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Abstract. We show that quantum query complexity satisfies a strong
direct product theorem. This means that computing k copies of a func-
tion with fewer than k times the quantum queries needed to compute
one copy of the function implies that the overall success probability
will be exponentially small in k. For a boolean function f , we also
show an XOR lemma—computing the parity of k copies of f with fewer
than k times the queries needed for one copy implies that the advan-
tage over random guessing will be exponentially small. We do this
by showing that the multiplicative adversary method, which inherently
satisfies a strong direct product theorem, characterizes bounded-error
quantum query complexity. In particular, we show that the multiplica-
tive adversary bound is always at least as large as the additive adversary
bound, which is known to characterize bounded-error quantum query
complexity.
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1. Introduction

A fundamental question in complexity theory is how the difficulty
of computing k independent instances of a function scales with
the difficulty of computing the function. Intuitively, if r resources
are needed to compute a function f with error probability 1/3, we
expect that even with αkr resources, for α < 1, we can only succeed
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in computing k independent instances of f with probability expo-
nentially small in k. Proving such a result is known as a strong
direct product theorem. While intuitive, for some models of com-
putation such a statement is simply false (Shaltiel 2003), and there
are still relatively few computational models where strong direct
product theorems have been shown. Notable examples of direct
product-type results include Yao’s XOR lemma (Goldreich et al.
2011) and Raz’s parallel repetition theorem (Raz 1998). Closer to
our setting, strong direct product theorems have been shown for
bounded-round randomized communication complexity (Jain et al.
2012) and for randomized query complexity (Drucker 2011).

In this work, we show that quantum query complexity satis-
fies a strong direct product theorem. For boolean functions, we
further show an XOR lemma. XOR lemmas are closely related to
strong direct product theorems and state that computing the par-
ity of k copies of a boolean function with fewer than k times the
resources needed to compute one copy implies that the advantage
over random guessing will be exponentially small. XOR lemmas
can be shown quite generally to imply strong direct product the-
orems and even threshold direct product theorems (Unger 2009),
which state that one cannot compute a μ fraction of the k copies
with fewer than (a constant fraction of) μk times the resources
with better than exponentially small (in μk) success probability.
Thus, in the boolean case, we are also able to obtain a threshold
direct product theorem.

For classical randomized query complexity, in addition to a
strong direct product theorem, Drucker (2011) also showed an XOR
lemma and a threshold direct product theorem. Thus, for both ran-
domized and quantum query complexity, all the major open prob-
lems relating to direct product theorems have now been answered.
The techniques used by Drucker are quite different from the ones
used here.

Previous results for quantum query complexity. A result
related to, but weaker than, a strong direct product theorem is
a direct sum theorem. These state that the resources needed to
compute k-copies of a function are at least k times the resources
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needed to compute the function—with the same error parameter.
A direct sum theorem is known for quantum query complexity—it
follows from results of Ambainis et al. (2010a) that the adversary
method obeys a direct sum theorem and the fact that the adversary
method characterizes quantum query complexity (Lee et al. 2011;
Reichardt 2011).

Strong direct product theorems in quantum query complex-
ity were previously known only for some special classes of func-
tions and bounds shown by particular methods. In the first such
result, Klauck et al. (2007) used the polynomial method (Beals
et al. 1998) to show a strong direct product theorem for the quan-
tum query complexity of the OR function. Via block sensitivity,
this gives a polynomially tight strong direct product theorem for
all functions—namely any algorithm using fewer than a constant
fraction times kQ1/3(f)1/6 will have exponentially small success
probability for computing k copies of f . Here and in the rest of
the paper, we use Qε(f) to denote the ε-bounded-error quantum
query complexity of f .

Sherstov (2011) recently showed how certain lower bound tech-
niques based on looking at the distance of the function to a convex
set inherently satisfy a strong direct product theorem. As an appli-
cation, he was able to show that the polynomial method satisfies
a strong direct product theorem in general. Thus, one obtains a
strong direct product theorem for the quantum query complex-
ity of any function where the polynomial method shows a tight
lower bound. Super-linear gaps between the polynomial degree
and quantum query complexity are known (Ambainis 2006), how-
ever, so this does not give a tight strong direct product theorem
for all functions.

Direct product results have also been shown by the other main
lower bound technique in quantum query complexity, the adver-
sary method. The adversary method defines a potential function
based on the state of the algorithm after t queries and bounds
the change in this potential function from one query to the next.
By developing a new kind of adversary method, Ambainis et al.
(2006) showed a strong direct product theorem for all symmetric
functions. Špalek (2008) formalized this technique into a generic
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method, coining it the multiplicative adversary method and showed
that this method inherently satisfies a strong direct product theo-
rem. The name multiplicative adversary contrasts with the addi-
tive adversary method, introduced earlier by Ambainis (2002) and
later extended by Høyer et al. (2007). The additive adversary
method bounds the difference of the potential function from one
step to the next, while the multiplicative adversary method bounds
the corresponding ratio.

Our results. There have recently been great strides in our under-
standing of the adversary methods. A series of works (Ambainis
et al. 2010b; Childs et al. 2009; Farhi et al. 2008; Lee et al. 2011;
Reichardt 2009, 2011; Reichardt & Špalek 2008) has culminated
in showing that the additive adversary method characterizes the
bounded-error quantum query complexity of any function what-
soever. Ambainis et al. (2011), answering an open question of
Špalek (2008), showed that the multiplicative adversary is at least
as large as the additive. Thus, the multiplicative adversary bound
also characterizes bounded-error quantum query complexity.

This seems like it would close the question of a strong direct
product theorem for quantum query complexity. The catch is the
following. The multiplicative adversary method can be viewed as
a family of methods parameterized by the bound c on the ratio
of the potential function from one step to the next. The strong
direct product theorem of Špalek (2008) holds for any value of c
sufficiently bounded away from 1. The result of Ambainis et al.
(2011), however, was shown in the limit c → 1, which ends up
degrading the resulting direct product theorem into a direct sum
theorem. We show that the multiplicative adversary is at least
as large as the additive adversary for a value of c bounded away
from 1 (Claim 3.18). A similar result was independently proved
by Belovs (2011). Together with the strong direct product the-
orem for the multiplicative adversary by Špalek (2008), this suf-
fices to give a strong direct product theorem for quantum query
complexity. Rather than use this “out of the box” strong direct
product theorem, however, we prove the strong direct product the-
orem from scratch using a stronger output condition than those
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used previously (Ambainis et al. 2011; Špalek 2008). This results
in better parameters and a better understanding of the multiplica-
tive adversary method.

Theorem 1.1 (Strong direct product theorem). Let f : D → E
where D ⊆ Dn for finite sets D,E. For an integer k > 0 define
f (k)(x1, . . . , xk) = (f(x1), . . . , f(xk)). Then, for any δ ∈ [2/3, 1],

Q1−δk/2

(
f (k)

) ≥ k ln(3δ/2)

8000
·Q1/4(f).

In the boolean case, we prove the following XOR lemma which
also implies a threshold direct product theorem (Theorem 5.4).

Lemma 1.2 (XOR Lemma). Let f : D → {0, 1} where D ⊆ Dn

for finite set D. For an integer k > 0 define f⊕k(x1, . . . , xk) =∑
i f(xi) mod 2. For any δ ∈ [0, 1],

Q(1−δk/2)/2

(
f⊕k

) ≥ kδ

8000
·Q1/4(f).

Proof technique. While the statement of our main theorems
concern functions, a key to our proofs, especially for the XOR
lemma, is to consider more general state generation problems,
introduced by Ambainis et al. (2011). Instead of producing a classi-
cal value f(x) on input x, the goal in state generation is to produce
a specified target state |σx〉, again by making queries to the input
x. We will refer to σ(x, y) = 〈σx|σy〉 as the target gram matrix.
Evaluating a function f can be viewed as a special case of state
generation where the target gram matrix is F (x, y) = δf(x),f(y),
where δa,b denotes the Kronecker delta function.

Our most general result (Theorem 4.1) shows that for a res-
tricted class of target gram matrices σ, to generate σ⊗k with bet-
ter than exponentially small success probability requires at least
a constant fraction of k times the complexity of σ. The strong
direct product theorem is obtained as a special case of this theo-
rem by considering the gram matrix F (x, y) = δf(x),f(y). To obtain
the XOR lemma, we apply this theorem with the state genera-
tion problem of computing f in the phase, that is to generate
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σf (x, y) = (−1)f(x)+f(y). The advantage of considering this state is
that σ⊗k

f is the state generation problem corresponding to comput-
ing the parity of k copies of f in the phase. We then show that the
complexities of f and the state generation problem of computing
f in the phase are closely related.

Another key element of our proofs is a new characterization of
the set of valid output gram matrices for an algorithm solving a
state generation problem with success probability 1−ε (Claim 2.9).
A necessary condition for a matrix to be a valid output matrix is
called an output condition. Usually, a lower bound uses an output
condition that is necessary but not sufficient, and that is therefore
a relaxation of the true output condition. In this case, the lower
bound is shown against all gram matrices satisfying this relaxed
output condition and thereby all valid output matrices as well.
Examples of output conditions previously used with the adversary
bound include being close to the target gram matrix in distance
measured by the l∞ or γ2 (see Definition 2.6) norms. These output
conditions, however, do not work for small success probabilities,
which is critical to obtain the strong direct product theorem.

We give a new characterization of the true output condition
in terms of fidelity. We then relax this condition by replacing the
fidelity between quantum states by the fidelity between probability
distributions arising from a measurement on those states. The key
observation is that a witness for the adversary bound of the prob-
lem is a hermitian matrix, which can be interpreted as a physical
observable that can be measured. Since the fidelity between two
quantum states is upper bounded by the fidelity between the prob-
ability distributions arising from any measurement on those states,
a relaxation of this output condition may be obtained by consider-
ing the measurement corresponding to an optimal witness for the
adversary bound of the problem. A lower bound on the multiplica-
tive bound under this relaxed output condition can be written as
a linear program. By taking the dual of this linear program, we
are able to lower bound the value on σ⊗k in terms of the bound for
σ by using a completely classical claim about product probability
distributions (Corollary 3.13). This approach allows us to obtain a
cleaner statement for the strong direct product theorem than what
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we would obtain from the output condition used by Špalek (2008)
and Ambainis et al. (2011) and also clarifies the inner workings of
the adversary method, which might be of independent interest.

2. Preliminaries

Let �(z) denote the real part of a complex number z. Let δa,b

denote the Kronecker delta function. We will refer throughout to
a function f : D → E where D ⊆ Dn for finite sets D,E. We let
f (k) : Dk → Ek be the function computing k independent copies of
f , namely f (k)(x1, . . . , xk) = (f(x1), . . . , f(xk)). We let f⊕k denote
the parity function composed with f (k).

We also define some auxiliary matrices associated with f . Let
F (x, y) = δf(x),f(y), and Δi(x, y) = δxi,yi

for x, y ∈ D and i ∈ [n].
For boolean functions, i.e., when |E| = 2, we also define the matrix
σf (x, y) = (−1)f(x)+f(y) for x, y ∈ D. Note that σf = 2F−J , where
J is the all-1 matrix. We use A ◦ B for the entrywise product
between two matrices A,B, also known as the Schur or Hadamard
product.

For a probability distribution p, we use EA←p[g(A)] for the
expected value of g(A) when A is chosen according to p.

We use the notation ρ 
 0 to indicate that ρ is positive semidef-
inite, that is, hermitian with non-negative eigenvalues, and ρ � 0
if all eigenvalues are strictly positive. We use ‖v‖ for the �2 norm
of a vector v.

2.1. Distance measures. We will use several notions to mea-
sure the closeness of two quantum states or probability distribu-
tions. First we introduce the spectral norm and its dual the trace
norm.

Definition 2.1. Let M be a matrix.

‖M‖ = max
|u〉:‖|u〉‖=1

Tr(M |u〉〈u|).
‖M‖tr = max

P :‖P‖=1
Tr(MP ).

We will also make extensive use of fidelity. A quantum state
on a |D|-dim Hilbert space is characterized by a |D| × |D| density
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matrix, that is, a positive semidefinite matrix ρ such that Tr(ρ) =
1. Let ρ, σ be two such density matrices.

Definition 2.2 (Fidelity). F(ρ, σ) = ‖√
ρ
√
σ‖tr.

Note that F(ρ, σ) ∈ [0, 1] and the larger the fidelity the less distin-
guishable ρ and σ are, obtaining the extreme values F(ρ, σ) = 1 if
and only if ρ = σ and F(ρ, σ) = 0 if and only if ρσ = 0. For pure
states F(|ψ〉〈ψ|, |φ〉〈φ|) = |〈ψ|φ〉|.

For classical probability distributions p, q we will abuse notation
and simply write F(p, q) for F(diag(p), diag(q)), where diag(p) is
a diagonal matrix with the entries of p along the diagonal. Note
that F(diag(p), diag(q)) =

∑
i piqi.

One property of the fidelity we will use is that it is jointly
concave in its inputs (see Theorem 9.7 in Nielsen & Chuang 2000).

Lemma 2.3. Let p be a probability distribution on [n] and ρi, σi

be density matrices for i ∈ [n]. Then

F( ∑

i

piρi,
∑

i

piσi

) ≥
∑

i

piF(ρi, σi).

A positive operator valued measurement (POVM) is a set of pos-
itive semidefinite operators {Ei} such that

∑
iEi = I. We will

make use of the following property of fidelity (see section 9.2.2 of
(Nielsen & Chuang 2000)).

Lemma 2.4. Let ρ, σ be density matrices and {Ei} a POVM. Then
F(ρ, σ) ≤ F(p, q), where p, q are the probability distributions
obtained from measuring {Ei} on ρ, σ, i.e., p(i) = Tr(ρEi), q(i) =
Tr(σEi).

The trace distance is related to the fidelity by the following
lemma (see, for example, Eq. (9.110) in Nielsen & Chuang 2000).

Lemma 2.5. Let ρ, σ be density matrices. Then

1 − F(ρ, σ) ≤ 1

2
‖ρ− σ‖tr ≤

√
1 − F(ρ, σ)2.
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Finally, for a |D| × |D| matrix A, we will use the factorization
norm γ2(A). This is also known as the Hadamard product operator
norm (Bhatia 2007) and has recently found many applications in
communication and query complexity (Lee et al. 2011, 2008; Linial
et al. 2007; Linial & Shraibman 2009).

Definition 2.6 (Factorization norm).

γ2(A) = min
m∈N

|ux〉,|vx〉∈Cm

{max
x∈D

max
{‖|ux〉‖2, ‖|vx〉‖2} :

∀x, y ∈ D, Ax,y = 〈ux|vy〉}.

By writing γ2 as an optimization problem and taking the dual,
one can obtain the following equivalent formulation as a maximiza-
tion problem (see, for example, Lee et al. 2008).

Lemma 2.7.

γ2(A) = max
|u〉,|v〉

‖|u〉‖=‖|v〉‖=1

‖A ◦ |u〉〈v|‖tr.

This maximization formulation makes a couple of facts apparent:
first, that γ2(A) ≥ ‖A‖tr/|D|, and second that γ2 obeys the triangle
inequality γ2(A+B) ≤ γ2(A) + γ2(B).

Finally, we will use the notion of relative entropy for a two-
outcome event (Cover & Thomas 2006).

Definition 2.8 (Relative entropy). For 0 ≤ λ ≤ 1 and 0 < μ <
1, we denote by D(λ||μ) the relative entropy defined as

D(λ||μ) = λ ln
λ

μ
+ (1 − λ) ln

1 − λ

1 − μ
,

where 0 ln 0 = 0.

2.2. Quantum query complexity and state generation. The
quantum query complexity of f , denoted Qε(f), is the minimum
number of input queries needed to compute f with error probability
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at most ε. We refer to the survey by Buhrman & de Wolf (2002)
for definitions and background on this model.

Although our main interest will be in the query complexity of
functions, it will be useful to also talk about state generation prob-
lems, introduced by Ambainis et al. (2011). Instead of producing
a classical value f(x) on input x, the goal in state generation is to
produce a specified target state |σx〉, again by making queries to
the input x. As unitary transformations independent of the input
can be made for free in the query model, a state generation prob-
lem is wholly determined by the gram matrix σ(x, y) = 〈σx|σy〉
of the target states {|σx〉}x∈D. We refer to σ as the target gram
matrix.

State generation problems come in two variations, coherent and
non-coherent. These variations differ in the output condition, the
requirements placed on the final state of a successful algorithm.

Coherent state generation. An algorithm P solves the coher-
ent quantum state generation problem σ with error at most ε if,
for every x ∈ D, it generates a state |P(x)〉 ∈ H ⊗ H′ such that
�(〈P(x)|(|σx〉 ⊗ |0̄〉)) ≥ √

1 − ε, where H′ denotes the workspace
of the algorithm, and |0̄〉 is a default state for H′. The coherent
quantum query complexity of σ, denoted Qc

ε(σ), is the minimum
number of queries needed to generate σ coherently with error at
most ε.

We can equivalently rephrase the coherent output condition as
�(〈P(x)|V (|σx〉 ⊗ |0̄〉)) ≥ √

1 − ε for some unitary V . This can
be done as the unitary V can be appended to the algorithm at
no extra cost. This formulation has the advantage that it only
depends on the gram matrix σ of the vectors {|σx〉} and the gram
matrix σ′(x, y) = 〈P(x)|P(y)〉, rather than the vectors themselves.

In our strong direct product theorem, we will work directly with
the coherent output condition, and this will be made much easier
by the following claim that gives an equivalent reformulation in
terms of fidelity.

Claim 2.9. Let {|ax〉}, {|bx〉} be two sets of unit vectors, and ρ, σ
their corresponding gram matrices.
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(2.10) max
V

min
x

�(〈ax|V |bx〉) = min
|u〉:‖|u〉‖=1

F(ρ ◦ |u〉〈u|, σ ◦ |u〉〈u|),

where the maximization is taken over all unitaries V .

Proof. By writing the left hand side as a semidefinite program
and taking the dual one can show that

max
V

min
x

�(〈ax|V |bx〉) = min
|u〉:‖|u〉‖=1

max
V

�(Tr(V
∑

x

|〈x|u〉|2|ax〉〈bx|)).

Letting D(u) be a diagonal matrix with entries 〈x|D(u)|x〉 =
〈x|u〉, we can rewrite the right hand side of this last expression as

max
V

min
x

�(〈ax|V |bx〉) = min
|u〉:‖|u〉‖=1

‖AD(u)(BD(u))†‖tr,

where A =
∑

x |ax〉〈x| and B =
∑

x |bx〉〈x|. Since ρ = A†A, σ =
B†B and ρ ◦ |u〉〈u| = D(u)†ρD(u), the claim follows using

‖XY †‖tr = ‖(X†X)1/2(Y †Y )1/2‖tr

and the definition of the fidelity

F(X†X,Y †Y ) = ‖(X†X)1/2(Y †Y )1/2‖tr. �

Non-coherent state generation. An algorithm P solves the
non-coherent state generation problem σ with error at most ε if
there exists a set of states |φx〉 ∈ H′ such that �(〈P(x)|(|σx〉 ⊗
|φx〉)) ≥ √

1 − ε for all x ∈ D. We denote by Qε(σ) the non-
coherent query complexity of generating σ with error ε.

Evaluating a function f can be seen as a special case of non-
coherent state generation where the target gram matrix is
F (x, y) = δf(x),f(y). In other words, Qε(f) = Qε(F ), justifying
our abuse of notation.

Coherent and non-coherent complexities for functions.
Clearly Qε(σ) ≤ Qc

ε(σ). In general, it is easier to lower bound
the coherent quantum query complexity, but more interesting to
lower bound the non-coherent complexity. Luckily, for state gener-
ation problems corresponding to functions, the coherent and non-
coherent complexities are closely related as shown in the next two
claims.
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Claim 2.11. Let f be a function. Then

Qε(F ) ≤ Qc
ε(F ) ≤ 2Q1−√1−ε(F ).

Proof. The lower bound holds for a general target gram matrix
σ, as the success condition in the coherent case implies the non-
coherent one.

For the upper bound, let Ax be an algorithm computing f(x)
with success probability 1 − η. Let p = |E| be the size of the out-
put set, which we assume to be E = {0, . . . , p − 1} for simplicity.
In what follows, + will denote addition modulo p when applied on
elements of E. Thus, the algorithm applied on |0〉|0̄〉, where the
first register is the output register and the second register corre-
sponds to some workspace initialized in a default state, prepares a
state

Ax|0〉|0̄〉 =
∑

j∈E

αj|j + f(x)〉|ψj〉,

where by assumption |α0| ≥ √
1 − η, and the states |ψj〉 describe

the final state of the workspace register. Let us now copy the
output register into an additional register initialized in the state
|0〉 using an addition gate G, and finally uncompute the original
output register together with the workspace by using the algorithm
Ax in reverse.

We analyze the overlap of A−1
x GAx|0〉|0̄〉|0〉 with |0〉|0̄〉|f(x)〉.

After applying G on Ax|0〉|0̄〉|0〉, we have the state

|v〉 =
∑

j∈E

αj|j + f(x)〉|ψj〉|j + f(x)〉.

Now we look at the overlap of |0〉|0̄〉|f(x)〉 with A−1
x |v〉 or, equiva-

lently, the overlap of Ax|0〉|0̄〉|f(x)〉 with |v〉. Since

Ax|0〉|0̄〉|f(x)〉 =
∑

j∈E

αj|j + f(x)〉|ψj〉|f(x)〉,

we have

〈0|〈0̄|〈f(x)|A−1
x |v〉 =

∑

j∈E

|αj|2〈f(x)|j + f(x)〉 ≥ 1 − η.
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Therefore, this algorithm coherently computes f(x) with success
probability 1 − ε ≥ (1 − η)2. Inverting this relation, we obtain
η ≥ 1 − √

1 − ε. �

We will also consider another type of state generation problem
associated with a function, the problem of computing the function
in the phase. For a boolean function f : D → {0, 1} let σf (x, y) =
(−1)f(x)+f(y). While the non-coherent complexity of σf is trivial,
the coherent complexity of σf is closely related to that of F .

Claim 2.12.

Qc
(1−√1−ε)/2+ε/4(F ) ≤ Qc

ε(σf ) ≤ 2Q(1−√1−ε)/2(F ).

Proof. For the lower bound, we turn an algorithm for σf into an
algorithm for F = (J +σf )/2 by the following standard technique:
We introduce an ancilla qubit prepared in the state (|0〉+ |1〉)/√2,
apply the original algorithm conditionally on this ancilla being in
state |1〉 and then apply the Hadamard operator H on the ancilla
qubit.

Say that the output gram matrix of the original algorithm is ρ.
By Claim 2.9, and using joint concavity of fidelity (Lemma 2.3),
we can upper bound the error of the new algorithm as

min
|u〉

‖|u〉‖=1

F
(

J+ρ
2

◦ |u〉〈u|, J+σf

2
◦ |u〉〈u|

)

≥ 1

2

(
min
|u〉

‖|u〉‖=1

F(|u〉〈u|, |u〉〈u|)+ min
|u〉

‖|u〉‖=1

F (ρ ◦ |u〉〈u|, σf ◦ |u〉〈u|) )

≥ 1

2

(
1 + min

|u〉:‖|u〉‖=1
F (ρ ◦ |u〉〈u|, σf ◦ |u〉〈u|) )

≥ 1

2
+

√
1 − ε

2
.

For the upper bound, let us consider an algorithm Ax comput-
ing f(x) (in a register) with success probability 1 − η. Thus, the
algorithm applied on |0〉|0̄〉, where the first register is the output
register and the second register corresponds to some workspace
initialized in a default state, prepares a state
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Ax|0〉|0̄〉 =
∑

j∈{0,1}
αj|j + f(x)〉|ψj〉,

where by assumption |α0| ≥ √
1 − η, and the states |ψj〉 describe

the final state of the workspace register. Let Φ be a phase gate
acting on the output register as |b〉 �→ (−1)f(x)|b〉. We can turn an
algorithm Ax computing in a register into an algorithm computing
in the phase by first applying Ax to compute the output, then
applying the phase gate Φ, and finally applying A−1

x to uncompute
the output.

After applying Φ on Ax|0〉|0̄〉, we have the state ΦAx|0〉|0̄〉 =∑
j∈{0,1}(−1)j+f(x)αj|j + f(x)〉|ψj〉. Now we look at the overlap of

(−1)f(x)|0〉|0̄〉 with A−1
x ΦAx|0〉|0̄〉 or, equivalently, the overlap of

(−1)f(x)Ax|0〉|0̄〉 with ΦAx|0〉|0̄〉. We have

(−1)f(x)〈0|〈0̄|A−1
x ΦAx|0〉|0̄〉 =

∑

j∈{0,1}
(−1)j|αj|2 ≥ 1 − 2η.

Therefore, we obtain a success probability 1−ε ≥ (1−2η)2. Invert-
ing this relation, we obtain η ≥ (1 − √

1 − ε)/2. �

3. Adversary methods

In this section, we introduce both the additive and multiplicative
adversary lower bound methods. Even when one is only interested
in the functional case, it is useful to view these methods as lower
bounds on quantum state generation as this allows the separation
of the method into two distinct parts. The first part is a lower
bound on exact coherent quantum state generation. This is where
the two methods differ. The second part is the output condition,
a minimization of the bound for exact coherent quantum state
generation over all valid output gram matrices. The set of valid
output gram matrices is determined by the target gram matrix σ,
the error parameter ε, and whether one is considering coherent or
non-coherent state generation. This second step is common to both
the additive and multiplicative methods. Finally, we show that the
multiplicative bound is at least as large as the additive bound.
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3.1. Additive method. We first review the derivation of the
additive adversary method to compare it with the multiplicative
method in the next section. We will actually present a generaliza-
tion of the additive adversary method due to Lee et al. (2011).

Consider an algorithm that exactly and coherently generates
the target state σx by making T queries to the input x, for all
x ∈ D. Let |ψt

x〉 be the state of this algorithm on input x after t
queries, and ρt(x, y) = 〈ψt

x|ψt
y〉 be the corresponding gram matrix.

Note that ρ0 = J , the all ones matrix, and, by assumption, ρT = σ.
Now let Γ be a matrix, |v〉 a unit vector, and consider the

potential function Φ(t) = Tr((Γ ◦ ρt)|v〉〈v|). The additive change
in this potential function from the beginning to the end of the
protocol is

Tr((Γ ◦ (J − σ))|v〉〈v|) =
T−1∑

t=0

Tr((Γ ◦ (ρt − ρt+1))|v〉〈v|)

≤ T max
t

Tr((Γ ◦ (ρt − ρt+1))|v〉〈v|).

A standard argument (see, for example, Høyer et al. 2007) then
goes that if we impose the condition on Γ that

I ± Γ ◦ (J − Δi) 
 0 for all i ∈ [n],

then Tr((Γ ◦ (ρt − ρt+1))|v〉〈v|) ≤ 2, for all t and unit vectors |v〉.
As this argument holds for any Γ and v, we can maximize over

them. The maximization over v gives rise to the spectral norm
as ‖M‖ = max|v〉:‖|v〉‖=1 Tr(M |v〉〈v|). This leads to the following
definition (Lee et al. 2011).

Definition 3.1 (Additive adversary method).

Adv∗(σ) = maximize
Γ

‖Γ ◦ (J − σ)‖
subject to I ± Γ ◦ (J − Δi) 
 0 for all i ∈ [n],

where the maximization is over |D| × |D| hermitian matrices Γ.

The preceding argument shows the following.
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Theorem 3.2 (Lee et al. 2011). For any target gram matrix σ,

Qc
0(σ) ≥ Adv∗(σ)

2
.

Lee et al. (2011) have also shown that this lower bound is tight
for the bounded-error query complexity of functions.

Theorem 3.3 (Lee et al. 2011). For any function f ,

Q1/4(f) ≤ 1000 · Adv∗(F ).

Up to the constant factor, this upper bound holds more generally
for well-behaved state generation problems. A state generation
problem is well-behaved if the query complexity Qε(σ) does not
depend dramatically on the error ε, that is if Q1/4(σ) = Θ(Qε(σ))
for any small constant ε. This property holds for the query com-
plexity of any function, but does not hold in general for state gen-
eration problems.

Remark 3.4. The adversary bound Adv± from Høyer et al. (2007)
was originally defined in the functional case, that is, for target
gram matrices F of the form F (x, y) = δf(x),f(y) for a function f .
This definition had an additional constraint that Γ ◦ F = 0. This
constraint only affects the bound up to a multiplicative factor of
two (Lee et al. 2011).

(3.5) Adv±(F ) ≤ Adv∗(F ) ≤ 2Adv±(F ).

The constraint Γ ◦ F = 0 allows one to show that Adv±(F )/2 is a
lower bound even on the non-coherent complexity of generating F .
One can see that Adv∗(F )/4 is a lower bound on the non-coherent
complexity of generating F either by Eq. (3.5) or by Claim 2.11
showing that the coherent and non-coherent state generation com-
plexities of functions are related by a factor of two.
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3.2. Multiplicative adversary method. The multiplicative
bound is derived by considering the same potential function Φ(t),
but looks at the ratio of this function at the beginning and end
of the protocol, rather than the difference. Equivalently, one can
consider the logarithmic potential function ln(Φ(t)) and again look
at the additive change over the course of the protocol. To ensure
that the argument to the logarithm is positive, we now restrict the
maximization to positive definite matrices Γ � 0.

Definition 3.6 (Multiplicative adversary method).
Madv(σ) = supc>1 Madv(c)(σ), where

Madv(c)(σ) =
1

ln(c)
maximize

Γ�0,|v〉
ln (Tr((Γ ◦ σ)|v〉〈v|))

subject to Tr(Γ|v〉〈v|) = 1 and

c−1Γ � Γ ◦ Δi � c Γ for all i ∈ [n],

and the maximization is over |D| × |D| positive definite matrices
Γ and unit vectors |v〉. We will refer to a matrix Γ � 0 satisfying
c−1Γ � Γ ◦ Δi � c Γ for all i as a multiplicative witness.

Theorem 3.7 (Ambainis et al. 2011; Špalek 2008). For any state
generation problem σ,

Qc
0(σ) ≥ Madv(σ)

2
.

Proof. Consider an algorithm that coherently generates σ by
making T queries. Let us denote by ρt the gram matrix of the
states after the t-th query, that is, ρt(x, y) = 〈ψt

x|ψt
y〉, where |ψt

x〉
is the state of the algorithm on input x after t queries. We define
a potential function Φ(t) = Tr((Γ ◦ ρt)|v〉〈v|), where Γ � 0. Then

Φ(T )

Φ(0)
=

Tr((Γ ◦ σ)|v〉〈v|)
Tr((Γ ◦ J)|v〉〈v|) =

T−1∏

t=0

Tr((Γ ◦ ρt+1)|v〉〈v|)
Tr((Γ ◦ ρt)|v〉〈v|)

≤
(

max
t

Tr((Γ ◦ ρt+1)|v〉〈v|)
Tr((Γ ◦ ρt)|v〉〈v|)

)T

.
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Analogously to the additive bound, we now show that the con-
straint c−1Γ � Γ ◦ Δi � c Γ for all i ∈ [n] implies

max
t

Tr((Γ ◦ ρt+1)|v〉〈v|)
Tr((Γ ◦ ρt)|v〉〈v|) ≤ c.

This argument is very similar to proofs in Ambainis et al. (2011)
and Špalek (2008), so we only sketch the idea here. Recall from
Ambainis et al. (2011) that we can assume that there are only two
types of queries, called computing and uncomputing queries (this
restriction can only increase the query complexity by a factor at
most 2, hence the factor 1/2 in the final lower bound). Let us first
consider a computing query, in which case the state right before
the query can be written as |ψt−1

x 〉 =
∑

i |ψt−1
x,i 〉|i〉|0〉, while after

the query it reads |ψt
x〉 =

∑
i |ψt−1

x,i 〉|i〉|xi〉 (the situation for uncom-
puting queries is similar except that the roles of |ψt−1

x 〉 and |ψt
x〉

are interchanged). Setting ρt
i(x, y) = 〈ψt

x,i|ψt
y,i〉, we can decompose

the gram matrix before the t-th query as ρt−1 =
∑

i ρ
t−1
i and the

gram matrix after the query as ρt =
∑

i ρ
t−1
i ◦ Δi.

The condition Γ ◦ Δi � c Γ then immediately implies that

Tr((Γ ◦ ρt)|v〉〈v|) ≤ c Tr((Γ ◦ ρt−1)|v〉〈v|).
For uncomputing queries, the roles of ρt−1 and ρt are interchanged,
and we obtain the same conclusion from the constraint Γ � c Γ◦Δi.

�

Remark 3.8. The constraints on Γ given here are expressed dif-
ferently from Ambainis et al. (2011) and Špalek (2008), the latter

using the constraint ‖Γ1/2(Γ ◦ Δi)
−1/2‖2 ≤c and ‖(Γ◦Δi)

1/2Γ−1/2‖2

≤ c. It is straightforward to show, however, that these conditions
are equivalent to c−1Γ � Γ ◦ Δi � c Γ.

When the value of c is fixed, the multiplicative bound becomes
a semidefinite program. Indeed, setting W = Γ ◦ |v〉〈v|, we have:

Madv(c)(σ) =
1

ln(c)
maximize

W�0
ln (Tr(Wσ))

subject to Tr(WJ) = 1 and

c−1W � W ◦ Δi � c W for all i ∈ [n].
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Thus, we can view the multiplicative adversary bound as a maxi-
mization over semidefinite programs.

3.3. Output condition. Thus far, we have seen lower bounds
on the problem of exact coherent state generation. To obtain a
lower bound in the bounded-error setting—coherent or
non-coherent—one can minimize the exact coherent bound over
the set of valid final gram matrices of a successful algorithm.

We will restrict our discussion to the coherent output condition.
As our main results are for functions, by showing lower bounds on
the coherent state generation problems F and σf associated with
a function f , we obtain lower bounds on the query complexity of
f by Claims 2.11 and 2.12.

Recall that a successful coherent ε-error algorithm P for the set
of target vectors {σx} must satisfy �(〈P(x)|V (|σx〉⊗|0̄〉)) ≥ √

1 − ε
for some unitary V . The set of σ′ satisfying this condition can
be hard to deal with, so previous works have typically relaxed
this condition and used an output condition that defines a larger,
simpler set. For example, the original Ambainis output condition
minimized over σ′ satisfying �∞(σ−σ′) ≤ 2

√
ε for error parameter ε.

A stronger output condition based on the γ2 norm that γ2(σ−σ′) ≤
2
√
ε was introduced by Høyer et al. (2007). As γ2(v) ≥ �∞(v), this

output condition defines a smaller set. The γ2 output condition
was later shown to be approximately tight in the sense that if
γ2(σ − σ′) ≤ ε, then there is a unitary V such that 〈σx|V |σ′x〉 ≥
1 − 2

√
ε for all x (Lee et al. 2011). While approximately tight in

the bounded-error setting, this condition is not strong enough for
proving strong direct product theorems, where we need to obtain
non-trivial bounds for exponentially small success probabilities.

In this paper, we will work directly with the coherent output
condition, or more precisely its reformulation in terms of fidelity
from Claim 2.9. The following quantities then give lower bounds
for ε-error coherent quantum state generation:

Definition 3.9 (Additive and multiplicative bounds).

Advε(σ) = min
ρ

Adv∗(ρ),

Madvε(σ) = min
ρ

Madv(ρ),
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where both minimizations are over gram matrices ρ such that

min
|u〉:‖|u〉‖=1

F(ρ ◦ |u〉〈u|, σ ◦ |u〉〈u|) ≥ √
1 − ε.

In light of Claim 2.9, we can slightly improve one of the bounds
in (Lee et al. 2011, Lemma 4.8), which compares the tight output
condition based on the fidelity to the output condition based on
the factorization norm γ2.

Claim 3.10. Let {|ax〉}, {|bx〉} be two sets of vectors, and ρ, σ
their corresponding gram matrices. Say that

√
1 − ε = max

V
min

x
�(〈ax|V |bx〉),

where the maximization is taken over all unitary matrices V . Then

1 − √
1 − ε ≤ 1

2
γ2(ρ− σ) ≤ √

ε.

Proof. This directly follows from Claim 2.9 and the relation
between the trace distance and fidelity (Lemma 2.5).

1 − F(ρ ◦ |u〉〈u|, σ ◦ |u〉〈u|) ≤ 1

2
‖(ρ− σ) ◦ |u〉〈u|‖tr

≤
√

1 − F(ρ ◦ |u〉〈u|, σ ◦ |u〉〈u|)2. �

Note that a multiplicative witness Γ yields a good zero-error
multiplicative adversary bound if Tr(Γ(σ ◦ |v〉〈v|)) is large. To
obtain a bound for ε-error algorithms, we need to show that Tr(Γ(ρ◦
|v〉〈v|)) remains large for any gram matrix ρ such that
F(ρ ◦ |u〉〈u|, σ ◦ |u〉〈u|) ≥ √

1 − ε for all unit vectors |u〉. The
following lemma will be useful.

Lemma 3.11. Let p, q be two distributions for a discrete random
variable A taking values in a finite subset of R>0 (where R>0

denotes the set of positive reals). If F(p, q) ≥ √
δ, then

EA←q[A] ≥ δ
(
EA←p[A

−1]
)−1

.
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Proof. Let {a1, . . . , aN} be the support of A. Let pi =
PrA←p[A = ai] and qi = PrA←q[A = ai]. We need to lower bound
the value of the following optimization program:

minimize
qi≥0:

∑
i qi=1

∑

i

qiai subject to F(p, q) ≥
√
δ.

Introducing vectors |u〉 =
∑

i

√
pi|i〉 and |v〉 =

∑
i

√
qi|i〉, and let-

ting D(A) be a diagonal matrix whose (i, i) entry is ai, this can be
rewritten as

minimize
|v〉:‖v‖=1

〈v|D(A)|v〉 subject to |〈u|v〉|2 ≥ δ

= minimize
ρ�0:Trρ=1

Tr[D(A)ρ] subject to Tr[|u〉〈u|ρ] ≥ δ.

This is a semidefinite program, whose dual can be written as

maximize
λ≥0,μ

λδ + μ subject to D(A) 
 λ|u〉〈u| + μI.

Setting μ = 0, this is at least

δ · maximize
λ≥0

λ subject to D(A) 
 λ|u〉〈u|.

Let |w〉 =
∑

i

√
pi/ai|i〉. The constraint is equivalent to I 


λ|w〉〈w|, which in turn is equivalent to λ‖|w〉〈w|‖ = λ‖w‖2 ≤ 1.
The lemma then follows from ‖w‖2 =

∑
i pia

−1
i . �

To apply this lemma, we need an upper bound on EA←p[A
−1].

In our applications, we usually do not know explicitly the distribu-
tion p, but we do know its expectation and the extremal values in
its support. The next claim allows us to upper bound EA←p[A

−1]
in terms of these quantities.

Claim 3.12. Let 0 < a0 ≤ ā ≤ a1, and A be a random variable
with finite support taking values in a bounded set S ⊆ [a0, a1]. If
EA←p[A] = ā, then EA←p[A

−1] ≤ a0+a1−ā
a0a1

.

Proof. EA←p[A
−1] is at most the value of the following linear

program:

maximize
pa≥0

∑

a∈S

paa
−1 subject to

∑

a∈S

paa = ā,
∑

a∈S

pa = 1.
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The dual program can be written as

minimize
λ,μ

λ− āμ subject to μa2 − λa+ 1 ≤ 0 ∀a ∈ S.

Since a0 ≤ a ≤ a1, the constraint is satisfied for λ = a0+a1

a0a1
and

μ = 1
a0a1

, which leads to EA←p[A
−1] ≤ a0+a1−ā

a0a1
. �

Putting the last two claims together, we get the following corol-
lary which is key to our strong direct product theorem.

Corollary 3.13. Let a1 ≥ a0 > 0 and p be a distribution for a
random variable A with finite support taking values in [a0, a1].
If EA←p[A] = ā and q is a distribution over (R>0)

k such that

F(p⊗k, q) ≥
√
δk, then

E(A1,...,Ak)←q

(
Πk

l=1Al

) ≥
(

δa0a1

a0 + a1 − ā

)k

.

3.4. Comparison of the adversary bounds. We first give a
variation of the result by Ambainis et al. (2011) that the mul-
tiplicative adversary bound is stronger than the additive bound.
The main difference with Ambainis et al. (2011) is that this claim
relies on the bound Adv∗(σ) which is potentially stronger for gen-
eral quantum state generation problems.

Claim 3.14 (Ambainis et al. 2011). For any state generation
problem σ

Madv(σ) ≥ Adv∗(σ).

Proof. Let Γ be an optimal witness for Adv∗(σ) = b, and |v〉 be
the principal eigenvector of Γ ◦ (J − σ). Note that we may assume
without loss of generality that |v〉 corresponds to a positive eigen-
value of Γ◦(J−σ). Let Γ′ = Γ−Tr((Γ◦σ)|v〉〈v|)I, and notice that
Γ′ is also a witness for Adv∗(σ) = b, satisfying Tr(Γ′|v〉〈v|) = b and

Tr((Γ′ ◦ σ)|v〉〈v|) = Tr((Γ ◦ σ)|v〉〈v|)
−Tr((Γ ◦ σ)|v〉〈v|) · Tr((I ◦ σ)|v〉〈v|) = 0,

as Tr((I ◦ σ)|v〉〈v|) = Tr(|v〉〈v|) = 1.
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Let d = ‖Γ′‖ and note that d ≥ b. Finally, for κ > 0 a small con-
stant to be chosen later, define Γm = (I+κ(dI−Γ′))/(1+κ(d−b)).
Therefore, we have Tr(Γm|v〉〈v|) = 1 and Tr((Γm ◦ σ)|v〉〈v|) =
(1 + κd)/(1 + κ(d− b)).

We now show that the condition c−1Γm � Γm ◦ Δi � cΓm is
satisfied for c = 1+κ. We show (1+κ(d− b))(Γm ◦ (cΔi −J)) 
 0
which implies Γm ◦ (cΔi − J) 
 0 as 1 + κ(d− b) > 0.

(1 + κ(d− b))(Γm ◦ (cΔi − J))

=
(
(1 + κd)I − κΓ′

) ◦ (
(Δi − J) + κΔi

)

= κ(I + Γ′ ◦ (J − Δi)) + κ2(dI − Γ′) ◦ Δi.

From the constraint of the additive bound, we know that I + Γ′ ◦
(J − Δi) 
 0 for all i ∈ [n]. Also as dI − Γ′ 
 0 , taking the
Hadamard product with Δi 
 0 gives (dI − Γ′) ◦ Δi 
 0. There-
fore, we have Γm ◦ (cΔi −J) 
 0. One can show Γm ◦ (cJ−Δi) 
 0
in a similar fashion. This implies that Γm is a witness for

Madv(σ) ≥
ln

(
1+κd

1+κ(d−b)

)

ln(1 + κ)
.

As the above argument holds for any κ > 0, the claim follows as

lim
κ→0+

ln
(

1+κd
1+κ(d−b)

)

ln(1 + κ)
= b. �

Adapting results from Špalek (2008) and Ambainis et al. (2011),
this implies a strong direct product theorem for Madv(σ) as long
as the bound is obtained for c = 1+Ω(1/Adv∗(σ)). Unfortunately,
showing that we can take c bounded away from 1 requires bounding
d = ‖Γ′‖, which we do not know how to do for a general state
generation problem σ. In general, we can only use this statement in
the limit c → 1, in which case the direct product theorem degrades
into a direct sum theorem. This is why Ambainis et al. (2011) were
not able to conclude a strong direct product theorem. We observe
that for interesting cases such as F or σf , we can bound the norm of
the witness Γ′. Note that every entry of J −F is either 0 or 1, and
similarly, every entry of J−σf is either 0 or 2. For state generation
problems with this property, we can show the following theorem.



452 Lee & Roland cc 22 (2013)

Claim 3.15. Suppose that Adv∗(σ) = b and that every entry of
J−σ is either 0 or λ, for some positive real number λ. Then there is
a matrix Γ′ witnessing Adv∗(σ) ≥ λb

γ2(J−σ)
such that ‖Γ′‖ = b

γ2(J−σ)

and Γ′ ◦ (J − σ) = λΓ′.

Proof. Let Γ be an optimal witness for Adv∗(σ). Define Γ′ =
(γ2(J − σ))−1(Γ ◦ (J − σ)). All entries of J − σ being either 0
or λ gives the property (J − σ) ◦ (J − σ) = λ(J − σ). Thus
Γ′ ◦ (J − σ) = λΓ′. This implies that Γ′ is a feasible witness as

‖Γ′ ◦ (J − Δi)‖ ≤ γ2(J − σ)

γ2(J − σ)
‖Γ ◦ (J − Δi)‖ ≤ 1,

since ‖A ◦B‖ ≤ γ2(A) · ‖B‖ for any A,B of the same size. Fur-
thermore, ‖Γ′‖ = b/γ2(J−σ) and Γ′ witnesses a bound of λ‖Γ′‖ =
λb/γ2(J − σ). �

For certain state generation problems including F and σf , we
are thus able to obtain a quantitative version of Claim 3.14.

Claim 3.16. Suppose that every entry of J − σ is either 0 or
λ ∈ R>0, and let d = Adv∗(σ)

γ2(J−σ)
. Then, for any κ > 0, there is a

multiplicative witness Γm and a vector |v〉 such that

Tr(Γm|v〉〈v|) = 1,

Tr(Γm(σ ◦ |v〉〈v|)) = 1 + λκd,

I � Γm � (1 + 2κd)I,

c−1Γm � Γm ◦ Δi � c Γm for all i,

where c = 1 + κ. Therefore, Γm satisfies the constraints of Defini-
tion 3.6 and witnesses that

(3.17) Madv(σ) ≥ ln(1 + λκd)

ln(1 + κ)
.

Proof. From Claim 3.15, there exists Γ witnessing Adv∗(σ) ≥
λd such that ‖Γ‖ = d. Let |v〉 be the principal eigenvector of Γ,
and Γm = I + κ(dI − Γ). Note that we may assume without loss
of generality that |v〉 corresponds to a positive eigenvalue of Γ.
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Therefore, we have Γm 
 I and Tr(Γm|v〉〈v|) = 1. As Γ◦ (J −σ) =
λΓ, it follows that |v〉 is also a principal eigenvector of Γ ◦ (J − σ),
and the objective value achieved by Γ is Tr(Γ((J−σ)◦|v〉〈v|)) = λd.
Thus, Tr(Γ(σ ◦ |v〉〈v|)) = (1−λ)d and Tr(Γm(σ ◦ |v〉〈v|)) = 1+λκd.
The third condition follows from −dI � Γ � dI.

The fact that the condition c−1Γm � Γm ◦Δi � cΓm is satisfied
for c = 1 + κ follows by the same argument as in the proof of
Claim 3.14. �

We can now show that the bound for Madv(σ) can be obtained
with c = 1 + Ω(1/Adv∗(σ)).

Claim 3.18. Suppose that every entry of J − σ is either 0 or
λ ∈ R>0. Then, there exists c ≥ 1 + 1

Adv∗(σ)
such that

Madv(c)(σ) ≥ λ ln(2)

2
Adv∗(σ).

Proof. Note that if J = σ, then Adv∗(σ) = 0 and there is
nothing to prove. Therefore, we may assume that J �= σ, in which
case there must exist an entry of J − σ equal to λ > 0. This
implies that γ2(J − σ) ≥ λ. By the triangle inequality, we also
have γ2(J − σ) ≤ γ2(J) + γ2(σ) ≤ 2 (the fact that γ2(σ) ≤ 1
follows from the factorization σx,y = 〈σx|σy〉). The claim then
follows from Claim 3.16 with κ = 1/(λd) ≥ 1/Adv∗(σ). Specifi-
cally, the numerator of (3.17) becomes ln(2), and the denomina-
tor ln(1 + 1/(λd)) ≤ 1/(λd) ≤ 2/(λAdv∗(σ)) as 1 + x ≤ ex and
d ≥ Adv∗(σ)/2. �

4. Strong direct product theorem

We first prove the following theorem, which will lead to both the
strong direct product theorem and the XOR lemma in the boolean
case.

Theorem 4.1. Let σ be a gram matrix for a state generation
problem such that all entries of J − σ are either 0 or λ, and let
d = (γ2(J − σ))−1Adv∗(σ). Then for any κ > 0 and any δ ∈ (0, 1]
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Qc
1−δk

(
σ⊗k

) ≥
k ln

(
δ 1+2κd

1+κd(2−λ)

)

2 ln(1 + κ)
.

Proof. Let |v〉,Γm satisfy the conditions in Claim 3.16. As
a witness for σ⊗k we take Γ⊗k

m . Let us first see that this matrix
satisfies the multiplicative constraint with the same value c = 1+κ.

We label the constraint matrices Δp,q for σ⊗k by p ∈ [k] and
q ∈ [n]. These are |D|k-by-|D|k matrices where

Δp,q((x
1, . . . , xk), (y1, . . . , yk)) = δxp

q ,yp
q
.

In other words, Δp,q = J⊗p−1 ⊗ Δq ⊗ J⊗k−p. Thus, Γ⊗k ◦ Δp,q =
Γ⊗p−1

m ⊗ Γm ◦ Δq ⊗ Γ⊗k−p
m . Since c−1Γm � Γm ◦ Δq � c Γm for all

q ∈ [n], and Γm 
 0, we immediately have

c−1Γ⊗k
m � Γ⊗k

m ◦ Δp,q � c Γ⊗k
m

for any p ∈ [k], q ∈ [n].
To lower bound the objective value, we must lower bound

Madv1−δk(σ⊗k) ≥ 1

ln(c)
min

ρ
ln Tr(Γ⊗k

m (ρ ◦ (|v〉〈v|)⊗k)),

where the minimum is taken over all positive semidefinite matrices
ρ such that ρ ◦ I = I and

(4.2) min
|u〉:‖|u〉‖=1

F(ρ ◦ |u〉〈u|, σ⊗k ◦ |u〉〈u|) ≥ δk/2.

Let ρ be any gram matrix satisfying these conditions. Setting |u〉 =
|v〉⊗k, condition (4.2) then implies F(ρ◦ (|v〉〈v|)⊗k, (σ ◦ |v〉〈v|)⊗k) ≥
δk/2 and we can apply Corollary 3.13 with p being the distribution
arising from measuring Γm on σ◦|v〉〈v|, and q the distribution aris-
ing from measuring Γ⊗k

m on ρ ◦ (|v〉〈v|)⊗k. Note that both σ ◦ |v〉〈v|
and ρ ◦ (|v〉〈v|)⊗k are density matrices, that is positive semidefinite
with trace one, so this gives rise to a valid probability distribution.
More explicitly, write Γm in terms of its eigenvalue decomposition
as Γm =

∑
i αi|ξi〉〈ξi|. Then define the distribution p over the eigen-

values {αi} of Γm as p(αi) = Tr(|ξi〉〈ξi|σ ◦ |v〉〈v|). Similarly, define
q as a distribution over k-tuples of eigenvalues (αi1 , . . . , αik) of Γ
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as q(αi1 , . . . , αik) = Tr(|ξi1〉〈ξi1 | ⊗ · · · ⊗ |ξik〉〈ξik |ρ ◦ (|v〉〈v|)⊗k). By
Lemma 2.4, as F(ρ ◦ (|v〉〈v|)⊗k, (σ ◦ |v〉〈v|)⊗k) ≥ δk/2, we also have
F(p⊗k, q) ≥ δk/2. The properties of Γm given in Claim 3.16 give
that the extreme values of the support of p are a0 = 1, a1 = 1+2κd,
and the expected value is ā = 1 + λκd. Putting these parameters
into Corollary 3.13 gives

Tr(Γ⊗k
m (ρ ◦ (|v〉〈v|)⊗k)) ≥ δk

(
1 + 2κd

1 + κd(2 − λ)

)k

,

and in turn

Madv1−δk(σ⊗k) ≥
k ln(δ 1+2κd

1+κd(2−λ)
)

ln(1 + κ)
. �

We then obtain the following strong direct product theorem for
the quantum query complexity of any function (boolean or not).

Theorem 1.1. For any function f , any δ ∈ [2/3, 1], and any inte-
ger k > 0, we have

Q1−δk/2(f (k)) ≥ k ln(3δ/2)

8
Adv∗(F ) ≥ k ln(3δ/2)

8000
Q1/4(F ).

Proof. Recall that F (x, y) = 〈f(x)|f(y)〉. Thus, all entries
of J − F are either 0 or 1, and J − F satisfies the condition of
Theorem 4.1 with λ = 1. This factorization of F also shows that
γ2(F ) ≤ 1, and so γ2(J − F ) ≤ γ2(J) + γ2(F ) ≤ 2. Applying
Theorem 4.1 with λ = 1 and κ = 1/d, we obtain

Qc
1−δk(F

⊗k) ≥ k ln(3δ/2)

4
Adv∗(F ).

This lower bound is for computing f (k) coherently, and we obtain
the lower bound for f (k) using Claim 2.11. The second inequality
follows from Theorem 3.3. �
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5. Boolean functions

5.1. XOR Lemma. We now focus on boolean functions. Before
proving the XOR lemma, we prove a strong direct product theorem
for the problem of computing a function in the phase. Let σf =
2F −J be the gram matrix corresponding to computing a boolean
function f in the phase.

Claim 5.1. Let d = Adv∗(F ). For any δ, κ,

Qc
1−δk(σ

⊗k
f ) ≥ k ln(δ(1 + 2κd))

2 ln(1 + κ)
.

Proof. Notice that J−σf = 2(J−F ), therefore (J−σf )◦ (J−
σf ) = 2(J − σf ), γ2(J − σf ) = 2 and Adv∗(σf ) = 2Adv∗(F ). The
claim then follows from Theorem 4.1 with λ = 2. �

Setting κ = 1/(δd), we immediately obtain the strong direct
product theorem for σf .

Corollary 5.2. For any δ,

Qc
1−δk(σ

⊗k
f ) ≥ kδ

4
Adv∗(F ).

Let f⊕k be the function computing the parity of k independent
copies of f . Since computing f⊕k in the phase is the same as
generating the state σ⊗k

f , we obtain the XOR lemma from the
strong direct product theorem for σf and Claim 2.12, plus the fact
(Theorem 3.3) that Adv∗(F ) characterizes Q1/4(F ).

Lemma 1.2 (XOR Lemma). For any boolean function f , any δ ∈
[0, 1] and any integer k > 0,

Q(1−δk/2)/2(f
⊕k) ≥ kδ

8
Adv∗(F ) ≥ kδ

8000
Q1/4(F ).

5.2. Threshold and strong direct product theorems. Fin-
ally, we prove a threshold direct product theorem. This will follow
from Claim 5.1 together with the following threshold lemma (Unger
2009, Lemma 2).
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Lemma 5.3 (Unger 2009). Let Y1, . . . , Yk ∈ {−1,+1} be random
variables, −1 ≤ β ≤ 1 and C > 0 be such that

E
( ∏

i∈S

Yi

) ≤ Cβ|S|

for all S ⊆ [k]. Let λ be such that β ≤ λ ≤ 1. Then

Pr

[
k∑

i=1

Yi ≥ λk

]

≤ Ce−kD(1/2+λ/2||1/2+β/2).

Theorem 5.4. For any function f , any δ ∈ [0, 1), any μ such

that 1+
√

δ
2

≤ μ ≤ 1 and any integers k, L > 0, let Pi(x1, . . . , xk) ∈
{−1, 1} be the i-th output of a T -query algorithm for f (k), where

T ≤ kδ

L(1 − δ)
Adv∗(F ),

and let X = {i ∈ [k] : Pi(x1, . . . , xk) = f(xi)}. Then,

Pr [|X| ≥ μk] ≤ e
k
L
−kD

(
μ|| 1+

√
δ

2

)

.

Proof. Let d = Adv∗(F ) and, for any i ∈ [k] and any set S ⊆
[k], let us consider the random variables Yi = Pi(x1, . . . , xk)·f(xi) ∈
{−1, 1} and the expectations βS = E(

∏
i∈S Yi). By definition, we

have

Q(1−βS)/2(f
⊕|S|) ≤ T.

Moreover, we also have from Claims 2.12 and 5.1 that

Q(1−βS)/2(f
⊕|S|) ≥ 1

2
Qc

1−β2
S
(σ
⊗|S|
f ) ≥ ln(β2

S(1 + 2κd)|S|)
4 ln(1 + κ)

for any κ > 0, which together with the previous inequality leads to

βS ≤ (1 + κ)2T (1 + 2κd)−|S|/2.

For κ = (1 − δ)/(2δd), this implies βS ≤ ek/Lδ|S|/2. Using
Lemma 5.3 with β =

√
δ, C = ek/L and λ = 2μ − 1, we then

obtain
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Pr

[
k∑

i=1

Yi ≥ λk

]

≤ e
k
L
−kD

(
1+λ

2
|| 1+

√
δ

2

)

.

The theorem then follows from |X| = (k +
∑k

i=1 Yi)/2. �

In the special case μ = 1, we obtain the following strong direct
product theorem for boolean functions (for some values of δ, L this
can lead to better parameters than Theorem 1.1, which is never-
theless more general as it also holds for non-boolean functions).

Corollary 5.5. For any boolean function f , any δ ∈ [0, 1) and
any integers k, L > 0,

Q1−(e1/L(1+
√

δ)/2)k(f
(k)) ≥ kδ

L(1 − δ)
Adv∗(F ).
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& Mario Szegedy (2011). Quantum query complexity of state con-
version. In Proceedings of the 52nd Annual IEEE Symposium on Foun-
dations of Computer Science, 344–353. IEEE Computer Society.

Troy Lee & Jérémie Roland (2012). A strong direct product the-
orem for quantum query complexity. In Proceedings of the 27th IEEE
Conference on Computational Complexity, 234–246. IEEE Computer
Society.

Troy Lee, Adi Shraibman & Robert Špalek (2008). A Direct
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