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We prove that a beam splitter, one of the most common optical components, fulfills several classes of
majorization relations, which govern the amount of quantum entanglement that it can generate. First, we show
that the state resulting from k photons impinging on a beam splitter majorizes the corresponding state with any
larger photon number k' > k, implying that the entanglement monotonically grows with k. Then we examine
parametric infinitesimal majorization relations as a function of the beam-splitter transmittance and find that there
exists a parameter region where majorization is again fulfilled, implying a monotonic increase of entanglement
by moving towards a balanced beam splitter. We also identify regions with a majorization default, where the
output states become incomparable. In this latter situation, we find examples where catalysis may nevertheless
be used in order to recover majorization. The catalyst states can be as simple as a path-entangled single-photon

state or a two-mode squeezed vacuum state.
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I. INTRODUCTION

In quantum optics, one of the most common transformations
consists in the linear coupling between two modes of the
electromagnetic field, as effected, for instance, by a beam
splitter in bulk optics or an optical coupler in fiber optics [1].
Mathematically, it corresponds to a rotation in phase space,

namely,

a a cos® —sinf\ [a

)=l s = ~ ), (1)

(b) (b’) (s1n9 cos 6 )(b)

where @ and b are the annihilation operators of the two
modes that are coupled, while the angle 6 € [0,7/2] is a
coupling parameter related to the transmittance T = cos? 0 of
the beam splitter. The beam splitter is called balanced when
T =1/2 or 8 = /4. The transformation (1) belongs to the
set of Gaussian unitaries as it corresponds, in the Heisenberg
picture, to a linear canonical transformation in the annihilation
(creation) operators @ and 5, or equivalently, to a quadratic
Hamiltonian, namely, H = i(ath — ab") (see [2] for a review
on Gaussian transformations). Moreover, it is a passive linear
operation since it conserves the total photon number, so it can
be realized with a simple glass plate with thin coating and no
additional (pump) energy.

The beam splitter is very conveniently modeled within the
so-called symplectic formalism by focusing on the action of
the rotation (1) on the first- and second-order moments of the
quadrature operators. This enables treating complex optical
circuits made of beam splitters and other optical devices in a
very concise way, which is sufficient for many purposes, e.g.,
when the goal is to predict distributions in phase space such
as Wigner functions. However, if we want to make predictions
about entropies or entanglement, we need to move back to state
space and work with density operators. Such calculations are
often nontrivial, despite the simplicity of the transformation
in phase-space representation. For example, consider a single-
photon state |1) impinging on a balanced beam splitter, the
other input mode being in the vacuum state |0). The two-mode
output state is obtained simply by inverting transformation
(1) and writing the input-mode annihilation operators @ and b
as functions of the output-mode annihilation operators @’ and
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b'. The input state being a'|0), we can write the output state
as

2712@" 4 50y = (11)10) + 10)]1))/+/2, 2)

which is well known to be a path-entangled state of one
photon, characterized by an entanglement entropy of 1 bit as
measured by the reduced von Neumann entropy of any output
mode. However, whenever we consider higher photon-number
states at the input and arbitrary transmittances, it becomes
much harder to find closed formulas for the entanglement
entropy.

As another example illustrating the difficulty of treating a
beam splitter in state space, let us consider an arbitrary input
state in mode 4 that is coupled to a thermal field in mode b.
The transformation & — @’ can be viewed as a thermal bosonic
channel, which is a special case of a Gaussian phase-insensitive
bosonic channel [3]. In order to derive the channel capacity,
a crucial element is to determine the input state in mode a
that results in the minimum-entropy output state in mode a'.
Although it is very tempting to assume that this extremal input
state is the vacuum state |0), this has not been proven to date
[4]. It is linked to the Holevo-Werner conjecture, which states
that Gaussian mixtures of Gaussian states achieve the capacity
of such Gaussian channels [5].

In this paper, we exploit majorization theory in order to
study the entanglement generated by an optical beam splitter.
Majorization provides a preorder relation between bipartite
pure quantum states and gives a necessary and sufficient
condition for the existence of a deterministic LOCC (local
operations and classical communication) transformation from
one state to another [6,7]. Here, we will show that a beam
splitter obeys two classes of majorization relations, which bear
some similarity to those recently found for another optical
component, namely, a two-mode squeezer [8]. Specifically,
we will prove that when feeding the input mode of a beam
splitter with k photons while the other input mode is in the
vacuum state, the resulting two-mode output state majorizes
the state corresponding to any larger photon number k' > k.
This implies that any bipartite entanglement measure on the
output modes increases with £ in a monotonic fashion.
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Then, we examine majorization relations with respect to the
coupling parameter 6 (or, equivalently, the transmittance t) of
the beam splitter. For a fixed photon-number input state |k) in
one port and vacuum in the other port, we probe the existence of
majorization relations between the output states corresponding
to different 0’s, which we call parametric majorization. We find
that in a region of finite width, the output state with parameter
0 majorizes the output state with 6’ > 6, which implies that
entanglement can only increase with the coupling between
the two modes in this region. Interestingly, we also disprove
parametric majorization in other regions of the parameter 6,
which means that the corresponding output states are then
incomparable. In some cases, however, we can prove that these
incomparable output states can be catalyzed [9], that is, if we
supplement both states with an appropriate catalyst state, then
the new states become comparable (one is majorized by the
other). Remarkably, the catalyst state can be as simple as a
path-entangled single-photon state or a two-mode squeezed
vacuum state.

The rest of this paper is organized as follows. After
summarizing the basics of majorization theory in Sec. II, we
exploit it in Sec. III and prove that the input state |k)|0) yields
an output state |¥®)) that majorizes the output state |W*))
with k' > k. Then, in Sec. IV, we proceed to investigate
parametric majorization, namely, the relation between the
output states [¥®(9)) and WX (@ + ¢)) corresponding to
different transmittances. We focus, in particular, on infinites-
imal majorization relations, namely, the case where ¢ > 0 is
infinitesimal. We observe a default of majorization in some
specific regions of the parameter 6, indicating that the above
states are then incomparable. We also show how majorization
may be recovered by exploiting the concept of catalysis,
namely, by supplementing the state with an appropriate
catalyst state. Finally, we close with the conclusions in Sec. V.

II. THEORY OF MAJORIZATION

The theory of majorization gives a means to compare
two probability distributions and say which of the two is
more “disordered” or more “random” [10-13]. Consider two
d-dimensional real vectors p and q. We say that p is majorized
by q, symbolized by p < q, iff

k k
dopi<D gt 3)
i=1

i=1
fork=1,...,d —1and

d d

dopi=Y a' )
i=1

i=1

where the down-pointing arrow on p and q indicates that the
components are sorted in nonincreasing order. Equation (4) is
automatically satisfied if p and q are vectors normalized to
unity, e.g., if they are probability distributions. Majorization
only provides a preorder, in the sense that if p is not majorized
by q (symbolized by p 4 q) then this does not imply that
p > q. When both p £ q and q £ p hold, we say that the two
vectors are incomparable.
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The definition of majorization through Eqs. (3) and (4)
is very handy for calculation purposes, but it does not make
it clear in what sense p is more disordered than q. A more
intuitive definition is to say that p is majorized by q iff there
exists a set of d-dimensional permutation matrices IT,, and a
probability distribution {z,} such that

p=) i1, -q 5)

The above definition says that p is majorized by q iff we can
obtain p by randomly permuting the components of vector q
and afterwards taking the average over all permutations.

The equivalence between these two different definitions of
majorization is implied by Theorems 1 and 2 below. Indeed,
the notion of majorization is closely related to the notion of
doubly stochastic matrices. A real d x d matrix D = [D;;] is
doubly stochastic if all its entries are non-negative and each
row and each column sums up to 1. The following theorem
gives the relation between majorization and doubly stochastic
matrices.

Theorem 1. p < q iff there exists a doubly stochastic matrix
Dsuchthatp=D-q.

The set of doubly stochastic matrices of a given dimension
is convex. All extreme points of this convex set are the
permutation matrices II,, so any doubly stochastic matrix can
be expressed as a convex combination of permutation matrices.
This is expressed in the following theorem.

Theorem 2. The d x d doubly stochastic matrices D form a
convex set whose extreme points are all the d x d permutation
matrices IT,,.

The convex set of d x d doubly stochastic matrices is called
Birkhoff’s polytope. It admits d! vertices (i.e., the number of
d x d permutation matrices) and its dimension is (d — 1)°.
Note that if we want to express a point (a doubly stochastic
matrix) belonging to this (d — 1)>-dimensional polytope as a
convex combination of the extremal points, Caratheodory’s
theorem implies that we would need (d — 1)> + 1 extremal
points at most.

One naturally expects that majorization theory should
be connected with various measures of “disorder”, such as
entropies. Indeed, since p < q means that p is more disordered
than q, any measure of disorder S : RY — R should satisfy

S(p) = S(q) (©)

for all p and q such that p < q. A function S obeying this
property is called Schur concave. Consider, for example, the
Shannon entropy

d
Si(p)=—)_ pilnp; (7)
i=1

or the Rényi entropy

1 4
sum=1_am<gka> ®)

of order @ > 0, o # 1. (In the limit @« — 1, the Rényi entropy
converges to the Shannon entropy.) These functions can be
seen to be Schur concave as a consequence of the following
theorem [11]:
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Theorem 3: p < q iff Zflzl h(p)) > Z?:l h(g;) for all
concave functions 4.

The usefulness of majorization in quantum information
theory appears first if we wish to compare two density
matrices instead of probability distributions. Consider the
density matrices p and o of a d-level quantum system, and
their respective vectors of eigenvalues A(p) and A(c). We have
the following theorem:

Theorem 4. A(p) < A(o) iff state p can be obtained from
state o by applying a random mixture of unitaries.

The proof goes simply by noting that there is a unitary
transformation that aligns the eigenbasis of o with that of p,
and that each permutation of the eigenstates can be realized by
a unitary transformation.

The connection with quantum information theory becomes
even more evident in the context of comparing pure bipartite
entangled states. Indeed, majorization theory gives the means
to determine whether one pure bipartite state is convertible
into another one using LOCC (local operation and classical
communication). Consider two d-level systems A and B,
which can be thought of as belonging to Alice and Bob,
respectively. Any bipartite pure states of these systems can
be written in the Schmidt form,

d
W) =Y Vaili)ali)s, ©)
i=1

where {|i) 4} and {|i) g} are suitable orthonormal bases of the
systems A and B, respectively. The reduced density matrix of
system A is P,f =trg|W(V| = Z;jzl Xili)(ila, and similarly
for B (the two reduced density matrices have the same
eigenvalues );). We have the following theorem [6,7]:

Theorem 5. State |W) can be converted deterministically
into state |®) by means of LOCC iff Ay < Ag, where Ay is
the vector of eigenvalues of p, = trg|W)(¥| and similarly
for Ao.

For conciseness, we will write simply ¥ < & instead of
Ay < Ag in what follows. A consequence of this theorem is
that W < @ iff u(V) > wu(P) for all measures of entanglement
. A measure of entanglement, or entanglement monotone, is
a non-negative function of the state which does not increase
on average under LOCC and vanishes on separable states [14].
A common example is the entropy of entanglement, E(¥) =
S1(Ay). Since, according to Theorem 5, converting W into &
is possible when W < @, this means that u(¥) > pu(P) must
hold for all entanglement monotones. Conversely, the maxi-
mum probability of success of converting W into ® by means of
an LOCC protocol satisfies P(¥ — &) < min, Zﬁ—g;, where
the minimum is taken over all entanglement monotones [14].
Since a strategy exists where P(W — &) = 1, this implies that
u(W) = pn(), Vu.

According to Theorem 3, if Ay and A¢ are incomparable,
then there does not exist a strategy to convert one state into the
other by LOCC with probability 1. Remarkably, it has been
shown that one may nevertheless be able to accomplish such
a transformation deterministically with the use of an auxiliary
entangled state, an effect called catalysis [9]. If two states
|W) and |®) have incomparable A vectors, then, under certain
conditions, there exists an entangled state |C) that the two
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FIG. 1. Majorization relations with respect to the input photon
number. In the upper scheme, the input state is |k,0), while
in the lower scheme it is |k 4+ 1,0). The output state |W®(6))
majorizes |W*+D(0)), hence the generated entanglement p(¥®(9))
monotonically grows with & for all 6.

parties can share, called a catalyst state, such that

W) ®1C) — |®) ® |C) (10)
is possible. The term “catalysis” is justified because the en-
tangled state |C) is recovered after the LOCC transformation.
Note that if converting W into & by catalysis is possible, then
all additive measures of entanglement must satisfy pu(\W) >
w(®). In particular, we must have S,(Ay) > S,(Ao) for all
a = 0.

III. MAJORIZATION WITH RESPECT TO
PHOTON NUMBER

We now prove a first class of majorization relations charac-
teristic of a beam splitter by using the definition of majorization
involving doubly stochastic matrices. Let [¥®(9)) be the
output state of a beam splitter if the input state is |k,0), as
shown in Fig. 1. Denoting by ¢/(6) the unitary transformation
resulting from the beam splitter, we have

k
(WO©) =UO) k,0) =Y "\ PO Ink—n), (A1)
n=0

where
(k) k 2n - 2(k—n)
PY0) = cos™ 6 sin 0. (12)
n

The reduced density matrix of the first output mode is

k
p®P©) =Y PR®O) In)(nl, (13)
n=0
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where PF(6) can be interpreted as the probability that n
photons are transmitted out of the k incident photons if the
transmittance of the beam splitter is T = cos? 6.

We wish to prove a majorization relation between P,ﬁ") @)
and P**tD(9), that is, we want to prove that there exists a
doubly stochastic matrix D such that

PED() = DD PO(@), (14)

where P®(6) is a vector having the eigenvalues P*)(9) of
0% (6) as components. Using Pascal’s identity for the binomial
coefficients, we obtain the recurrence equation

P,Ek+1)(9) — <k + 1) COSZ" 9 SinZ(k+17n) 0
n

= k + V] cos o sin+1-m g
n—1 n

= PY,(0) cos? 6 + PL(0) sin’ 6. (15)

This simply expresses the fact that the probability of transmit-
ting n photons out of k£ + 1 incident photons is the sum of two
mutually exclusive possibilities: either n — 1 photons (out of
k) are transmitted and the (k + 1)-th photon goes through, or
n photons (out of k) are transmitted and the (k + 1)-th photon
is reflected. We can expand Eq. (15) as

PEV©0) = 0 +sin” 6 P (6),
P1(k+])(9) — COSZO Pék)(e) + sin29 Pl(k)(e)s
P2(k+])(9) = cos’ 0 Pl(k)(O) + sin® 0 Pz(k)(e)’ (16)

PE©0) = cos? o PP©O) + 0.

This can be put in the form of Eq. (14) by defining

Pék+1)(9) Pék)(e)
P1(k+1)(9) Pf")(e)

PEHD () = P 0) . PO = PP®) . an
Pk(k+1)(9) ng)(e)
PO 0

where a zero entry has been inserted in the vector P% in
order to make P® and P**1 of equal dimension. The doubly
stochastic matrix is

sin® @ 0 0 cos2 8
cos2@ sin%@ 0 . 0
p+h — 0 cos’d sin’d -~ 0 | (g
0 0 0 sin® 6

where the rightmost entry of the fist row has been chosen so
as to fulfill the doubly stochastic conditions (it plays no role
since the last entry of P® is zero).

Thus, we have proven the majorization relation

vy < wh @), v, (19)
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which implies that when increasing the number of the incident
photons, the two-mode output state can only be more entangled
and the corresponding one-mode reduced states are getting
more disordered. This also implies that the two parties (Alice
and Bob) can convert state |W%**tD(0)) into state |W®(0))
by using a deterministic LOCC transformation. To achieve
such a transformation, Alice can, for example, perform a
two-outcome POVM (Positive Operator Valued Measure)
measurement with the following Kraus operators,

k
k+1—n
(k) _
F _;‘/ Tl (20)
A Py
(k) _
Fy _Z,/m|n><n+1|, 1)

n=0

and

satisfying .7-"1T Fi+ ]—"ZT]-"Z = 1 for all k. Then, she must com-
municate her outcome to Bob, who has to apply proper local
unitaries. If outcome 1 occurs, then Bob should apply the
unitary

k
UP =" n)n + 1]+ [k + 1)0], (22)
n=0

corresponding to a cyclic shift in the space spanned by
{10}, ... |k 4+ 1)}. The second term on the right-hand side of
Eq. (22) ensures unitarity (it plays no role since Bob’s reduced
stateis supported by {|1), ... |k + 1)} when outcome 1 occurs).
If outcome 2 occurs, then Bob does nothing, that is, he applies
the unitary leék) = 1. It is easy to check that the transformation
[wEED@)) — |[w®(B)) takes place for both outcomes, so the
LOCC transformation is indeed deterministic.

IV. PARAMETRIC MAJORIZATION WITH
RESPECT TO TRANSMITTANCE

A. Infinitesimal majorization

We now examine the scenario that is summarized in Fig. 2.
The input state is fixed to |k,0), but we change the angle 6
parameterizing the transmittance of the beam splitter by an
infinitesimal amount . Note that we take 6 > 0, ¢ > 0, and
6 + & < 7. (For angles greater than 7, the transmittance and
reflectance just interchange their roles.) An equivalent way to
see this scenario is depicted in Fig. 3. Our goal is thus to probe
whether the intermediate state |W*(9)) majorizes or not the
final state | W% (0 + ¢)). To this end, we find it easier to use
the first definition of majorization, involving the accumulations
of the ordered vectors of eigenvalues of the reduced density
matrix. We will refer to these vectors as OSC (ordered Schmidt
coefficients).

Let PY(#) be an OSC vector, whose components are the
elements of the binomial distribution (12). From now on, we
drop the index k as it is fixed. This OSC vector will not keep
the same ordering as the parameter 6 varies, so we will adopt
the notation P“(O), where r = 1,2, ... labels the regions of
parameter 6 in which the ordering of the OSC vector remains
the same. More precisely, we have a change of ordering every
time two eigenvalues P,(0) and P,,(0) are equal, which occurs
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k)
0
|0)
[ k)(9))
|k)
0+¢
|0)
Y
TR (G + €))

FIG. 2. Majorization relations with respect to the coupling pa-
rameter 6 (or transmittance 7 = cos ). In both schemes the input
state is |k,0) but the angles differ by ¢. In a specific parameter region,
the corresponding output states | ¥ ®(9)) and |¥® (6 + ¢)) are proven
to satisfy a majorization relation.

at
(k — n)ln! \ T
0 = arctan | ———— . (23)
(k —m)!m!
Indeed, it can be shown that if P,(0) = P,,(6) for m # n, then
% %, i.e., the two eigenvalues cross. The crossover

points between regions are the different solutions 6; <
6, < --- of the above equations. We define the region r = 1
as 6 € [0,0)), the region r = 2 as 6 € [0},6,), etc.

Our goal now is to check whether the infinitesimal ma-
jorization relation

PY(0 +¢) < PV (9) (24)

holds or not within region r, taking the limit of an infinitesimal
angle ¢. Using the definition of Eq. (3), we have to prove
J J
Y PO +e) <Y PY@), j=0... k-1

n=0 n=0

‘ (25)
J Ir
Py (0) .

E <0, =0,...k—1

N4 2 40 J

By defining the vector of accumulation derivatives
J Ir
’ dPy (0)
a} @) = E a0 (26)

n=0

the infinitesimal majorization relations can be written simply
as

a"0) <0,  j=0,..k—1L 27)
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I%)

10)

RO (6 -+ <))

FIG. 3. Same situation as in Fig. 2, viewed as a sequence of two
beam splitters with angles 6 and ¢. In a specific parameter region,
[¢®(6)) majorizes |[¥® (6 + ¢)) for all k.

We do not need to consider the last accumulation derivative
a,f "(0) = 0 since Eq. (4) is always satisfied (the OSC vectors
are normalized).

The violation of at least one relation in Eqs. (27) is sufficient
to disproof majorization in region r. A priori, if the above
majorization relations do not hold, there may nevertheless
be a majorization in the opposite direction if all relations
are satisfied with > instead of <. However, the (k — 1)-th
accumulation is the same in all regions, no matter what the
ordering is, and its derivative

ar_1(0) = =2k sin* ' 6 cos o (28)

respects Eq. (27) with a strict inequality (except in the trivial
cases k = 0 or & = 0). Hence, majorization is never possible
in the opposite direction.

It is easy to see that in the region r = 1, the components of
the OSC vector are

k
PO = < )sin2"9cos2<’<—">9. (29)
n

This region extends until the second-largest eigenvalue be-
comes equal to the largest eigenvalue and the two switch
places. Beyond this crossover point, we enter the second region
r = 2. Now, let us prove that the infinitesimal majorization
relation PY'(0 + ¢) < PY'(0) always holds in region r = 1.
We have

dpP'®) [ 2n
do  |tan6

—2(k — n)tan 9} P®) (30
and
PYO) = Pﬁ(@)(i) tan®" 0, (31)

from which we can express the vector of accumulation
derivatives as

J
k
a}'(@) = Py () Z [2n — 2(k — n) tan® 9]( )tanz”—l 6.
n=0 n
(32)
The summation in Eq. (32) can be expressed in a closed form
as
k A
at'(0) = —Py'(0)2(k — j)< ) e, (33)
J

which is nonpositive for j =0, ...k — 1. Thus, infinitesimal
majorization holds within region » = 1, which means that all
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states are comparable within this region,
vh@ +6) < wP©B), Vk>0, (34)

and all measures of entanglement increase with 6.

At the crossover point between regions r = 1 and r = 2,
the first two components of the OSC vector switch places and
the derivative of the first accumulation becomes %, which
is positive at this point. Therefore, majorization is violated
from the left boundary of region » = 2 until the point where
this derivative ceases to be positive (and possibly beyond that
point). In general, in every region that begins with a positive
derivative of the first accumulation, which is equal to % for
some n, majorization is violated at least until the point where
this derivative ceases to be positive. From Egs. (30) and (31),
we find that the derivative % remains positive up to the
value 67 < arctan(ﬁ)Tlfl.

In order to illustrate how parametric majorization behaves,
let us exhibit three examples, corresponding respectively to a
single-photon, two-photon, and three-photon state impinging
on the beam splitter.

B. Examples

Example 1. We first consider the case of a single photon
(k = 1). The OSC vector in region r = 1 is

u (cos2 0 )
PY9) = ) (35)

sin® @

In order to find all possible regions we have to find all solutions
of cos? 6 = sin? 6 in [0, Z). There is no solution in this region
(equality is reached at the boundary point 6 = %), which
means that there is a single region » = 1 and, as we proved
earlier, parametric majorization holds everywhere.

Example 2. We now move to the case of two photons (k =
2). The OSC vector in region r = 1 is

cos* 0
2cos?@sin’6 |, (36)

sin* 6

P'o) =

where this ordering holds for [0, arctan %2). There is a second

region r = 2 corresponding to [arctan «/Li’ 7)> where the OSC
vector is

2 cos? 6 sin? 6
cos* 6 ) (37)
sin* @

P2 (0) =

As proven in full generality, majorization holds in region r =
1. However, in region r = 2, the accumulation derivatives are
given by

ay’(0) = sin46, ar*() = —4cos0sin’ 0. (38)

The accumulation derivative ao(0) is positive in [0,Z), so
majorization does not hold in the entire region r = 2. This
means that there ought to be measures of disorder that decrease
instead of increase as a function of 6 in region » = 2. Indeed,
we observe in Fig. 4 that although the Shannon entropy
increases, all other Rényi entropies of order o > 1 exhibit
a decreasing behavior somewhere within the region r = 2. In
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FIG. 4. Entanglement Rényi entropies resulting from a two-
photon state impinging on a beam splitter as a function of the coupling
parameter 6 (related to the transmittance T = cos® @). The vertical
dashed line denotes the boundary between parameter regions r = 1
and r = 2. The von Neumann entropy (¢ — 1) keeps increasing in
region r = 2, while higher-order Rényi entropies have a different
behavior and start decreasing somewhere in region r = 2. The
min-entropy (¢ — 00) exhibits a nondifferentiable point right at the
crossover point and decreases throughout the entire region r = 2,
reflecting the default of majorization.

particular, the Rényi entropy of order « — oo, which is the
min-entropy and is directly related to the leading probability of
the OSC vector, starts decreasing immediately when we enter
the second region at # = arctan \/%

Example 3. As alast example, we consider the case of three
photons (k = 3). We have two crossover angles,

1
6, = arctan ——, 39)

73

1
6, = arctan —,
3

which define three regions of different orderings in [0, 7) and
three corresponding OSC vectors,

cos® @ 3cos* 6 sin’ 6
PH(0) = 3cos* 0 sin® @ P6o) = cos® 6
3cos?Osin*6 |’ 3cos? 6 sin* 6
sin® @ sin® @
3 cos* 6 sin’ @
3cos? 6 sin* @
P(6) = 6 (40)
cos® 6
sin® @

In region r = 1, it is easy to confirm that majorization holds,
as it should. In regions r =2 and r = 3, the accumulation
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FIG. 5. Entanglement Rényi entropies resulting from a three-
photon state impinging on a beam splitter as a function of 6. The
two vertical dashed lines at 6, and 6, separate the three regions
r = 1,2,3, while the dotted line corresponds to the local minimum
of the min-entropy. Majorization is violated in the region r = 2 from
the left boundary of this region at 6, up to the local minimum of the
min-entropy. The majorization violation throughout the entire region
r = 3 is not manifested by the behavior of the Rényi entropies.

derivatives are given, respectively, by

ag*() = 3 cos’ O(—1 4 3 cos 26) sin 6, an
al’@) = —3sin’20, a3’(6) = —6cosHsin’ 6,

and

ay’ (@) = 3cos> (—1 + 3 cos 26) sin 6, )
a*(6) = 3sin46, ') = —6cosOsin’ 6.

The quantity aé 2(49) is positive in the interval [0, arctan %2),
which means that we are sure that there is no majorization in the
1

interval [arctan Vel arctan \/LE)’ i.e., from the left boundary of

regionr = 2 up to where aé 2(9) ceases to be positive. In region
r =3, azl 3(49) is always positive, while the other accumulation
derivatives are negative within this region. Hence, for r =
3, the states are always incomparable. This last violation of
majorization is, however, not visible with the Rényi entropies.
In Fig. 5, we display the evolution of entropies across the three
regions.

C. Catalysis

We have shown that one can always expect a default of
majorization when the leading term in the probability vector
changes, and this majorization default prevails at least up to
the point where the first accumulation derivative ceases to be
positive, or, equivalently, until we reach the local minimum of
the min-entropy within this region. Beyond the case where the
first two components of the probability vector switch places,
it appears difficult to provide general rules for predicting the
existence or absence of majorization for an arbitrary k, and one
has to treat the problem on a case-by-case basis. The situation
also becomes more complicated if we take a noninfinitesimal
angle ¢ such that the pair of angles 6 and 6 + ¢ belong to
different regions.

PHYSICAL REVIEW A 87, 042307 (2013)

It is natural to ask whether the incomparable states that
occur when we change the parameter 6 can nevertheless be
made comparable through catalysis. We will show that this is
indeed possible in certain cases, and will provide an example
for this. Note that not all incomparable states can be catalyzed:
some necessary conditions have to be respected [9,15-17]. To
solve the problem of whether catalysis is possible or not in
generality is difficult because one has to reorder the vector
resulting from the tensor product of the state to be catalyzed
and the catalyst state.

Consider two angles 6 and 6 4 w that give OSC vectors
P (9) and PY' (9 + w) which are incomparable. These angles
may be within different ordering regions, which is the case in
the following example where r = 2 and r’ = 3. We take k = 3,
6 = 0.62, and w = 0.10, which gives

0.444 39

Pi2(0.62) = 0.290 641 )
T 0.226491

0.0384782

and

0.416 698

P30.72) 0.320 544 @)
] 0.180565

0.0821927

such that P¥3(0.72) £ P*2(0.62). The path-entangled single-
photon state cos6]1)|0) + sin#|0)|1) resulting from a single
photon impinging on a beam splitter with angle 6 = 0.7
is sufficient to serve as a catalyst for these two states. It
corresponds to the binary probability vector

0.584 984>

45
0.415016 (“43)

C(0.7) = (

and one can easily verify from Egs. (43)—(45) that PY 3(0.72) ®
C(0.7) < P¥%(0.62) ® C(0.7), implying that the catalyzed
conversion is possible. This is summarized in Fig. 6. We could
also use as a catalyst a two-mode squeezed vacuum state
x ZZOZO tanh” r |n)|n) with squeezing parameter r = 1.38.
Several other numerical examples can be found and some
of them, like the ones provided above, are experimentally
accessible.

1)

0.7 >é2
|0) :

[w(3)(0.62))

[w3)0.72))

[w3)(0.62)) ® |C(0.7)) \w<1ﬂl(o.72>>! |C(0.7)

FIG. 6. Schematic of the catalyzed conversion between the

incomparable states resulting from a three-photon state impinging on

a beam splitter with angles 6 = 0.62 and 6 + @ = 0.72. The catalyst

is the entangled state obtained from a beam splitter with angle = 0.7
and one single-photon input state.
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Note that, due to the additivity of the Rényi entropies,
one should look for catalyzable incomparable states only in
regions where all of the Rényi entropies increase (see also
Refs. [18,19]). However, in the case at hand, we have got
numerical evidence that the sole behavior of the min-entropy
seems to give a necessary and sufficient condition for the
existence of catalysis. The latter property will be examined
in a forthcoming work.

V. CONCLUSION

We have found several classes of majorization relations
characterizing a beam splitter, or more generally, the linear
coupling between a pair of bosonic modes. More formally,
we have proven that the passive Bogoliubov transformation
of Eq. (1) fulfills some majorization relations, which enable
comparing the output states corresponding to various input
photon numbers k as well as various coupling parameters 6
(or transmittances T = cos2 6). Interestingly, this behavior is
reminiscent of the majorization relations that have recently
been shown to prevail with an active Bogoliubov transfor-
mation (a two-mode squeezer or parametric amplifier) [8].
Note that in contrast to Ref. [8], the present analysis has
no implications for the Holevo-Werner conjecture. Indeed,
we consider situations where one of the input modes is in
the vacuum state, corresponding, in the language of quantum
channels, to the case of a pure lossy channel. For that specific
channel, the conjecture is well known to be true [20], since the
vacuum input state results in another vacuum state at the output
of the channel (the vacuum is the extremal input state since
the corresponding output entropy is minimum—it is zero).

We have shown that for any value of the transmittance
parameter 6, the output states resulting from injecting Fock
states |k) in one port of the beam splitter and vacuum |0) in the
other port obey a chain of majorization relations ¥*+D(9) <
w® (@), for all k > 0. As a consequence, the output states
can only be more entangled when increasing the number of
incident photons, and we have found an explicit deterministic
LOCC transformation that maps ¥*+1(9) onto W®(9).

In contrast, we have found that the situation is more
complicated when varying the parameter 6 and keeping k
constant. In that case, we have shown that there exists a

PHYSICAL REVIEW A 87, 042307 (2013)

first region in the space of parameter & where a parametric
infinitesimal majorization relation holds, by taking the limit
of an infinitesimal angle ¢ > 0 for any k > 0, namely,
wm(@ 4 ) < WH(). This implies a monotonic increase of
the entanglement of the output states when decreasing the
transmittance and moving towards a balanced beam splitter.
However, beyond some value of the parameter 6, we have
shown the existence of a default of majorization, which occurs
because the ordering of the OSC vectors changes in such a
way that the leading probability is replaced by another one.
This majorization default holds from the left boundary of this
new ordering region, at least up to the local minimum of the
min-entropy. Moreover, by examining specific examples, we
have shown that one may find more violations of majorization
for noninfinitesimal angles ¢ within the same ordering region
or between different ordering regions.

Finally, we have provided an example of two incomparable
states, resulting from different values of 6, whose conversion
can nevertheless be catalyzed with the help of an experimen-
tally accessible state, such as a single-photon path-entangled
state or a two-mode squeezed vacuum state. Catalysis schemes
like the one in Fig. 6 may potentially be used for authentication
protocols based on entanglement-assisted LOCC [21,22].
Further investigations should also include a more general
solution to the catalysis process in the parameter-varying case,
the analysis of majorization relations in more complicated
optical circuits in the spirit of [23], or the application in the
context of the non-classicality of quantum states [24]. More
ambitiously, one may address phase transitions and critical
phenomena in a field-theoretical approach [25] under the prism
of parametric majorization, where the parameter could be the
temperature of a thermal field [26].
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