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We prove the equivalence of an arbitrary single-mode Gaussian quantum channel and a newly defined

fiducial channel preceded by a phase shift and followed by a Gaussian unitary operation. This equivalence

implies that the energy-constrained classical capacity of any single-mode Gaussian channel can be

calculated based on this fiducial channel, which is furthermore simply realizable with a beam splitter, two

identical single-mode squeezers, and a two-mode squeezer. In a large domain of parameters, we also

provide an analytical expression for the Gaussian classical capacity, exploiting its additivity, and prove

that the classical capacity cannot exceed it by more than 1= ln2 bits.
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Introduction.—Quantum channels play a key role in
quantum information theory. In particular, bosonic
Gaussian channels model most optical communication
links, such as optical fibers or free space information trans-
mission [1,2]. One of the central characteristics of quantum
channels is their classical capacity. A lot of attention has
already been devoted to the study of the classical capacity of
Gaussian channels [3–22]. Since Gaussian encodings are
more relevant for experimental implementations, easier to
work with analytically, and conjectured to be optimal [11],
the so-called Gaussian classical capacity was evaluated for
specific Gaussian channels [14–22].

In this Letter, we greatly simplify the calculation of
these capacities [23] for an arbitrary single-mode
Gaussian channel. Namely, we show that any such channel
is indistinguishable from a newly defined fiducial channel,
preceded by a phase shift and followed by a general
Gaussian unitary. Since neither the phase shift at the chan-
nel’s input nor the Gaussian unitary at the channel’s output
affects the input energy constraint or changes the output
entropy, the capacities of this channel are equal to those of
the fiducial channel. This conclusion also holds for any
cascade of Gaussian channels since the latter is equivalent
to another Gaussian channel. Our results allow us to go
beyond previous works on the Gaussian capacity [19–21]
and provide its unified analytical expression valid for any
Gaussian channel in some energy range, where it is addi-
tive. In this range, we prove that the capacity cannot exceed
the Gaussian capacity by more than 1= ln2 bits (generaliz-
ing [24]), the latter becoming the actual capacity if the
minimum-output entropy conjecture for phase-insensitive
Gaussian channels [11,25] is true.

Gaussian channel.—Let �̂Gð�;VÞ be a single-mode
Gaussian state, where the coherent vector � 2 R2 and
the covariance matrix (CM) V 2 R2 � R2 are the first-
and second-order moments of the 2 dimensionless
quadratures, respectively, with @ ¼ 1. Then, a single-
mode Gaussian channel � is a completely positive

trace-preserving map which is closed on the set of
Gaussian states [11]. It transforms input states with
moments f�in;Ving to output states with moments
f�out;Voutg according to

� out ¼ X�in þ �; Vout ¼ XVinX
T þ Y; (1)

where � is the displacement induced by the channel, X is a
2� 2 real matrix, and Y is a 2� 2 real, symmetric, and
non-negative matrix. For simplicity, we choose � ¼ 0 in
what follows (the capacity is not affected by �), and focus
on the action of the map� on second-order moments using
the simplified notation �ðVinÞ ¼ Vout. Then, the map � is
fully characterized by matrices X and Y, which must
satisfy Y þ ið��X�XTÞ=2 � 0 [11], where

� ¼ 0 1
�1 0

� �
(2)

is the symplectic form [26]. In the following, we use the
parameters

� ¼ detX; y ¼ ffiffiffiffiffiffiffiffiffiffiffi
detY

p
; (3)

where � may be a channel transmissivity (if 0 � � � 1) or
amplification gain (if � � 1), while y characterizes the
added noise. The map � describes a quantum channel if
y � j�� 1j=2 [27]. Moreover, it is an entanglement break-
ing channel if y � ðj�j þ 1Þ=2 [28]. The single-mode
Gaussian channels can therefore be conveniently repre-
sented in a (�, y) plane, see Fig. 1.
Canonical decomposition.—Any single-mode Gaussian

channel � can be decomposed as � ¼ U2 ��C �U1,
where U1 and U2 are Gaussian unitaries, and �C is a
canonical channel characterized by the matrices (XC, YC)
[29–31]. The action of a Gaussian unitary U on a Gaussian
state can be completely specified by a symplectic trans-
formation M acting on the second-order moments of the
state (we ignore first-order moments), so that the canonical
decomposition may be written as ðU2 ��C �U1ÞðVinÞ ¼
M2�

CðM1VinM
T
1 ÞMT

2 . One can define seven classes of
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canonical channels �C (see Table I) [29–31]. The first five
channels in Table I can be treated together, and we refer to
them collectively as thermal channels, �TH

ð�;yÞ:

X TH ¼
ffiffiffiffiffiffij�jp

0

0 sgnð�Þ ffiffiffiffiffiffij�jp
 !

; YTH ¼ y 0
0 y

� �
; (4)

where sgnð�Þ ¼ �1 if � < 0 and sgnð�Þ ¼ 1 if � � 0. As
shown in Fig. 2(a), any channel �TH can be physically
realized by a beam splitter with transmissivity T followed
by a two-mode squeezer (TMS) with gain G [27]. For the
zero-transmission (� ¼ 0), lossy (0 � � � 1), amplification
(� � 1), and classical additive-noise channel (� ¼ 1), the
output is given by the signal’s output of the TMS, and these
four canonical channels correspond to phase-insensitive
channels. For the fifth canonical channel, i.e., the phase-
conjugating channel (� < 0), the output is given by the idler’s
output of the TMS. These five channelsmap any thermal state

to a thermal state, so we call them thermal channels. Each
particular channel �TH

ð�;yÞ corresponds to a single point in

Fig. 1, where the relations between (�, y) and (T, G) are
given in Table I. Finally, the sixth and seventh canonical
channels are the classical signal (or quadrature erasing) chan-
nel �CS and the single-quadrature classical noise channel
�SQ, which are not thermal channels (see [32]).
Fiducial channel.—Now, our central point is that the

above canonical decomposition is not always useful for
evaluating capacities of bosonic channels with input en-
ergy constraint (which is needed, otherwise the capacities
are infinite). Indeed, the Gaussian unitary U1 that precedes
the canonical channel �C affects, in general, the input
energy. Therefore, we introduce a new decomposition in
terms of a fiducial channel �F, where the preceding uni-
tary is passive and does not affect the input energy restric-
tion. We show that this decomposition has the major
advantage that the energy-constrained capacity of any
Gaussian channel reduces to that of the fiducial channel
�F. The latter generalizes �TH by introducing squeezing
in the added noise

XF ¼ XTH; YF ¼ y
e2s 0

0 e�2s

 !
: (5)

Thus, it depends on three parameters (�, y, s), and we
denote it by �F

ð�;y;sÞ. This channel can be physically real-

ized by the setup depicted in Fig. 2(b), where the ‘‘idler’’
corresponds again to the output of the phase-conjugating
channel and the ‘‘signal’’ to that of the other channels. In
the case 0 � � � 1, this channel corresponds to the mixing
of the input state with an arbitrary squeezed thermal state
on a beam splitter with transmissivity �. The fiducial
channel �F can be used to decompose any Gaussian
channel � (by taking proper limits, if necessary) [32].
Theorem 1. For a single-mode Gaussian channel �

defined by matrices X and Y with � � 0 and y > 0, there
exists a fiducial channel�F

ð�;y;sÞ defined by matrices XFð�Þ,
YFðy; sÞ with � and y obtained from Eq. (3), a symplectic
transformation M, and a rotation in phase space � such
that

(non-physical) (non-physical)

Lossy
...

Ph. conjugating

...

...

entanglement breaking

FIG. 1. Admissible regions in the parameter space (�, y) for
Gaussian quantum channels. Each thermal channel �TH

ð�;yÞ is

associated with a particular point (�; y). The vertical line
� ¼ 0 corresponds to the zero-transmission channel as well as
the classical signal channel �CS. The vertical line � ¼ 1 corre-
sponds to the classical additive-noise channel. Both the perfect
transmission channel and the single-quadrature classical noise
channel �SQ correspond to (� ¼ 1, y ¼ 0). The Gaussian
capacity of �F

ð�;y;sÞ is additive if �N � �Nthr. This is equivalent to

y � ythr ¼ j�j½e�2jsjð1þ 2 �NÞ � 1�=ð1� e�4jsjÞ. An example of
ythr is given by the dashed line, where �N ¼ 0:5 and s ¼ 0:12.

TABLE I. Canonical channels �C as defined in [29–31], and their new representation in terms of �TH, �CS, �SQ and the
corresponding matrices (XC, YC), where �z ¼ diagð1;�1Þ. The transmissivity T 2 ½0; 1� of the beam splitter and the gain G � 1 of
the two-mode squeezer correspond to the physical schemes in Fig. 2 and [32].

Channel Symbol Class XC YC � Domain of � Domain of y

Zero-transmission A1

�TH

0 ðG� 1=2Þ1 0 0 ½1=2;1Þ
Classical additive noise B2 1 ðG� 1Þ1 TG ¼ 1 1 ½0;1Þ
Lossy CL

ffiffiffi
�

p
1 ½Gð1� T=2Þ � 1=2�1 TG [0, 1] ½ð1� �Þ=2;1Þ

Amplification CA
ffiffiffi
�

p
1 ½Gð1� T=2Þ � 1=2�1 TG ½1;1Þ ½ð�� 1Þ=2;1Þ

Phase-conjugating D
ffiffiffiffiffiffij�jp

�z ½ð1� TÞðG� 1Þ=2þG=2�1 �TðG� 1Þ ð�1; 0� ½ð1� �Þ=2;1Þ
Classical-signal A2 �CS ð1þ �zÞ=2 ðG� 1=2Þ1 0 0 ½1=2;1Þ
Single-quad. cl. noise B1 �SQ 1 ð1� �zÞ=4 1 1 0
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X ¼ MXFð�Þ�; Y ¼ MYFðy; sÞMT; (6)

where the explicit dependencies of M, �, and s on the
parameters of the channel � are presented in the
Supplemental Material [32].

Proof. We only sketch the proof here (see [32] for the
full proof). First, one finds matrices �Y and SY such
that S�1

Y �T
YY�YS

�1
Y ¼ diagðy; yÞ, where�Y and SY denote

matrices corresponding to a rotation and a squeezing opera-
tion, respectively. Second, one obtains the singular value
decomposition X ¼ �1XSXXF �2X, where XF reads as in
Eq. (5). Then one defines M ¼ �1XSX�

T
F, where �F is

found such that MTYM ¼ YF ¼ y diagðe2s; e�2sÞ. The
squeezing parameter s depends on all angles and squeezing
operationsSX, SY . Finally, one introduces�F inX, i.e.,X ¼
�1XSX�

T
F�FXF�2X ¼ MXF�, where� depends on�2X,

�F, and the sign of �. Despite Theorem 1 requires that � � 0
and y > 0, or, equivalently, that rankðXÞ ¼ rankðYÞ ¼ 2,
it can be extended to lower-rank cases with minor
modifications [32]. h

Capacities.—The energy-constrained capacity C of the
Gaussian channel � is defined as the maximal amount of
bits that can be transmitted per use of the channel � given
the mean photon number �N at its input, i.e., [12,33]

Cð�; �NÞ ¼ lim
n!1

1

n
C�ð��n; n �NÞ; (7)

where n is the number of channel uses, and C� is the one-

shot capacity of the channel, i.e.,

C�ð�; �NÞ ¼ max
�: �̂�2E �N

�ð�; �Þ;

�ð�; �Þ ¼ Sð�½ �̂��Þ �
Z

�ðdxÞSð�½�̂x�Þ:
(8)

Here Sð�̂Þ ¼ �Trð�̂log2�̂Þ is the von Neumann entropy.
The maximum is taken over all probability measures �ðxÞ
in the whole space H of pure symbol states �̂x such that
the average state �̂� ¼ R

�ðdxÞ�̂x belongs to the set E �N of

states which have a mean photon number not greater than
�N. Since, in general, the one-shot capacity is not additive
[34], one has to take the limit in Eq. (7), unless additivity is

explicitly proven for the given channel. The decomposition
stated in Theorem 1 implies:
Corollary 1. For a single-mode Gaussian channel�with

parameters (� � 0, y > 0), there exists a fiducial channel
�F as defined in Theorem 1, such that

Cð�; �NÞ ¼ Cð�F; �NÞ: (9)

Proof. The symplectic transformationM that follows�F

in Theorem 1 does not change the entropies in� and there is
no energy constraint on the output of the channel. Hence,M
can be omitted. Furthermore, the rotation � preceding �F

in Theorem 1 may be regarded as a change of the reference
phase that can be chosen arbitrarily; therefore, � can be
omitted as well. Thus, C�ð�; �NÞ ¼ C�ð�F; �NÞ holds. In
order to evaluate the one-shot capacity of ��n we apply
the same reasoning, where the preceding and following
transformations are given by �n

i¼1M and �n
i¼1�,

respectively. Hence, it follows that C�ð��n; n �NÞ ¼
C�ðð�FÞ�n; n �NÞ which together with Eq. (7) implies

Eq. (9). Note that despite Eq. (9) requires ��0 and y > 0,
it can be easily extended to the general case [32]. h
We remark that if the corresponding fiducial channel

�F
ð�;y;sÞ is entanglement breaking, then the one-shot capaci-

ties of both �F
ð�;y;sÞ and � are additive [35,36] and using

Corollary 1 it follows that Cð�; �NÞ ¼ C�ð�F; �NÞ.
Gaussian capacities.—For experimental implementa-

tions and analytical calculations, it is convenient to focus
on Gaussian encodings. We call the capacity restricted to
Gaussian encodings the Gaussian capacity CG [17–22]:

CGð�; �NÞ ¼ lim
n!1

1

n
CG
�ð��n; n �NÞ;

CG
�ð�; �NÞ ¼ max

�G: �̂�G2EG
�N

�ð�; �GÞ;
(10)

where CG
�ð�; �NÞ is the one-shot Gaussian capacity. The

maximum is now taken over all probability measures
�Gð�;VÞ on Gaussian symbol states �̂Gð�;VÞ such that
�̂�Gð ��in; �VinÞ ¼

R
�Gðd�; dVÞ�̂Gð�;VÞ is in the set EG

�N
of

Gaussian states with a mean photon number not greater
than �N. Unlike previous works (e.g., [2,16]), we require the
individual symbol states as well as the average state to be
Gaussian. Then we prove that the one-shot Gaussian ca-
pacity of an arbitrary single-mode Gaussian channel � is
given by the well-known expression [37] (see [32] for the
proof)

CG
�ð�; �NÞ ¼ max

Vin;Vmod

f�Gð ��; �ÞjTr½Vin þ Vmod� � 2 �N þ 1g;

�Gð ��; �Þ ¼ g

�
��� 1

2

�
� g

�
�� 1

2

�
;

gðxÞ ¼ ðxþ 1Þlog2ðxþ 1Þ � xlog2x; (11)

where Vin is the CM of a pure Gaussian input state
�̂Gð0;VinÞ satisfying detð2VinÞ ¼ 1. Here Vmod is the CM
of a classical Gaussian distribution according to which the
input state is displaced in order to generate the modulated

(b)

Input

(a)

Signal

Idler

Input Signal

Idler

FIG. 2. Realization of (a) the thermal channel �TH and (b) the
fiducial channel �F by a beam splitter with transmissivity T, a
two-mode squeezer with gain G, and a single-mode squeezer S.
Here j0i stands for the vacuum state, and ‘‘a’’ denotes ‘‘tracing
out’’ the mode.
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input state �̂�Gð0; �VinÞwithCM �Vin ¼ Vin þ Vmod satisfying

Tr½ �Vin� � 2 �N þ 1. Furthermore, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detVout

p
and �� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det �Vout

p
are the symplectic eigenvalues of the output and

modulated output states with CM Vout ¼ �ðVinÞ and
�Vout ¼ �ð �VinÞ, respectively (see [32]).
The one-shot Gaussian capacity is equal to the Gaussian

capacity, i.e., CGð�; �NÞ ¼ CG
�ð�; �NÞ, provided it is addi-

tive. Interestingly, such an additivity can be proven if the
input energy exceeds some threshold �Nthr (see [32]). Note
that [16] also derives additivity but for a slightly different
definition of CG

� and without respecting the energy

constraint. In addition, an analog of Corollary 1 can easily
be shown to hold for Gaussian capacities, namely
CGð�; �NÞ ¼ CGð�F; �NÞ. Therefore, using the fiducial
channel�F, we can analytically find the Gaussian capacity
of any Gaussian channel in this high-energy regime:

Corollary 2. For a single-mode Gaussian channel�with
parameters (� � 0, y > 0), there exists a fiducial channel
�F as defined in Theorem 1, such that

CGð�; �NÞ ¼ CGð�F
ð�;y;sÞ; �NÞ

¼ g

�
j�j �N þ y coshð2sÞ þ j�j � 1

2

�

� g

�
yþ j�j � 1

2

�
;

if �N � �Nthr ¼ 1

2

�
e2jsj þ 2y

j�j sinhð2jsjÞ � 1

�
:

(12)

The proof is presented in [32]. Note that the energy
threshold �Nthr depends on the parameter s characterizing
the fiducial channel �F

ð�;y;sÞ. For thermal channels �TH ¼
�F

ð�;y;0Þ, the threshold �Nthr ¼ 0, so that additivity holds in

the entire energy range. Then, Eq. (12) coincides with
previously derived expressions for particular cases [4,11].
In Fig. 1, we illustrate an example of the domain where
�N � �Nthr, hence where Eq. (12) holds. Note, that Eq. (12)
becomes the actual capacity Cð�; �NÞ (for �N � �Nthr) of an
arbitrary single-mode Gaussian channel � provided that
the vacuum state is proven to minimize the output entropy
of a single use of an ideal amplification channel [27,38].

Upper bounds.—Recently, upper bounds have been de-
rived on the capacity of phase-insensitive channels, i.e.,
�TH with � � 0 [24,39]. Using Corollary 2, we can gen-
eralize them to any Gaussian channel in the high-energy
regime:

Corollary 3. For a single-mode Gaussian channel�with
parameters (� > 0, y > 0) and �N � �Nthr,

CGð�; �NÞ � Cð�; �NÞ � �C � CGð�; �NÞ þ 1

ln2
;

�C ¼ g

�
2� �N þ ð2yþ 1� �Þsinh2s

2yþ 1þ �

�
;

(13)

where CGð�; �NÞ is stated in Eq. (12).

Proof. The fiducial channel corresponding to � can be
decomposed as �F

ð�;y;sÞ ¼ �F
ðG;ðG�1=2Þ;sÞ ��F

ðT;ð1�T=2Þ;sÞ
with T ¼ 2�=ð2yþ �þ 1Þ (see Fig. 2 and Table I).
Then, the capacity of �F

ð�;y;sÞ is upper bounded by the

capacity of the first channel, i.e.,

Cð�; �NÞ ¼ Cð�F
ð�;y;sÞ; �NÞ � Cð�F

ðT;ð1�T=2Þ;sÞ; �NÞ � �C;

where �C ¼ gðT �N þ ð1� TÞsinh2sÞ [17]. We define

�ðsÞ 	 �C� CG

¼ g½AðBþ 1Þ�1� � gðAþ Bcosh2sÞ þ gðBÞ;
where A ¼ � �N þ ½y� ð�� 1Þ=2�sinh2s and B ¼
yþ ð�� 1=2Þ. It was shown in [24] that �ð0Þ< 1= ln2.
Since 8 s: �ðsÞ � �ð0Þ, the corollary is proven. h
Note that for � < 0 we can state a similar upper bound

on the capacity,Cð�; �NÞ � �C, where �C is given by Eq. (13)
with the replacement y ! �y. However, in this case the
last inequality in Eq. (13) does not hold. In a similar
fashion, we extend in [32] the bounds that were derived
in [39].
Conclusions.—We have shown that an arbitrary single-

mode Gaussian channel is either equivalent to a newly
defined fiducial channel preceded by a phase shift and
followed by a Gaussian unitary, or can be obtained in a
proper limit of this combination. This equivalence was
exploited to reduce the energy-constrained classical ca-
pacity of any single-mode Gaussian channel to that of the
fiducial channel. We gave an analytical expression for the
Gaussian capacity above the energy threshold, where ad-
ditivity can be proven, and showed that in this case the
classical capacity cannot exceed it by more than 1= ln2
bits. We expect that our results will be useful for further
studies on the capacities of Gaussian channels, especially
for input energies below the energy threshold.
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[20] J. Schäfer, E.Karpov, andN. J. Cerf, inProceedings of SPIE

(SPIE—The International Society for Optical Engineering,
Bellingham, WA, 2010), Vol. 7727, p. 77270J.
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