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The non-Gaussian operations effected by adding or subtracting a photon on entangled optical beams emerging
from a parametric down-conversion process have been suggested to enhance entanglement. Heralded photon
addition or subtraction is, as a matter of fact, at the heart of continuous-variable entanglement distillation.
The use of such processes has recently been experimentally demonstrated in the context of the generation of
optical coherent-state superpositions or the verification of canonical commutation relations. Here, we carry out a
systematic study of the effect of local photon additions and subtractions on a two-mode squeezed vacuum state,
showing that the entanglement generally increases with the number of such operations. This is analytically proven
when additions or subtractions are restricted to one mode only, while we observe that the highest entanglement
is achieved when these operations are equally shared between the two modes. We also note that adding photons
typically provides a stronger entanglement enhancement than subtracting photons, while photon subtraction
performs better in terms of energy efficiency. Furthermore, we analyze the interplay between entanglement and
non-Gaussianity, showing that it is more subtle than previously expected.
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I. INTRODUCTION

Quantum information processing with Gaussian continuous
variables is a well-established subfield of quantum information
sciences today (see, e.g., [1–3]). Quantum key distribution, for
example, can be carried out dealing with Gaussian states and
measurements only [4–6]. Nevertheless, non-Gaussian quan-
tum states and operations are indispensable for performing
certain other continuous-variable quantum information tasks,
such as quantum entanglement distillation [7–9], quantum
error correction [10], and universal quantum computation [11].
In addition, any Bell test of quantum nonlocality that relies on
Gaussian measurements necessarily requires the preparation of
a non-Gaussian entangled state [12–16], while a quantum bit
commitment protocol that is secure against Gaussian cheating
must necessarily involve a non-Gaussian resource state [17].

Deterministically producing a non-Gaussian quantum op-
tical state by using the Kerr effect is unfortunately unfeasible
today because it requires quite high (called giant) optical
nonlinearities, which are not accessible in the laboratory.
Probabilistic degaussification schemes, however, have been
shown to be feasible based on photon addition and subtraction.
Not being unitary, photon addition or subtraction can only be
achieved probabilistically, that is, conditioned on a particular
measurement outcome. One thus refers to it as heralded photon
addition or subtraction. The effect of photon subtraction can
be obtained by sending a small fraction of the optical beam
on an avalanche photodiode and conditioning the use of the
remaining fraction of the beam upon photon-counting events
[18,19]. Photon addition can be achieved as the result of a
single-photon excitation of the light field produced by para-
metric down-conversion in a nonlinear medium, conditioning
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the use of the signal output mode on the detection of a photon
in the idler mode [20].

In principle, an arbitrary single-mode state can be prepared
by applying a sequence of photon additions [22] or subtrac-
tions [23] that are interleaved with displacement operations;
similarly, an arbitrary operation depending only on the photon
number operator can be generated by using appropriate
superpositions of addition and subtraction [21]. On the experi-
mental side, the use of photon subtraction from a squeezed
vacuum state has been demonstrated in Refs. [24–29] in
order to generate low-amplitude coherent-state superpositions
(sometimes called “Schrödinger kitten” states) of traveling
light (schemes that can be further developed to generate
larger-amplitude squeezed Schrödinger cat states [30]), while
the use of photon addition combined with displacements has
allowed the generation of arbitrary superpositions of the first
three Fock states [31]. Moreover, the ability to superpose
different sequences of additions and subtractions [32] has
enabled checking the canonical commutation relations [33,34].

In this paper, we focus on the enhancement of quantum
entanglement that results from adding or subtracting an
arbitrary number of photons on the two beams emerging
from a nondegenerate parametric down-conversion process,
in an attempt to understand the generally admitted—but not
systematically analyzed—notion that degaussifying the down-
converted beams makes them more entangled [18,35–43]. In
Sec. II, we provide the basic equations describing the state
obtained by adding k and l photons on the first and second
beams of the two-mode squeezed vacuum (TMSV) state,
respectively, or when similarly subtracting photons. Section III
is focused on the case l = 0, where we can analytically prove
that quantum entanglement is a monotonically increasing
function of k. Section IV treats the general case (k,l > 0)
and presents an exhaustive analysis of the behavior of entangle-
ment enhancement as a function of k and l. Note that a subclass
of these states (k = l) has been analyzed in Refs. [40,42]. In

012328-11050-2947/2012/86(1)/012328(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.012328


CARLOS NAVARRETE-BENLLOCH et al. PHYSICAL REVIEW A 86, 012328 (2012)

Sec. V, we investigate a measure of the non-Gaussianity of
these photon-added and photon-subtracted states and show
that the link between this measure and entanglement is rather
subtle. Section VI is devoted to our conclusions.

Finally, we would like to remark that, even though we are
focusing on addition and subtraction of photons in an optical
mode, our analysis also applies to addition and subtraction of
excitations in other platforms such as phonons in mechanical
oscillators [44] or polaritons in atomic ensembles [45]. In
particular, atomic ensembles might offer several advantages
over photonic systems [46,47]: first, they act as a quantum
memory, and hence, the state can be reused if the addition or
subtraction protocol does not succeed; second, generating the
two-mode squeezing interaction between an optical mode and
the ensemble is not more challenging from the experimental
point of view than generating a beam-splitter interaction,
which means that addition and subtraction are on an equal
footing in the laboratory.

II. ADDING OR SUBTRACTING PHOTONS ON A
TWO-MODE SQUEEZED VACUUM STATE

Our starting point is the TMSV state. Let us call A and
B (for Alice and Bob) the involved modes, whose boson
operators are denoted {â,â†} and {b̂,b̂†}, respectively. These
boson operators satisfy the usual canonical commutation
relations [â,â†] = [b̂,b̂†] = 1. The TMSV state is obtained
by applying the joint operation Ŝ(r) = exp[r(âb̂ − â†b̂†)/2],
with r ∈ [0,+∞[, known as the two-mode squeezer, to the
vacuum state of modes A and B, that is,

|TMSV〉 = Ŝ(r)|0,0〉 =
√

1 − λ2
∞∑

n=0

λn|n,n〉, (1)

where λ = tanh r ∈ [0,1[, and |m,n〉 = |m〉A ⊗ |n〉B . Here,
{|n〉}n∈N denotes the number states defined by â|n〉A =√

n|n − 1〉A and â†|n〉A = √
n + 1|n + 1〉A for mode A and

analogous expressions for mode B.
Our aim now is to study how photon addition and subtrac-

tion affects the TMSV state when applied locally by Alice and
Bob. To this end, we consider the schemes depicted in Fig. 1.
In the first scheme [Fig. 1(a)], Alice and Bob add, respectively,
k and l photons to their mode. It is straightforward to show
that the final, properly normalized state can be written as

∣∣ψ (k,l)
add

〉 =
∞∑

n=0

√
p

(k,l)
n |n + k,n + l〉, (2)

with

p(k,l)
n = λ2n

2F1(k + 1,l + 1; 1; λ2)

(
n + k

k

)(
n + l

l

)
, (3)

where 2F1(a,b; c; z) is the Gauss hypergeometric function,
defined as a series expansion,

2F1(a,b; c; z) = 1 + ab

1!c
z + a(a + 1)b(b + 1)

2!c(c + 1)
z2 + · · · .

(4)

In the second scheme [Fig. 1(b)], photon addition is replaced
by photon subtraction, and the output state can be written as

∣∣ψ (k,l)
sub

〉 =
∞∑

n=k

√
q

(k,l)
n |n − k,n − l〉, (5)

with

q(k,l)
n = λ2(n−k)

2F1(k + 1,k + 1; 1 + k − l; λ2)

(
n

k

)(
n

l

)
(
k

l

) , (6)

where we have assumed that k � l (exactly the same expres-
sion but interchanging k and l holds for k < l).

Note that here we treat photon addition and subtraction
as ideal (â†,â) operations. In realistic schemes based on
the beam-splitter (for subtraction) or the two-mode squeezer
(for addition) interaction with an auxiliary vacuum mode,
this is an approximation which becomes exact only in the
unphysical limit of vanishing interaction (e.g., for perfect
transmissivity of the beam splitter). Nevertheless, as long
as the interaction is kept very weak—which then makes
successful subtraction or addition events rare, but still frequent
enough for applications—the idealized description is a good
approximation [32]. In any case, we refer the reader to
Refs. [21,23,30,42] for a rigorous treatment of photon addition
and subtraction under experimentally realistic conditions.

In the following, we analyze the entanglement of these
states as a function of the number of photon additions or
subtractions. Being pure bipartite states, their entanglement
is uniquely measured by the entanglement entropy [48],
defined for an arbitrary state |ψ〉 as E[|ψ〉] = S[trB{|ψ〉〈ψ |}],
where S[ρ̂] = −tr{ρ̂ log ρ̂} (we use base 2 for the logarithm
throughout the paper) denotes the usual von Neumann entropy
of the density operator ρ̂. In our case, evaluating this quantity
is straightforward because Eqs. (2) and (5) are in Schmidt
form, so that the entanglement entropy of the states |ψ (k,l)

add 〉

FIG. 1. (Color online) Degaussification schemes analyzed in this work. Alice and Bob share a two-mode squeezed vacuum state, which
results from applying a two-mode squeezing operation Ŝ(r) on two vacuum modes (A and B). They perform k and l photon additions (a) or
subtractions (b) on their corresponding modes, generating the output state |ψ (k,l)

add 〉 or |ψ (k,l)
sub 〉, respectively.
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and |ψ (k,l)
sub 〉 is

E
(k,l)
add = −

∞∑
n=0

p(k,l)
n log p(k,l)

n , (7)

and

E
(k,l)
sub = −

∞∑
n=max{k,l}

q(k,l)
n log q(k,l)

n , (8)

respectively. Unfortunately, we have not been able to carry out
these sums analytically except in the trivial case k = l = 0,
where we get the well-known expression for the entanglement
entropy of the TMSV state [3],

ETMSV(λ) = λ2

1 − λ2
log

(
1

λ2

)
+ log

(
1

1 − λ2

)
, (9)

which is a monotonically increasing function of λ. Despite this
absence of a closed expression for Eqs. (7) and (8), we are able
to analytically derive their dependence on the parameter k for
l = 0 in the next section.

III. ENTANGLEMENT ENHANCEMENT BY ONE-MODE
OPERATIONS

We restrict ourselves to the case in which only one of the
modes undergoes photon addition or subtraction operations,
while the other is unchanged. In that case, we will be able to
prove analytically that the entanglement entropy, either E

(k,0)
add

or E
(k,0)
sub , can only increase with the number of operations k.

First, note that the three schemes shown in Fig. 2 lead to the
exact same state,

|ψ (k)〉 =
∞∑

n=0

√
p

(k)
n |n + k,n〉, (10)

with

p(k)
n = (1 − λ2)k+1λ2n

(
n + k

n

)
. (11)

Note that this state follows from Eq. (2) by putting l = 0 and
using 2F1(k + 1,1; 1; λ2) = (1 − λ2)−k−1. Using Eq. (1), it is

FIG. 2. (Color online) Three equivalent degaussification
schemes. Starting with the vacuum state, each of these three single-
mode operations results in the same output state |ψ (k)〉 up to a
normalization factor (i.e., the probabilities of success are different):
Alice’s adding k photons after the two-mode squeezer Ŝ(r) [small
solid-border (pink) box], Bob’s subtracting k photons after Ŝ(r) [small
dashed-border (green) box], or Alice’s adding k photons before Ŝ(r)
[small dashed-dotted border (yellow) box].

easy to prove that

b̂|TMSV〉 = λâ†|TMSV〉, (12)

implying that Alice’s adding k photons to the first mode [small
solid-border (pink) box in Fig. 2] has the same effect as Bob’s
subtracting them from the second mode [small dashed-border
(green) box in Fig. 2], up to a normalization factor related to the
success probability of the corresponding operation. Second, it
is also easy to check that

Ŝ(r)(â†)k|0,0〉 = [S†(−r)â†Ŝ(−r)]kŜ(r)|0,0〉
= 1

coshk r
(â†)kŜ(r)|0,0〉, (13)

where we have used Eq. (12) as well as the relation
Ŝ†(−r)â†Ŝ(−r) = â† cosh r − b̂ sinh r . Hence, adding k pho-
tons before or after the two-mode squeezer is equivalent, ex-
cept for a normalization factor again related to the probability
of success of the nonunitary operation.

Since Eq. (10) is in the Schmidt form, the entanglement
entropy of state |ψ (k)〉 is easily evaluated as

E(k) = −
∞∑

n=0

p(k)
n log p(k)

n . (14)

In order to prove that E(k) is a monotonically increasing
function of k, we proceed as follows. The Pascal identity(

n + k + 1

k + 1

)
=

(
n + k

k + 1

)
+

(
n + k

k

)
(15)

allows us to write

p(k+1)
n = λ2p

(k+1)
n−1 + (1 − λ2)p(k)

n , (16)

where we set p(k)
n = 0 for n < 0 by definiteness. Now, using

the strict concavity of the function h[x] = −x log x, we have
∞∑

n=0

h
[
p(k+1)

n

]
> λ2

∞∑
n=0

h
[
p

(k+1)
n−1

] + (1 − λ2)
∞∑

n=0

h
[
p(k)

n

]
(17)

for 0 < λ < 1. Since p
(k+1)
n−1 is equivalent to p(k+1)

n up to a shift
to the right in the Fock basis, which does not change the
entropy, i.e.,

∑∞
n=0 h[p(k+1)

n−1 ] = ∑∞
n=0 h[p(k+1)

n ], expression
(17) is simply equivalent to

E(k+1) > E(k) (18)

for 0 < λ < 1. Thus, we conclude that the entanglement
can only increase with the number of photon additions or
subtractions when acting on one mode only (before or after
the two-mode squeezer).

IV. ENTANGLEMENT ENHANCEMENT BY TWO-MODE
OPERATIONS

The nontrivial expressions of p(k,l)
n and q(k,l)

n have pre-
vented us from doing an exhaustive analytical study of the
entanglement properties of states (2) and (5) when operating
on both modes, that is, when k �= 0 and l �= 0. Indeed the
only interesting property that we have been able to prove
analytically is that E

(k,k)
add = E

(k,k)
sub , that is, for symmetric

operation (same number of operations on both modes k = l),
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FIG. 3. (Color online) Entanglement entropy of the photon-added and -subtracted states, |ψ (k,l)
add 〉 and |ψ (k,l)

sub 〉, as a function of the number
of operations (k,l) for λ = 0.4. Note that we have normalized it to the entanglement of the corresponding TMSV state, that is, E

(0,0)
add = E

(0,0)
sub

is set to 1. (a), (b) Density plots of E
(k,l)
add and E

(k,l)
sub , respectively, in the (k,l) space; darker regions correspond to lower entanglement. Thin

lines are isolines (lines of equal entanglement), while thick straight lines correspond to k = l (dashed), k + l = 10 (dashed-dotted), and l = 4
(dotted). The entanglement of the latter three lines is plotted in (c), (d), and (e), respectively, with dark (blue) and light (red) curves denoting
the photon-added and photon-subtracted states, respectively. Even though k and l are physically discrete variables, we have taken them to be
continuous variables by using the � function as an analytic extension of the factorial function (this holds for the rest of the figures in the article).

additions and subtractions lead to the exact same entanglement,
a result noted in Ref. [39] in the k = l = 1 case. In order
to prove this, note that by renaming the summation index
n = m + k, the subtracted state can be written as∣∣ψ (k,k)

sub

〉 =
∞∑

m=0

λn
(
n+k

k

)
√

2F1(k + 1,k + 1; 1; λ2)
|m,m〉

=
∞∑

m=0

√
p

(k,k)
m |m,m〉, (19)

which implies that |ψ (k,k)
sub 〉 and |ψ (k,k)

add 〉 have the same Schmidt
coefficients, hence the same entanglement.

In the reminder of this section, we analyze the entanglement
of states (2) and (5) by numerically performing sums (7)
and (8), truncated at an upper limit that ensures that the
distributions p(k,l)

n and q(k,l)
n are normalized up to an accuracy

of 10−10. Our numerical results are plotted in Fig. 3 for λ = 0.4
and Fig. 4 for λ = 0.22.

The main tendency we can deduce from our numerical
analysis is that it is always better to perform addition rather
than subtraction in order to increase the entanglement, i.e.,
E

(k,l)
add > E

(k,l)
sub . This is clearly visible when comparing the

density plots in Figs. 3(a) and 3(b). Such a result could be
linked to the fact that photon addition seems to increase the
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FIG. 4. (Color online) Same as Fig. 3, but for λ = 0.22. For conciseness, we only show E
(k,l)
sub as a density plot (a) as well as the

entanglement along the lines k + l = 10 (b; dashed-dotted line) and l = 4 (c; dotted line), for both the photon-added [dark (blue) line] and the
photon-subtracted [light (red) line] states. Note that while the photon-added states have the same behavior as for λ = 0.4, this is not the case
for the photon-subtracted states; see details in the text.

state’s nonclassicality more rapidly than photon subtraction
does [49,50]. Note, however, that for large squeezing the
difference becomes less pronounced, i.e., E

(k,l)
sub → E

(k,l)
add for

λ → 1.
It is also important to remark that the probabilities of

success of the addition and subtraction schemes are different
[23,30,42], and hence, even though addition performs better
for the same number of operations, it might be preferable to
perform more subtractions to achieve a given entanglement,
depending on the particular experimental scenario.

For symmetric operation k = l, where addition and sub-
traction perform equally, the entanglement increases with
the number of operations, i.e., E(k+1,k+1) > E(k,k). This is
explicitly shown in Fig. 3(c), where we plot the entanglement
E(k,k) as a function of k. This behavior is in agreement with
the studies performed in Refs. [40,42].

We also observed that for a fixed number of operations
k + l, the entanglement increases when approaching the
symmetric situation k = l. This is shown in Fig. 3(d), where we
plot E(k,10−k) as a function of k for both addition [dark (blue)
curve] and subtraction [light (red) curve] . Note, however,
that the shapes of the curves are rather different for addition
and subtraction. Nevertheless, we remark that the optimal
enhancement is obtained when the same number of operations
is applied to both modes, where both addition and subtraction
give the same entanglement enhancement.

By keeping the number of additions fixed on one mode,
the entanglement is an increasing function of the number of
additions on the other mode, that is, E

(k+1,l)
add > E

(k,l)
add . Thus,

by fixing l to some value, say l0, the entanglement increases
as Alice adds more photons; for l0 = 0 this is exactly the

analytical result that we found in Sec. III. The case l0 = 4 is
illustrated in Fig. 3(e). The situation is a bit different for photon
subtraction. While above some critical squeezing parameter
λ (depending on l0), the entanglement is a monotonically
increasing function of the number of subtractions k for a fixed
l = l0, just as for additions, below this critical squeezing it
is not. This is made clear in Fig. 4, where we plot E

(k,l)
sub for

a smaller squeezing parameter, λ = 0.22. Note Fig. 4(c), in
particular, where we see that the entanglement decreases in
some interval of k above the symmetric point k = l = 4 before
going back to its normal increase. Otherwise, the behavior of
entanglement at λ = 0.22 as shown in Figs. 4(a) and 4(b) is
qualitatively similar to what we observed at λ = 0.4 in Fig. 3.
The case of photon addition is also plotted in Figs. 4(b) and
4(c) for comparison.

Comparing Figs. 3 and 4, we also observe that the entangle-
ment enhancement effected by photon addition and subtraction
is greater, in relative terms, when the squeezing parameter λ

is low (remember that E
(k,l)
add and E

(k,l)
sub are normalized to the

TMVS state in the figures). For example, at the symmetric
point k = l = 5, the entanglement is enhanced by a factor of
about 3.7 with respect to the TMVS state at λ = 0.4, while
it reaches about 6.7 at λ = 0.22. This can be interpreted as
follows. For λ → 1, the entanglement of the TMSV state is
already very large and its Schmidt coefficients approach a
uniform, infinitely wide distribution; hence, photon addition
or subtraction cannot improve much on this.

Finally, it is worth comparing the photon-added and
-subtracted states, |ψ (k,l)

add 〉 and |ψ (k,l)
sub 〉, from the point of

view of the energy cost for generating the same amount
of entanglement. For this, we define the entanglement
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FIG. 5. (Color online) Entanglement energy-efficiency η(k,l) of the photon-added [dark (blue) curves] and photon-subtracted [light (red)
curves] states as a function of the number of operations k and l for λ = 0.4 (a)–(c) and λ = 0.22 (d)–(f). As we did for the entanglement, we
show the evolution of the efficiency along the k = l (a), (d), k + l = 10 (b), (e), and l = 4 (c), (f) lines.

energy-efficiency of the photon-added state as

η
(k,l)
add = E

(k,l)
add

g
(
N

(k,l)
add

/
2
) , (20)

where N
(k,l)
add = 〈ψ (k,l)

add |â†â + b̂†b̂|ψ (k,l)
add 〉 is the total mean

photon number of the state, and the function g(x) = (x +
1) log(x + 1) − x log(x) is the entanglement entropy of a
TMSV state with a mean photon number of 2x (equal to the
entropy of a thermal state of x photons). Of course, we use a
similar definition for photon-subtracted states.

Taking into account that the TMSV state provides the
highest entanglement for a given average photon number, the
entanglement energy-efficiency as defined here is equal to 1 for
a TMSV state and <1 otherwise. In other words, the efficiency
quantifies the degree to which the state’s energy is optimally
deployed in creating entanglement.

In Fig. 5, we plot the entanglement energy-efficiency as
a function of the number of operations (k,l), for two values
of λ. Note that, even though photon addition leads to a larger
entanglement amplification in absolute terms as shown before,
the results shown in Fig. 5 tell us that photon subtraction
is more efficient (in general) from the energy-cost point of
view.

V. NON-GAUSSIANITY OF THE PHOTON-ADDED
AND -SUBTRACTED STATES

In this section, we evaluate the non-Gaussianity of the
photon-added and -subtracted states that we have introduced in
the previous sections and investigate the possible link with their
entanglement properties. In a nutshell, we reach the conclusion
that photon addition leads to a faster degaussification of the
TMSV state than photon subtraction, which is reminiscent of
the behavior of entanglement, but nevertheless, the level of
entanglement found in these states seems to have no direct
relation to their non-Gaussianity.

We use here the non-Gaussianity measure of a state that
was introduced in Ref. [51]. This measure has already been
used in a similar context, for example, in Ref. [52]. There,
after a numerical analysis based on this measure, it was
conjectured that, at least for the class of photon-number
entangled states (to which the states included in this work
belong), the entanglement of Gaussian states is more robust
against a lossy channel with thermal added noise than that
of non-Gaussian states. Note, however, that this conjecture
was recently proved wrong by showing that it does not hold
when a different entanglement measure (negativity under
partial transposition) is used [53] and that the entanglement
of the N00N states and of a simple class of photon-number
entangled states survives longer in a thermal environment than
the entanglement of any Gaussian state [54].

Let us first explain how this non-Gaussianity measure Ḡ[ρ̂]
works for a general state ρ̂ [51]. The idea is to evaluate
the statistical distinguishability between ρ̂ and the Gaussian
state ρ̂G having the same first and second moments, which
can be done by using the quantum relative entropy. Thus, we
define the non-Gaussianity of state ρ̂ as

Ḡ[ρ̂] = S[ρ̂||ρ̂G] = tr{ρ̂(log ρ̂ − log ρ̂G)}
= S[ρ̂G] − S[ρ̂], (21)

where the last equality follows from the fact that ρ̂ and ρ̂G have
the same first and second moments. Here, the states |ψ (k,l)

add 〉 and
|ψ (k,l)

sub 〉 we work with are pure, and hence their non-Gaussianity
is simply the entropy of the corresponding Gaussian state, i.e.,
Ḡ[ρ̂] = S[ρ̂G].

Now let us define the vector operator r̂ = (x̂a,p̂a,x̂b,p̂b)
built on the quadrature operators x̂a = â† + â and p̂a = i(â† −
â), and similarly for the mode B. It is fairly simple to check
that states |ψ (k,l)

add 〉 and |ψ (k,l)
sub 〉 all have 0 mean, that is, 〈r̂〉 = 0.

The elements of the covariance matrix are then evaluated as
Cjl = 〈r̂j r̂l + r̂l r̂j 〉/2, and it is straightforward to check that
both the photon-subtracted and the photon-added states have
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FIG. 6. (Color online) Non-Gaussianity Ḡ(k,l) of the photon-added [dark (blue) curves] and photon-subtracted [light (red) curves] states as
a function of the number of operations k and l for λ = 0.4 (a)–(c) and λ = 0.22 (d)–(f). As we did for the entanglement and the entanglement
energy efficiency, we show the evolution of the non-Gaussianity along the k = l (a), (d), k + l = 10 (b), (e), and l = 4 (c), (f) lines. Note that,
in contrast to the entanglement and the entanglement energy efficiency, the non-Gaussianity has the same qualitative behavior for both λ values.

a covariance matrix of the type

C(k,l) =
[

α(k,l) 1 γ (k,l) σz

γ (k,l) σz β(k,l) 1

]
, (22)

where we have defined the 2 × 2 matrices 1 = diag(1,1)
and σz = diag(1,−1). In the case of the photon-added states
|ψ (k,l)

add 〉, the parameters are given by

α
(k,l)
add = 1 + 2k + 2

∞∑
n=0

np(k,l)
n ,

β
(k,l)
add = 1 + 2l + 2

∞∑
n=0

np(k,l)
n , (23)

γ
(k,l)
add = 2

∞∑
n=0

√
(n + k + 1)(n + l + 1)p(k,l)

n p
(k,l)
n+1;

while, for the photon-subtracted states |ψ (k,l)
sub 〉, one has

α
(k,l)
sub = 1 − 2k + 2

∞∑
n=max(k,l)

nq(k,l)
n ,

β
(k,l)
sub = 1 − 2l + 2

∞∑
n=max(k,l)

nq(k,l)
n , (24)

γ
(k,l)
sub = 2

∞∑
n=max(k,l)

√
(n − k + 1)(n − l + 1)q(k,l)

n q
(k,l)
n+1 .

While we have not been able to evaluate the sums in the γ ’s
analytically, the sums in the α’s and β’s have the following

closed expressions:

∞∑
n=0

np(k,l)
n = (1 + k)(1 + l)λ2 2F1(k + 2,l + 2; 2; λ2)

2F1(k + 1,l + 1; 1; λ2)
,

∞∑
n=k

nq(k,l)
n = k + (1 + k)λ2

(1+k

l

)
(
k

l

)
× 2F1(k + 2,k + 2; k − l + 2; λ2)

2F1(k + 1,k + 1; k − l + 1; λ2)
, (25)

where in the second expression we have assumed k � l (once
again, exactly the same expression, but interchanging k and l,
holds for k < l).

The two-mode covariance matrix (22) is in normal form [3],
from which the entropy of the Gaussian state (and thus the
non-Gaussianity of the photon-added or -subtracted state) can
be directly evaluated as

Ḡ(k,l) = g[ν(k,l)
+ ] + g[ν(k,l)

− ], (26)

where

g(z) = z + 1

2
log

z + 1

2
− z − 1

2
log

z − 1

2
, (27)

and where

ν
(k,l)
± =

[√(
α(k,l)

4
+ β(k,l)

4

)2

− (γ (k,l))2 ± α(k,l) − β(k,l)

2

]
(28)

are the symplectic eigenvalues [3] of the covariance
matrix (22).

In Fig. 6, we plot the non-Gaussianity Ḡ(k,l) for an arbitrary
number of operations (k,l) with λ = 0.4 [Figs. 6(a)–6(c)] and
λ = 0.22 [Figs. 6(d)–6(f)]. In analogy with the behavior of
entanglement, we observe that photon addition leads to a faster
degradation of the Gaussianity of the TMSV state than photon
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subtraction. In other words, |ψ (k,l)
add 〉 [dark (blue) curves] is

more non-Gaussian than the photon-subtracted state |ψ (k,l)
sub 〉

[light (red) curves]. This is clear, for example, in Figs. 6(a)
and 6(d), where we plot the increase in Ḡ(k,k) with k for
symmetric operations k = l. Extrapolating from the behavior
of entanglement, one would be tempted to predict that the
non-Gaussianity Ḡ(k,l) is maximum for symmetric operations
k = l for both addition and subtraction. Interestingly, the
behavior of Ḡ(k,l) is radically different. While for a fixed
number k + l of photon additions [dark (blue) curves], its
maximum is indeed reached for k = l, for a fixed number k + l

of photon subtractions [light (red) curves], the non-Gaussianity
is actually minimum for k = l [see Figs. 6(b) and 6(e)]. We
observe a similar anomaly in Figs. 6(c) and 6(f), where we plot
the non-Gaussianity as a function of k for a fixed l. Thus, the
non-Gaussianity of photon-subtracted states exhibits, in some
situations, a very different qualitative behavior from that of its
entanglement.

VI. CONCLUSIONS

We have studied how local photon additions and subtrac-
tions affect the entanglement and Gaussianity of the TMSV
state. This subject has become of interest recently, especially
since these fundamental heralded non-Gaussian operations
have become available in the laboratory.

First, we have analytically shown that the entanglement
grows with the number of photon additions or subtractions
when only one of the parties performs the operations. We have
then numerically analyzed the case in which both parties add or
subtract photons; although addition and subtraction lead to the
same entanglement enhancement when both parties perform
the same number of operations, photon addition beats photon
subtraction in general.

We have also analyzed the efficiency with which the
energy in photon-added and photon-subtracted states generates

entanglement, showing that, in general, this can be close to
perfect for photon subtraction, but not for photon addition.

Finally, we have numerically studied the degaussification
of the TMSV state that is effected by photon addition
or subtraction, showing that photon addition degrades the
Gaussianity of the state more rapidly than photon subtraction
does. Observing that the entanglement and non-Gaussianity
of photon-subtracted states have radically different behaviors,
we conclude that the relation between entanglement and
non-Gaussianity is not as simple as previously assumed.

Future research directions might include analyzing how
photon additions and subtractions affect the entanglement of
more general (possibly mixed) states, such as the TMSV state
degraded by losses in the channels through which the entangled
modes are sent to Alice and Bob, which is a typical initial state
of many distillation or concentration protocols [42].
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