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The classical capacity of quantum channels is the tight upper bound for the transmission rate of classical
information. This is a quantum counterpart of the foundational notion of the channel capacity introduced by
Shannon. Bosonic Gaussian quantum channels provide a good model for optical communications. In order to
properly define the classical capacity for these quantum systems, an energy constraint at the channel input
is necessary, as in the classical case. A further restriction to Gaussian input ensembles defines the Gaussian
(classical) capacity, which can be studied analytically. It also provides a lower bound on the classical capacity
and moreover, it is conjectured to coincide with the classical capacity. Therefore, the Gaussian capacity
is a useful and important notion in quantum information theory. Recently, we have shown that the study
of both the classical and Gaussian capacity of an arbitrary single-mode Gaussian quantum channel can be
reduced to the study of a particular fiducial channel. In this work we consider the Gaussian capacity of the
fiducial channel, discuss its additivity and analyze its dependence on the channel parameters. In addition, we
extend previously obtained results on the optimal channel environment to the single-mode fiducial channel. In
particular, we show that the optimal channel environment for the lossy, amplification, and phase-conjugating
channels is given by a pure quantum state if its energy is constrained.
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1. Introduction

Information transmission and processing are ubiquitous in modern human society.
By the end of the XXth century information technologies experienced tremendous growth
accompanied by “exponential” downscaling of the hardware elements. Simple extrapolation
shows that the element size will soon achieve the level where quantum effects cannot be
neglected. This is one of the reasons why the interdisciplinary field known as quantum
information theory appeared. Another reason comes from a possibility to apply particular
properties of quantum systems in order to solve those problems which are intractable using
only classical means. Information theory provides a quantitative measure of information
and the tools for studying the information transmission through communication channels.
A fundamental quantity characterizing their performance is the maximal achievable rate at
which the information can be reliably transmitted. This tight upper bound is called capacity
of the communication channel. If the quantum nature of information carriers is taken into
account one has to describe communication channels as transformations of quantum states.
One of the most general transformations allowed by quantum mechanics is a completely
positive trace-preserving map which is identified with a quantum channel.
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In addition to the information in a usual sense, which can be measured in bits, in
quantum information theory one introduces also other types of information related to the
non-classical properties of quantum states, e.g., entanglement. In our paper we discuss the
classical capacity of quantum channels focussing on bosonic Gaussian quantum channels.
They provide a realistic model for the information transmission via optical communication
lines.

The paper is organized as follows. In Section 2 we define the classical capacity of
quantum channels. In Section 3 we describe Gaussian quantum channels. In Section 4
we introduce the Gaussian capacity and the type of Gaussian ensembles that achieve this
capacity. In Section 5 we present our recently proposed decomposition of Gaussian channels
in terms of a particular fiducial channel, find the Gaussian capacity of the fiducial channel
and discuss its additivity. In Section 6 we apply this decomposition to maximize the
Gaussian capacity of the fiducial channel over the set of states of the environment mode
which respect an energy constraint. In Section 7 we present our conclusion.

2. Classical capacity of quantum channels

Quantum channels are completely positive trace-preserving (CPTP) maps Φ that
act on density operators ρ̂ defined on a Hilbert space H [1]. The transmission of classical
information by quantum channels involves an encoding of classical symbols (alphabet) into
a set of quantum input states ρ̂i. The input state transmitted via a quantum channel Φ
is transformed to the output state ρ̂out,i = Φ[ρ̂in,i]. Depending on the coding scheme each
individual symbol state ρ̂in,i is used for the information transmission with some probability
pi, therefore, the average input state sent through the channel is ˆ̄ρin =

∑
i piρ̂in,i. Since the

CPTP map is linear the average output state is ˆ̄ρout = Φ[ˆ̄ρin] =
∑

i piΦ[ρ̂in,i] =
∑

i piρ̂out,i. In
other words, the channel outputs the state ρ̂out,i with probability pi. The so-called “Holevo
χ-quantity” given by following equation [1]

χ[Φ, {ρ̂i, pi}] = S
(

ˆ̄ρout

)
−
∑
i

piS (ρ̂out,i) (1)

provides a tight upper bound for the maximal amount of information that one can ex-
tract from the output ensemble {Φ[ρ̂i], pi} by using all possible measurements. Then, the
supremum of the Holevo χ-quantity over the whole set of input ensembles

Cχ(Φ) = sup
{ρ̂i,pi}

χ[Φ, {ρ̂i, pi}] (2)

gives the tight upper bound on the amount of information that can be transmitted on
average by one invocation of quantum channel Φ provided that the input symbol states are
not entangled over different channel uses [2], [3]. This quantity is called the one-shot
capacity. However, one may increase the amount of information transmitted per channel
use by entangling the input states over a sequence of channel uses. Therefore, the classical
capacity is defined by the limit [2], [3]

C(Φ) = lim
m→∞

1

m
Cχ(Φ⊗m) ≥ Cχ(Φ). (3)

If the equality C(Φ) = Cχ(Φ) holds then the classical capacity is additive. The additivity
of the classical capacity of quantum channels has long been an open problem until Hast-
ings has shown an example of a channel whose capacity is non-additive [4]. Hence, the
additivity has to be studied for each particular channel individually. We focus our study
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on bosonic Gaussian channels which constitute an important part of “Gaussian quantum
information” [5].

3. Gaussian channels

Bosonic systems are so-called continuous variables systems described by observ-
ables with continuous spectra acting on states defined in an infinite-dimensional Hilbert
space. The typical example of bosonic systems is the quantized electromagnetic field seen
as a collection of quantum harmonic oscillators (bosonic modes). The infinite-dimensional
Hilbert space of each mode is spanned by a countable basis of Fock states (number stats),
which are the eigenstates of the number operator N̂ |n〉 = n|n〉, where n is a non-negative
integer number and the number operator N̂ = â†â is defined via bosonic creation and
annihilation operators that act as follows:

â|0〉 = 0, â|n〉 =
√
n|n− 1〉 if n ≥ 1,

â†|n〉 =
√
n+ 1|n+ 1〉.

(4)

These operators satisfy the bosonic commutation relation [â, â†] = 1 (throughout the paper
we are using natural units h̄ = ω = 1).

A convenient representation of these infinite-dimensional systems is the phase-space
representation based on the use of quadrature operators

q̂ =
1√
2

(
â+ â†

)
, p̂ =

i√
2

(
â− â†

)
. (5)

These operators have a continuous spectrum and satisfy the same canonical commutation
relations as position and momentum operators. For m bosonic modes one defines a vector
of quadrature operators

x̂ = (x̂1, x̂2, . . . , x̂2m)T = (q̂1, p̂1, . . . , q̂m, p̂m)T . (6)

Then the canonical commutation relation is expressed as {x̂i, x̂j} = iΩij, where Ωij is the
matrix element of symplectic matrix

Ω =
m⊕
n=1

(
0 1
−1 0

)
. (7)

In this representation quantum state ρ̂ of m modes is described by its Wigner function:

W (x) =

∫
R2m

d2mξ

(2π)m
〈q + ξ/2|ρ̂|q − ξ/2〉e−ipξ (8)

where |q〉 is an eigenstate of operator q̂ = (q̂1, q̂2, . . . , q̂m)T. The Wigner function is com-
monly called quasiprobability distribution because, on one hand, its marginals provide
valid probability distributions for both quadratures q and p. On the other hand, it may take
negative values and, in any case, it cannot be a joint probability distribution of the values
of observables q̂ and p̂ because if such distribution existed it would violate the Heisenberg
uncertainty relation. In order to define the Wigner function one has to know, in gen-
eral, its values in all points of the 2m-dimensional phase-space. However, the amount of
parameters, which determine the Wigner function of a Gaussian state, can be essentially
reduced.
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Given a density operator ρ̂ one defines the displacement vector of the first moments

d = Tr[x̂ρ̂] (9)

and the covariance matrix (CM) V of the second “centered” moments of the quadratures

Vij =
1

2
Tr[{x̂i − di, x̂j − dj}ρ̂], (10)

where { , } is the anticommutator. Then the Wigner function of a Gaussian state is com-
pletely determined by the displacement vector d and the covariance matrix V :

W (x) =
1

(2π)m
√

detV
e−

1
2

(x−d)TV −1(x−d). (11)

Quantum channels which preserve the “Gaussian” property of quantum states are
called Gaussian channels. They are CPTP maps which are closed on the set of Gaussian
states. Any such transformation of m-mode Gaussian input states to m-mode Gaussian
output states is given by its action on the parameters determining the state

dout = Xdin + dch, (12)

V out = XV inX
T + Y , (13)

where dch is the displacement introduced by the channel, X is a real 2m× 2m matrix, and
Y is a real, symmetric and positive-semidefinite 2m × 2m matrix fulfilling the following
condition:

Y +
i

2

(
Ω−XΩXT

)
≥ 0. (14)

Matrices X, Y , and vector dch completely define a Gaussian channel Φ(X,Y ,dch).

4. Gaussian capacity

The classical capacity as defined by Eqs. (1)–(3) may be infinite for bosonic chan-
nels. We can demonstrate it for the example of a Gaussian channel with detX > 0. Let
us consider a sequence of input ensembles {ρi, p(m)

i } belonging to the same set of symbol
states ρi but taken with different probability distributions p(m)

i in such a way that the en-
ergy of the average state is increasing up to infinity if m→∞. In this case the entropy of
the average output state in the first term in Eq. (1) can be increasing up to infinity while
the second term remains the same. A similar problem appears for Gaussian channels in
standard (“classical”) information theory, where the meaningful definition of the capacity
is given by imposing an “input power” constraint. With this constraint, the capacity is a
function of the input power. A similar constraint exists in the quantum case. Namely, the
mean number of photons of the average input state is upper bounded. Therefore, for one
bosonic mode we have

Tr
[
ˆ̄ρinâ

†â
]
≤ N̄ , ˆ̄ρin =

∫
µ(dw)ρ̂w, (15)

where N̄ is the mean number of photons per quadrature and µ(dw) is a probability measure
on the whole set of quantum states parametrized by w (the probability measure plays a
role of pi for the continuous variables case). For simplicity we will call this bound “input
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energy constraint”. Then the classical one-shot capacity of a bosonic channel Φ is defined
as:

Cχ(Φ, N̄) = max
µ: ˆ̄ρin∈EN̄

χ(Φ, µ), (16)

χ(Φ, µ) = S(Φ[ˆ̄ρin])−
∫
µ(dw)S(Φ[ρ̂w]), (17)

where the average input state ˆ̄ρin is given by Eq. (15) and EN̄ denotes the set of states
satisfying the input energy constraint (15). The classical capacity constrained on a set E
of average input states was considered in [6, 7]. The definition of the classical capacity
given by Eq. (3) requires the generalization of the constraint (15) to an arbitrary number
of modes Tr[ˆ̄ρ(m)N̂⊗m] ≤ 2m(N̄ + 1/2). This constraint leads to another possible type
of non-additivity, which is not related to the entanglement of the input states. Indeed,
this constraint specifies the amount of input photons per channel use only on average.
Even if the one-shot capacity Cχ(Φ) constrained on a given number of input photons is
additive, by distributing the available amount of input photons between the channel uses
in a proper way, one may expect to achieve a higher Cχ(Φ⊗m) compared to χ(Φ⊗m, µ̄),
where µ̄ corresponds to the uniform distribution of the amount of input photons between
the uses of the channel. Nevertheless, as proven in [7], this scenario does not take place
due to the concavity of χ(Φ, µ̄) as a function of µ. In particular, it is proven that the
uniform distribution of the amount of input photons between the channel uses achieves
the classical capacity of Gaussian channels if the one-shot capacity is additive for a fixed
(though possibly different) amount of input photons at each channel use [7]. This is the
case, indeed, for entanglement breaking channels, whose classical capacity was proven to
be additive [8,9].

Thus, the additivity problem for the classical capacity of Gaussian channels is re-
solved for the class of the entanglement breaking channels. Hence, in order to evaluate
their capacity it is sufficient to find only the one-shot capacity. However, this simplified
problem is still a highly non-trivial task. At the moment the classical capacity is known
only for the lossy channel provided that its environment is pure (i.e., in a squeezed vacuum
state) and its energy is above some threshold [10,11] (the lossy channel can be realized by
a beamsplitter mixing the input signal mode with the environment mode). Therefore, the
evaluation of different bounds on the capacity is a valuable alternative.

A natural lower bound is the Gaussian capacity defined as the classical capacity
with an additional restriction on the set of admissible input states. In [12] we defined
this quantity by requiring that all individual symbol states and the modulated average state
are Gaussian. We have shown there that the optimal ensemble achieving the Gaussian
capacity, as we define it, is the same input ensemble as the one that was imposed by a
previous more restrictive definition (see, for example, [13]). This optimal input ensemble
is generated by phase space translates of a single Gaussian pure state modulated according
to a Gaussian distribution with CM V m. For such an ensemble, the covariance matrices of
the individual symbol states are the same. Thus, the CM of the average input state V̄ in is
equal to V in + V m and the input energy constraint therefore reads

Tr [V in + V m] ≤ 2N̄ + 1. (18)

Recall that the von Neumann entropy of a Gaussian state depends only on its covariance
matrix. Moreover, the action of a Gaussian channel on the covariance matrix does not
depend on displacements din and dch. Hence, all output entropies in the second term of
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Eq. (1) are equal. Therefore, the Holevo χ-quantity is the difference of the von Neumann
entropies of the average output state and output symbol state:

χ[Φ, V̄ in,V in] = S(Φ[V̄ in])− S(Φ[V in]) = g

(
ν̄ − 1

2

)
− g

(
ν − 1

2

)
, (19)

g(x) = (x+ 1) log2(x+ 1)− x log2(x), (20)

where ν̄ and ν are symplectic eigenvalues of the CM of the average output state Φ[V̄ in]
and an individual output symbol state Φ[V in], respectively. The new form of the Holevo
χ-quantity given by Eq. (19) reduces the problem of calculating the one-shot Gaussian
capacity to the maximization of the difference of two entropies under the constraint (18).
This maximization can be done using the method of Lagrange multipliers. The evaluation
of the Gaussian capacity is relatively simple due the restriction to Gaussian states. Below
we will show that it can be expressed in a closed form in a certain domain of parameters.
The importance of this bound is also highlighted by the fact that in all cases where the
classical capacity is known, the Gaussian capacity coincides with it. In addition, Gaussian
states maximize the von Neumann entropy on the set of all states with the same energy.
This leads to a natural conjecture that the Gaussian capacity always coincides with the
classical capacity.

5. Single-mode Gaussian channels

One can try to further simplify the calculation of the Gaussian capacity using an
equivalence of any single-mode Gaussian channel Φ to one of seven canonical channels
ΦC [9,14,15] preceded and followed by unitary operations:

Φ = U2 ◦ ΦC ◦ U1. (21)

Since unitary transformations do not change the entropy the Holevo χ-quantity of any
Gaussian channel Φ is equal to the one of the corresponding canonical channel ΦC. How-
ever, if the unitary transformation U1 which precedes the canonical channel in the decom-
position (21) involves a squeezing operation then the energy of the state at the input of Φ
and Φ, respectively, is different.

In order to find the Gaussian capacity of Φ one has to consider both the canonical
channel and preceding squeezing operation. Actually, in this case, the expressions for
the Gaussian capacity can be obtained in a closed form for five of the seven canonical
channels preceded by squeezing operations. However, this is possible only if the input
energy N̄ exceeds a certain energy threshold. The latter depends on the parameters of the
corresponding canonical channel and the squeezing parameter [16]. These five canonical
channels have the same matrix Y which is proportional to identity: Y = y I. Moreover,
all of them transform thermal input states to thermal output states. Therefore, we call
them thermal channels ΦTH. They include lossy, amplification, classical additive-noise,
phase-conjugating and zero-transmission channels [14].

In order to go beyond the aforementioned results, we proposed another decomposi-
tion in terms of a fiducial channel ΦF [12]

Φ = U2 ◦ ΦF ◦Θ1, (22)

where Θ1 is a passive unitary operation which corresponds to a rotation in the phase space.
If a Gaussian channel Φ(X,Y ,d) is canonically equivalent to one of the thermal channels
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ΦTH, then the fiducial channel ΦF(XF,Y F, 0) in Eq. (22) is given by two matrices [see
Eqs. (12)-(14)]

XF = XTH =
√
|τ |
(

1 0
0 sgn(τ)

)
, Y F = y

(
e2s 0
0 e−2s

)
,

τ = detX, y = detY .

(23)

The dependence of the squeezing parameter s on the matrices X,Y that define Φ is
presented in [12]. The fiducial channel is defined by three scalar parameters (τ, y, s).
The decomposition (22) is important for the following reason. Rotations change neither
the entropy nor the energy of quantum states; therefore, the state having passed through
Θ1 and entering ΦF has the same energy as the input state entering Φ. This allows us to
conclude that both the classical capacity and the Gaussian capacity of Φ(X,Y ,d) are equal
to those of the corresponding ΦF

(τ,y,s) [12]. This statement can be extended to Gaussian
channels canonically equivalent to “non-thermal” (or so-called “pathological”) channels.
These canonical channels may be considered as limiting cases of the fiducial channel with
properly chosen preceding squeezing operations. Thus, we have reduced the classical
capacity (and Gaussian capacity) of any Gaussian channel to the one of the corresponding
fiducial channel. For this reason it is sufficient to study the Gaussian capacity of the fiducial
channel in the full range of its parameters in order to obtain the Gaussian capacity of any
single mode Gaussian channel. This can be done using the method of Lagrange multipliers.
It leads to a general formula for the Gaussian capacity of all Gaussian channels canonically
equivalent to thermal channels [12]:

CG
(
Φ(τ,y,s), N̄

)
= g

(
|τ |N̄ + y cosh(2s) +

|τ | − 1

2

)
− g

(
y +
|τ | − 1

2

)
, (24)

N̄ ≥ N̄thr =
1

2

(
e2|s| +

2y

|τ |
sinh(2|s|)− 1

)
. (25)

It holds for input energies, which are higher than the threshold N̄thr. This corresponds to
the so-called quantum water-filling solution [17–20]. It implies that the overall modulated
output state is a thermal state. The optimal ensemble is composed of individual symbol
states, which are displaced squeezed vacuum states determined by the same squeezing
parameter s that enters the matrix Y F [see (23)], where the latter represents the effect of
the environment in the fiducial channel

ΦF[V̄ in] ∝ I, V in =
1

2
diag(e2s, e−2s). (26)

Notice that the squeezing of the individual input symbol state requires energy.
Nevertheless, the condition (25) guarantees that the amount of input energy is sufficient
to allow such optimal input states. It is known that these optimal symbol states minimize
the entropy at the output of the channel on the set of all Gaussian states. Furthermore, the
Gaussian capacity is additive above the input energy threshold [12,21].

For both types of non-thermal canonical channels the formula (24) is never applica-
ble. However, we go a step further and find the Gaussian capacity of the fiducial channel
below the threshold and we find a solution which is also valid for non-thermal channels.
In this case the solution of the optimization problem was already found for the lossy [17]
and classical additive-noise channel [18–20] with squeezed environment. An optimal input
ensemble is given by CMs V in and V̄ in which commute with Y F. The optimal value of
the squeezing of the individual symbol state is determined by a solution of a transcendental
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equation. This solution allows us to study the properties of the Gaussian capacity as a
function of the parameters of the additive noise or lossy channels. Here, we generalize this
result by extending the solution to the fiducial channel. In our notations the corresponding
transcendental equation can be written in two equivalent forms:

g′
(
ν̄ − 1

2

)
sinh(2s̄)− g′

(
ν − 1

2

)
sinh [2(s− r)]e−2r y

ν
= 0,

g′
(
ν̄ − 1

2

)
sinh(2s̄)− g′

(
ν − 1

2

)
sinh [2(sν − r)]e−2r = 0,

(27)

where

ΦF[V̄ in] = ν̄ diag(e2s̄, e−2s̄), ΦF[V in] = ν diag(e2sν , e−2sν ), (28)

function g′(x) is the derivative of g(x), variables y and s are the parameters of the fiducial
channel (23), and r is the squeezing parameter which enters the CM of the individual input
symbol state V in = (1/2)diag(e2r, e−2r). The squeezing parameter r plays a role of the
unknown variable in the equation. By analyzing this equation we have found that the signs
of the solution r and s coincide.

6. Optimal environment

By studying how the Gaussian capacity depends on the channel parameters [19,22]
we arrived to a new problem, which was formulated first for the lossy channel [17]. Here
we consider this problem for the fiducial channel ΦF. In order to formulate it we use the
Stinespring dilation which allows us to realize the channel by a joint unitary transformation
of a two-mode (product) state. The latter consists of the input and environment modes. If
τ 6= 1 then the CM of the environment mode Ve is proportional to Y F, i.e. |1− τ |Ve = Y F.
If τ = 1 then there is no Stinespring dilation with a single environment mode however,
in this case, Y F represents a classical Gaussian noise “added” to the input state by the
channel. The CM of the classical noise Ve = Y F. In both cases, the trace of Ve has the
same meaning. It determines the energy contained in the environment mode or the energy
of the noise.

Recall that the definition of the Gaussian capacity includes a maximization of χG

[see (19)] over V̄ in and V in under the energy constraint (18). In this work we impose a
similar energy constraint also on the environment mode (or added noise) and look for the
optimal CM Ve which maximizes the Gaussian capacity. Since in all cases the CM Ve is
proportional to Y F, the constraint on its trace is equivalent to the corresponding constraint
on the trace of Y F:

Me = Tr[Y F] = 2y cosh(2s). (29)

At first, we consider the simplest case which corresponds to the input energy being
above the threshold N̄thr. In this case, we can use our expression for the Gaussian capacity
(24). Due to the constraint (29) parameter y is a function of s. According to the waterfilling
solution, if both N̄ and Me are constant the argument of the first term in (24) remains also
constant, even if s is varied. Then the first derivative of CG

(
ΦF, N̄

)
with respect to s is

obtained from the second term in (24) in the form

d

ds
CG
(
ΦF, N̄

)
= Me g

′
(
y +
|τ | − 1

2

)
sinh(2s)

cosh2(2s)
. (30)



504 E. Karpov, J. Schäfer, O. V. Pilyavets, R. Garcı́a-Patrón, N. J. Cerf

The sign of this derivative is the same as the sign of s because g′(x) is a positive
function and Me is a positive constant. This means that CG

(
ΦF, N̄

)
is a monotonically in-

creasing function of the absolute value of s. Therefore, its maximum lays at the boundaries
of the allowed interval for s. There are two reasons for the existence of such boundaries in
this problem.

One is due to the condition N̄ > N̄thr which provides that Eq. (30) is valid. This
condition together with the constraint (29) upperbounds by some threshold value sthr > 0
the interval of the absolute values of |s|, where Eq. (30) is applicable. As a consequence
for |s| > sthr the condition (24) is violated. The particular case τ = 0 corresponds to
the so-called zero-transmission channel where Eq. (30) is not valid. However, this case is
trivial because here the classical capacity is always equal to zero; therefore, the bound sthr

does not exist.
The second reason follows from the condition that the symbol state at the output of

the channel must be a valid quantum state. This is provided by the condition (14), which is
equivalent to Y F + i

2
(1− τ)Ω ≥ 0 for the fiducial channel (actually, it is also equivalent to

a simle inequality for channel parameters y ≥ |1− τ |/2 [12]). If τ 6= 1 then this condition
can be rewritten in the form Ve + i

2
Ω ≥ 0 (or simply y ≥ 0 ). This is equivalent to the

requirement that the environment mode must be in a valid quantum state. Due to the
constraint (29) it upperbounds the absolute values of |s| by the value s∗, which corresponds
to the environment mode being in a pure state with det (Ve) = 1/4. If τ = 1 then the
condition (14) for the fiducial channel is equivalent to Y F ≥ 0. Since it is satisfied for all
real values of s no finite upper bound s∗ exists.

If s∗ < sthr then for all |s| ≤ s∗ Eq. (30) is valid. Using Eq. (30) we conclude that
the maximum of the Gaussian capacity is achieved by the environment mode being in a
pure quantum state defined by |s| = s∗.

If s∗ > sthr (or s∗ does not exist) Eq. (24) is not applicable in the interval sthr < |s| ≤ s∗

and, therefore, we cannot apply our conclusions based on Eq. (30) to this interval of |s|.
Nevertheless, in this case, we can also study the derivative of the Gaussian capacity over
s using Eq. (27). Notice, that Eq. (27) is equivalent to (∂/∂r)χG[Φ, V̄ in,V in)] = 0. Let us
take the input states with CMs V in and V̄ in that satisfy Eq. (27). Using the constraint (29)
we deduce

d

ds
y(s)e±2s = ± Me

cosh2(2s)
. (31)

Then we have
d

ds
CG
(
Φ, N̄

)
=

∂

∂s
χG[Φ, V̄ in,V in]

=
Me

cosh2(2s)
[g′(ν − 1/2) sinh(2sν)− g′(ν̄ − 1/2) sinh(2s̄)] .

(32)

Using (27) again we can rewrite it in the form

d

ds
CG
(
Φ, N̄

)
=

Me

cosh2(2s)
g′(ν − 1/2)e2sν

(
1− e−4r

)
, (33)

where r satisfies (27). Since the sign of r is the same as the sign of s, the sign of the
first derivative of CG

(
Φ, N̄

)
coincides with the sign of s. It means that CG

(
ΦF, N̄

)
is a

monotonically increasing function of the absolute values of s regardless if |s| is higher or
lower than sthr. As a result, the only bound on |s| is s∗ (if it exists for the considered
parameters of the channel).
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Let us summarize our results for different values of τ determining the type of the
fiducial channel:

• If τ 6= 0 and τ 6= 1 then the allowed interval of s is finite. Its boundaries, where
the maximum of the Gaussian capacity is achieved, correspond to the environment
mode being in a pure state. For the lossy channel, this result was formulated as
“environment purity theorem” and proved in [17].
• If τ = 0 then the classical capacity is equal to zero for all s in the allowed interval,

which is finite, i.e. |s| ≤ s∗. The environment mode should be in a proper quantum
state, but not necessarily pure.
• If τ = 1 then the constraint (14) reduces to Y F ≥ 0 which corresponds to the

classical additive-noise channel. Since the allowed interval of s, in this case, is the
whole real axis, the optimal Ve is obtained in the limit |s| → ∞ under the condition
2y cosh(2s) = Me = const. This gives V e = diag(Me, 0) (for positive s) which
corresponds to the single-quadrature classical noise channel [9]. This inspires a
further study of optimal environment for Gaussian quantum channels. For instance,
the generalization of out results to the case of multimode environments (broadband
channels) that was discussed in [17] would be an interesting task.

7. Conclusion

We studied the classical information transmission through Gaussian quantum chan-
nels by analyzing the Gaussian capacity which, as we argue, is of great importance for the
field of quantum information theory. We have used a recently found decomposition of an
arbitrary single-mode Gaussian channel which allows us to reduce the problem of calculat-
ing its Gaussian capacity to the one of a particular fiducial channel. For the latter, we have
developed a method of evaluating its Gaussian capacity and discussed its additivity. Finally,
we have applied our results to a new problem of maximizing the Gaussian capacity under
the environment energy constraint. We have shown that for a single mode the optimal
environment almost in all cases is in a pure state. In a particular case, the environment is
classical (noise) and all the noise energy is concentrated in one quadrature of the optimal
noise CM. We expect that the decomposition in terms of the fiducial channel will be useful
in further research on the Gaussian capacity, in particular, for finding the optimal state of
the environment of multimode Gaussian channels.
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