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In what follows, we give a more complete overview of
the calculations leading to the main results of this Let-
ter. First, we derive the lower bound used to reduce
conjecture C1 to C2. Second, we review the concept of
majorization in probability theory, and describe its use
in the context of quantum entanglement. Then, we de-
tail the calculation of the output state of a two-mode
squeezer for an arbitrary input state expressed as a su-
perposition of Fock states. Finally, we provide a detailed
derivation of the chain of majorization relations that are
obeyed by a two-mode squeezer with number-state inputs
in one port, and present their associated local operation
and classical communication (LOCC) protocols.

REDUCTION OF THE MINIMUM ENTROPY
CONJECTURE

In what follows we exploit the decomposition M =
A ◦ L and the concavity of the von Neumann entropy
to prove that the minimum output entropy of chan-
nel M is lower-bounded by that of channel A, i.e.,
minφS(M(φ)) ≥ minψS(A(ψ)).

Let |φ〉 be an input pure state of channel M. After
passage through the pure-loss channel L, the intermidi-
ate state (between L and A) is σ̃ = L(|φ〉〈φ|). For any
decomposition {pi, ψi} of σ̃ satisfying σ̃ =

∑
i pi|ψi〉〈ψi|,

we have the following chain of inequalities

S (M(|φ〉〈φ|)) (1)
= S (A(σ̃))

(2)
= S

(∑
i

piA(|ψi〉〈ψi|)

)
(3)

≥
∑
i

piS (A(|ψi〉〈ψi|))

(4)

≥ minψS(A(ψ)), (1)

where we have used: the channel decomposition M =
A ◦ L in (1); the linearity of quantum operations in (2),
the sub-additivity of von Neumann entropy in (3); and,
finally, the definition of the minimum output entropy of
channel A in (4). The proof concludes by noticing that
Eq. (1) holds for every input state of channel M, includ-
ing the one minimizing the output entropy of M.

MAJORIZATION AND ENTANGLEMENT

Majorization appeared as a way to order probability
distributions in terms of their disorder, in an effort to
understand when one distribution can be built from an-
other by randomizing the later [1]. Take two probability
vectors p = (p1, p2, ..., pd)

T and q = (q1, q2, ..., qd)
T of

dimension d (which can be infinite as in our case), prop-

erly normalized, that is,
∑d
n=1 pn =

∑d
n=1 qn = 1. We

say that p majorizes q, and denote it by p � q, if and
only if

m∑
n=1

p↓n ≥
m∑
n=1

q↓n ∀m ≤ d, (2)

where p↓ and q↓ are the original vectors with their com-
ponents rearranged in decreasing order. This definition
is useful from a practical point of view, since it is easy to
check numerically if two vectors satisfy these relations.
Nevertheless, it can be proven that p � q is strictly
equivalent to two other operational relations:

M1. For every concave function h(x), we

have
∑d
n=1 h(pn) ≤

∑d
n=1 h(qn).

M2. q can be obtained from p via q = Dp,
where D is a column-stochastic matrix.

A square matrix D is column-stochastic if its elements
are real and positive, its columns sum to one, and its
rows sum to less than one. Most of the literature on the
connection between majorization and quantum informa-
tion studies finite-dimensional systems, in which case it
can be shown that column-stochastic matrices are also
doubly-stochastic (columns and rows both sum to one).
In this work we need the slightly more general definition
of column-stochastic to cope with infinite dimensional
spaces [3]. Physically, stochastic matrices are equivalent
to convex mixtures of permutations of the vector com-
ponents, and hence, property M2 shows that q is more
disordered than p.

Interestingly, majorization theory can also be used to
answer the question of whether Alice an Bob can trans-
form a shared bipartite pure state |ψ〉AB into |ϕ〉AB by
using a deterministic protocol involving only local opera-
tions and classical communication (LOCC) [2, 4]. Given
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the probability vectors pψ and pϕ generated with the
Schmidt coefficients of these states (the eigenvalues of
the reduced density operators), it is possible to prove
that the transformation |ψ〉AB → |ϕ〉AB is possible if
and only if pϕ � pψ, that is, if the Schmidt coefficients of
|ϕ〉AB majorize those of |ψ〉AB, in which case we use the
symbolic notation |ϕ〉AB � |ψ〉AB. The entanglement
of a pure bipartite state |ψ〉AB being measured by the
von Neumann entropy of the reduced density operator
ρA = TrB [|ψ〉AB ], and the von Neumann entropy being a
concave function, one gets as an intuitive corollary that
|ψ〉AB can only be transformed deterministically by an
LOCC protocol into states of lower entanglement, i.e.,

E[|ψ〉AB ] ≥ E[|ϕ〉AB ], (3)

as follows from property M1.
Note that while |ϕ〉AB � |ψ〉AB implies that pϕ can

be transformed into pψ by application of a column-
stochastic matrix, the transformation goes in the oppo-
site direction for the corresponding states, that is, it is
|ψ〉AB the state which can be transformed into |ϕ〉AB by
a deterministic LOCC protocol. In other words, at the
level of probability distributions the transformation in-
duces disorder (increases the entropy), while at the level
of states the transformation decreases the entanglement,
as corresponds to physical deterministic LOCC protocols.

OUTPUT STATES OF A TWO-MODE SQUEEZER

If we inject the vacuum state at the input of a two-
mode squeezer U(r), we obtain the two-mode squeezed
vacuum state

|Ψ(0)〉 = U(r)|0, 0〉 = 1

cosh r

∞∑
n=0

tanhnr |n, n〉, (4)

where |n〉 is a number state, and we use the compact
notation |m〉A ⊗ |n〉B = |m,n〉.
Consider now the more general input state

|φ〉 = |ϕ〉 ⊗ |0〉 =
∞∑
n=0

cn|n, 0〉, (5)

written in the number state basis, which becomes the
state

|φout〉 = U(r)|φ〉 =
∞∑
n=0

cn|Ψ(n)〉, (6)

with

|Ψ(k)〉 = U(r)|k, 0〉, (7)

after passing through the two-mode squeezer.
In the reminder of this section, we focus on finding

a manageable expression for the states |Ψ(k)〉, that is,

for the output state of the two-mode squeezer when a
number state |k〉 is fed through one of its input ports.
We start by noting that |Ψ(k)〉 can be written in terms
of the two-mode squeezed vacuum state |Ψ(0)〉 as follows

|Ψ(k)〉 = 1√
k!
U(r)a†kA |0, 0〉 = 1√

k!
[U(r)a†AU(r)†]k|Ψ(0)〉,

(8)
which, using the relation

U(r)a†AU(r)† = cosh r a†A − sinh r aB , (9)

can be rewritten as

|Ψ(k)〉 =
k∑
j=0

(−1)k−j√
k!

(
k

j

)
coshjr sinhk−jr a†jA a

k−j
B |Ψ(0)〉.

(10)
Now, an easy calculation shows that

aB |Ψ(0)〉 = 1

cosh r

∞∑
n=1

√
n tanhnr |n, n− 1〉 (11)

=
n→m+1

1

cosh r

∞∑
m=0

√
m+ 1 tanhm+1r |m+ 1,m〉,

leading to the following identity

aB |Ψ(0)〉 = tanh r a†A|Ψ
(0)〉, (12)

which allows us to rewrite (10) as

|Ψ(k)〉 = coshkr√
k!

k∑
j=0

(−1)k−j
(
k

j

)
tanh2(k−j)r a†kA |Ψ(0)〉.

(13)
Finally, using the relations

k∑
j=0

(−1)k−j
(
k

j

)
xk−j = (1− x)k, (14a)

1− tanh2 r = cosh−2 r, (14b)

we can write the previous expression as

|Ψ(k)〉 =
1√

k! coshkr
a†kA |Ψ(0)〉 (15)

=
1

coshk+1 r

∞∑
n=0

√(
n+ k

k

)
tanhnr |n+ k, n〉.

Let us define λ = tanh r; from now on we will use the
notation

|Ψ(k)
λ 〉 =

∞∑
n=0

√
p
(k)
n (λ)|n+ k, n〉, (16)

with

p(k)n (λ) = (1− λ2)k+1λ2n
(
n+ k

n

)
, (17)
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to stress the dependence of the state on the squeezing
parameter. Note that the states (16) are already written
in Schmidt form, and in the following we will use

p(k) = (p
(k)
0 , p

(k)
1 , ...)T , (18)

to denote the corresponding probability vectors.

PROOF OF THE MAJORIZATION RELATIONS
FOR FOCK STATE INPUTS

In this section we will explain how to derive the
column-stochastic matrices needed to prove the majoriza-
tion relations employed in the Letter.

Proof of |Ψ(k)
λ 〉 � |Ψ(k+1)

λ 〉

Because the states |Ψ(k)
λ 〉 are already in Schmidt form

as commented previously, we need to prove that there
exists a column-stochastic matrix D such that

p(k+1) = Dp(k). (19)

This is actually quite simple if one notices that the Pascal
identity (

n+ k + 1

k + 1

)
=

(
n+ k

k

)
+

(
n+ k

k + 1

)
, (20)

implies the following relation (with the convention p
(k)
n =

0 for n < 0):

p(k+1)
n = (1− λ2)p(k)n + λ2p

(k+1)
n−1 . (21)

This recurrence allows us to connect p(k+1) with p(k) by
means of a lower-triangular matrix

p
(k+1)
0

p
(k+1)
1

p
(k+1)
2
...

 = (1− λ2)


1 0 0 . . .
λ2 1 0 . . .
λ4 λ2 1 . . .
...

...
...

. . .



p
(k)
0

p
(k)
1

p
(k)
2
...

 ,

(22)
or in a more compact notation

p(k+1)
n =

n∑
m=0

(1− λ2)λ2mp
(k)
n−m. (23)

It is fairly easy to show that the triangular matrix shown
above, whose elements are explicitly given by

Dnm = (1− λ2)λ2(n−m)H(n−m), (24)

with H(x) being the Heaviside step function defined as
H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0, is column-

stochastic. Hence we conclude that |Ψ(k)
λ 〉 � |Ψ(k+1)

λ 〉 as
commented in the Letter.

Proof of |Ψ(k)
λ 〉 � |Ψ(k+∆k)

λ 〉 for ∆k > 0

It is clear that |Ψ(k)
λ 〉 � |Ψ(k+1)

λ 〉 implies |Ψ(k)
λ 〉 �

|Ψ(k+∆k)
λ 〉 for all ∆k > 0 (note that ∆k is a positive inte-

ger by definition), as majorization is clearly a transitive
relation. This shows that when restricted to Fock-state
inputs, the output entanglement of a two-mode squeezer
increases monotonically with the number of input pho-
tons.

In order to find the explicit column-stochastic matrix
D(∆k) satisfying p(k+∆k) = D(∆k)p(k), we use the inde-
pendence on k of the matrix D which allows us write

D(∆k) = D ×D × ...×D︸ ︷︷ ︸
∆k times

. (25)

An explicit form of the elements of this matrix can be
inferred for any ∆k by evaluating the first matrices:

D(2) = (1− λ2)2


1 0 0 0 . . .

2λ2 1 0 0 . . .
3λ4 2λ2 1 0 . . .
4λ6 3λ2 2λ2 1 . . .
...

...
...

...
. . .

 , (26a)

D(3) = (1− λ2)3


1 0 0 0 . . .

3λ2 1 0 0 . . .
6λ4 3λ2 1 0 . . .
10λ6 6λ2 3λ2 1 . . .
...

...
...

...
. . .

 , (26b)

D(4) = (1− λ2)4


1 0 0 0 . . .

4λ2 1 0 0 . . .
10λ4 4λ2 1 0 . . .
20λ6 10λ2 4λ2 1 . . .
...

...
...

...
. . .

 .(26c)

Hence, allD(∆k) matrices have a similar structure, except
for the (1− λ2)∆k prefactor, and the numbers accompa-
nying the powers of λ2 in the columns, which are given
by the ∆kth diagonal of the Pascal triangle. It is then
fairly simple to prove by induction that the elements of
D(∆k) are given by

D(∆k)
nm = (1− λ2)∆k

(
m+∆k − 1

∆k − 1

)
λ2(n−m)H(n−m).

(27)
Note that this general majorization relation implies

in particular that |Ψ(0)
λ 〉 � |Ψ(k)

λ 〉 ∀k, and therefore,
among all Fock state inputs, the vacuum state is the one
which minimizes the output entanglement of a two-mode
squeezer.

Proof of |Ψ(0)

λ′ 〉 � |Ψ(0)
λ 〉 for λ′ < λ

It is well known that the entanglement of the two-mode
squeezed vacuum state monotonically increases with the
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squeezing parameter λ. In what follows we prove a
stronger result, that a given two-mode squeezed vacuum
state majorizes all the two-mode squeezed vacuum states
with stronger squeezing.
We seek for a column-stochastic matrix R(λ, λ′) satis-

fying

p(0)(λ) = R(λ, λ′)p(0)(λ′). (28)

Based on the matrices of the previous sections, we make
an ansatz in which R is a lower-triangular matrix whose
columns are all built from a vector r(λ, λ′), that is,

R =


r0 0 0 0 . . .
r1 r0 0 0 . . .
r2 r1 r0 0 . . .
r3 r2 r1 r0 . . .
...

...
...

...
. . .

 . (29)

Introducing this ansatz into equation (28), and recalling

that p
(0)
n (x) = (1 − x2)x2n, we get the following set of

linear algebraic equations

(1− λ2) = (1− λ′2)r0, (30)

(1− λ2)λ2 = (1− λ′2)
(
λ′2r0 + r1

)
,

(1− λ2)λ4 = (1− λ′2)
(
λ′4r0 + λ′2r1 + r2

)
,

which can be solved by recursion leading to the solution

rn =

(
1− λ2

1− λ′2

)[
λ2 −H(n− 1)λ′2

]
λ2(n−1), (31)

which can checked, by induction, to be the solution for a
general n. Note that

∑∞
n=0 rn = 1 as expected.

Proof of |Ψ(k)

λ′ 〉 � |Ψ(k)
λ 〉 for λ′ < λ

The same kind of majorization relation can be proved

for any |Ψ(k 6=0)
λ 〉 state, although the proof is now a little

more involved, as we need to find a matrix R(k)(λ, λ′)
satisfying

p(k)(λ) = R(k)(λ, λ′)p(k)(λ′), (32)

which now depends on the value of k. As we now prove,
the matrix R(k)(λ, λ′) can still be chosen to be lower-
triangular, but now every column is defined by its own
vector r(k,j), that is

R(k) =


r
(k,0)
0 0 0 0 . . .

r
(k,0)
1 r

(k,1)
0 0 0 . . .

r
(k,0)
2 r

(k,1)
1 r

(k,2)
0 0 . . .

r
(k,0)
3 r

(k,1)
2 r

(k,2)
1 r

(k,3)
0 . . .

...
...

...
...

. . .

 . (33)

Because we have to recover the case k = 0 (31), we
make the following ansatz

r(k,n)m = λ2(m−1)

(
1− λ2

1− λ′2

)k+1

(34)

×
[
B(k,n)
m λ2 − C(k,n)

m H(m− 1)λ′2
]
,

with B
(0,n)
m = C

(0,n)
m = 1, and where the coefficients

B
(k 6=0,n)
m and C

(k 6=0,n)
m may depend on λ and λ′.

Similarly to the previous section, we can find the co-

efficients B
(k,n)
m and C

(k,n)
m by introducing this ansatz in

(32), and using the explicit form of the probability vec-

tors p
(k)
n (x) = (1 − x2)k+1x2n

(
n+k
n

)
. Let us show this

process step by step.
The system (32) can be rewritten in a compact form

as

p(k)n (λ) =
n∑

m=0

r(k,n−m)
m (λ, λ′)p

(k)
n−m(λ′). (35)

For n = 0, this sets

B
(k,0)
0 = 1, (36)

while for n = 1 we get

λ2
(
k + 1

1

)
= B

(k,1)
0 λ′2

(
k + 1

1

)
+B

(k,0)
1 λ2 − C

(k,0)
1 λ′2,

(37)

of which B
(k,0)
1 =

(
k+1
k

)
and C

(k,0)
1 = B

(k,1)
0

(
k+1
k

)
are

valid solutions. Similarly, for n = 2 (35) yields

λ4
(
k + 2

2

)
= B

(k,2)
0 λ′4

(
k + 2

2

)
+B

(k,1)
1 λ2λ′2

(
k + 1

1

)
−C(k,1)

1 λ′4
(
k + 1

1

)
+B

(k,0)
2 λ4 − C

(k,0)
2 λ2λ′2, (38)

of which B
(k,2)
2 =

(
k+2
2

)
, C

(k,0)
2 = B

(k,1)
1

(
k+1
k

)
, and

C
(k,1)
1 = B

(k,2)
0

(
k+2
2

)
/
(
k+1
1

)
are now valid solutions.

We observe the pattern of solutions

B(k,0)
m =

(
m+ k

k

)
, (39a)

C(k,n)
m = B

(k,n+1)
m−1

(
n+k+1

k

)(
n+k
k

) , (39b)

so that the components of the vectors r(k,n) can be rewrit-
ten as

r(k,n)m =

(
n+ k

n

)−1(
1− λ2

1− λ′2

)
(40)

×
[
L(k,n)
m λ2 − L

(k,n+1)
m−1 λ′2

]
λ2(m−1),

where we have defined the new parameters

L(k,n)
m =

(
n+ k

n

)
B(k,n)
m , (41)
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which satisfy L
(k,0)
m =

(
m+k
k

)
except for m < 0, in which

case L
(k,n)
m = 0.

In order to find the coefficients L
(k,n)
m we use a further

condition: as R(k)(λ, λ′) must be column-stochastic, the
vectors r(k,n) must be normalized. Let us then define the
series

S(k,n) =

∞∑
m=0

L(k,n)
m λ′2m, (42)

in terms of which the normalization condition∑∞
m=0 r

(k,n)
m = 1 can be rewritten as

λ′2S(k,n+1) = S(k,n) −
(
n+ k

k

)(
1− λ′2

1− λ2

)k+1

. (43)

Starting from

S(k,0) =
∞∑
m=0

(
m+ k

k

)
λ′2m = (1− λ′2)−(k+1), (44)

these relations allow us to find the rest of S(k,n) recur-
sively, obtaining

S(k,1) = λ′−2(1− λ2)−(k+1)[1− (1− λ′2)k+1], (45a)

S(k,2) = λ′−2(1− λ2)−(k+1)
{
λ′−2 (45b)

−
[
λ′−2 +

(
k + 1

k

)]
(1− λ′2)k+1

}
,

S(k,3) = λ′−2(1− λ2)−(k+1)
{
λ′−4 (45c)

−
[
λ′−4 + λ′−2

(
k + 1

k

)
+

(
k + 2

k

)]
(1− λ′2)k+1

}
,

...

from which one sees the general pattern

S(k,n) = λ′−2n(1− λ2)−(k+1) (46)

×

[
1− (1− λ′2)k+1

n−1∑
l=0

λ′2l
(
l + k

k

)]
.

The sum on the right-hand side term can be written in
terms of the incomplete beta function

B(z; a, b) =

∫ z

0

dxxa−1(1− x)b−1, (47)

as

n−1∑
l=0

(
l + k

k

)
λ′2l = (1− λ′2)−(k+1) (48)

×
[
1− n

(
n+ k

k

)
B(λ′2;n, k + 1)

]
.

We can therefore rewrite the condition (46) as

∞∑
m=0

L(k,n+1)
m λ2m (49)

= λ′−2n(1− λ2)−(k+1)n

(
n+ k

k

)
B(λ′2;n, k + 1),

which, given the result (44), can be satisfied by choosing

L(k,n)
m = n

(
n+ k

k

)(
m+ k

k

)
λ′−2nB(λ′2;n, k + 1). (50)

Note that this expression is valid even for n = 0, as

lim
a→0

aB(x; a, b) = 1, (51)

when b is a positive integer. Introducing this expres-

sion for the L
(k,n)
m coefficients in r(k,n) (40), and this into

(33), we get the column-stochastic matrix R(λ, λ′) given
in the Letter. Hence, we have been able to find a stochas-
tic map connecting p(k)(λ′) to p(k)(λ), which proves the

majorization relation |Ψ(k)
λ′ 〉 � |Ψ(k)

λ 〉 if λ′ < λ.

LOCC PROTOCOLS

For completeness, we now give the LOCC protocols
corresponding to the previous majorization relations. We
believe that these could offer an alternative (more phys-
ical) way of attacking the proof of the conjecture for a
general input state like (5), and hence find it appropriate
to explain how to build such protocols.

Transformation |Ψ(k+1)
λ 〉 → |Ψ(k)

λ 〉

Let us assume that Alice and Bob share the bipartite

state |Ψ(k+1)
λ 〉, and want to convert it into |Ψ(k)

λ 〉. In-
spired by the recurrence relation (23), we propose the
following LOCC protocol. Bob starts by performing a
POVM measurement [5] described by the measurement
operators

Bm =
∞∑
l=m

√√√√ (1− λ2)λ2mp
(k)
l−m

p
(k+1)
l

|l −m〉〈l|. (52)

Using Eq. (23), it is easy to verify the condition∑∞
m=0B

†
mBm = I. After Bob has completed his local

measurement, depending on the outcome m of the mea-
surement, the joint state “collapses” to

(IA ⊗Bm) |Ψ(k+1)
λ 〉 ∝

∞∑
n=m

√
p
(k)
n−m|n+ k + 1, n−m〉

=
∞∑
n=0

√
p
(k)
n |n+ k +m+ 1, n〉. (53)
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Then, after Bob has communicated the outcome m of
his measurement to Alice, she performs the local shift
operation

Am =
∞∑
l=0

|l〉〈l +m+ 1|, (54)

which then yields the desired state |Ψ(k)
λ 〉 regardless ofm,

that is, deterministically. Remark that the shift operator
is trace preserving in the subspace spanned by {|j+m+

1〉}j=0,1,.., which is the support of (IA ⊗Bm)|Ψ(k+1)
λ 〉 on

Alice’s side. Notice that one can easily build a shift oper-
ation that acts on Alice’s full Hilbert space by appending
ancillary qubits.

Transformation |Ψ(k+∆k)
λ 〉 → |Ψ(k)

λ 〉 for ∆k > 0

Similarly as before but exploiting now (27), we engi-
neer the following POVM on Bob’s side

Bm =
∞∑
l=m

√√√√ (1− λ2)∆k
(
m+∆k−1
∆k−1

)
λ2mp

(k)
l−m

p
(k+∆k)
l

|l −m〉〈l|,

(55)
which, combined with the conditional shift in Alice’s side

Am =

∞∑
l=0

|l〉〈l +m+∆k|, (56)

deterministically transforms the state |Ψ(k+∆k)
λ 〉 into

|Ψ(k)
λ 〉. Whenever k = 0, we obtain the two-mode vacuum

squeezed state |Ψ(0)
λ 〉, which is thus at the end of the ma-

jorization chain, and its entanglement is minimum when

compared to all other states |Ψ(k)
λ 〉.

Transformation |Ψ(0)
λ 〉 → |Ψ(0)

λ′ 〉 for λ′ < λ

Constructing an LOCC protocol from the stochastic
matrix R(λ, λ′) (29) which connects p(0)(λ′) with p(0)(λ)
is not an easy task. Interestingly, we found a simpler de-
terministic protocol achieving the same result. Let us
first give a probabilistic scheme performing the transfor-
mation, which we later make deterministic.
As shown in Figure 1, Bob mixes his mode B with an

ancillary mode C on a beam-splitter of transmissivity T .
The initial state is

|ψ〉ABC = |Ψ(0)
λ 〉 ⊗ |0〉 = N (λ)

∞∑
n=0

λn|n, n, 0〉, (57)

where N (λ) = (1 − λ2)1/2 a normalization factor. After
passage through the beam-splitter, the joint state be-

FIG. 1: Probabilistic LOCC protocol achieving the transfor-

mation |Ψ(0)
λ 〉 → |Ψ(0)

λ′ 〉 for λ′ < λ. Initially, Alice and Bob

share the entangled state |Ψ(0)
λ 〉AB . The first step of the pro-

tocol consists in Bob mixing his mode B with a vacuum an-
cillary mode C into a beam-splitter of transmissivity T , and
measuring the number of photons at the output of mode C
with a photon counter. Conditioned to the measurement of
zero reflected photons, the desired transformation is achieved
with λ′ =

√
Tλ.

comes

|ψ′〉ABC = N (λ)
∞∑

n,m=0

(Tλ2)n/2
(
1− T

T

)m/2

×
(
n

m

)1/2

|n, n−m,m〉. (58)

Finally, Bob measures the number of photons reflected
by the beam-splitter. The outcome of the measurement
will be zero with probability P = N 2(

√
Tλ)/N 2(λ), after

which the state will collapse according to

√
P|ψ′′〉AB = C〈0|ψ′〉ABC = N (λ)

∞∑
n=0

Tn/2λn|n, n〉

=
√
P|Ψ(0)√

Tλ
〉AB . (59)

Then, by choosing the transmissivity of the beam-splitter
to satisfy λ′ =

√
Tλ we obtain the target state. Note that

there always exists a valid transmissivity T , as λ′ < λ.

The input state |Ψ(0)
λ 〉AB ⊗ |0〉C being a Gaussian state

and the projection into vacuum being a Gaussian oper-
ation, there must exist a deterministic LOCC protocol
generating the same outcome [6]. Such a protocol con-
sists of replacing Bob’s projection onto vacuum by het-
erodyne detection followed by local displacements on Al-
ice and Bob sides that are proportional to the outcome
of Bob’s heterodyne measurement.
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Transformation |Ψ(k)
λ 〉 → |Ψ(k)

λ′ 〉 for λ′ < λ

Similarly to the case k = 0, constructing an LOCC pro-
tocol from the stochastic matrix R(k)(λ, λ′) (33) which
connects p(k)(λ′) with p(k)(λ) is not an easy task. In-
stead, we give a simpler deterministic protocol achieving
the same result.
Just as in the previous protocol, Bob starts by mixing

mode B with an ancillary mode C on a beam-splitter of
transmissivity T . The joint initial state is

|ψ〉ABC = |Ψ(k)
λ 〉 ⊗ |0〉 (60)

= N (k, λ)

∞∑
n=0

λn
(
n+ k

k

)1/2

|n+ k, n, 0〉,

with N (k, λ) = (1− λ2)(k+1)/2, which becomes

|ψ′〉ABC = N (k, λ)

∞∑
n,m=0

(Tλ2)n/2
(
1− T

T

)m/2

×
(
n+ k

k

)1/2(
n

m

)1/2

|n+ k, n−m,m〉, (61)

after passing through the beam-splitter.
Second, Bob measures the number of photons reflected

by the beam-splitter. With probability

P(l) = (1− T )lλ2l
(
k + l

l

)
N 2(k, λ)

N 2(k + l,
√
Tλ)

, (62)

the outcome of the measurement will be l photons, and
the state of modes A and B will collapse in that case to√

P(l) |ψ′′〉AB = C〈l|ψ′〉ABC (63)

= N (k, λ)

(
1− T

T

)l/2
×

∞∑
n=l

(Tλ2)n/2
(
n+ k

k

)1/2(
n

l

)1/2

|n+ k, n− l〉.

Now, making the variable change n− l → n in the sum,

and using the relation(
n+ l + k

k

)(
n+ l

l

)
=

(
n+ k + l

n

)(
k + l

l

)
, (64)

this state can be rewritten as

√
P(l)|ψ′′〉AB = N (k, λ)(1− T )l/2λl

(
k + l

l

)1/2

×
∞∑
n=0

(Tλ2)n/2
(
n+ k + l

n

)1/2

|n+ k + l, n〉

=
√
P(l)|Ψ(k+l)√

Tλ
〉. (65)

Notice that by properly choosing the transmissivity of
the beam-splitter so that λ′ =

√
Tλ, the final state is

|Ψ(k+l)
λ′ 〉. Therefore, the last step of the protocol con-

sists of applying the transformation |Ψ(k+l)
λ′ 〉 → |Ψ(k)

λ′ 〉
described above in order to finalize the map |Ψ(k)

λ 〉 →
|Ψ(k)
λ′ 〉. It is important to remark that our protocol is fully

deterministic. Despite the randomness of the photon-
counter outcome, the determinism is recovered by choos-

ing a different transformation |Ψ(k+l)
λ′ 〉 → |Ψ(k)

λ′ 〉 for each
l, such that the protocol always ends up in the final state

|Ψ(k)
λ′ 〉.
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