportation then is made with a Bell
measurement on modes r and 1′, followed by a conditional
displacement on mode 2. The final state of mode 2 then reduces
precisely to that of the ith mode of the desired GMPS. We focus
now on the mathematical description of the GMPS and its use
as an input state, while we discuss its experimental realization
with single-mode squeezers in Sec. III C.

A. GMPS as approximating input state

The CM of the GMPS can be written as

γ GMPS = 1

2

(
C−1 0

0 C

)
, (11)

γGMPS

γB γB

rT rTrT

1

2

1

2

rl

11

rl

S(rB)

S(−rB) γB|0

|0

|0

1′

2

1

FIG. 1. (Color online) (a) Optical scheme for the preparation of
the Gaussian matrix-product state (GMPS), slightly modified with
respect to Ref. [13]. Here, TMS stands for a two-mode squeezed
vacuum state with squeezing rT , while γ B represents the three-mode
building block. Note that all TMS and three-mode building blocks
could each be generated by a single device that is used repeatedly.
One half of the TMS generated at time i is used immediately to
generate the GMPS mode i, while the other half is sent to a delay line
(to be used at time i + 1). After two Bell measurements (represented
by curly brackets) involving the two TMS halves (noted l and r) and
the two upper modes of γ B (noted 1 and 1′) followed by appropriate
conditional displacements, the third mode (noted 2) of γ B collapses
into the GMPS mode i. (b) Optical setup of the three-mode building
block γ B that is used to generate a nearest-neighbor correlated GMPS.
Here |0〉 denote vacuum modes, S(rB ) is a one-mode squeezer with
parameter rB , and the bold horizontal bars represent 50:50 beam
splitters.

where C is a n × n circulant symmetric matrix. In Ref. [12],
it was proven that the correlations of a one-dimensional
GMPS decay exponentially. Therefore, in the limit n → ∞,
the spectrum of C−1 reduces (up to a change of variance) to
the spectrum of M(φ),1 that is,

1

2
λ(C−1)(x) ≡ γ

q

GMPS(x) = Ñ

[
1 − φ2

in

1 + φ2
in − 2φin cos(x)

+ �

]
,

(12)

with x ∈ [0,2π ], Ñ � 0, 0 � φin < 1, � ∈ R, and the ad-
ditional condition �Ñ � −1/2 ensuring that the spectrum
corresponds to a quantum state. By comparing the spectrum of

1In the limit n → ∞, the spectrum of a symmetric circulant matrix
tends to the spectrum of its corresponding symmetric Toeplitz matrix
[R. M. Gray, Found. Trends Commun. Inf. Theory 2, 155 (2006)].
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SCHÄFER, KARPOV, AND CERF PHYSICAL REVIEW A 85, 012322 (2012)

Eq. (12) with the optimal input spectra [Eq. (4)] for the noise
models of Eqs. (7) and (9), one can directly verify that the
optimal input state is not a GMPS. However, one may use the
GMPS as an approximation of the optimal input state for both
these noise models. By calculating the transmission rates for
noise models [Eqs. (7) and (9)] with the GMPS as input state
[using Eq. (6) and replacing γ

q,p∗
out (x) by γ

q,p

GMPS(x) + γ
q,p
env (x)],

we find numerically that the highest transmission rate is
achieved for a GMPS with nearest-neighbor correlations
γ GMPS,n.n. [13]. We find that among all GMPS given by
Eq. (12), which can be generated with the setup defined in
Fig. 1, only the GMPS with nearest-neighbor correlations has
a symmetric spectrum, that is

γ
q

GMPS,n.n.(x) = γ
p

GMPS,n.n.(π − x). (13)

Since the noise spectra defined in Sec. II C satisfy the same
symmetry, it is intuitively clear that this type of GMPS is
the most suitable state for these noise models. The optical
setup for the three-mode building block that generates this
nearest-neighbor GMPS is depicted in Fig. 1(b). More details
on it are provided in Sec. III C.

From Eq. (13) and the fact that the GMPS used as an input
is a pure state, i.e., γ q

GMPS(x) γ
p

GMPS(x) = 1/4,∀x, we find that
Ñ = (1 + φ2

in)/(1 − φ2
in) and Ñ� = −1/2. Thus, the nearest-

neighbor correlated GMPS has quadrature spectra

γ
q,p

GMPS,n.n.(x) = 1 + φ2
in

1 + φ2
in ∓ 2φin cos(x)

− 1

2
, (14)

with the upper (lower) sign for the q (p) quadrature. Therefore,
when looking for the optimal transmission rate, one has to
optimize only over the parameter φin. In order to satisfy the
global water-filling solution for the GMPS, we replace γ

q∗
in (0)

by γ
q

GMPS,n.n.(0) in Eq. (5), which leads to a modified input
energy threshold depending on φin, that is,

nGMPS
thr = nthr − [

γ q∗
in (0) − γ

q

GMPS,n.n.(0)
]
. (15)

As we require that the input energy n � nGMPS
thr , Eq. (15)

imposes an upper bound on φin.
In Figs. 2–4, we plot the rates obtained for the GMPS with

the spectrum given by Eq. (14) calculated via a maximization
over φin, which we denote as RGMPS. In Fig. 2, we observe
that for the channel with additive Markov noise (7), RGMPS is
close-to-capacity achieving; in the plotted region, RGMPS/C >

0.999. For the additive channel with non-Markovian noise (9),
we conclude from Fig. 3 that the GMPS serves as a very good
resource as well; in the plotted region, RGMPS/C > 0.999.
We confirm the same behavior for the lossy channel with non-
Markovian noise, as shown in Fig. 4 for different beam-splitter
transmittances η.

The optimal input correlations φ∗
in for both noise models

are approximately given by φ/2 and s/2, respectively, as can
be seen in Fig. 5(a) and Fig. 5(b). This can be verified as
follows. Since the quantum water-filling solution holds for
the GMPS with nearest-neighbor correlations, its rate is given
by Eq. (6) replacing γ

q,p∗
out (x) by γ

q,p

GMPS,n.n.(x) + γ
q,p
env (x). In

order to find the optimal φin it is sufficient to minimize only
the second term in Eq. (6) as only this term depends on φin.
This term is a definite integral of a function whose primitive
is not expressed in terms of elementary functions and φin.
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2.1

2.25

2.4

2.55

2.7

2.85

3

φ

R
at

e 
[b

it
s]

FIG. 2. Rates of a channel with additive Markov noise: Gaussian
capacity C (solid line), GMPS-rate RGMPS (crosses), and coherent-
state rate Rcoh (dashed line) vs. correlation φ, where, from top to
bottom, NM = {0.5,0.7,1}. We took n = 5.

However, if the integrand as a function of parameter φin can be
properly minimized for all values of the variable of integration
x the integral will also be minimized. In order to verify this
possibility we take the first derivative of the integrand and set
it to zero. This leads to the following relation:

γ
q
env(x)

γ
p
env(x)

=
(
1 + φ∗

in
2 + 2φ∗

in cos x
)2(

1 + φ∗
in

2 − 2φ∗
in cos x

)2 . (16)

As it happens in the general case, there is no unique parameter
φ∗

in which satisfies Eq. (16) for all x. Nevertheless, it is possible
to obtain an approximating equality by neglecting the quadratic
and higher-order terms in the noise spectra given by Eqs. (7)
and (9) and in the right-hand side of Eq. (16), i.e.,

1 + 2α cos(x)

1 − 2α cos(x)
≈ 1 + 4φ∗

in cos(x)

1 − 4φ∗
in cos(x)

, (17)
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FIG. 3. Rates of a channel with additive non-Markovian noise:
Gaussian capacity C (solid line), GMPS-rate RGMPS (crosses), and
coherent-state rate Rcoh (dashed line) vs. correlation s, where, from
top to bottom, NN = {0.5,0.7,1}. We took n = 5.
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FIG. 4. Rates of a lossy channel with non-Markovian noise:
Gaussian capacity C (solid line), GMPS-rate RGMPS (crosses), and
coherent-state rate Rcoh (dashed line) vs. correlation s, where,
from top to bottom, η = {0.5,0.7,0.9}. We took NN = 1 and
n = 5.

where α = φ for the Markovian noise and α = s for the non-
Markovian noise, respectively. This is a valid approximation,
taking into account that φ∗

in < 1, and can be satisfied by a
unique parameter φ∗

in for all x. Namely, we find the simple
relations φ∗

in ≈ φ/2 and φ∗
in ≈ s/2, as verified in Figs. 5(a)

and 5(b), respectively.

B. GMPS as exact optimal input state

Although we have seen that the GMPS is not the optimal
input state for the noise models introduced in Sec. II C, it is
possible to do better. Indeed, for all noises given by

γ env = (N env ⊕ N env) × (C−1 ⊕ C), (18)

where N env is an n × n matrix that commutes with C given
in Eq. (11), the GMPS is the exact optimal input state,
that is,

γ ∗
in ≡ γ GMPS, n � nGMPS

thr , (19)

0 0.2 0.4 0.6
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FIG. 5. Optimal input correlation φ∗
in (solid line, left axis) and

corresponding squeezing rin (dashed line, right axis) vs. correlation
(φ or s) for (a) the channel with additive Markov noise, where the
crosses depict φ/2; (b) the channel with non-Markovian noise (lossy
and additive), where the crosses depict s/2. We took for both plots
NM = NN = 1 and n = 5.

where now trivially nGMPS
thr = nthr. This is a direct result that

can be deduced from the shape of the CM γ GMPS and the
fact that the CM of the optimal input state [given by Eqs. (3)
and (4)] is diagonalized in the same basis as the CM of the
noise.

Furthermore, as already mentioned, GMPS are known to
be ground states of particular quadratic Hamiltonians [12].
More precisely, γ GMPS is the CM of the ground state of the
translationary invariant Hamiltonian, given in natural units by

Ĥ = 1

2

⎛
⎝∑

i

p̂2
i +

∑
i,j

q̂i Vij q̂j

⎞
⎠ , (20)

where q̂i and p̂i are the position and momentum operators
of an harmonic oscillator at site i and the potential matrix is
simply given by V = C2, where C is defined in Eq. (11).

A realistic example for a noise of the shape of Eq. (18) is
given by the CM of the (Gaussian) state of the system defined in
Eq. (20), i.e., a chain of coupled harmonic oscillators at finite
temperature T . We assume the system to be described by a
canonical ensemble; thus, the density matrix of the oscillators
is given by the Gibbs state

ρG = exp (−β Ĥ)

Tr[exp (−β Ĥ)]
, (21)

where β = 1/T . The CM γ G of the Gaussian state ρG is
given by Eq. (18) with N env = I + [2 exp (βC) − I]−1 (see
Ref. [19] for details), where, indeed, [N env,C] = 0. Therefore,
if we assume the noise of the channel to result from a chain
of coupled harmonic oscillators at finite temperature T , that
is, γ env = γ G, then the GMPS with CM γ GMPS is both the
ground state of the system given by Eq. (20) and the exact
optimal input state for n � nthr.

C. Experimental realization

Let us finally discuss the required optical squeezing strength
to realize the optimal input correlation φ∗

in for both noise
models. We first present the mathematical description of the
three-mode building block that generates the GMPS with
nearest-neighbor correlations. The CM of this building block
is given by [18]

γ B = 1

2

⎛
⎜⎜⎜⎜⎜⎝

w v u 0 0 0
v w u 0 0 0
u u t 0 0 0
0 0 0 w v −u

0 0 0 v w −u

0 0 0 −u −u t

⎞
⎟⎟⎟⎟⎟⎠, (22)

with w = (t + 1)/2, v = (t − 1)/2, and u =
√

(t2 − 1)/2,
where t � 1. The optical scheme for the three-mode building
block is depicted in Fig. 1(b), where S(rB) is a one-mode
squeezer with parameter rB such that t = cosh (2rB) [18].
The resulting CM of the n-mode pure GMPS is given
by [13]

γ GMPS = �t − �T
wt (�ww + θ�TMSθ )−1�wt , (23)
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with θ = I ⊕ −I , where I is the n × n identity matrix,2

�t = 1

2

n⊕
i=1

diag{t,t},

�T
wt = 1

2

n⊕
i=1

(
u u 0 0
0 0 −u −u

)
,

(24)

�ww = 1

2

2n⊕
i=1

(
w v

v w

)
,

�TMS = 1

2
γ TMS(rT ) ⊕ γ TMS(−rT ),

where

γ TMS(r)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ch(r) 0 0 · · · · · · · · · 0 sh(r)
0 ch(r) sh(r) 0 0 · · · · · · 0

0 sh(r) ch(r) 0 0 · · · · · · ...
... 0 0 ch(r) sh(r) 0 · · · ...
... 0 0 sh(r) ch(r) 0 · · · ...
...

...
...

. . .
. . .

. . .
. . .

...

0
...

. . .
. . .

. . . 0
sh(r) 0 · · · · · · 0 · · · 0 ch(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ch(r) = cosh(2r) and sh(r) = sinh(2r), respectively.
We observe that the nearest-neighbor correlated GMPS

requires only one squeezing parameter rB to generate the
three-mode building block of Fig. 1(b). Furthermore, we can
use finitely entangled TMS vacuum states with squeezing
rT . For simplicity, we set rB = rT ≡ rin,3 and plot in Fig. 5
the squeezing strength needed to generate the optimal input
correlation φ∗

in for different noise correlations. For the Markov

2We remark that the application of � on �TMS corresponds to a
partial transpose p̂i → −p̂i , which, however, has no effect here as
�TMS does not contain any q-p correlations.

3This restriction still allows us to generate all possible input
correlations φin.

noise, in the plotted region the required correlation does not
exceed φ∗

in,max ≈ 0.3, which can be realized by rin,max ≈ 1.08
(about 9.4-dB squeezing). For the non-Markovian noise, the
required correlation does not exceed φ∗

in,max ≈ 0.4, which
corresponds to rin,max ≈ 1.18 (about 10.2-dB squeezing). This
shows that the required squeezing values for the presented
setup could be realized with accessible nonlinear media for
a realistic assumption of noise correlations (these maximal
squeezing values have recently been realized experimentally,
see, e.g., Ref. [20]).

IV. CONCLUSIONS

We have demonstrated that a one-dimensional Gaussian
matrix-product state, a multimode entangled state which can be
prepared sequentially, can serve as a very good approximation
to the optimal input state for encoding information into
Gaussian bosonic memory channels. The fact that the GMPS
can be prepared sequentially is crucial because it makes the
channel encoding feasible, progressively in time along with
the subsequent uses of the channel. For the analyzed channels
and noise models, the GMPS achieves more than 99.9% of
the Gaussian capacity and may be experimentally realizable
as the required squeezing strengths are achievable within
present technology. Furthermore, we have introduced a class of
channel noises, originating from a chain of coupled harmonic
oscillators at finite temperature, for which the GMPS is the
exact optimal multimode input state. Given that GMPS are
ground states of particular quadratic Hamiltonians, our find-
ings could serve as a starting point to find useful connections
between quantum information theory and quantum statistical
physics.
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