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In this paper we study experimentally the properties of three types of quantum -optical random-number
generators and characterize them using the available National Institute for Standards and Technology statistical
tests, as well as four alternate tests. The generators are characterized by a trade-off between, on one hand, the
rate of generation of random bits and, on the other hand, the degree of randomness of the series which they
deliver. We describe various techniques aimed at maximizing this rate without diminishing the quality (degree
of randomness) of the series generated by it.
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I. INTRODUCTION

Random numbers play an important role in many applica-
tions. For example, Monte Carlo methods rely on random
inputs and are important methods in several branches of
science. In cryptography, randomness is very often used for
the generation of a secret key. On top of that, random numbers
have important applications in a variety of different sectors,
for example, banks, financial institutions, casinos or gambling
halls, and video games. Very often, random series are generated
by pseudorandom generators but as their name indicates, such
generators are likely, in principle, to be “broken” because
the knowledge of a finite number of bits of a pseudorandom
series suffices to predict the rest of the series. This is the
case, for instance, with many random generators that are used
in gambling, which are characterized by a long but finite
periodicity. The weaknesses exhibited by pseudorandom gen-
erators regarding security led to the development of quantum
random-number generators (QRNGs). Indeed, Heisenberg un-
certainties show that, in a sense, unpredictability is an intrinsic
property of quantum systems: whatever the state of a quantum
system is, there always exist observables characterized by a
nonzero unpredictability. The price to pay, in comparison with
pseudo–random-number generators (RNGs), is that the series
generated with quantum generators are always characterized
to some extent by undesirable but unavoidable correlations.
Indeed, each measuring device is characterized at some level
by an amplification process aimed at “bringing quantum
fluctuations at the macroscopic level.” Now, macroscopic
quantities always exhibit some kind of inertia, characterized
by an intrinsic memory time or correlation time that limits the
production rate of random numbers. Therefore fast quantum
random generators are most often accompanied by a hashing
procedure that erases the undesired correlations that are present
in the “brutto” random series which they generate.

The aim of our paper is to study different types of
quantum-optical random-number generators (QORNGs). The
first of them was developed by Lamoureux and co-workers at
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the Université Libre de Bruxelles and is based on statistical
fluctuations of the intensity of a laser field; i.e., it requires
an optical detector that works in the continuous regime. The
other two require optical detectors in the “discrete” regimes,
i.e., single-photon detectors). The second one was already
conceived in 1994 [1], and it is based on the idea that a photon
that enters a symmetric (50:50) beam-splitter has probability
one half to be transmitted and one half to get reflected; hereafter
we call it the “split” method. It is thus a direct realization of
an unbiased “tossing coin” (or Bernoulli) process. We based
our study on data collected from an implementation that was
realized at the Vrije Universiteit Brussel (VUB), using as the
photon source a strongly attenuated laser source, and particular
care was brought to the study of the correlations induced by
the dead time of the single-photon detectors that were used
to collect the data. A third, new type of QORNG was also
conceived and realized at the VUB, in which the random
nature of the detection time of a photon emitted by a strongly
attenuated laser source was exploited in order to generate
random bit series that maximize the bit production rate—being
given the finite dead time of a single-photon detector.

The paper is structured as follows. In Sec. II we describe
the aforementioned generators from a physical point of view.
In Sec. III we present some standard tests of randomness that
are commonly used in cryptography [the National Institute for
Standards and Technology (NIST) tests] and some alternate
tests that allow us to gain a more “qualitative” picture of
the correlations that are possibly present in the random bit
series. In Sec. IV we apply this battery of tests to the
characterization of random series generated with the ultrafast
QORNG described in Sec. II, and we show how they allow
us to develop well-chosen strategies aimed at restoring the
randomness of the raw series delivered by the generators
without diminishing their speed too much. In Sec. V, we
treat the “discrete” generators described in Sec. II in a similar
fashion. In Sec. VI, we conclude.

II. PHYSICAL DESCRIPTION OF THREE QORNG’s

The first generator studied by us is a high-bit-rate QRNG
based on continuous variables which was developed at the
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QuIC of the Université Libre de Bruxelles. Essentially it
generates random numbers by measuring fluctuations of a
laser intensity, which makes it possible to generate random
sequences at bit rates of the order of 1 GHz and beyond
(see also Ref. [2] for alternative QORNGs based on laser
fluctuations and Refs. [3,4] for a fast classical RNG based
on classical fluctuations of a laser in a chaotic regime). The
intensity of the laser intensity is measured by a photodiode
and converted into a photocurrent I (t), which fluctuates
because of underlying quantum fluctuations (high uncertainty
in photon number). I (t) is proportional to the number of
photoelectrons, and the probability of a given number of
photoelectrons in an interval of time follows the Poisson
distribution:

P (n = k) = λk

k!
e−λ. (1)

Since I (t) is proportional to the number of photoelectrons,
it follows that the photocurrent variance is proportional to the
variance of the photon-number fluctuations. As is well known,
the variance of the photon-number fluctuations, denoted
(�n)2, obeys

(�n)2 = 〈n2〉 − 〈n〉2 = λ2 + λ − λ2 = 〈n〉. (2)

Because the photocurrent fluctuations follow the photon-
number fluctuations, the variance of the photocurrent is (in
analogy to the variance of the photon-number fluctuations)
proportional to the average photocurrent, i.e., (�I )2 = c〈I 〉,
with c a constant [5]. This was also experimentally confirmed
as shown in Fig. 1. It is worth noting that, as can be seen
in Fig. 1, there is background noise for I < 10 mA. This is
approximately the lasing threshold, so we may conclude that
many sources of unwarranted “classical” noise are present.
The experimental curve is significantly above the theoretical
shot-noise curve even in the 30-mA range. This excess noise
could be an explanation for why the SEQUR QRNG (a
prototype version that was used for our experiments) is not
an ideal RNG. The classical sources of fluctuations, such
as electromagnetic pollution (radio, mobile phones, etc.),
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FIG. 1. The variance of the measured laser intensity (circles)
is directly proportional to the average value of the laser current
according to Eq. (2) (straight line).

relative-intensity noise (RIN), and thermal noise also affect the
laser intensity and should be minimized. The electromagnetic
pollution can, in principle, be filtered out by Faraday insulation
of the generator. In particular, the RIN is the dominating source
of classical noise. RIN fluctuations occur at the semiconductor
laser relaxation frequency fRO, which is proportional to the
square root of the injection current above the threshold:
fRO = C

√
J − Jth [6]. The center frequency of the RIN is

proportional to the laser injection current and is displaced
to higher frequencies as the injection current increases. As
the current increases, the RIN quickly dissipates because
the photodetector’s limited bandwidth (2 GHz) no longer
measures it. Indeed, C = 2.22 GHz/

√
mA and J = 5.84Jth, so

that fRO = 14.3 GHz � f PD
3 dB = 1 GHz. The remaining noise

that is left is shot noise limited. This ensures that most of the
contributions to the laser intensity fluctuations come from the
quantum regime, i.e., fluctuations of the vacuum. On the other
hand, when I > 40 mA there is a decrease in noise simply
because the photodetector becomes saturated. Therefore in
order to avoid classical noise sources near the threshold or
reduced quantum noise because of photodetector saturation, it
is best to operate the laser at around 30 mA.

As the detector measures (displaced) vacuum fluctua-
tions, the obtained random values nevertheless require some
additional treatment. In principle, a simple comparator is
sufficient to produce random bits. Now, the resolution of the
acquisition card (Agilent Acqiris) allowed us to perform an
8-bit discretization step which provided us with more insight
into the system at hand. To do so, the measured values
are shifted to a strictly positive interval and rounded off in
such a way that they become positive-Gaussian-distributed
integers within the interval of [0, 255]. These 256 values are
finally converted to 8-bit values following the well-known
Leibniz’s binary decomposition of positive integer numbers,
and each one of the bits contributes to a different (random)
bit sequence. The first bit reveals, for instance, whether the
value is comprised in [0, 127] or [128, 255]; the last (eighth)
bit measures the parity of the outcome. All analysis of the
SeQuR QRNG that we describe in the following sections was
performed on 10 random data (integer) samples of length 106.
Consequently, this provides 10 × 8 different bit series of length
106 to analyze.

The split QORNG relies on the random choice of a single
photon at a beam splitter [1,7]. In this case the randomness is,
in principle, guaranteed by the laws of quantum mechanics,
thoug, one still has to be very careful not to introduce any
experimental artifact that could correlate adjacent bits. Differ-
ent experimental realizations have been demonstrated [8–10]
and one group, ID-Quantique, commercialized the RNG [11].
The Quantis QRNG consists of a single-photon source,
a transmission element including a semitransparent mirror
where the random process takes place, and two single-photon
detectors, each corresponding to one bit state. This system is
controlled by triggering electronics for the photon source and
acquisition electronics for the single-photon detectors. The
processing and interfacing subsystem performs statistical and
hardware checks as well as unbiasing of the sequence through
a (kept-secret) hashing function. The unbiasing of the physical
process in the Quantis QRNG is needed as it is very difficult
to guarantee that each detector is set off 50% of the time.
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FIG. 2. (Color online) Photo of our setup, which is based on the
Quantis QRNG.

According to the developers, the difference between the two
probabilities of the detectors being triggered is less than 10%.
Quantis produces random bits at a rate of 4 to 16 Mbits/s.
More technical details about this quantum random source are
given in [11].

We have reproduced the scheme of ID-Quantique [11]
without the hashing function in order to have direct access
to the raw, brutto, data. Our setup (Fig. 2) is composed of a
diode laser emitting at 635 nm, two neutral density filters, a
beam splitter, two single-photon detectors, and an acquisition
card which is connected to a PC. The single-photon detectors
are avalanche photodiodes produced by ID-Quantique. They
are characterized by a dead time Td ≈ 50 ns.

The high intensity regime is characterized by the appear-
ance of strong deviations from the ideal, Poisson, distribution
due to the dead time of the detectors, manifested by peaks
separated by a time close to the dead time, as shown in
Fig. 3(a). From the interpulse time distribution for large times
where it becomes linear [for the right part of Fig. 3(a) the
short-time correlations induced by the dead-time mechanism
of the detector fade away], we are able to estimate the average
time between two photons. Doing so, we find that the average
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FIG. 3. (Color online) Experimental [filled (blue) circles] and
theoretical [solid (red) lines] histogram of time delay between clicks
in photon detector 1 at (a) high intensity and (b) low intensity.

time in this case is τ = 36 ns. This is faster than the bit rate of
4 Mbits/s of the Quantis QRNG [11], which gives an average
time between photons τ = 250 ns. In order to simulate this
regime, we strongly attenuate the laser beam and investigate
the corresponding behavior [see Fig. 3(b)]. From the slope
in the logarithmic graph we estimate that the average time
between clicks is of the order of τ = 294 ns.

Our hypothesis to explain the appearance of the multiple
peaks is that at such a high intensity there is a high probability
of afterpulsing, i.e., the probability of detecting a photon in-
creases at t = Td,2Td,3Td, . . .. A simple model accounting for
this hypothesis is to take the detector receptivity as η = 0
for 0 � t � T d and η = p(1 + qn) for nTd � t � (n + 1)T d

for n = 0,1,2, . . . [for Fig. 3(a), q = 2]. Combining this with
the interpulse time distribution for an ideal Poisson process,
i.e., the probability that the next photon is detected after a time
t as given by

P (t) = 1

τ
exp

(−t

τ

)
, (3)

we obtain the solid (red) line in Fig. 3. For the case of a
low input intensity there is no such afterpulsing phenomenon
and the experimental curve is well fitted by the exponential
distribution with an exponent of −1/τ [see Fig. 3 (b)].

On the basis of collected data, it is possible to generate
a random binary file. In the split method, the clicks in one
photon-detector will be the 1’s in the final file, the clicks in
the other photon-detector will be the 0’s, and all events of no
clicks or two simultaneous clicks in the two photon detectors
will be removed. This is, roughly, the method proposed by
Rarity and co-workers [1] and Szovil [7], which has been
implemented in [8,10] (it is used in the Quantis QRNG [11],
with the adjunction of a kept-secret hashing function).

The parity QORNG is the second method to generate a
random-number series based on the parity of the time (in
nanoseconds) for which the events (clicks) occur. If this time is
even, the bit will be 0; if this time is odd, the bit will be 1. The
principal advantages of this method are (i) that it requires the
use of only one photon detector to generate a random number
and (2) that even in the high-intensity regime it delivers random
series of very high quality, as we shall see in Sec. V. The setup
to carry out this method is the same setup used previously
(see Fig. 2), except that it requires only one photon detector
and no beam splitter. Note that the setup with two detectors
and a beam splitter could be used too; it would allow us to,
roughly, double the generation rate after elimination of the
simultaneous clicks.

III. TESTS OF RANDOMNESS

Despite growing interest in RNGs, few official standards
exist that address randomness analysis. We hereafter consider
the National Institute for Standards and Technology (NIST)
battery of tests, consisting of 16 statistical tests [12], which
can be found at the Web page of the Computer Security
Research Center. The NIST aims to address the independence
(determining whether or not there is any redundancy) and
coverage (determining how many distinct types of nonran-
domness can be investigated and assess whether or not there
are a sufficient number of statistical tests to detect deviation
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from randomness). Furthermore, it is worth mentioning that the
NIST test suite was one of the cryptographic tools which was
involved in the evaluation of the candidates for the Advanced
Encryption Standard [13]). The NIST tests calculate a p value:
p ∈ [0,1] is the probability of obtaining a test result at least
as extreme as the one that was actually observed, assuming
that the null hypothesis is true, i.e., the tested sequence is
considered random. A p value �0.01 indicates that the tested
series of bits is random, with a confidence interval of 99%.

In Brussels, we have developed additional, more qualitative
tests of randomness [14] that we describe now. The law
of large numbers (LLN) test stems from the LLN stating
that the average value of a random sample converges to the
expected value as the size of the sample increases. The LLN is
important because when it is fulfilled it predicts the expected
dispersion from the mean given the length of the series. More
concretely, given a sequence of independent random vari-
ables ε = ε1,ε2, . . . ,εn with expected values E(ε1) = E(ε2) =
. . . E(εn) = μ and variance Var(εi) = σ 2. Let us consider the
sample average ε̄n = 1

n
(ε1 + ε2 + . . . + εn). According to the

lLLN, Var(ε̄n), the variance of the sample average, is equal
to σ 2

n
. Therefore, its standard deviation typically behaves as

σ√
n

; for a sequences of random bits 0 and 1, σbit√
n

= 1
2
√

n
. In

our implementation of the test, a sequence of n random bits is
divided into M different blocks of size N. As we vary the size
of the sample N, M will vary accordingly, i.e., M decreases as
N increases (M = � n

N
	). The M different blocks are used to

calculate the average of the standard deviations of the sample
averages.

The autocorrelation test checks the autocorrelation Cm

found by comparing the original bit sequence with the
same sequence shifted by m bits. To this aim, we first
convert the bit sequence ε = ε1,ε2, . . . ,εn into a sequence
X = X1,X2, . . . ,Xn of + 1’s and −1’s via Xi = 2εi − 1, so
that correlations in the sequence will have a positive contri-
bution and anticorrelations will have a negative contribution.
Thereafter the (normalized) autocorrelation Cm is calculated
as

Cm =
∑(n−m)

i=1 Xi.Xi+m

n − m
, (4)

with n the total length of the sequence. The amount of
shifted bits m is called the degree of correlation and is varied
from order 10 to order 104. This test enables us not only to
investigate possible memory effects but also to pinpoint at
which magnitude they occur.

At the beginning of this section, we invoked the LLN.
This law is, in principle, not valid when memory effects
are present because the random variables are no longer
independently distributed. However, one can show that it is
possible to consistently make use of the LLN even when a
memory effect is present, provided it is a short-range memory
effect. For example, it is highly expected that hardware RNGs
will pass the LLN test, although they exhibit short-range
memory effects. It is for such effects that one needs other
tests, for example, the autocorrelation test described above.
Nevertheless, such tests are often not well suited for revealing
the existence of long-range memory effects. The existence
of long-range memory effects can be revealed by the Hurst

parameter test, named after the hydrologist Hurst, who was
the first to apply it when he studied the fluctuation of the
level of the river Nile. It is equal to the difference between
the maximum and the minimum of the cumulated sum of a
random sample divided by a normalization factor equal to the
product of the variance of the distribution and the square root
of the length of the sample:

HN = Maxj

[∑j

i=1(εi − ε̄N )
] − Minj

[ ∑j

i=1(εi − ε̄N )
]

σ
√

N
. (5)

It can be shown [15] that the Hurst parameter must be of the
order of unity for large values of N in the case of a memoryless,
or short-time-memory, stochastic process. In his study of the
fluctuations of the level of the river Nile, Hurst discovered
that this parameter significantly differed from unity, which
means that no Markovian model (or no non-Markovian model
with short-range memory effects) could explain the observed
fluctuations.

Besides, the floods of the river Nile exhibit another effect
called the Joseph effect [15], according to which seven wet
years when more land is flooded by the Nile are followed by
seven drier years when less land is flooded. Hurst discovered
that indeed some trends tend to persist over time. The
persistence test measures such trends by looking at the sign
of the departure from the average value of the data over M
successive blocks (subsamples). If this parameter is positive
or negative, respectively, persistence or antipersistence occurs.
The persistence parameter is calculated as follows. Let us
start by converting the bit sequence ε = ε1,ε2, . . . ,εn into
a sequence X = X1,X2, . . . ,Xn of + 1’s and −1’s. Next,
consider

P̃m =
∑N−m

j=m Zj

N − 2m + 1
, (6)

with Zj = Aj .Bj , where

Aj =
j∑

i=j−m+1

Xi and Bj =
j+m∑

i=j+1

Xi. (7)

It is clear that since Xi = ±1, both
∑

Xi represent the
binomial sum over a block of length m. Moreover, P̃m is
Gaussian distributed, with mean 〈P̃m〉 = 0 and standard devi-
ation σ (P̃m). Besides, one can easily see that the mean 〈Zj 〉 =
〈Aj 〉〈Bj 〉 = 0, that the squared mean 〈Z2

j 〉 = 〈A2
j 〉〈B2

j 〉, and
that 〈A2

j 〉 = 〈B2
j 〉. Consequently, we have that

σ (P̃m) = σ (Zj )√
N − 2m + 1

= 1√
N − 2m + 1

√〈
Z2

j

〉 − 〈Zj 〉2

= 1√
N − 2m + 1

√〈
A2

j

〉〈
B2

j

〉 = 1√
N − 2m + 1

〈
A2

j

〉
= 1√

N − 2m + 1
σ 2(Aj ).

Now, the distribution of Aj can be estimated on the basis of
a direct analogy with coin tossing. Let us assume therefore
that we toss a coin m times (in other words, we generate
a random bit value m times) and associate the value head
(H) with + 1 and the value tail (T) with −1. Formally, (T +
H )m = �m

q=0T
q · Hm−q · m!

q!(m−q)! . Obviously, the probability
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of getting + 1 q times and −1 m − q times is equal, up to a
global normalization factor C, to C·m!

q!(m−q)! . It is easy to check

that C = 1
2m , temporarily assigning the value + 1 to H and T

in the expression above. Accordingly, the probability of getting
Aj = q − (m − q) = 2q − m is m!

2mq!(m−q)! = m!

2m
(Aj +m)

2 !
(m−Aj )

2 !
,

with Aj varying from −m to +m by even increases: Aj ∈
{−m, − m + 2, − m + 4, . . . ,m − 2,m}. Now that we know
how Aj is distributed, we can compute its variance σ 2(Aj ).
The computation goes as follows:

σ 2(Aj ) = 1

2m

m∑
q=0

(2q − m)2 · m!

q!(m − q)!

= 1

2m

m∑
q=0

(4q2 − 4qm + m2) · m!

q!(m − q)!

= m.

If we now normalize P̃m by

σ (P̃m) = σ 2(Aj )√
N − 2m + 1

, (8)

then we are left with a Gaussian random variable with mean 0
and standard deviation 1. Therefore, we define the persistence
parameter Pm as follows:

Pm = (
√

N − 2m + 1)P̃m

m
. (9)

In what follows we specify the persistence parameter Pm with
respect to the block size as our algorithm calculates it for
successively larger block values up to m = 1000.

For each of the aforementioned VUB tests we assign a
p value; this is illustrated hereafter for the LLN test. First,
let us convert the binary sequence ε = ε1,ε2, . . . ,εn to a
±1 sequence X = X1,X2, . . . ,Xn. Considering that in the
qualitative version of this test, the sequence is divided into
M different blocks of length N (n = M.N ), we introduce ȳj ,
i.e., the average value over the j th block:

ȳj = 1

N

N∑
i=1

X(j.N)−N+i , with j = 1 . . . M. (10)

Introducing uj = ȳ2
j we have that, according to the LLN, for

large M,

1

M

M∑
j=1

uj = 〈uj 〉 + O

(
σuj√
M

)
. (11)

Using here σ 2
y = 〈y2〉 − 〈y〉2 leads to

1

M

M∑
j=1

ȳ2
j = 〈ȳ2

j 〉 + O

(
σuj√
M

)

= 〈ȳj 〉2 + σ 2
ȳj

+ O

(
σuj√
M

)

= 〈ȳj 〉2 + σ 2
X

N
+ O

(
σuj√
M

)
,

with 〈ȳj 〉 = 〈Xi〉 = ∑n
i=1 Xi and σ 2

X = ( 1
n

∑n
i=1 X2

i − 〈X〉2).
So we have that⎛

⎝ 1

M

M∑
j=1

y2
j

⎞
⎠ − 〈ȳj 〉2 − σ 2

X

N︸ ︷︷ ︸
Z̃

= O

(
σuj√
M

)
, (12)

i.e., Z̃ is Gaussian distributed around 0, with variance
σuj√
M

.

Now let us consider a normalized version of Z̃ by defining the
variable Z as

Z =
√

M
((

1
M

∑M
j=1 y2

j

) − 〈ȳj 〉2 − σ 2
X

N

)
σuj

. (13)

Consequently, Z is Gaussian distributed, with mean 0 and
variance 1. Moreover, the cumulative distribution function
	(z) gives us the probability that the random variable
Z is not larger than a given value z and is defined
as

P (Z � z) = 	(z) = 1√
2π

∫ z

−∞
e

−t2

2 dt = 1

2

(
1 + erf

(
z√
2

))
,

(14)

with erf the so-called error function. For positive z Eq. (14)
becomes

P (|Z| � z) = 2φ(z) − 1 = erf

(
z√
2

)
, (15)

so that we can obtain the p value as

pLLN = 1 − erf

( |Z|√
2

)
= erfc

( |Z|√
2

)
, (16)

with erfc the so-called complementary error function. It is
worth noting that in our qualitative approach, we get a
complete overview of the behavior of the standard deviation
in the sequence, whereas in the quantitative approach we
obtain information for a single sequence length N . Let us
now consider the expressions for the p value that can be
associated with the three other aforementioned qualitative
tests.

A p value associated with the autocorrelation test can be
derived in a similar way as with the frequency test. Recall
Eq. (4), and let us introduce the parameter Cm defined by

Cm =
∑(n−m)

i=1 Xi.Xi+m

n − m
=

∑(n−m)
i=1 Yi

n − m
, (17)

with m the degree of the correlation and n the length of the
tested bit sequence. As one can see from Eq. (17), the sequence
Y is again a sequence of ±1 and, conversely, a binary series. If
no correlations are present, the proportions of 0’s and 1’s in the
latter sequence should be approximately the same. By the De
Moivre–Laplace theorem, for sufficiently large data sets (in
this case, of length n − m), the probability distribution of the
binomial sum Cm, normalized by its standard deviation σ (Cm),
is closely approximated by a standard normal cumulative
distribution 	(z). Since 〈Y 〉 = 0 and 〈Y 2〉 = n − m, we have
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that

σ (Cm) =
√√√√ 1

(n − m)2

n−m∑
i−1

σ 2(Yi) (18)

=
√

〈Y 2〉 − 〈Y 〉2

n − m
= 1√

n − m
. (19)

Thus

P

(∑(n−m)
i=1 Yi√
n − m

� z

)
= 	(z) = 1

2

(
1 + erf

(
z√
2

))
. (20)

This implies that, for positive z,

P

( | ∑(n−m)
i=1 Yi |√
n − m

� z

)
= 2	(z) − 1 (21)

= erf
( z√

2

)
, (22)

with erf the error function. Filling in the test statistic z with
our observed value Z,

Z =
∣∣∑(n−m)

i=1 Yi

∣∣
√

n − m
, (23)

we obtain the p value

pcorr = 1 − erf

(
Z√

2

)
= erfc

(
Z√

2

)
, (24)

with erfc the complementary error function, (16). Again, if the
p value is ∼0.01, then one should consider that the sequence
is not random.

In order to establish a p value for the Hurst parameter,
let us first recall Eq. (5), and let us introduce the following
abstraction, known as the R/s statistics:

Maxj

[ ∑j

i=1(xi − x̄N )
] − Minj

[ ∑j

i=1(xi − x̄N )
]

σ
√

N
= R

s

1√
N

,

(25)

with s = σ the standard deviation of the random sample.
Although an exact distribution of the R/s statistic is compli-
cated, it was Feller [16] who found the asymptotic distribution
of Eq. (25) for the case of independent (not necessarily
normally distributed) values of x. Later in 2000, Conniffe and
Spencer [17] improved greatly the right-hand-tail accuracy of
the distribution. Since the hypothesis test implies the rejection
of the test statistic if Eq. (25) exceeds the order of unity, this
right-hand-tail approximation fits our purposes:

P

(
1√
N

R

s
> z

)
= 2

(
4

(
z + 1.4√

N

)2

− 1

)
e
−2(z+ 1.4√

N
)2

. (26)

Inserting the observed value Z

Z = R

s
√

N
, (27)

which is our test statistic, the p value is calculated as

pHurst = 2

(
4

(
Z + 1.4√

N

)2

− 1

)
e
−2(Z+ 1.4√

N
)2

. (28)
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FIG. 4. (Color online) Law of large numbers [vertical (black)
line] and SeQuR QRNG: raw data for the bit1[open (blue) circles and
solid (blue) line] and bit3 [(red) X’s and dashed (red) line] series. The
bit1 series reveals a substantial irregularity of the standard deviation,
while the bit3 series behaves as would be expected for a random bit
series. This is also confirmed by the example p values calculated for
both series.

Establishing a p value for the persistence test is rather
straightforward. Recall from Eq. (9) that Pm is Gaussian
distributed, with mean 0 and standard deviation 1. Therefore,

P (|Pm| � z) = erf
( z√

2

)
, (29)

with erf the error function [cf. Eq. (16)]. Consequently, the p

value is obtained as

ppers = 1 − erf

( |Pm|√
2

)
= erfc

( |Pm|√
2

)
, (30)

with erfc the complementary error function.

IV. CHARACTERIZATION AND UNBIASING OF THE
SEQUR QORNG

The NIST and VUB batteries of tests were first performed
on what we call raw data: those generated by the SEQUR
QORNG bit series without any filtering or post-treatment. In
general, the eight different bit series obtained from the SeQuR
generator failed a lot of randomness tests of the NIST test
battery. Nevertheless, despite the poor results for all eight bit
series, the two first bit series, i.e., “bit1” and “bit2”(which
correspond to the sequences obtained from the two most
significant bits of the integer data), performed worse than the
six less significant ones. This can be observed from Table I,
where we list the average p values for the different NIST tests
for the bit1 and bit3 series. Furthermore, this is also revealed by
the qualitative tests that we developed complementary to the
NIST tests (see, for instance, Figs. 4 and 5 for the performance
regarding the LLN and autocorrelation tests). Indeed, looking
at Fig. 4, we observe that the standard deviation for the bit1
series is too large [open (blue) circles and solid (blue) line].
A similar result is observed for the bit2 series. The last six bit
series obtained from the raw data behave similar to the bit3
series shown by the (red) X’s and dashed (red) line in Fig. 4.
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TABLE I. SeQuR QRNG, raw data: Results for NIST tests considering the “bit1” and “bit3” series. For each test the average p value and
number of sequences that passed the test are listed.

Bit1 Bit3

Test name p value No. successes p value No. successes

Frequency 0.00 0/10 0.00 0/10
Block frequency 0.00 0/10 0.15 7/10
Runs 0.00 0/10 0.10 3/10
Longest run 0.00 0/10 0.45 10/10
Binary matrix rank 0.52 10/10 0.51 9/10
Spectral 0.00 0/10 0.50 10/10
Nonoverlapping

template 0.04 1/10 0.48 10/10
Overlapping

template 0.00 0/10 0.49 10/10
Universal statistical 0.00 0/10 0.54 10/10
Linear complexity 0.46 10/10 0.55 10/10
Serial 0.00 0/10 0.48 10/10

0.00 0/10 0.60 10/10
Approximate entropy 0.00 0/10 0.35 10/10
Forward cum. sums 0.00 0/10 0.00 0/10
Backward cum. sums 0.00 0/10 0.00 0/10
Random excursions 0.00 0/10 0.00 0/10
Random exc. variant 0.00 0/10 0.00 0/10

The behavior of the latter sequences is as expected from a
random bit sequence.

The deviation from the LLN for the first two (most
significant) bit series reveals a memory effect in the system
that we attribute to inertia of the implied physical quantities.
Considering the autocorrelation of the bit signal with itself,
we can also observe this memory effect in the bit sequences
constructed from the two most significant bits. In Fig. 5 we plot
the autocorrelation for the bit1 series (the bit2 series behaves
similarly). The sequences coming from the six least significant
bits behave as they should according to the LLN test; as an
example, the bit3 series is shown in Fig. 5. Furthermore,
we observe a decrease in autocorrelation as the order of
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FIG. 5. (Color online) Autocorrelation plot for SeQuR QRNG
raw data: the bit1 series [open (blue) circles and solid (blue) line]
reveals a strong correspondence within the random sequence, while
the bit3 series [(red) X’s and dashed (red) line] behaves as would be
expected for a random bit series. This is confirmed by the p values.

the correlation augments. For the bit1 and bit2 series, the
largest autocorrelation is present at the level of, say, 102

successive bits. Consistently, the eighth significant bit (parity),
corresponding to 128 times smaller fluctuations than the first
significant bit, no longer exhibits significant autocorrelation.
We remark that as the SeQuR QRNG measures a gigahertz
signal, correlations of order 100 bits, for example, correspond
to the influence of a signal at frequency 1 GHz

100 = 10 MHz.
Similar conclusions can be drawn from the study of persistence
and Hurst tests [14].

Without any doubt, the raw data from the SeQuR QRNG
are biased, with some memory effect. Because the sampling is
performed at a high frequency (GHz), and the autocorrelation
test indicates that the largest memory effect occurs from
order 10 to order 100 bits, filtering out these low-frequency
components should effectively improve the quality of the
bit series. As a lot of low-frequency memory is due to
electromagnetic pollution such as radio waves and mobile
phone radiation, we repeated our analysis of the SeQuR QRNG
data after shielding the generator within a Faraday cage.
The following results were obtained: all eight bit sequences
created from the Gaussian data of the SeQuR QRNG exhibit,
according to the NIST tests, similar success rates compared
to their unfiltered counterparts. Nevertheless, we observed an
improvement in the data when we perform our qualitative
tests. This improvement is mainly noticeable in the bit1 and
bit2 sequences. Looking at Fig. 6, for instance, it is clear that
the bit1 sequence exhibits a slight departure from the LLN for
small data samples. The same behavior can be witnessed in
the sequences of bit2. The six other bit series obtained from
the filtered data behave similarly to the bit3 series (see Fig. 6),
which is as expected from a random bit sequence. It is worth
noting that certain NIST tests do not always work, although
certain of our qualitative tests do work. For instance, it can
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FIG. 6. (Color online) Same as Fig. 4, but for SeQuR QRNG
filtered data: the bit1 sequence exhibits a departure from ideal
randomness for data samples smaller than 300, while the bit3 series
behaves as would be expected for a random bit series. The respective
p values confirm this result.

happen that NIST tests based on the frequency test fail in the
case that the distribution of 0’s and 1’s is slightly unbiased,
although the LLN test does not fail. This is so because the
LLN test aims at confirming that the standard deviation of
the average bit value decreases like σ/

√
N , independently of

the value of σ , while the NIST frequency test measures that σ

is very close to 0.5.
The autocorrelation of the bit signal also shows a substantial

improvement after filtering the raw signal (see Fig. 7).
Although the correlation within the bit sequences constructed
from the two most significant bits of the Gaussian samples is
still present, it shows a substantial reduction and stays within
the order of 10 bits (compare with Fig. 5). The bit series coming
from the six least significant bits show no autocorrelation.
Similar results can be found after performing the persistence
and Hurst tests. The presence of the autocorrelation only in the
small order regime, i.e., O(10), gives us much information for
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FIG. 7. (Color online) Same as Fig. 5, but for SeQuR QRNG
filtered data: the autocorrelation plot for the bit1 sequence shows
strong correlations, of order 10, while the bit3 series behaves as
would be expected for a random bit series. The p values show that
the bit 3 sequence passes the test for an interval length of 103.

the improvement of the random data, as well as an indication
of possible bias causes. A highly probable cause for this type
of correlation within the signal could be a sampling rate that
is too fast for the given hardware.

When we look at possible improvements at the software
level, several alternatives exist. The most obvious solution
is to dilate the sample rate by a factor of the order of the
autocorrelation length (10 in this case). Consequently, this
would reduce the speed of the generator by the same factor,
which is not a satisfactorily strategy. A more clever strategy
consists of an XOR operation between bits of the same bit series
that are separated by a distance longer than the correlation
length (for instance, 200). Such bits are a priori decorrelated,
and the XOR procedure has the advantage that although it only
diminishes the bit generation rate by 2, it efficiently suppresses
the correlation between close neighbors in a series. Note that
due to the Gaussian shape of the distribution from which the
eight-bit series are extracted, correlations exist between the
series obtained by realizing an XOR operation between bits
from different bit series. We checked that these correlations
bias the series obtained by XOR-ing, for instance, bit series 1
and 2, so this strategy should be avoided.

An alternative hashing function is the Von Neumann
hashing function (also called the Von Neumann extractor),
which is particularly appropriate when the frequency of 1’s
(0’s) in the series is not exactly one half (feedback may
help to solve this problem, as reported in [18] regarding the
QORNG developed in Vienna). It considers successive pairs
of consecutive bits from the input stream, i.e., it decreases the
bit generation rate by 2. If the two bits match, no output is
generated. If the bits differ, the value of the first bit is output.

Considering the NIST test suite, we observe an improve-
ment in the quality of the series after application of the XOR

(bit1i , bit1i+200) hashing function and/or of the Von Neumann
unbiasing procedure. However, we note that if we apply one
of these hashing functions alone, the results of the NIST
test suite are still globally negative. Finally, we remark that
a combination of the XOR (bit1i , bit1i+200) hashing function
and of the Von Neumann unbiasing procedure (or vice versa)
sufficed to unbias the random series. This is confirmed by the
fact that the series obtained after performing the two hashing
procedures successively successfully pass all NIST tests and,
also, the qualitative tests. We remark that these qualitative
tests are of great importance in the design of such improvement
operations, as they provide us with valuable information on the
behavior of the random series (for instance, the autocorrelation
length is necessary for optimizing the XOR hashing function).

V. CHARACTERIZATION AND UNBIASING OF THE
“SPLIT” AND “PARITY” QORNG

As ishown in Sec. II, the most relevant problem using the
split method is that when the attenuation is low, there is a
strong correlation between neighboring bits. We have checked
this effect in the “slow” (strongly attenuated) regime for the
first time, because in this regime the quality of random series is
optimal (this corresponds to the bit generation rate offered by
the commercialized generator of ID-Quantique). Even then,
some autocorrelation is still present at the level of the brutto
bit series (see Fig. 8), and one can show that the majority
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FIG. 8. (Color online) Autocorrelation in the random file gener-
ated using the split method, in the “slow” and ”fast” regimes, e.g.,
strongly and less strongly attenuated light, with τ = 300 ns and
τ = 190 ns, respectively: solid (blue) line with open (blue) circles
and dashed (red) line with (red) X’s, respectively.

of NIST tests fail. It is easy to check that this correlation is
due to the dead time: its magnitude can be estimated as the
dead time of the photon detector divided by the average time
between two photons. For the strongly attenuated regime this
gives 45 ns/300 ns = 0.15—in good agreement with the value
at 100 (the correlation between successive clicks) for the solid
(blue) line with (blue) circles in Fig. 8. The dashed (red) line
with (red) X’s corresponds to an average time between two
clicks of the order of 190 ns, and indeed the autocorrelation
between first neighbors is then at a ratio 3/2 of the one obtained
for 300 ns. The negative sign is due to the dead time: after a
click occurs in one detector, it is more likely to be followed by a
click in the other detector, which constitutes an anticorrelation
( + 1 followed by −1, and vice versa).

We applied the Von Neumann extractor [19] to the bit
series of the split generator in order to improve the quality
of the random series, according to the strategy outlined in the
previous section. The NIST tests revealed an improvement
of the results, but the series still failed most of the tests.
The autocorrelation test [see the solid (blue) line with open
(blue) circles in Fig. 9] also shows that we still have a
strong correlation in neighboring bits. After applying the
Von Neumann extractor, the autocorrelation becomes positive
because the probability of obtaining 11 or 00 in the hashed
series (that is, 1010 or 0101 in the raw series) is greater than
the probability of obtaining 10 or 01 (that is, 1001 or 0110 in
the raw series), always due to the dead time of the avalanche
photodiode detectors.

According to the strategy outlined in the previous section,
we considered another improvement, which consists of an XOR

operation between two bits that are not correlated; we take bits
separated by a distance longer than the autocorrelation length.
After applying the Von Neumann extractor and then the XOR

(but not the other way around) and checking the randomness
of the resulting series, the file passes all the NIST tests. This
is illustrated by the dashed (red) line with (red) X’s in Fig. 9.

Besides, after applying the improvements to the binary file
generated by the split method (Von Neumann and XOR or the
other way around), in the high-intensity regime, the generated
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FIG. 9. (Color online) Autocorrelation in the random file gener-
ated using the split method, in the “slow”regime and after applying the
Von Neumann extractor [solid (blue) line with open (blue) circles],
the Von Neumann extractor and then XOR [dashed (red) line with (red)
X’s], and XOR and then the Von Neumann extractor [dotted (green)
line with filled (green) circles].

series still failed certain NIST and qualitative tests. We see here
that the advantage regarding the speed that could be obtained
by operating at a rate close to the inverse of the dead time of
the detectors does not compensate the loss of randomness due
to the too fast sampling rate.

The second method for generating a random-number file
is based on the parity of the time (in nanoseconds) for which
the events (clicks) occur. If this time is even, the bit will be
0; on the other hand, if this time is odd, the bit will be 1. The
principal advantage of this method is that it suffices to use
only one photon detector in order to generate a random bit
series. Besides, we checked that the generated bit sequence
passed all the NIST and qualitative tests. If we check, for
instance, the autocorrelation of the series generated through
the parity method that is shown in Fig. 10, we find that
there is no correlation at all with this method, even with low
attenuation, although applying the split method, we observed
a high correlation in the same regime.
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FIG. 10. (Color online) Autocorrelation in the random file gener-
ated using the parity method, in the “slow” and ”fast” regimes: dashed
(red) curve and solid (blue) curves, respectively.
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VI. CONCLUSIONS

From our analysis of the SeQuR and “split” QORNG, we
conclude that the combination of two hashing functions—(i) a
Von Neumann extractor, followed by (ii) an XOR between bits
separated by a distance larger than the correlation distance
revealed by the autocorrelation test—provides a strategy that
is not too expensive regarding the decrease in the bit generation
rate (the speed of the generator) and suffices to restore the loss
of randomness caused by the internal correlations of the bit
series. This strategy could be systematized and applied to other
types of RNGs in the future. Presently we are developing user-
friendly software that was inspired by our study. It incorporates
a “diagnose” program that, after having been fed by a random
series, automatically delivers the results of the quantitative
and qualitative tests described in our paper, but also opens
the way to an online “randomness restoring” process aimed
at improving the quality of biased series, in other words, an
online “optimal unbiaser.”

We also discuss a method, called the parity method, that
opens the way to efficient competitive QRNGs. To realize
this, it suffices, in principle, to have at one’s disposal (i) a
single-photon detector (of dead time D; for instance, D is
of the order of 50 ns in our implementation); (ii) a clock
(of resolution sufficiently smaller than the dead time of the
single-photon detector, say, 1 ns in our case); (iii) an attenuated
laser source that produces mostly single photons separated at
a rate equal to at least 1/D; and (iv) a chip that will connect
i and ii and load a buffer. Combining these elements, it is
possible, in principle, to produce a QORNG that works at
a rate of the order of 1/D, which is better than what can
be achieved with the “split” method. It is worth stressing at

this level that the bit series generated by the parity method
passes successfully all NIST tests as well as our qualitative
tests without imposing the use of any kind of hash functions.
This approach opens the way to a new type of (optimally
fast) discrete QORNG based on single-photon detectors. In
our case we can reach a bit generation rate of the order of
1/D ≈ 2 × 107 Hz. In a version with two detectors, we would
reach more or less 4 × 107 Hz. On the other hand, the ultrafast
SeQuR QORNG that works in the continuous regime makes it
possible to reach, after application of the unbiasing procedures,
a rate of the order of 1 GHz/4 = 2.5 × 108 Hz. Compared to the
commercially available QORNG produced by ID-Quantique
[11], which operates at a rate of the order of 4 × 106 Hz,
these prototypes thus offer promising perspectives. It is worth
noting, however, that, although the parity method delivers
series of a quality comparable to that of series delivered
by the generator of ID-Quantique, without imposing the use
of hashing techniques, it imposes the use of a clock which
operates at a rate faster than the dead time of the single-photon
detectors.
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