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3Departament d’Òptica, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
4Quantum Information and Communication, Ecole Polytechnique de Bruxelles, CP 165,

Université Libre de Bruxelles, 1050 Bruxelles, Belgium
(Received 3 November 2011; published 16 March 2012)

A long-standing open problem in quantum information theory is to find the classical capacity of an

optical communication link, modeled as a Gaussian bosonic channel. It has been conjectured that this

capacity is achieved by a random coding of coherent states using an isotropic Gaussian distribution in

phase space. We show that proving a Gaussian minimum entropy conjecture for a quantum-limited

amplifier is actually sufficient to confirm this capacity conjecture, and we provide a strong argument

towards this proof by exploiting a connection between quantum entanglement and majorization theory.
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During the 1940s, Shannon developed a mathematical
theory of the ultimate limits on achievable data transmis-
sion rates over a communication channel [1], a work that
has been central to the advent of our information era. Since
information is necessarily encoded in a physical system
and since quantum mechanics is currently our best theory
of the physical world, it is natural to seek the ultimate
limits on communication set by quantum mechanics. Since
the 1970s, scientists started investigating the improve-
ments that quantum technologies may bring to optical
communication systems; see, e.g., [2–4]. Because no
proper quantum generalization of Shannon’s theory existed
at that time, the usual approach was to compare the per-
formance of different encoding and decoding schemes for a
given optical channel. This provides lower bounds but does
not give the ultimate capacity nor the optimal quantum
encoding and decoding techniques.

In the 1990s, Holevo and Schumacher andWestmoreland
[5,6] set the basis for a quantum generalization of
Shannon’s communication theory. Consider a quantum
channel M and a source A ¼ fpa; �ag of independent
and identically distributed (i.i.d.) symbols. For each use of
the channel M, Alice sends the quantum state �a with
probability pa, encoding the letter a. One defines the
Holevo information

�ðA;MÞ ¼ S½Mð�Þ� �X
a

paS½Mð�aÞ�; (1)

where � ¼ P
apa�a and Sð�Þ is the von Neumann entropy

of the quantum state � [7]. The Holevo information � gives
the highest achievable communication rate over the channel
M for a fixed source A, which may require a collective
quantum measurement over multiple uses of the channel in
order to achieve the optimal decoding operation. By max-
imizing Eq. (1) over the ensemble of i.i.d. sourcesA under
an energy constraint, we obtain the Holevo capacity

CHðMÞ ¼ max
A

�ðA;MÞ: (2)

For some highly symmetric channels, such as the qubit
depolarizing channel, the Holevo capacity actually gives
the ultimate channel capacity. For a long time, it was widely
believed that this situation prevails for all channels; that is, it
was assumed that input entanglement could not improve the
classical communication rate over a quantum channel.
However, this was disproved in Ref. [8], so that the best
definition of the classical capacity that we currently have
requires the regularization

CðMÞ ¼ lim
n!1

1

n
CHðM�nÞ; (3)

whereM�n stands for n uses of the channel.
An important step towards the elucidation of the classi-

cal capacity of an optical quantum memoryless channel
was made in Ref. [9], where the authors showed thatCðMÞ
of a pure-loss channel—a good (but idealized) approxima-
tion of an optical fiber—is achieved by a single-use ran-
dom coding of coherent states using an isotropic Gaussian
distribution. It had long been conjectured that such an
encoding achieves CðMÞ of the whole class of optical
channels called single-mode phase-insensitive Gaussian
bosonic channels [4], including noisy optical fibers and
amplifiers. Actually, proving a slightly stronger result
known as the minimum output-entropy conjecture, namely,
that coherent states minimize the output entropy of single-
mode phase-insensitive channels, would be sufficient to
prove this conjecture on the capacity of such channels [10].
Unfortunately, both conjectures have escaped a proof for
all phase-insensitive channels but the pure-loss one.
In this Letter, we attempt to prove the minimum output-

entropy conjecture for a single use of a single-mode
phase-insensitive Gaussian bosonic channel M, which is
believed to capture the hard part of the conjecture for
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multiple uses of the channel. We show, by using a decom-
position of any phase-insensitive channel into a pure-loss
channel and a quantum-limited amplifier, that solving the
conjecture for a quantum-limited amplifier is sufficient.
This opens a novel way of attacking the conjecture, using
the Stinespring representation of an amplifier channel as a
two-mode squeezer, and exploiting the connection
between entanglement and majorization theory.

Quantum model of optical channels.—Most common
quantum optical single-mode channels can be modeled as
a single-mode Gaussian bosonic channel. It is a trace-
preserving completely positive map fully characterized
by the action on the Weyl operators of two 2� 2 real
matrices, X and Y [11–13]. An intuitive understanding of
X and Y is given by the action of the channel on the mean
vector d and covariance matrix � of the input state:

d ! Xd; � ! X�XT þ Y: (4)

For the map to be completely positive, X and Y must
satisfy [14]

Y � 0; detY � ðdetX � 1Þ2; (5)

where the variance of the vacuum quadratures was normal-
ized to 1 [11]. The map is called quantum-limited when the
second inequality in Eq. (5) is saturated.

Phase-insensitive optical channels, such as optical fibers
or amplifiers [4], correspond to X ¼ diagð ffiffiffi

x
p

;
ffiffiffi
x

p Þ and Y ¼
diagðy; yÞ, with x being either the attenuation 0 � x � 1 or
the amplification 1 � x of the channel and y the added
noise variance. By using the composition rule of Gaussian
bosonic channels [14], it is easy to show that every phase-
insensitive channel M is indistinguishable from the con-
catenation of a pure-loss channel L of transmissivity T
with a quantum-limited amplifier A of gain G; see Fig. 1.

The parameters T and G must satisfy the relations x ¼ TG
and y ¼ Gð1� TÞ þ ðG� 1Þ in order to guarantee M ¼
A �L . Three limiting cases are of particular interest:
(i) the pure-loss channel, corresponding to G ¼ 1 and 0 �
T � 1, having a quantum-limited noise of y ¼ 1� T;
(ii) the quantum-limited amplifier [4] corresponding to
T ¼ 1 and G � 1, with noise y ¼ G� 1 resulting from
spontaneous emission during the amplification process;
(iii) the additive classical noise channel, corresponding to
x ¼ TG ¼ 1 and added thermal noise y ¼ 2ðG� 1Þ.
Reduction of the minimum entropy conjecture.—As

stated earlier, our ultimate goal is to address the following
conjecture.
Conjecture C1.—Coherent input states minimize the

output entropy of any phase-insensitive Gaussian bosonic
channel M.
Three simplifications can be made at this point. First,

due to the concavity of the von Neumann entropy, the
minimization can be reduced to the set of pure input states.
Second, applying a displacement Dð�Þ at the input of the
channel has the same effect as applying Dð ffiffiffi

x
p

�Þ at
the output, i.e., M �Dð�Þ ¼ Dð ffiffiffi

x
p

�Þ �M. So, because
the von Neumann entropy is invariant under unitary evo-
lution, we can restrict our search to zero-mean input states,
that is, states j’i satisfying h’jaj’i ¼ 0, where a is the
modal annihilation operator. Finally, by exploiting the
decomposition M ¼ A �L, it is easy to see, by using
the concavity of the von Neumann entropy, that the mini-
mum output entropy of channel M is lower-bounded by
that of channel A, i.e., min�S½Mð�Þ� � minc S½Aðc Þ�
[15]. Since the vacuum state is invariant under L, we
conclude that proving that vacuum minimizes the output
entropy of channelA implies that vacuum also minimizes
the output entropy of channel M.
The previous straightforward derivation shows that con-

jecture C1 is strictly equivalent to the following one.
Conjecture C2.—Among all zero-mean pure input

states, the vacuum state minimizes the output entropy of
the quantum-limited amplifier A.
Entanglement andmajorization theory.—The Stinespring

dilation of a quantum-limited amplifier of gain G is a two-
mode squeezer of parameter r, with G ¼ cosh2r, which
effects the unitary transformation (see Fig. 1)

UðrÞ ¼ exp½rðaAaE � ayAa
y
EÞ=2�; (6)

between the input mode A and an environmental mode E,

where ayZ and aZ are the creation and annihilation opera-
tors, respectively, of mode Z. Because the entanglement
E½jc iAE� of a pure bipartite state jc iAE is uniquely quan-
tified by the von Neumann entropy of its reduced density
operator �A ¼ TrE½jc iAEhc j�, i.e., E½jc iAE� ¼ Sð�AÞ, we
can equivalently rephrase conjecture C2 as follows.
Conjecture C3.—Among all input states j�iAE � j’i �

j0i of a two-mode squeezer with j’i having a zero mean,
the vacuum state j0iAE � j0i � j0i minimizes the output
entanglement.

FIG. 1 (color online). Any phase-insensitive Gaussian bosonic
channel M is indistinguishable from a composed channel
A �L, where L is a pure-loss channel and A a quantum-
limited amplifier. The Stinespring dilation ofL is a beam splitter
of transmissivity T, while the amplifier A of gain G becomes a
two-mode squeezer of parameter r (G ¼ cosh2r) in which the
input mode A interacts with a vacuum environmental mode E.
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In the remainder of this Letter, we exploit the connection
between entanglement andmajorization theory to attack the
proof of C3. Majorization theory provides a partial order
relation between probability distributions [15,16]. One says
that a probability distribution p ¼ ðp0; p1; . . .ÞT majorizes
another one q (denoted p 	 q) if and only if there exists a
column-stochastic matrix D (a square matrix whose
columns sum to 1) such that q ¼ Dp, showing that q is
more disordered thanp. It implies that all concave functions
of a distribution,most notably the entropy, can only increase
along such a ‘‘disorder-enhancing’’ transformation. From
an operational point of view, an interesting way of proving
majorization is by checking the relations

Xm
n¼0

p#
n � Xm

n¼0

q#n 8 m 2 N; (7)

where p# and q# are the original vectors with their compo-
nents rearranged in decreasing order. The notion of majo-
rization can be extended to entangled states [17]: A bipartite
pure state j�i majorizes another one jc i (denoted j�i 	
jc i) if and only if the Schmidt coefficients of j�imajorize
those of jc i. This guarantees the existence of a determinis-
tic protocol involving only ‘‘local operations and classical
communication’’ (LOCC) that maps jc i into j�i, ensuring
the relation E½jc i� � E½j�i�. We are now ready to intro-
duce the following stronger conjecture (it implies C3).

Conjecture C4.—For any zero-mean state j’i, the state
UðrÞðj’i � j0iÞ is majorized by the two-mode squeezed
vacuum state UðrÞðj0i � j0iÞ.

Infinitesimal two-mode squeezer.—Before addressing
the general case, let us prove C4 for an infinitesimal two-
mode squeezer by expanding the unitary transformation (6)
to the first order in the squeezing parameter r:

UðrÞ ¼ I þ r

2
ðaAaE � ayAa

y
EÞ þOðr2Þ; (8)

where I is the identity operator. By defining the state

j’?i � �ayAj’i=ð1þ �n’Þ1=2, where �n’ ¼ h’jayAaAj’i is
the mean photon number of the input state j’i, the output
state becomes

j�outiAE 

ffiffiffiffiffiffi
�’

q
j’i � j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �’

q
j’?i � j1i; (9)

with �’ ¼ 1=½1þ r2ð �n’ þ 1Þ=4�. For any physical state

j’i with finite energy �n’, one can choose r small enough

so that the condition r �n1=2’ � 1 is satisfied and the ap-
proximation (9) holds. The key point is to realize that,
since the input state j’i has a zero mean, the states j’?i
and j’i are orthogonal, so that the state (9) is already in
Schmidt form. Therefore, if j’i and j�i are two input
states such that �n’ < �n�, then �’ > ��, implying that

UðrÞðj’i � j0iÞ 	 UðrÞðj�i � j0iÞ as a result of Eq. (7).
In other words, any output state is majorized by the states
having a lower mean input photon number. Finally, since
the vacuum state has the minimum mean photon number

( �n’ ¼ 0), this majorization relation proves conjecture C4

for infinitesimal two-mode squeezers.
Majorization relations in a two-mode squeezer.—In

order to address conjecture C4 for any r, let us consider
the number-state expansion of an arbitrary input state
j’i ¼ P1

k¼0 ckjki, which leads to the output state

UðrÞðj’i � j0iÞ ¼ X1
k¼0

ckj�ðkÞ
� i; (10)

where � ¼ tanhr and j�ðkÞ
� i stands for the output state

corresponding to an input Fock state j’i ¼ jki. As shown
in Ref. [15], we have

j�ðkÞ
� i ¼ X1

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðkÞ
n ð�Þ

q
jnþ ki � jni; (11)

with Schmidt coefficients

pðkÞ
n ð�Þ ¼ ð1� �2Þkþ1�2n

nþ k

n

 !
: (12)

We have been able to prove two chains of majorization
relations by considering either different Fock states jki at
the input (for a fixed squeezing parameter r) or different
values of r (for a fixed input Fock state jki). First, when
restricting to Fock states jki, we can prove that

j�ðkÞ
� i 	 j�ðkþ1Þ

� i; (13)

since there exists a column-stochastic matrix

Dnm ¼ ð1� �2Þ�2ðn�mÞHðn�mÞ; (14)

such that pðkþ1Þð�Þ ¼ DpðkÞð�Þ, where HðxÞ is the
Heaviside step function defined as HðxÞ ¼ 0 for x < 0
and HðxÞ ¼ 1 for x � 0. The details of the proof are
provided in Ref. [15], where we also give the explicit
form of an LOCC protocol that deterministically maps

j�ðkþ1Þ
� i into j�ðkÞ

� i. Iterating this procedure, we can easily

prove that j�ðkÞ
� i 	 j�ðk0Þ

� i, 8 k0 � k, for which we also

give the corresponding column-stochastic matrix and
deterministic LOCC protocol.
For our matters here, the central consequence is that

j�ð0Þ
� i 	 j�ðkÞ

� i, 8 k � 0; that is, we have proved conjec-

ture C4 for the restricted, but complete, set of input Fock
states. Remarkably, this would be sufficient to prove the
single-use minimum entropy conjecture if it could be
shown that the output-entropy minimizing input state is
isotropic, i.e., its Wigner distribution is rotationally invari-
ant. This is because the Fock states are the only isotropic,
zero-mean pure states.
Second, given an input Fock state jki, one can show that

there exists a majorization relation in the direction of
decreasing squeezing parameter, that is,

j�ðkÞ
�0 i 	 j�ðkÞ

� i 8 �0 < �; (15)

since one can build [15] a column-stochastic matrix
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RðkÞ
nm ¼ mþ k

m

 !�1�1� �2

1� �02

�
Hðn�mÞ

� ½Lðk;mÞ
n�m�2 � Lðk;mþ1Þ

n�m�1�
02��2ðn�m�1Þ; (16)

with

Lðk;nÞ
m ¼ n

nþ k
k

� �
mþ k

k

� �
�0�2nBð�02; n; 1þ kÞ; (17)

and Bðz; a; bÞ ¼ R
z
0 dxx

a�1ð1� xÞb�1 being the incom-

plete beta function, such that pðkÞð�Þ ¼ RðkÞð�; �0ÞpðkÞð�0Þ.
In Ref. [15], we give a deterministic LOCC protocol

performing the transformation j�ðkÞ
� i ! j�ðkÞ

�0 i.
In Fig. 2, we summarize the two chains of majorization

relations and their implications on the output entangle-
ment. From this, as well as the case of the infinitesimal
two-mode squeezer, it is tempting to conclude that
�n’ < �n� always implies UðrÞðj’i � j0iÞ 	 UðrÞ�
ðj�i � j0iÞ. However, we have numerically observed that
this does not hold in general, which probably reflects the
difficulty of proving the conjecture. As a concrete example,

we note that the state UðrÞ½ð ffiffiffiffiffiffiffi
0:4

p j1i þ ffiffiffiffiffiffiffi
0:6

p j2iÞ � j0i�
has �n ¼ 1:6 mean input photons but is less entangled for

r * 0:75 than j�ð1Þ
� i. Nevertheless, our numerical inves-

tigations have shown that, for an arbitrary input state j’i,
the output states corresponding to different squeezing
parameters satisfy the majorization relation Uðr0Þ �
ðj’i � j0iÞ 	 UðrÞðj’i � j0iÞ for r0 < r. Furthermore, we
have numerically checked that, for a fixed r, the majoriza-
tion relation UðrÞðj0i � j0iÞ 	 UðrÞðj’i � j0iÞ is satisfied
by tens of thousands of random superpositions of the first
21 Fock states, which strongly suggests that conjecture C4
holds.

Conclusion.—Using the decomposition of phase-
insensitive Gaussian bosonic channels into a pure-loss

channel and a quantum-limited amplifier, we have shown
that proving a reduced conjecture for the quantum-limited
amplifier is sufficient to prove the single-use minimum
entropy conjecture. By using Stinespring’s theorem, this
boils down to proving that the vacuum minimizes the out-
put entanglement of a two-mode squeezer. Then, using the
connection between entanglement and majorization theory,
we have provided a partial proof of this conjecture for a
special class of input states, namely, photon number states,
as well as a full solution for the infinitesimal channel. To
prove the conjecture in general, we are left with the (pos-
sibly simpler) task of showing that the output-entropy
minimizing input state is isotropic in phase space; that is,
no symmetry breaking occurs. Thus, apart from reinforcing
the conjecture even further, we believe that our analysis
offers a new possible approach to its proof.
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