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We prove the security of Gaussian continuous-variable quantum key distribution with coherent

states against arbitrary attacks in the finite-size regime. In contrast to previously known proofs of

principle (based on the de Finetti theorem), our result is applicable in the practically relevant finite-

size regime. This is achieved using a novel proof approach, which exploits phase-space symmetries of

the protocols as well as the postselection technique introduced by Christandl, Koenig, and Renner

[Phys. Rev. Lett. 102, 020504 (2009)].
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Quantum key distribution (QKD), the art of generating a
secret key among distant parties in an untrusted environ-
ment, is certainly the most studied quantum cryptographic
primitive. Since the seminal papers of Bennett and
Brassard [1] and Ekert [2], considerable progress has
been made in terms of security analysis [3]. While original
proofs were valid in the asymptotic limit where the number
of exchanged signals tends to infinity, modern proofs are
applicable in the practically relevant finite-size regime
[4,5]. A main challenge when proving security of crypto-
graphic protocols is that there is a very large number of
possible attack strategies that need to be taken into account.
Security proofs generally circumvent this problem by using
the natural permutation invariance [6] of most QKD pro-
tocols, which allows us to restrict the analysis to the much
smaller class of collective attacks, where the eavesdropper
interacts independently and identically with each individ-
ual quantum signal. In an entanglement-based description
of QKD, this amounts to assuming that the joint state
�AnBn that the two legitimate parties, Alice and Bob, hold
after the initial distribution of entangled signals has an
identical and independently distributed (i.i.d.) structure
�AnBn ¼ ��n

AB (where n denotes the number of quantum
signals exchanged during the protocol).

One usually achieves this reduction from general
to collective (i.i.d.) attacks thanks to either de Finetti-
type theorems [9] or the postselection technique [10].
Unfortunately, these tools cannot be directly applied to
continuous-variable (CV) protocols because they require
the dimension of the Hilbert space to be finite (and small
compared to n). However, by prepending a suitable energy
test to the protocol that gives a bound on the effective
dimension, it is still possible to use a specific variant of
the de Finetti theorem and prove that CV protocols are
secure in principle [11]. However, this approach only
works in the limit of very large n. Hence, while providing

a proof of principle, it is not applicable to realistic
protocols.
The specificity of CV protocols is that the detection

consists of (homodyne or heterodyne) measurements of
the light-field quadratures (see Ref. [12] for a review).
From an experimental point of view, they present many
advantages over discrete-variable protocols. Most impor-
tantly, they can be implemented with standard telecom
components and are compatible with wavelength division
multiplexing [13], which is an important advantage when
integrating QKD into real-world telecommunication net-
works. Moreover, quadrature measurements do not require
any photon counters and higher repetition rates can be
achieved. Distribution of secret keys over long distances
(more than 80 km) is currently achievable [14], making CV
protocols competitive with respect to their discrete-
variable counterparts. However, their security analysis is
technically challenging due to the infinite-dimensional
nature of the relevant Hilbert space.
Currently, two different proofs of security for CV pro-

tocols against general attacks are known. The first is based
on the aforementioned de Finetti theorem [11], which
shows that collective attacks are asymptotically optimal.
In addition, one uses that Gaussian attacks are optimal
among collective attacks [15,16]. It then suffices to prove
security against Gaussian collective attacks, which is rela-
tively straightforward. As explained above, however, this
proof method only works in an asymptotic regime where
the number of exchanged signals n tends to infinity. The
second approach uses an entropic uncertainty relation [17]
and works for more reasonable values of n but is only
applicable to a protocol where both Alice and Bob perform
homodyne measurements, corresponding to a prepare-and-
measure protocol where Alice sends squeezed states
through the quantum channel [18]. Here, we wish to
address the security of the more practical protocols where

PRL 110, 030502 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 JANUARY 2013

0031-9007=13=110(3)=030502(5) 030502-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.030502


Alice sends coherent states [19], or equivalently performs a
heterodyne detection on her modes (in an entanglement-
based variant [20]).

In the remainder of this Letter, we first explain on a
general level how one can obtain a protocol secure against
general attacks by prepending an initial energy test to a
protocol that is secure against collective attacks. This result
is quite generic and can be applied to various CV protocols
provided that they display a rather natural invariance in
phase space. Then, in order to explain the proof (sketch) on
a more concrete level, we study the specific case of a
Gaussian protocol where Alice sends coherent states and
Bob performs heterodyne measurements.

Main result.—Our main result is a proof in the finite-size
regime that if a protocol is secure against collective attacks,
then it is secure against coherent attacks. As in
Refs. [11,17], this is achieved by prepending an initial test
to a protocol already proven secure against collective
attacks. The purpose of the test is to verify that the quantum
state shared by Alice and Bob is well approximated by a
state living in a reasonably low-dimensional Hilbert space.
This allows us to use the postselection technique [10] which
shows roughly that if a (permutation-invariant) protocol
with n signals is �-secure against collective attacks, then
it is ~�-secure against general attacks with ~� ¼ �� polyðnÞ.

Our result is based on two central ideas, which allow us
to go beyond the analysis of Ref. [11]. The first is the use of
the postselection technique. It is well known that the post-
selection technique guarantees much better bounds than
the approach based on a de Finetti theorem when reducing
general to collective attacks [21]. Moreover, and this is in
fact the main technical contribution of the present work,
we exploit specific symmetries of the CV QKD protocol in
phase space instead of the usual permutation symmetry
in state space, which is not sufficient to apply the post-
selection technique to our case. More precisely, the QKD
protocol is invariant if Alice and Bob process their respec-
tive modes with global conjugate passive linear trans-
formations of their n modes before performing their
measurements. This rotational invariance in phase space
is better suited to analyze CV protocols [22], allowing us to
precisely bound the effective number of photons per mode
from the results of random quadrature measurements.

QKD protocols and their security.—AQKD protocol is a
CP map from the infinite-dimensional Hilbert space
ðH A �H BÞ�n, corresponding to the initially distributed
entanglement, to the set of pairs (SA, SB) of l-bit strings
(Alice’s and Bob’s final keys, respectively) and C, a tran-
script of the classical communication. In order to assess the
security of a given QKD protocol E in a composable
framework, one compares it with an ideal protocol [23].
The action of an ideal protocol F is defined by concate-
nating the protocol E with a map S taking (SA, SB, C) as
input and outputting the triplet (S, S, C) where the string S
is a perfect secret key (uniformly distributed and unknown

to Eve) with the same length as SA; that is, F ¼ S � E.
Then, a protocol will be called �-secure if the advantage in
distinguishing it from an ideal version is not larger than �.
This advantage is quantified by (one half of) the diamond
norm defined by

kE �F k� :¼sup
�ABE

kðE �F Þ � idKð�ABEÞk1; (1)

where the supremum is taken over density operators on
ðH A �H BÞ�n �K for any auxiliary system K.
General approach: Protocols with prepended test.—Our

main technical result is a reduction of the security against
general attacks to that against collective attacks, for which
security has already been proved in earlier work. Let us
therefore suppose that our CV QKD protocol of interest,
E0, is secure against collective attacks. We will slightly
modify it by prepending an initial test T . More precisely,
T is a CP map taking a state in a slightly larger Hilbert

space, ðH A �H BÞ�ðnþkÞ, measuring k randomly chosen
modes (identical for Alice and Bob) and comparing the
measurement outcome to a threshold fixed in advance.
The test succeeds if the measurement outcome (related to
the energy) is small, meaning that the global state is
compatible with a state containing only a low number of
photons per mode. Such a state is well described in a low-
dimensional Hilbert space, which leads to better bounds
when using the postselection technique. Depending on the
outcome of the test, either the protocol aborts or one
applies the original protocol E0 on the n remaining modes.
A more precise description is provided below when we
consider the specific case of the ‘‘heterodyne protocol.’’
Note that test T has essentially no impact on the prac-

tical feasibility since it only requires k � n additional
homodyne (or heterodyne) measurements.
In order to establish that the protocol E :¼ E0 �T is

�-secure against arbitrary attacks, one needs to bound
kE �F k�. The postselection theorem [10] allows us to
bound the diamond norm between such maps by simply
considering i.i.d. states (i.e., the equivalent of collective
attacks), but only when the maps act on finite-dimensional
spaces. We address this issue by introducing another
CP map P which projects a state in ðH A �H BÞ�n
onto a low-dimensional Hilbert space ð �H A � �H BÞ�n
where �H A :¼ Spanðj0i; j1i; . . . ; jdA � 1iÞ and �H B :¼
Spanðj0i; j1i; . . . ; jdB � 1iÞ are, respectively, a dA- and a
dB-dimensional subspace of the Fock spacesH A andH B.

We define (virtual) protocols ~E :¼ E0 � P �T and
~F :¼ S � ~E. The security of the protocol E is then a
consequence of the following derivation:

kE �F k� � k~E � ~F k� þ kE � ~Ek� þ kF � ~F k�
� k~E � ~F k� þ kE0 � ðid� P Þ �T k�

þ kF 0 � ðid� P Þ �T k�
� k~E � ~F k� þ 2kðid� P Þ �T k�; (2)
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where we used the triangle inequality and the fact that the
CP maps E0 and F 0 :¼ S � E0 cannot increase the dia-
mond norm. The first term can be bounded thanks to the

postselection theorem because ~E and ~F are finite dimen-
sional, and it can be made arbitrary small at the price of
reducing slightly the key rate. The second term can be
bounded by a function of the threshold in the testT thanks
to the following theorem, of which we give a proof sketch
for the heterodyne protocol below (and a full proof in the
Supplemental Material [24]).

Theorem 1. (Informal) For any rotationally invariant

state �ABE 2 ðH A �H BÞ�ðnþkÞ �K,

kðidH �n � P Þ �T � idKð�ABEÞk1 � �; (3)

where � is a function of k, n, the dimensions dA and dB for
the projectionP and the value of the threshold in the testT .

Specific analysis for the protocol with heterodyne
detection.—Consider the heterodyne protocol of Ref. [25]
as our protocol E0. In its entangled version, Alice prepares
n two-mode squeezed vacuum states, measures one mode
of each state with a heterodyne detection (meaning that she
measures both quadratures q and p for each mode), and
sends the other one through the quantum channel. Bob then
also performs a heterodyne measurement of the states he
receives. At the end of this process, Alice and Bob have
access to two correlated vectors in R2n, ~xA for Alice and ~xB
for Bob. Then, they perform the reconciliation procedure
[26,27] in order to extract a common string, and finally
privacy amplification [28] to distill their final secret keys,
SA and SB, respectively.

This protocol is invariant under the action of conjugate
passive linear operations (beam splitters and phase shifts)
because these correspond to some orthogonal transforma-
tion R 2 Oð2nÞ of the quadratures in phase space.
Specifically, if such an operation is applied, then Alice’s
and Bob’s vectors become R~xA and RT ~xB [24], meaning
that the effect of the beam splitters and phase shifts can be
undone by simply applying the inverse rotation on the
classical data. More generally, for a QKD protocol to be
invariant in phase space, it is sufficient to check that
passive linear operations commute with the measurements.

We assume in the following that the protocol E0 is secure
against collective attacks, in the sense that for any
pure state �ABE 2 H A �H B �H E where H E ffi
H A �H B, the quantity kðE0 �F 0Þ � idKð��n

ABEÞk1 can

be made exponentially small in n, say 2�c�2n, at the price
of reducing the secret key rate by an arbitrary small
fraction � compared to the asymptotic optimal rate, for
some constant c > 0. We note that despite being proven
secure against collective attacks in the asymptotic limit
[15,16,29], the security of E0 for finite size attacks is not
yet completely understood in the sense that the precise
relation between the values of c and � is not currently
known: this is due to the difficulty of estimating a covari-
ance matrix in the finite-size regime (see Ref. [30]).

As mentioned above, we will prove the security of a
slightly modified protocol, denoted E which starts with
nþ k modes (instead of n in the case of E0), k of which
are being used to conduct a test T . If the test passes,
corresponding roughly to a scenario where the state does
not contain too many photons, then Alice and Bob proceed
with the protocol E0, otherwise they abort. For simplicity
we define here a protocol with a test T that depends only
on Bob’s classical data. This implies the assumption that
Alice prepares her state in a trusted environment, meaning
that her reduced state is an ðnþ kÞ-modal thermal state.
Note that one could easily remove this assumption
by applying the test T at Alice’s and Bob’s stations
simultaneously.
The test consists in first choosing a random rotation R in

R2ðnþkÞ (with the appropriate measure) and applying it to
the 2ðnþ kÞ-dimensional vector corresponding to Bob’s
measurement outcomes (and apply the transpose rotation
to Alice’s vector). Let us denote by q1;p1;q2;p2;...;qk;pk

the first 2k coordinates of Bob’s rotated vector and define
the variable Yk :¼ 1=ð2kÞPk

i¼1ðq2i þ p2
i Þ. The coordinates

correspond to heterodyne measurements of k modes of
�nþk
B after being processed through an appropriate network

of beam splitters and phase shifts [24]. The test T is
characterized by two parameters: a threshold Ytest and k.
It passes if Yk � Ytest and fails otherwise. We note that the
test does not break the invariance in phase space of the
protocol: the invariance is enforced by the random rotation
R. Because the test commutes with the measurement, it can

equivalently be seen as a map from ðH A �H BÞ�ðnþkÞ to
ðH A �H BÞ�n (plus an additional bit encoding whether
the test passed or not) that returns the n remaining modes
when it passes and an ‘‘abort’’ state when it fails.
It is also useful to describe the CP map P characterized

by three numbers, n, and the local dimensions dA and dB.
This map corresponds to the binary outcome measurement
in ðH A �H BÞ�n described by the operators fP�n

A �
P�n
B ;1� P�n

A � P�n
B g, where PA and PB are the single-

mode projectors on H A and H B, respectively, defined
as PA=B ¼ j0ih0j þ j1ih1j þ 	 	 	 þ jdA=B � 1ihdA=B � 1j.
In order to establish Theorem 1, we will bound the

probability pbad of the following bad event: ‘‘the state
passes the test but the projection onto P�n

A � P�n
B fails’’

for some initial state �n
AB 2 ðH A �H BÞ�n, meaning,

roughly speaking, that the test did not detect that the state
exceeds the desired low-dimensional Hilbert space. Let us
note ~�n

AB the unnormalized state after the test when it
passed; the probability of passing the test is simply ptest ¼
tr~�n

AB and pbad ¼ tr½ð1� P Þ~�n
AB
. One can bound pbad in

the following way:

pbad ¼ trðidAB � P�n
A � P�n

B Þ~�n
AB

� tr½ðidA � P�n
A Þ~�n

A
 þ tr½ðidB � P�n
B Þ~�n

B

� tr½ðidA � P�n

A Þ�n
A
 þ tr½ðidB � P�n

B Þ~�n
B
; (4)
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where we used the union bound and the fact that Alice does
not apply the test. The first term is easy to compute because
the state of Alice, a multimode thermal state, is well

known: �n
A ¼ ��n

thermal with �thermal ¼
P1

k¼0
�k

ð1þ�Þkþ1 jkihkj
for a state with � photons per mode. The value of � is a
parameter of the protocol and should be optimized given
the expected characteristics of the quantum channel. The
union bound gives

1� trðP�n
A �n

AÞ � n½1� trðPA�thermalÞ
 ¼ n

�
�

1þ �

�
dA
:

In particular, choosing dA ¼ logðn=�AÞ
logð1þ1=�Þ for the dimension of

Alice’s Hilbert space leads to 1� trðP�n
A �n

AÞ � �A.
Bounding the second term in Eq. (4) is much trickier

because one cannot assume that Bob’s state �n
B is Gaussian

or that it even has an i.i.d. structure. This is because it
corresponds to the output of the unknown quantum channel
controlled by Eve. Here, we will make use of the specific
symmetries of the QKD protocol in phase space in order to
greatly simplify the problem. In general, most protocols
are invariant under permutations of the subsystems of
Alice and Bob. This means that the state �n

AB (and therefore
also �n

B) can be assumed to display this invariance.
However, CVQKD protocols such as the one considered
here respect a much stronger symmetry: they are invariant
when Alice and Bob apply to their respective ðnþ kÞ
modes conjugate passive linear transformations, imple-
mented by any network of beam splitters and phase shifts
[22,29] (see Supplemental Material [24]). Here, it is crucial
that the test T respects the symmetry, and this can be
enforced at the level of classical data by the choice of the

random rotation in R2ðnþkÞ.
Thanks to this symmetry, one can assume that the state

�nþk
B of Bob (before applying the test T ) is rotationally

invariant. Such states satisfy a de Finetti theorem [31]: if
sufficiently many modes of �nþk

B are traced out, then the
remaining state is close to a mixture of thermal states.
Intuitively, one then expects that the second term of
Eq. (4) behaves like the first one, and this is what we prove
rigorously. Before we explain how to bound trðP�n

B ~�n
BÞ, we

recall two useful properties of states, such as �nþk
B , which

are rotationally invariant [31]. First, these states are mix-

tures of generalized ðnþ kÞ-mode Fock states �nþk
p :¼

1=ðnþkþp�1
p ÞPp1þ			þpm¼pjp1; p2; . . . ; pmihp1; p2; . . . ; pmj;

where jp1; . . . ; pmi is the product of Fock states with p1

photons in the first mode, p2 photons in the second
mode, etc., and the sum is taken over all states with a
total number of p photons in nþ k modes. Second, the
Wigner function Wðq1; p1; . . . ; qnþk; pnþkÞ of �nþk

B is iso-
tropic, that is only depending on the norm of the vector
ðq1; p1; . . . ; qnþk; pnþkÞ. This also holds for theQ-function
of the state, that is the probability distribution of the
outcomes of the heterodyne measurements.

Let us introduce another random variable Zn :¼
1=ð2nÞPn

i¼1 q
2
kþi þ p2

kþi, corresponding to the norm of

Bob’s heterodyne measurements for the n modes of �nþk
B

not measured during the test T . We show in Ref. [24] that
the probability �test of passing the test with Zn being much
larger than Ytest, is exponentially small in k when the value
of Ytest is chosen slightly larger than the expected variance
of Bob’s measurement results. In turn, this implies that the
total number of photons in the state �n

B is bounded by
OðnYtestÞ. Finally, we show that the projection over the

space �H �n
B succeeds with high probability if dB ¼

dim �H B ¼ Oðlog2n� Þ. This finally provides a bound on

kðidH �n � P Þ �T k� and proves Theorem 1.
We now put things together and establish that protocol E

is secure against general attacks. First, choosing dA
and dB on the order of Oð logðn=�testÞÞ, one obtains
kðidH �n � P Þ �T k� � �test. Second, assuming that
the original protocol E0 is secure against collective attacks,

the diamond norm k~E � ~F k� can be bounded by

2�c�2nþO½log4ðn=�testÞ
 using the postselection technique
where the dimension of the relevant Hilbert space
�H A � �H B is dAdB ¼ O½log2ðn=�testÞ
 (see Ref. [10] for
details). This shows that protocol E is �-secure against
general attacks with

� ¼ 2�c�2nþO½log4ðn=�testÞ
 þ 2�test: (5)

Conclusion.—We have proved that Gaussian
continuous-variable QKD protocols, using a Gaussian dis-
tribution of coherent states and homodyne or heterodyne
measurements, are secure against arbitrary attacks in the
practically relevant finite-size regime. Our proof exploits
the specific symmetries in phase space of Gaussian QKD
protocols and uses a simple test to ensure that the global
state shared between Alice and Bob is well described by
assigning a low-dimensional Hilbert space to each mode.
This allows one to employ the postselection technique,
which was introduced in Ref. [10] for discrete-variable
protocols. On a more general level, our result illustrates
the use of symmetries for the analysis of cryptographic
protocols. While in the present case of Gaussian protocols
we have exploited a rotational invariance in phase
space (instead of the usual permutation symmetry), it is
conceivable to extend our technique to take advantage
of other symmetries. One may even go one step further
and design protocols that naturally exhibit additional
symmetries.
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