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Abstract

In this thesis we study the information transmission through Gaussian quantum chan-
nels. Gaussian quantum channels model physical communication links, such as free space
communication or optical fibers and therefore, may be considered as the most relevant
quantum channels. One of the central characteristics of any communication channel is
its capacity. In this work we are interested in the classical capacity, which is the maximal
number of bits that can be reliably transmitted per channel use. An important lower
bound on the classical capacity is given by the Gaussian capacity, which is the maximal
transmission rate with the restriction that only Gaussian encodings are allowed: input
messages are encoded in so-called Gaussian states for which the mean field amplitudes
are Gaussian distributed.

We focus in this work mainly on the Gaussian capacity for the following reasons.
First, Gaussian encodings are easily accessible experimentally. Second, the difficulty of
studying the classical capacity, which arises due to an optimization problem in an infinite
dimensional Hilbert space, is greatly reduced when considering only Gaussian input
encodings. Third, the Gaussian capacity is conjectured to coincide with the classical
capacity, even though this longstanding conjecture is unsolved until today.

We start with the investigation of the capacities of the single-mode Gaussian chan-
nel. We show that the most general case can be reduced to a simple, fiducial Gaussian
channel which depends only on three parameters: its transmissivity (or gain), the added
noise variance and the squeezing of the noise. Above a certain input energy threshold,
the optimal input variances are given by a quantum water-filling solution, which im-
plies that the optimal modulated output state is a thermal state. This is a quantum
extension (or generalization) of the well-known classical water-filling solution for parallel
Gaussian channels. Below the energy threshold the solution is given by a transcendental
equation and only the less noisy quadrature is modulated. We characterize in detail
the dependence of the Gaussian capacity on its channel parameters. In particular, we
show that the Gaussian capacity is a non-monotonous function of the noise squeezing
and analytically specify the regions where it exhibits one maximum, a maximum and a
minimum, a saddle point or no extrema.

Then, we investigate the case of n-mode channels with noise correlations (i.e. mem-
ory), where we focus in particular on the classical additive noise channel. We consider
memory models for which the noise correlations can be unraveled by a passive symplectic
transformation. Therefore, we can simplify the problem to the study of the Gaussian
capacity in an uncorrelated basis, which corresponds to the Gaussian capacity of n
single-mode channels with a common input energy constraint. Above an input energy
threshold the solutions is given by a global quantum water-filling solution, which implies
that all modulated single-mode output states are thermal states with the same temper-
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ature. Below the threshold the channels are divided into three sets: i) those that are
excluded from information transmission, ii) those for which only the less noisy quadra-
ture is modulated, and iii) those for which the quantum water-filling solution is satisfied.
As an example we consider a Gauss-Markov correlated noise, which in the uncorrelated
basis corresponds to a collection of single-mode classical additive noise channels. When
rotating the collection of optimal single-mode input states back to the original, corre-
lated basis the optimal multi-mode input state becomes a highly entangled state. We
then compare the performance of the optimal input state with a simple coherent state
encoding and conclude that one gains up to 10% by using the optimal encoding.

Since the preparation of the optimal input state may be very challenging we consider
sub-optimal Gaussian-matrix product states (GMPS) as input states as well. GMPS
have a known experimental setup and, though being heavily entangled, can be gener-
ated sequentially. We demonstrate that for the Markovian correlated noise as well as for
a non-Markovian noise model in a wide range of channel parameters, a nearest-neighbor
correlated GMPS achieves more than 99.9% of the Gaussian capacity. At last, we in-
troduce a new noise model for which the GMPS is the exact optimal input state. Since
GMPS are known to be ground states of quadratic Hamiltonians this suggests a starting
point to develop links between optimization problems of quantum communication and
many body physics.
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1. Motivation: Why Quantum Channels?

Today’s society is in permanent communication: we exchange messages via the phone,
the internet, the radio and in many other ways. Conventionally, messages are encoded
in sequences of bits. Each message is sent through a channel, which physically may
correspond to a telephone line, an optical fibre or simply the air. Usually, the signals
which carry the information correspond to voltages or strong light pulses and the phys-
ical channel is modeled by a classical channel. If however, a few photons or atoms are
used as information carriers then laws of quantum mechanics dictate the behavior of
the signals, and the underlying channel is modeled by a quantum channel. The central
question of any communication scenario is: what is the maximal amount of bits that
can be transmitted reliably per use of the channel? For classical channels Claude Shan-
non formulated in 1948 in his “Mathematical Theory of Communication” [Sha48] the
answer to this question: the classical capacity. Though the classical capacity of classical
channels was well defined, for classical Gaussian channels, which model telephone cables
or satellite links, the definition lead to a contradicting result: despite a finite power at
the input, in the limit of a small noise energy the capacity diverges. Since however, in
this limit quantum effects dominate the noise cannot become arbitrarily small, and one
has to consider a quantum channel instead. The classical capacity of quantum channels
was formalized in [HJS+96, SW97, Hol98c] and corresponds to a maximization over all
possible input encodings of the Holevo-χ-quantity, defined by Alexander Holevo in 1973
[Hol73]. The χ-quantity takes the quantum nature of the input signals and the noise
into account, and therefore, is finite for small noise energy. However, the calculation of
the classical capacity of quantum channels remains up to today a very challenging task
and despite great efforts was only obtained for a few cases (see detailed discussion in
Sec. 3.4).

Not withstanding the fact that any channel is ultimately a quantum channel, one
may wonder what is the advantage of a quantum channel over a classical channel? The
answers in short are privacy and security. In order to explain this in detail we first lay out
concepts to exploit quantum mechanics for security purposes. In 1970 Stephen Wiesner
introduced his idea of quantum money (though published 13 years later [Wie83]), which,
together with Holevo’s definition of the χ-quantity, may be considered as the beginning of
Quantum Information Theory. Essentially, by encoding the serial number of a banknote
in non-orthogonal quantum states one is assured by the no-cloning theorem that there is
no possibility to duplicate the banknote without introducing errors. The same idea was
used in 1984 by Bennett and Brassard in their BB84-protocol : a secret key is encoded in a
sequence of non-orthogonal quantum states [BB84] and sent through a quantum channel.
Any eavesdropper will introduce errors when he or she wiretaps the signal and therefore,
can be detected by the communicating parties. This may be the essential difference

1



1. Motivation: Why Quantum Channels?

between a classical channel and a quantum channel. Once a key is securely transmitted
through the quantum channel it can be used with the encryption method one-time pad :
the key is added to the encoded message, which is as long as the key. If for each
message a new key is generated then this method is provably secure. Classical channels
in contrary to quantum channels are vulnerable to wiretapping and for this reason a
lot of the exchanged information is encrypted with algorithms such as RSA, developed
1977 by Ronald L. Rivest, Adi Shamir and Leonard Adleman [RSA78]. Such algorithms
rely on the fact that up to today there is no efficient method to factor large numbers,
as the underlying key is given by a product of large prime factors. However, there is up
to now no proof for the non-existence of an efficient algorithm1 for factoring numbers.
Furthermore, a quantum computer, i.e. a machine which operates on quantum states and
executes quantum algorithms, may pose a threat to encryption methods such as RSA. An
example is Shor’s factorizing quantum algorithm which terminates in polynomial time
[Sho94]. Current technology which is known to the public cannot realize a quantum
computer that can run Shor’s algorithm at a scale large enough to threaten conventional
encryption methods. A private company, however, may develop a quantum computer of
sufficient scale. An example is the company D-Wave which recently released the 128-
qubit quantum computer “D-Wave One”2. The quantum computer of D-Wave however,
cannot realize general quantum operations and as a consequence, cannot execute Shor’s
algorithm.

Protocols such as the BB84 protocol are called quantum key distribution protocols
and are one important application of a quantum channel. Generally speaking, a quan-
tum channel describes any operation on a quantum system which outputs a quantum
state. Therefore, quantum channels can model the actual transmission of photons or,
for example, the manipulation of the state of a trapped ion.

1.1. Preview of the thesis and our contributions

In this thesis we focus on bosonic Gaussian quantum channels which model most optical
quantum channels, such as optical fibers or free space communication [CD94, EW05,
WPGP+12]. Their action is completely defined by transformations of the mean field
amplitude and the covariances of the field’s quadratures. Furthermore, the underlying
noise is fully characterized by a Gaussian distribution which is why their mathematical
description is fairly simple. They map however, arbitrary input states to output states
that live in an infinite dimensional Hilbert space. Since one has to maximize over all
possible encodings that furthermore have to satisfy a physical input energy constraint,
the calculation of the classical capacity becomes a challenging optimization problem.

Until today, strictly speaking, only the classical capacity of one particular Gaussian
channel was obtained: the lossy channel with vacuum noise3 [GGL+04a]. This channel

1Efficient means here that the algorithm terminates in polynomial time.
2Though there is a debate whether the “D-Wave One” really executes quantum algorithms, see e.g.

[BAS+12, BRI+13, SS13].
3This result was extended to a multi-mode channel with particular noise correlations [LGM10].
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corresponds to a beamsplitter which reduces the amplitude of the input signal and mixes
the latter with vacuum. This model, however, cannot be considered as a model for the
transmission through an optical fiber, because an optical fibre generally adds thermal
noise.

For the lossy channel with vacuum noise it was shown that coherent states with Gaus-
sian distributed mean field amplitudes provide the encoding that achieves the capacity
[GGL+04a]. Coherent states describe very well the state of the electromagnetic field that
is emitted by a laser and therefore, are very easy to generate experimentally. They are
in the class of Gaussian states, i.e. quantum states whose field quadratures are Gaussian
distributed in phase-space [EW05, Bra05b, WPGP+12]. Since these states can be easily
generated and are furthermore very conveniently described by Gaussian distributions
one may focus on the classical capacity restricted to Gaussian input encodings. This
quantity is called the Gaussian classical capacity, or simply Gaussian capacity, and is of
central interest in this work.

We begin the thesis with Part I which provides all definitions that are needed for the
analysis of capacities of bosonic Gaussian channels. We first give an introduction to
Shannon Information Theory and Quantum Information Theory, outlining the basis of
information transmission through classical and quantum channels. Then we present a
brief introduction to Quantum Optics and discuss all optical elements that are needed
for this thesis. Afterwards, we introduce the encoding of information in phase-space, in
particular in Gaussian states. Finally, we define the action of Gaussian channels, the
definition of the classical capacity and Gaussian capacity.

Our results are presented in Part II.

We begin with the single-mode channel and study its Gaussian capacity in full gen-
erality in Chapter 6. Our starting point is the known classification of all single-mode
Gaussian channels in terms of a set of seven canonical channels defined in [Hol07]. It
was shown that any single-mode Gaussian channel is equivalent to a canonical one up
to unitaries preceding and following the channel, which is also called canonical decom-
position. Five of the seven canonical channels are thermal channels: they map thermal
states to thermal states, such as the thermal lossy channel which models the transmission
through an optical fiber. The canonical decomposition is not very useful for calculating
capacities, since despite the preceding unitary does not change the Holevo χ-quantity, in
general it changes the energy of the input state. Therefore, the problem of calculating
the capacities cannot be reduced to calculating the capacity of the canonical channels.
This is the starting point and motivation for the introduction of a newly defined fidu-
cial channel and corresponding fiducial decomposition that overcomes this problem. We
study in detail the properties of the fiducial channel and in particular its dependency on
the noise squeezing. At last, we investigate how far the classical capacity of an arbitrary
single-mode Gaussian channel is from its Gaussian capacity. The results of Chapter 6
have been partly published in Refs. (D), (E), (H) and (G)

In Chapter 7 we treat multi-mode Gaussian memory channels. The reason to con-
sider memory channels is simply that “real-world communication channels often have
memory” [AF97]. We focus on channels for which the noise correlations can be un-
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1. Motivation: Why Quantum Channels?

raveled by a passive symplectic transformation. Effectively, this rotates the correlated
noise into a basis where it becomes uncorrelated. In this uncorrelated basis one only has
to consider a collection of single-mode channels, where in general each of the channels
has different parameters, in particular different noise squeezing. As we shall see, the
problem of finding the Gaussian capacity of such a collection of channels is related to
the calculation of the capacity of multivariate classical Gaussian channels. The solution
to the capacity of correlated classical Gaussian channels is given by rotating the noise
covariance matrix into the basis where it is diagonal and by applying the water-filling
solution. This solution realizes an equal distribution of output powers, i.e. the variance
of each Gaussian distributed output random variable is equal. If the input power is high
enough one realizes a global water-filling solution. Otherwise the channels which are too
noisy are excluded from information transmission and one obtains a local water-filling
solution. For bosonic Gaussian quantum channels, we will see that in the basis where
the noise is uncorrelated, an equal distribution of energy at the output is optimal, as
well. The solution however, has one significant difference: one has to take into account
the input energy spent on the squeezing of the states. As a consequence we will obtain
a quantum water-filling solution which becomes a global quantum water-filling solution
if the input energy is above a certain threshold. Below this input energy the solution
becomes more complicated and will lead to a division of channels into different sets,
where some of the channels will be excluded from information transmission.

We apply our solution to the concrete example of a Gauss-Markov noise, which may be
regarded as a good approximation of any naturally arising memory. For two uses of a such
a channel it is known that entanglement at the input helps to increase the transmission
rate [CCMR05, CCRM06]. We investigate in detail the optimal input encoding and the
Gaussian capacity in the limit of an infinite number of uses. In particular, we compare
the performance of the optimal input encoding with a non-entangled coherent state
encoding. The reason to consider a simpler encoding is that the optimal input state is
generally expected to be entangled (as in the two mode case), and therefore may be very
difficult to generate experimentally. Several results of Chapter 7 have been published in
Refs. (A) and (B).

Chapter 8 is devoted to the study of sub-optimal Gaussian matrix-product states as
input states, where in particular we focus on nearest-neighbor correlated GMPS. Such
states have the great advantage that though being heavily entangled, they can be gen-
erated sequentially. We compare the resulting transmission rates with the Gaussian
capacity and with the transmission rate when using coherent states as input states.
In addition, we study the similarities between the optimization problem of the Holevo
quantity and the energy minimization in many body physics. The starting point here is
the fact that GMPS are known to be ground states of quadratric Hamiltonians [SWC08].
Most of the results of this Chapter were published in Ref. (C).

Finally, we summarize our results and give a list of open questions in Chapter 9.
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Part I.

Mathematical Background
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2. Shannon Information Theory

We begin with a brief review of Shannon Information Theory (also called “Classical
Information Theory”) which was developed by Claude E. Shannon in 1948 [Sha48]. The
central quantity of information theory is the entropy. This physical quantity, which in
thermodynamics is often regarded as the “disorder” of a system can as well be associated
with the amount of information generated by a random source. We shall see in this
chapter that the entropy is a central part of the definitions which we need throughout
this thesis.

The definitions and formulas presented from section 2.1 up to subsection 2.3.3 are
taken from [CT05].

2.1. Shannon entropy

Let X be a random variable that takes discrete values x ∈ X and is drawn according to
a probability distribution p(x). The Shannon entropy H(X) is defined as

H(X) = H(p) = −
∑

x∈X
p(x) log2 p(x), (2.1)

where the logarithm is taken to the base 2 (the entropy is measured in bits). We observe
that the Shannon entropy is equivalent to the Gibbs entropy of a thermodynamic system
(up to the missing Boltzmann constant), which is described by a mixture of micro states
ρi associated to a probability pi.

The entropy H(X) has at the same time two equivalent meanings: it is the average
amount of bits gained by measuring X and the amount of bits needed to obtain the
outcome of X. For this reason the entropy is often referred to as the uncertainty of
X. A random variable associated to an (unbiased) coin flip is a standard example to
illustrate the concept of entropy. In this case the probabilities for X = 0 (“head”) and
X = 1 (“tail”) are equal, i.e. p(X = 0) = p(X = 1). Equation (2.1) yields H(X) = 1
bit of information that is gained by the flip, or needed to obtain its outcome.

The definition of the Shannon entropy stated in Eq. (2.1) can be generalized to two
(and more) variables. Suppose that {X,Y } are two random variables that take discrete
values x and y and have the joint probability distribution p(x, y). Then, their joint
entropy is defined as

H(X,Y ) = −
∑

x∈X

∑

y ∈Y
p(x, y) log2 p(x, y), (2.2)
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H(X) H(Y )
H(X,Y )

H(Y |X)I(X;Y )H(X|Y )

Figure 2.1.: Venn diagram: Relationships between (individual) entropies H(X), H(Y ),
joint entropy H(X,Y ), conditional entropy H(X|Y ) and the mutual infor-
mation I(X;Y ).

which may be regarded as a joint measure of uncertainty. An important inequality is
the subadditivity of the joint entropy, i.e.

H(X,Y ) ≤ H(X) +H(Y ). (2.3)

Clearly, the joint uncertainty can only be lower than the uncertainties of the individual
systems, because X and Y may be correlated. This brings us to the definition of the
conditional entropy , which may be regarded as the uncertainty of a random variable Y
given the outcome of X. It is defined as

H(Y |X) =
∑

x∈X
p(x)H(Y |X = x)

= −
∑

x∈X
p(x)

∑

y ∈Y
p(y|x) log2 p(y|x)

= H(X,Y )−H(X),

(2.4)

with p(y|x) = p(x, y)/p(x). As seen from the last line in Eq. (2.4) H(Y |X) can be
calculated by the total uncertainty of X and Y reduced by the number of bits gained by
measuring X. With the above definitions we can define the mutual information I(X;Y )
between X and Y , i.e.

I(X;Y ) = H(X) +H(Y )−H(X,Y )

= H(X)−H(X|Y ).
(2.5)

We observe that the mutual information is the uncertainty of X that remains after
knowing Y . The relations between the different entropies are depicted in a Venn diagram
in Fig. 2.1.

The above definitions can be straightforwardly extended to the case when the alpha-
bet of X and Y are continuous and the distribution functions p(x) and p(y) become
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probability densities. The entropy and conditional entropy then read

H(X) =−
∫

R

dx p(x) log2 p(x) ,

H(X|Y ) =−
∫

R

dx dy p(x, y) log2 p(x|y) .

(2.6)

The other definitions are extended equivalently, where essentially in all definitions sums
have to be replaced by integrals (see [CT05] for details).

2.2. Channel capacity

Consider two parties, commonly referred to as Alice (the sender) and Bob (the receiver),
that would like to communicate to each other. Alice encodes her message and sends it
through a noisy channel to Bob, who tries to decode the message, i.e. to reconstruct
the original message. An immediate question that is risen: what is the maximal amount
of information (i.e. bits) Alice can transmit reliably to Bob per channel use. In other
words: what is the capacity of the channel? Before we can define the capacity, we first
need to define the action of the channel itself.

A time-discrete channel is a system composed of an input alphabet X , an output
alphabet Y and a probability transition matrix P (y|x) ≥ 0 which is the probability that
Bob successfully receives y when x was sent, with

∑
y P (y|x) = 1, ∀x ∈ X . We consider

in the following only time-discrete channels, i.e. all messages are sent in discrete time
steps. A channel is memoryless if the output of the k-th use of the channel only depends
on the k-th input; otherwise the channel is a memory channel. Suppose Alice now uses
a channel n times, or equivalently transmits sequences x = (x1, x2, ..., xn)T of length n.
The channel is then defined by

(X n,P (y|x),Yn), (2.7)

where x ∈ X n,y ∈ Yn. We define a (M,n)-code for the channel (X n,P (y|x),Yn) as a
system containing:

• An index set I = {1, 2, ...,M}, where each index stands for a message W .

• An encoding function En : I → X n, which assigns to each message W an input
string x with length n.

• A decoding function Dn : y → I, which returns an estimated message W ′ = Dn(y)
from the received output y,
with a probability of error εi = P (W ′ 6= W ) = P (Dn(y) 6= W |x = En(W )).

The communication system including the encoder, the channel, and the decoder is
sketched in figure 2.2. The important question which emerges from previous defini-
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Figure 2.2.: Classical communication system.

tions is how many bits can Alice maximally transmit to Bob per channel use? In order
to answer this question we first define the rate of an (M,n) code, i.e.

R =
log2M

n
bits per transmission1. (2.8)

A rate R is achievable if there exists a sequence of (2nR, n) codes such that the maximal
probability of error max

i∈I
εi → 0, as n → ∞. The Shannon capacity (or “channel capac-

ity”) of a memoryless channel is the supremum of all achievable rates. In terms of the
mutual information between Alice and Bob, the capacity is defined as

CSh = max
p(x)

I(X;Y ), (2.9)

where I(X;Y ) is maximized over all possible input distributions p(x) and CSh is quan-
tified in bits. Finally, we state the channel coding theorem: All rates below the capacity
CSh are achievable. Specifically, for every rate R < CSh, there exists a sequence of
(2nR, n) codes with maximum probability of error max

i
εi → 0 as n → ∞. Conversely,

any sequence of (2nR, n) codes with max
i
εi → 0 must have R ≤ CSh. The proof of

the channel coding theorem can be found in [CT05]. In summary, the capacity is the
maximum amount of bits Alice can send reliably to Bob.

Let us study an example in order to better understand the notion of the capacity.
Consider the binary symmetric channel or “bit-flip” channel depicted in Fig. 2.3. Alice’s
input bit is flipped with probability p and is transmitted without error to Bob with
probability 1− p. This implies that Bob does not know with certainty which was Alice’s
input bit. It follows immediately that H(Y |X) = H(p), and therefore

I(X : Y ) = H(Y )−H(p). (2.10)

Since the parameter p is fixed by the channel one has to maximize the output entropy
H(Y ) over all input distributions in order to achieve the capacity. H(Y ) is a concave
function with respect to p(y) and maximized for a uniform distribution for which H(Y ) =
1 bit (this distribution was given in the case of the unbiased coin flip mentioned above).
Choosing the input distribution to be uniform, i.e. p(x) = {1

2 ,
1
2} leads to a uniform

distribution p(y) = {1−p
2 + p

2 ,
1−p

2 + p
2} = {1

2 ,
1
2} and therefore achieves the capacity

CSh = 1−H(p) bits. (2.11)

Note that in the following we mostly omit the unit “bits”.

1In most definitions the unit “bits” will be omitted.
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Binary symmetric channel

0 0
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Figure 2.3.: Binary symmetric channel:

2.3. Classical Gaussian channel

We treat in the following the capacity of a classical Gaussian channel2. Such channels
are widely used to model conventional communication links, such as wireless telephone
channels or satellite links. We discuss here only the most common classical Gaussian
channel, i.e. the additive channel, and define first the general, multi-variate case.

Most generally, one is given a system of n parallel, a priori not independent Gaussian
channels, that act as follows. The n output variables Y = {Y1, ..., Yn} are given by
the sum of n input variables X = {X1, ..., Xn} and n noise random variables Z =
{Z1, ..., Zn}, drawn from a Gaussian distribution with a covariance matrix (CM) VZ , i.e.

Y = X + Z, Z ∼ N (0,VZ). (2.12)

Without any additional constraint at the input the capacity of this channel system is
infinite, because Alice could separate her symbols at infinite distance ensuring that Bob
receives them without error. Therefore, we need to impose a power constraint at the
input of Alice. Namely, we restrict the sum of variances of the input symbols, i.e.

1

n

n∑

i=1

Var(Xi) ≤ P, (2.13)

where P corresponds to the average input power. We treat now several cases of covari-
ances VZ and state briefly the corresponding solutions. For the definitions stated in
subsections 2.3.1-2.3.3 more detailed derivations can be found in [CT05].

2.3.1. Single variate channel

The simplest scenario is the case of a single Gaussian channel, where the noise covariance
matrix becomes simply a real variable N , i.e.

Y = X + Z, Z ∼ N (0, N). (2.14)

2We underline here the word “classical” because the main part of this work deals with quantum channels.
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Since the input X and noise variable Z are independent we have

I(X;Y ) = H(Y )−H(Z). (2.15)

Because it is known that the entropy of a classical random variable with fixed variance
is maximized by a Gaussian distribution (see [CT05]) it is optimal to choose a Gaussian
distribution for the input variable X, i.e. the optimal input is X ∼ N (0, P ). Then the
capacity is straightforwardly calculated and reads

CSh = max
p(x)

Var(X)≤P

I(X;Y ) =
1

2
log2

(
1 +

P

N

)
, (2.16)

where P
N ≡ SNR is called the signal-to-noise ratio.

2.3.2. Parallel uncorrelated channels

Let us now suppose that the n-parallel channels are independent. This means that
VZ = diag(N1, N2, ..., Nn). Due to the subadditivity of the joint entropy [see Eq. (2.3)]
and the fact that for the single variate case a Gaussian distribution for the input is
optimal we straightforwardly obtain

I(X;Y ) = H(Y )−
∑

i

H(Zi)

≤
∑

i

(H(Yi)−H(Zi))

≤ 1

2

∑

i

log2

(
1 +

Pi
Ni

)
,

(2.17)

where Pi = Var(Xi) is the variance of the individual Gaussian distributed random vari-
able Xi. The problem that is left to solve is to determine the optimal power distribution
{P1, P2, ..., Pn} with the constraint

1

n

∑

i

Pi ≤ P. (2.18)

The method to find the solution of this problem is given by the Karush–Kuhn–Tucker
conditions (KKT), which is an extension of the method of Lagrange multipliers (by
adding inequality constraints). It follows that the input powers are given by the water-
filling solution, i.e.

Pi = (w −Ni)
+, ∀i, (2.19)

where

(x)+ =

{
x, x ≥ 0,
0, x < 0,

(2.20)

and w is the water-filling level satisfying 1
n

∑
i Pi = P . We conclude that no energy is

allocated to channels with noise variances that lay above the water-filling level. As a
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Figure 2.4.: Water-filling solution: Noise variance Ni, induced power Pi and water-filling
level w vs. channel number i; equation (2.19) is fulfilled for all i.

consequence they are excluded from information transmission. We depict the solution
for an example in Fig. 2.4. With Eqs. (2.17) and (2.19) we determine the capacity for
the system of parallel uncorrelated channels, that is

C =
1

2n

∑

i

log2

(
1 +

(w −Ni)
+

Ni

)
, (2.21)

where w satisfies Eq. (2.19) together with constraint (2.18).

2.3.3. Parallel correlated channels

In general, one has to consider a system of parallel correlated channels, i.e. the case
when VZ 6= diag(N1, N2, ..., Nn). As mentioned before, in order to maximize the mutual
information

I(X;Y ) = H(Y )−H(Z), (2.22)

the output Y should be Gaussian distributed, which implies the input X has to be Gaus-
sian distributed with covariance matrix VX . Then, the action of the additive Gaussian
channel expressed in terms of the covariance matrices reads

VY = VX + VZ , (2.23)

where VY is the CM of the Gaussian distributed output Y . For the output entropy we
have

H(Y ) ∝ det (VX + VZ). (2.24)

The determinant is invariant under rotation, and furthermore, for a matrix M with
entries Mij the Hadamard inequality holds, i.e.

detM ≤
∏

i

Mii, (2.25)
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with equality if M is diagonal. Then it is straightforward to show that VX and VZ have
to be diagonal in the same basis in order to maximize Eq. (2.24) [which then maximizes
(2.22)]. Then, the problem can be treated in the rotated basis where VZ is diagonal. For

the given spectrum of VZ denoted λ(Z) = {λ(Z)
1 , ..., λ

(Z)
n } the problem is simplified to a

system of parallel uncorrelated channel. Hence, the solution is given by the water-filling
solution over the spectrum of VZ . Once the optimal input covariance matrix is obtained
it may contain correlations when rotated back to the original basis.

2.3.4. Markovian correlated channels

Let us study an example of correlated channels, namely, n-channels with noise correla-
tions arising from a Gauss-Markov process. Markov processes are used e.g. to model
processes in finance, climate research [SZ99], earthquakes or to approximate the random
motion of particles suspended in a fluid (Brownian motion3). For Gaussian channels the
underlying process is therefore a Gauss–Markov process, which we furthermore require
to be stationary such that the channel is shift (or translationally) invariant4. A Gauss-
Markov process of order P (also called autoregressive (AR) process with white Gaussian
noise) is defined as [SZ99]

Zt =

P∑

k=1

φk Zt−k +Wt, t = 1, ...,∞, (2.26)

where φ1, φ2, ..., φP are the correlation parameters and Wt are identically and indepen-
dently Gaussian distributed random variables. We set the mean values of all random
variables to zero, i.e. E[Zt] = E[Wt] = 0, ∀t. This process is stationary (shift invariant)
iff all roots of the characteristic polynomial

p(x) = 1−
P∑

k=1

φk x
k (2.27)

lie outside the unit circle |x| = 1. If the process is stationary, then the covariance matrix
VMK of the stochastic process (2.26) is Toeplitz (see Appendix A). The latter implies
that all variances of Zt are equal, i.e.

Var(Z1) = Var(Z2) = ... = Var(Zn). (2.28)

In the limit n→∞ the spectrum of VMK becomes [DC01, SZ99]

λ(VMK)(x) =
Var(Zt)

|1−∑Pk=1 φk e
ikx|2

. (2.29)

The Gauss-Markov process of order P satisfies a very strong property: Let {Zt}∞t=1 be

3We remark that Brownian motion in general is not a Markov process.
4This may be regarded more physical, as no channel use i is favored over another use k.
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Figure 2.5.: Memory model for a classical Gaussian additive channel: The noise is given
by a first-order Markov process, i.e. it exhibits a nearest-neighbor correlation
with correlation parameter φ.

a stochastic process with zero mean E[Zt] = 0, ∀t and P lag covariance constraints

E[Zt, Zt+k] = Rk, k = 0, 1, ...,P. (2.30)

Then the entropy rate

lim
n→∞

1

n
H(X1, X2, ..., Xn) (2.31)

is maximized if the stochastic-process is given by a Gauss-Markov process of order P
satisfying the constraint stated in Eq. (2.30) [CC84]. This leads to the following conclu-
sions for the additive noise channel Y = X +Z: among all multi-variate noise processes
Z satisfying the correlation constraints given in Eq. (2.30) the Gauss-Markov process of
order P is the one that is the worst [DC01]. This means the Gauss-Markov process of
order P defines the noise that minimizes the capacity of the additive noise channel.

For simplicity, we focus now on the case P = 1, i.e. the case of nearest-neighbor
correlations modeled by the process

Zt = φZt−1 +Wt, (2.32)

We fix Var(Zt) = N implying Var(Wt) = (1− φ2)N . The covariance matrix then reads

VMK = N




1 φ φ2 φ3 · · · · · · φn

φ 1 φ φ2 · · · · · · φn−1

φ2 φ 1 φ · · · · · · φn−2

φ3 φ2 φ 1 · · · · · · φn−3

...
...

. . .
. . .

...
φn−1 φn−2 · · · 1 φ
φn φn−1 · · · · · · φ2 φ 1




. (2.33)
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2. Shannon Information Theory

Then Eq. (2.29) simplifies to

λ(VMK)(x) = N
1− φ2

1 + φ2 − 2φ cos (x)
, N ≥ 0, φ ∈ [0, 1), x ∈ [0, 2π]. (2.34)

Let us now study the capacity CSh of a system of n parallel channels, with noise CM
VMK with eigenvalue spectrum λ(MK)(x) ≡ λ(VMK)(x). Though the following results can
be straightforwardly derived for the given spectrum λ(MK)(x) we have not found any
reference where they have been stated.

According to Eq. (2.23) the action of the channel may be written as

VY = VX + VMK. (2.35)

Since the process is stationary, the water-filling solution presented above translates to
a water-filling solution in the spectral domain [CT05]. Therefore, in order to find the
capacity we need to consider the noise spectrum in the limit n → ∞ which is stated
in Eq. (2.29). Again, the solution is given by the water-filling solution, which is now
applied to a continuous spectrum, that is

1

π

π∫

0

dx
(
w − λ(MK)(x)

)+
= P, (2.36)

where one only needs to integrate from 0 to π due to the mirror symmetry of λ(MK)(x)
around x = π. Then, the capacity (2.21) becomes

C =
1

2π

π∫

0

dx log2

(
1 +

(w − λ(MK)(x))+

λ(MK)(x)

)
. (2.37)

Since the function λ(MK)(x) is monotonically decreasing in the interval x ∈ [0, π], we can
simplify the left hand side of (2.36), i.e.

1

π

π∫

0

dx
(
w − λ(MK)(x)

)+
=

1

π

π∫

κ

dx
(
w − λ(MK)(x)

)
=

1

π
(π − κ)w − 1

π

π∫

κ

dxλ(MK)(x).

(2.38)
The primitive of λ(MK)(x) reads

∫
dxλ(MK)(x) = 2N arctan

(
1 + φ

1− φ tan
(x

2

))
≡ L(MK)(φ, x), (2.39)

where
lim
x→π

L(MK)(φ, x) = πN. (2.40)

Then, Eq. (2.38) simplifies to

(π − κ)w + L(MK)(φ, κ) = π (P +N). (2.41)
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Figure 2.6.: Water-filling for Markovian correlated noise (stack plot): The solid line and
the area underneath corresponds to λ(MK)(x), the horizontal bar is the water-
filling level w and the area underneath is the optimal input power distribu-
tion satisfying the water-filling solution. (a) Global water-filling: the power
is sufficient to “fill” the whole spectrum. (b) Local water-filling: the power
distribution “fills” only the spectrum in the domain x ∈ [κ, π].

The solution of Eq, (2.41) leads to the position κ and the water-filling level w. Then the
capacity (2.37) is given by

CSh =
1

2π

π∫

κ

dx log2

(
w

λ(MK)(x)

)
. (2.42)

Let us briefly study the solution to Eq. (2.41). We know that if κ = 0 then the entire
noise spectrum will be “filled”, i.e. w − λ(MK)(x) ≥ 0, ∀x. In this case we speak of a
global water-filling solution. Injecting κ = 0 in Eq. (2.41) yields the power threshold

Pthr = N

(
1 + φ

1− φ − 1

)
. (2.43)

This means a global water-filling solution is only achieved if P ≥ Pthr. In this case
Eq. (2.41) leads to the water-filling level w = P + N , i.e. the sum of average input
variance and average noise variance. Then, using Eqs. (2.39) and (2.42) the solution to
the capacity becomes

CSh =
1

2
log2

(
1

1− φ2

(
1 +

P

N

))
, P ≥ Pthr. (2.44)

We depict an example for this case in Fig. 2.6 (a). Equation (2.44) coincides with the
single variate capacity (2.16) in the uncorrelated case (φ = 0). The limit φ → 1 leads
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2. Shannon Information Theory

to a divergence of CSh which is compensated by the divergence of the power threshold
Pthr. Therefore, the solution stated in Eq. (2.44) is not achievable in this limit.

Now we discuss the solution when the global water-filling can no longer be satisfied, i.e.
the solution for P < Pthr. In this case a local water-filling solution will be optimal. This
means that a part of the spectrum is excluded from information transmission, namely,
the part of the spectrum for which x ∈ [0, κ]. Due to the monotonicity of the noise
spectrum the water-filling level is given by w = λ(MK)(κ) where κ is obtained by solving
Eq. (2.41). The capacity then reads

CSh =
1

2π

(
(π − κ) log2 λ

(MK)(κ)− L(MK)(φ, π) + L(MK)(φ, κ)
)
, P ≤ Pthr. (2.45)

In Fig. 2.6 (b) we have plotted an example for a local water-filling. Equation (2.45)
allows us to explicitly evaluate the limit φ→ 1 (since in this limit P < Pthr).

Let us evaluate the behavior of the noise spectrum λ(MK)(x) in this limit. Recall that
the integral over the spectrum is independent of φ, i.e. its norm is given by the noise
variance N :

1

π

π∫

0

dxλ(MK)(x) = N. (2.46)

In the limit φ → 1 we find that λ(MK)(x) tends to zero everywhere except for x = 0
where it diverges to infinity, i.e.

lim
φ→1

λ(MK)(0) = lim
φ→1

N
1 + φ

1− φ →∞. (2.47)

Then the optimal position κ will tend to 0 and the water-filling w will tend to the power
constraint P . This is due to the following reasoning: in L(MK)(φ, x) [see (2.39)] the
function 1+φ

1−φ tends stronger to infinity (with φ → 1) than tan x
2 to zero (with x → 0).

Using Eqs. (2.40) and (2.41) we conclude that

lim
φ→1

w = P. (2.48)
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The behavior of the capacity (2.45) in this limit can be computed in several steps:

lim
φ→1

CSh = lim
φ→1

1

2π
(π − κ) log2w − lim

φ→1

1

2π

π∫

κ

dx log2 λ
(MK)(x)

= − lim
ε→0

1

2π

π∫

0

dx log2

1− (1− ε)2

1 + (1− ε)2 − 2(1− ε) cos(x)
+ cw

= − lim
ε→0

1

2π

π∫

0

dx log2

ε

(1− ε)(1− cos(x))
+ cw

=
1

2
lim
ε→0

log2

ε

1− ε −
1

2π

π∫

0

dx log2 (1− cos(x))

︸ ︷︷ ︸
=1/2

+ cw →∞.

(2.49)

where all terms of order ε2 are neglected and cw = 1
2 log2 P . Physically this is clear

because the Shannon capacity of a noiseless channel diverges even for finite input powers.

2.4. Limitations of Shannon Information Theory

Shannon provided the maximal transmission rate of classical communication channels
and proved that it is achievable when the number of uses tends to infinity. In the case
of the single-variate Gaussian channel it was found to be

CSh =
1

2
log2

(
1 +

P

N

)
, (2.50)

where P is the average input power (i.e. the variance of the input distribution) and N
the variance of the Gaussian distributed noise. One immediately concludes that equation
(2.50) cannot be always valid. For a fixed input power and very small noise variances,
i.e. when N → 0, the capacity diverges. The same non-physical divergence was found
for the Gauss-Markov channel in the limit φ→ 1 (for arbitrary input powers and noise
variances). This shows the limitation of Shannon Information Theory and the necessity
for a larger theory that does not lead to this divergence, namely Quantum Information
Theory. We shall see in the next chapter that we need to take into account the quantum
nature of the input symbols (i.e. input states). In Shannon Information Theory the
input symbols correspond to random variables which do not carry any intrinsic energy
and do not lead to any noise in the channel. This assumption however is not physical.
Ultimately, any information carrier requires a finite amount of energy and therefore,
leads to noise. For this reason, the noise cannot become arbitrarily small which will be
taken into account in Quantum Information Theory. Finally, this “physical” condition
shall lead to the “true” equation for the classical capacity, which in the classical limit
tends to CSh.
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The previous section highlighted the incompleteness of Shannon Information Theory
when reducing the noise of the system, or equivalently, reducing its size. Due to pro-
gressive downscaling of modern hardware elements the treatment of small system sizes
is inevitable. Gordon E. Moore predicted in 1965 that every year the number of com-
ponents in integrated circuits doubles [Moo65]. Surprisingly, up to today this trend
was confirmed [Con13]. Since the size of the processors does not increase the individ-
ual transistors decrease in size and eventually scale down to sizes of a few atoms. Thus,
communication and computation are ultimately subject to the laws of quantum mechan-
ics. Therefore, Quantum Information Theory (or “Quantum Information Science”) was
introduced, where now atoms, ions and photons are used as carriers of information.

Quantum information can be quantified in quantum bits (or “qubits”). The qubit is
the quantum analogue of the classical bit. Unlike a classical bit which can only take
the value 0 or 1, a qubit |ψ〉 corresponds to a pure quantum state that is given by an
arbitrary superposition of two basis vectors |0〉 and |1〉 that span a two-dimensional
Hilbert space H, i.e.

|ψ〉 = α |0〉+ β |1〉 , (3.1)

where α and β are complex numbers satisfying the normalization constraint |α|2 + |β|2 =
1. The basis vectors {|0〉 , |1〉} may correspond to the polarization of a single photon or
the spin of a single ion. When a qubit |ψ〉 is measured in an orthonormal basis {|0〉 , |1〉}
it will yield one classical bit of information. More generally, on can consider qudits, that
live in a d-dimensional Hilbert space, spanned by d basis vectors. When measured in a
chosen basis a qudit yields a discrete outcome; in the case of a qubit 0 or 1. However,
there also exist quantum systems that live in an infinite dimensional Hilbert space and
physically correspond to a collection of particles, e.g. the coherent state |α〉 which will
be introduced in Sec. 4.3.2. In this example, the information is encoded in the amplitude
of the state and can take continuous values. Therefore, as opposed to systems with a
discrete number of basis states we speak in this case of continuous variable quantum
information. We will discuss this in more details in Sec. 5.5 and first introduce properly
the quantum equivalence to the Shannon entropy and classical channels.

In this chapter we define the necessary tools in order to study transmission rates of
quantum communication channels, where all definitions are taken from [NC00], [KW05]
and [Man06] unless explicitly stated otherwise.
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3. Quantum Information Theory

3.1. Von Neumann entropy

The extension of the Shannon entropy and the Gibbs entropy to quantum mechanics is
given by the von Neumann entropy . Let ρ̂ be a density operator given by the composition
of an ensemble {|x〉} spanning the Hilbert space H and drawn with probability p(x), i.e.

ρ̂ =
∑

x

p(x) |x〉 〈x|. (3.2)

A density operator ρ̂ is Hermitian, i.e. ρ̂† = ρ̂ (where “†” denotes transposition and
complex conjugation), positive-semidefinite and satisfies Tr[ρ̂] = 1. Furthermore, a
quantum state ρ̂ is pure if Tr[ρ̂2] = 1 and mixed if Tr[ρ̂2] < 1. The von Neumann
entropy of a state ρ̂ is defined as

S(ρ̂) = −Tr[ρ̂ log2 ρ̂], (3.3)

where we use in this work the logarithm to the base two (in order to express it in bits).
If a density operator ρ̂ is given in its eigenbasis {|j〉}, i.e.

ρ̂ =
∑

j

λj |j〉 〈j| , (3.4)

then the von Neumann entropy is simply given by

S(ρ̂) = −
∑

j

λj log2 λj = H(λ), (3.5)

where H(λ) is the Shannon entropy of a random variable with outcomes associated to
probabilities λj . For a pure state ρ̂ = |k〉 〈k|, i.e. a state that is with probability λk = 1
in state |k〉, we conclude from Eq. (3.5) that S(|k〉 〈k|) = 0. In contrary, the state that
maximizes the von Neumann entropy (in a d-dimensional Hilbert space) is the maximally
mixed state

ρ̂ =
1

d

d∑

j=1

|j〉 〈j| , (3.6)

which has a uniform probability distribution λj = 1
d , ∀j, which is known to maximize

the Shannon entropy.
Let ρ̂AB ∈ HAB be a state composed by two systems A and B. Then, its joint von

Neumann entropy reads

S(ρ̂AB) = −Tr[ρ̂AB log2 ρ̂AB], (3.7)

and equivalently to definitions of the Shannon entropy, the conditional von Neumann
entropy and mutual information read

S(ρ̂A|ρ̂B) = S(ρ̂AB)− S(ρ̂B), (3.8)

I(ρ̂A; ρ̂B) = S(ρ̂B)− S(ρ̂B|ρ̂A). (3.9)
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Figure 3.1.: Quantum communication system.

As in the case of the joint Shannon entropy the von Neumann entropy is subadditive:

S(ρ̂AB) ≤ S(ρ̂A) + S(ρ̂B), (3.10)

where ρ̂A, ρ̂B, are given by the partial trace:

TrA[ρ̂AB] = ρ̂B. (3.11)

The partial trace of a bipartite system is defined as

TrB[|a1〉 〈a2| ⊗ |b1〉 〈b2|] = |a1〉 〈a2|Tr[|b1〉 〈b2|]. (3.12)

Note that equality in (3.10) holds if and only if ρ̂AB = ρ̂A ⊗ ρ̂B, i.e. if the state ρ̂AB is
separable.

We now show that some properties that hold for the Shannon entropy do not hold
for the von Neumann entropy. For instance, given two random variables X and Y ,
the uncertainty of X can never be higher than the joint entropy of X and Y , that is
H(X) ≤ H(X,Y ). In general, this does not hold for quantum states. Consider the pure
state ρAB = |ψAB〉 〈ψAB| with

|ψAB〉 =
1√
2

(|00〉+ |11〉), (3.13)

where we used the notation |00〉 = |0〉 ⊗ |0〉. Here, both subsystems are in a superposed
state, which when measured (in the basis {|0〉 , |1〉}) either leads to both subsystems
being in the state |0〉 or both being in the state |1〉. Such a state is called an entangled
state, and in this case is even maximally entangled: when tracing over one of the two
systems the remaining state will be maximally mixed [as in Eq. (3.6)], i.e.

TrA[ρAB] =
1

2
(|0〉 〈0|+ |1〉 〈1|) . (3.14)

As mentioned above, this state maximizes the von Neumann entropy. Thus, we find that
S(ρ̂AB) = 0 and S(ρ̂A) > 0, which implies by Eq. (3.8) that S(ρ̂A|ρ̂B) < 0.

3.2. Quantum channels

In Shannon Information Theory a (classical) communication system consists of an input
message W that is encoded in a random variable A (in general a random vector A),
sent through a classical channel that leads to the output random variable B which is
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then decoded to obtain the output message W ′. In a quantum communication system
the message W is now encoded in a quantum state ρ̂A that is sent through a quantum
channel Ψ which outputs a quantum state ρ̂B which when measured leads to the message
W ′ (see Fig. 3.1). In general, a quantum channel may describe any physical process a
quantum system undergoes. This can be the actual sending of e.g. photons, or the
operation on the state of an atom. Formally, a quantum channel Ψ is a completely
positive trace-preserving (CPTP) map

Ψ : B(HA)→ B(HB), (3.15)

where B(HA) and B(HB) are Hilbert spaces containing bounded linear operators1. We
use equivalently the shorter notation

ρ̂B = Ψ[ρ̂A], (3.16)

where ρ̂A ∈ B∗(HA) is an input state and ρ̂B ∈ B∗(HB) the corresponding output state.
Note that the “trace-preserving” property of Ψ is implied by the definition that Ψ[ρ̂A] is
a density operator which has by definition Tr[Ψ[ρ̂A]] = 1. Complete positivity requires
furthermore that (I ⊗ Ψ)[ρ̂A] is positive for any operator ρ̂A, where I is the identity
operator. As a final property we state that Ψ is a convex-linear map on the set of
density matrices, i.e. for probabilities pi

Ψ

[∑

i

piρ̂i

]
=
∑

i

piΨ[ρ̂i]. (3.17)

A quantum channel Ψ can always be represented as the unitary evolution of an input
quantum system with state ρ̂A coupled to an (ancillary) environment state ρ̂E ∈ B(HE).
The final state ρ̂B = Ψ[ρ̂A] is then obtained by taking the partial trace over the envi-
ronment:

Ψ[ρ̂A] = TrE

[
ÛAE(ρ̂A ⊗ ρ̂E)Û †AE

]
. (3.18)

We underline that ÛAE is a unitary operation that acts on the joint state ρ̂A ⊗ ρ̂E .
The decomposition stated in Eq. (3.18) is called Stinespring dilation and visualized in
Fig. 3.2. Throughout this thesis we impose an intuitive physical constraint on quantum
channels, namely, we assume all channels to be causal channels: outputs at some time
step t do not depend on inputs at t′ > t.

There exists an additional possibility to represent a completely positive map (we re-
lax the trace-preserving property), namely the Choi-Jamiolkowski isomorphism [Jam72,
Cho75] (for detailed explanations see e.g. [LS11]). We define the positive operator

P̂AB ≡ (ΨB|A′ ⊗ IA)(|Φ+〉 〈Φ+|AA′), (3.19)

1Observables of a system are given by bounded linear operators on the Hilbert space H, denoted by
B∗(H); the quantum states ρ̂ of the system are therefore elements of the dual space B(H) [KW05].
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Stinespring dilation

Figure 3.2.: Stinespring dilation: A quantum channel corresponds to the unitary evolu-
tion of the total state ρ̂A ⊗ ρ̂E and tracing out the environment.

defined on B(HA)⊗ B(HB), where ΨB|A′ is a CPTP map ΨB|A′ : B(HA′)→ B(HB), IA
is the identity operator acting on system A and

|Φ+〉AA′ =
∑

j

|j〉A |j〉′A , (3.20)

is a (non-normalized) maximally entangled state living in B(H′A) where dim(H′A) =

dim(HA). This means the operator P̂AB is obtained by acting with Ψ on the system A′

of the maximally entangled state and doing nothing to the system A. Then, the map
Ψ = ΨB|A is Choi-isomorphic to the operator P̂AB, i.e.

ΨB|A[ρ̂A] = 〈Φ+|AA′ ρ̂A′ ⊗ P̂AB |Φ+〉AA′ , (3.21)

where ρ̂′A is the same state as ρ̂A but lives in B(H′A). Equivalently, the map Ψ is
Jamiolkowski-isomorphic to the operator

ΨB|A[ρ̂A] = 〈Φ+|AA′ ρ̂A′ ⊗ ÔAB |Φ+〉AA′ , (3.22)

where the positive operator ÔAB reads

ÔAB ≡ (Ψ⊗ IA)(|Φ+〉 〈Φ+|TAAA′), (3.23)

where TA denotes the partial transpose in the basis used to define |Φ+〉.
The physical interpretation of the isomorphism is as follows: Given the state P̂AB ∈
B(HA)⊗B(HB) (or ÔAB equivalently) and a state ρ̂A ∈ B(HA), if we perform a measure-
ment of the second subsystem of P̂AB and of ρ̂A in the basis spanned by the maximally
entangled states |Φ+〉AA′ (also called “Bell measurement”, explained in Sec. 5.2.3) then
the resulting state is Ψ(ρ̂A). Equivalently, the right hand side of Eq. (3.21) can be un-
derstood as the teleportation2 of the input state living in system A′ to A conditioned
on the outcome of the Bell measurement. As a consequence, given the state P̂AB the
map Ψ can always be implemented if Bell measurements are available. However, the
implementation may be probabilistic as it depends on the outcome of the measurement.

2The quantum teleportation protocol is not treated here for discrete quantum systems but explained
for continuous variables in Sec. 5.2.3.
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3.2.1. Memoryless channels

Suppose a given quantum channel Ψ is used n times. Note that n subsequent uses of
a channel may be equivalently regarded as n parallel channels acting once on an n-
partite system. An important question that arises: are the different uses of the channel
affecting each other? If each channel use is independent from the others then we speak
of a memoryless channel . A memoryless channel Ψ(n) acting on an n-partite (possibly

entangled) input state ρ̂
(n)
A is defined as

Ψ(n)[ρ̂
(n)
A ] = TrE

[
ÛAnEn · ÛAn−1En−1 · · · ÛA1E1 (ρ̂

(n)
A ⊗ ρ̂

(n)
E ) Û †A1E1

· Û †A2E2
· · · Û †AnEn

]
,

(3.24)
where the unitary operations ÛAiEi are all identical and the ancillary environment state
is given by a product state

ρ̂
(n)
E = ρ̂E1 ⊗ ρ̂E2 ⊗ · · · ⊗ ρ̂En . (3.25)

Therefore, one may write

Ψ(n)[ρ̂
(n)
A ] = Ψ⊗n[ρ̂

(n)
A ], (3.26)

i.e. the channel is equivalent to the tensor product of n identical channels.

3.2.2. Memory channels

In full generality, we need to take correlations between the different uses of a channel
into account. A quantum channel Ψ(n) acting on an n-partite state is called a memory
channel if it cannot be decomposed as in Eq. (3.26), i.e. if

Ψ(n)[ρ̂
(n)
A ] 6= Ψ⊗n[ρ̂

(n)
A ]. (3.27)

There are different models for memory channels [KW05, Man06]. A simple way to
introduce a memoryM to the channel is to replace the previously separable environment

state ρ̂
(n)
E by an entangled one, i.e.

ρ̂
(n)
E 6= ρ̂E1 ⊗ ρ̂E2 ⊗ · · · ⊗ ρ̂En . (3.28)

The corresponding Stinespring dilation reads as in Eq. (3.24), where the different unitary
operations ÛAiEi still act identically, but due to the correlations in the environment the
channel is no longer factorizable. Such a model is depicted in Fig. 3.3 (a).

A more general memory model considers the memory M to be given by an initial
memory state ρ̂M . This state may affect each input state ρ̂Ai and environment state
ρ̂Ei as it is passed on from channel use to channel use and thus creates correlation

between the different channels. The total environment state ρ̂
(n)
E for this memory model

is separable and each unitary acts now on the input, the environment and the memory
state. The dilation for this model reads

Ψ(n)[ρ̂
(n)
A ]

= TrE

[
ÛAnMEn · ÛAn−1MEn−1 · · · ÛA1ME1 (ρ̂

(n)
A ⊗ ρ̂

(n)
E ⊗ ρ̂M ) Û †A1ME1

· · · Û †AnMEn

]
.

(3.29)
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Figure 3.3.: Different models for a quantum memory channel: (a) The environment is
entangled and therefore generates a memory M between the channel uses.
(b) The memory is modeled by a memory state ρ̂M which is passed from
each channel use to the next one.

We depict the latter in Fig. 3.3 (b). The memory channels that we consider in this
work follow the model depicted in Fig. 3.3 (a), i.e. a channel that acts identically on
each individual state but exhibits correlations over subsequent uses due to global noise
correlations (which can be classical or quantum).

Now we explain how to use quantum channels for the transmission of information.
Unlike in classical information theory, for quantum channels one has to differentiate
between classical information and quantum information (which may be measured in
qubits, as introduced before). Therefore, there exists the classical capacity and the
quantum capacity of quantum channels, which both are upper bounds on the classical
and quantum information transmission rate of the channel. In this work we focus only
on the classical capacity, but also give the formal definition to the quantum capacity
(see Sec. (3.5) below).

3.3. Holevo bound

The structure of a communication system containing a quantum channel (see Fig. 3.1)
is equivalent to the one containing a classical channel (see Fig. 2.2). Before stating the
classical capacity of a quantum channel we first derive a bound on the mutual information
between Alice and Bob.

Suppose Alice encodes a given message with index X = 0, 1, ..., n in a quantum state
ρ̂X with probabilities p0, ..., pn. Then Bob performs a positive operator-valued measure-
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ment (POVM), i.e. he applies an operator Êy belonging to the set {Ê0, ..., Êm} with

Êy = Ê†y ≥ 0,
∑

y

Êy = I, (3.30)

on Alice’s state and obtains the measurement outcome Y . The conditional probability
then reads

p(Y |X) = Tr[ÊY ρ̂X ]. (3.31)

The upper bound for the mutual information between Alice and Bob is called Holevo
bound [Hol73]

I(X;Y ) ≤ χ(pX , ρ̂X) ≡ S(ρ̂)−
∑

x

px S(ρ̂x), (3.32)

where χ(pX , ρ̂X) is called the Holevo χ-quantity and S(ρ̂) is the von Neumann entropy
and ρ̂ =

∑
x px ρ̂x the averaged state of Alice. Here S(ρ̂) is the entropy of the averaged

state and
∑

x px S(ρ̂x) corresponds to the averaged entropy.

3.4. Classical capacity

In the following section we formalize the classical capacity of quantum channels. We
shall see that the quantum nature of the input signals (which allows for entanglement
over subsequent uses of the channel) leads to a more complicated expression for the
capacity than in the case of Shannon information theory.

Let us suppose that Alice sends a quantum state ρ̂X that lives in a finite dimensional
Hilbert space and is drawn with probability pX through a noisy quantum channel. Bob
receives the output state Ψ[ρ̂X ] = ρ̂Y and due to the noise in the channel a priori X 6= Y .
The Holevo bound for the mutual information between Alice and Bob then is given by

χ(pX ,Ψ[ρ̂X ]) = S(Ψ[ˆ̄ρin])−
∑

x

px S(Ψ[ρ̂x]), (3.33)

where we underline here that ˆ̄ρin is Alice’s averaged input state. In order for the encoding
ensemble of Alice to be physical we need to impose an input energy constraint (just like
in the case of classical Gaussian channels, see Sec. 2.3). The input ensemble {pX , ρ̂X}
has to fulfill the energy constraint

∑

x

px Tr
[
ρ̂xâ
†â
]

= Tr
[

ˆ̄ρinâ
†â
]
≤ N̄ , (3.34)

where â†â is the number operator and thus, N̄ corresponds to the maximal mean photon
number. Then, the one-shot capacity or Holevo χ-capacity of a quantum channel Ψ is
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3.4. Classical capacity

given by3 [HJS+96, SW97, Hol98c]

Cχ(Ψ, N̄) = max
{pX ,ρ̂X}

χ(pX ,Ψ[ρ̂X ])

= max
{pX ,ρ̂X}

{
S(Ψ[ˆ̄ρin])−

∑

x

px S(Ψ[ρ̂x])

}
.

(3.35)

Alice can transmit classical information reliably to Bob at any rate below the one-shot
capacity Cχ but is required to use multiple available copies of the channel Ψ one at a
time (hence, “one-shot” capacity), coding her message into product states. Therefore,
Cχ is sometimes referred to as the product state capacity. However, in full generality
the notion has to be extended to the case when Alice is allowed to use entangled input
states. For this reason, the classical capacity is given by

C(Ψ, N̄) = lim
n→∞

1

n
Cχ(Ψ⊗n, N̄), (3.36)

where the maximization in Cχ is taken over all (possibly entangled) ensembles satisfying
Eq. (3.34). In Eq. (3.36) Ψ⊗n can be regarded either as n copies of the same channel
(equivalent to a channel system Ψ⊗n) or n uses of the channel Ψ. Note, that we use
Eq. (3.36) in the following as the definition of the classical capacity of channels Ψ(n)

which can be expressed as a tensor product of n different channels.
An important inequality for the classical capacity is the pipelining property

C(Ψ1 ◦Ψ2) ≤ min(C(Ψ1), C(Ψ2)), (3.37)

where N̄ photons are given to both Ψ1 and Ψ2. This inequality essentially states that
the capacity of the concatenation of two channels can never be larger than the capacity
of one of the individual channels, as inevitably additional noise will be introduced.

Until recently the additivity of the one-shot capacity Cχ was conjectured, i.e.

Cχ(Ψ1 ⊗Ψ2, N̄)
?
= Cχ(Ψ1, N̄) + Cχ(Ψ2, N̄), ∀Ψ1,Ψ2. (3.38)

In [Has09] an example of two channels Ψ1 and Ψ2 was found for which

Cχ(Ψ1 ⊗Ψ2) > Cχ(Ψ1) + Cχ(Ψ2), (3.39)

where due to the discrete system size the energy constraint was not needed to be con-
sidered4. In [FKM09] an expanded version of the proof stated in [Has09] is presented
and in [BaH10, ASW10] alternative, simpler proofs are derived. Equation (3.39) states

3We remark here that in some works the one-shot capacity is given by the supremum instead of the
maximum of the χ-quantity. We use throughout this thesis “max” in all subsequent definitions such
as the Gaussian classical capacity (defined in the following).

4The energy constraint stated in Eq. (3.34) is only required when the input states live in an infinite
dimensional Hilbert space. It guarantees that Alice cannot use symbol states that are infinitely
distant from each other. In the case of qubit channels in contrary the input energy per symbol is
fixed, given by e.g. one quanta per symbol if photons are used as information carriers.
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3. Quantum Information Theory

the possible super additivity of the one-shot capacity and implies that in general, one
has to carry out the limit in Eq. (3.36) in order to obtain the classical capacity.

Note that often one is concerned with a more restricted problem of additivity. Namely,
whether the one-shot capacity of several copies of the same channel is additive, i.e.

Cχ(Ψ⊗n, nN̄)
?
= nCχ(Ψ, N̄). (3.40)

Clearly, if the latter is fulfilled then Cχ(Ψ, N̄) = C(Ψ, N̄) follows. Whenever we use in
the following the term “the one-shot capacity of a quantum channel is additive” we state
that Eq. (3.40) holds.

We remark that there exists also a more general problem concerning the additivity of
the classical capacity, i.e.

C(Ψ1 ⊗Ψ2)
?
> C(Ψ1) + C(Ψ2). (3.41)

Due to the limit that needs to be taken in Eq. (3.36) the possible superadditivity of
the one-shot capacity Cχ does not necessarily imply the superadditivity of the classical
capacity C (see Refs. [Smi10, HG12] for details).

There are channels for which the additivity of the one-shot capacity was proven, i.e.
Cχ = C (see, e.g. [Kin02, Sho02, GGL+04a, DM09]). One important example are unital
qubit channels, i.e. channels for which HA = HB = C2 and Ψ[I] = I [Kin02]. The
completely depolarizing channel is for instance in the class of unital qubit channels. It
acts as

Ψλ[ρ̂] = λρ̂+
(1− λ)

2
I2×2, (3.42)

where −1
3 ≤ λ ≤ 1 and ρ̂ ∈ C2.

A second example is the lossy bosonic Gaussian channel with vacuum noise [GGL+04a]
(bosonic Gaussian channels will be introduced in Sec. 5.3). Then, there exists also
the class of entanglement breaking channels for which Cχ = C [Sho02]. Entanglement
breaking channels destroy any entanglement that is present between the input state and
another reference quantum system: for the total input state ρ̂ ∈ B(HA ⊗ HR) (where
HR is the Hilbert space of a reference system), the output state

(Ψ⊗ IR)[ρ̂] ∈ B(HA ⊗HR), (3.43)

is separable, where IR ∈ B(HR) is the identity operator living in the reference system.
Note that the one-shot capacity is also additive for entanglement breaking channels living
in infinite dimensional systems as shown in [HS04].

A lot of studies have been devoted to the study of the classical capacity of quantum
channels with memory [MP02, MPV04, BM04, KW05, BDM05, CCMR05, CCRM06,
GM05, KDC06, KM06, Dae07, DD07, PZM08, DM09, DD09, DM09, LPM09, LMM09,
LGM10, PLM12]. An important question is whether entanglement between subsequent
input states of a quantum channel is required to achieve the capacity.

In the case of a quantum memory channel with discrete alphabet, the first study that
showed that entanglement can enhance the classical capacity of memory channels was
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presented in [BFS97], where two transmissions of a qubit through a Two-Pauli-channel
were considered. Studies on the classical capacity of a (more general) depolarizing chan-
nel [MP02] and a quasiclassical depolarizing channel [MPV04] showed the existence of
a threshold on the degree of memory above which entangled signals improve the trans-
mission rate with respect to product states. Further studies [BM04, BDM05] on a qubit
channel with finite memory derived bounds on the classical and quantum capacities. In
Ref. [KW05], the classical and quantum capacities were discussed in a general frame-
work, where furthermore, forgetful quantum channels, i.e. channels where the memory
decreases with increasing number of channel uses, were considered. The classical capac-
ity of a quantum channel with long-term memory Markovian correlated noise [DD07]
and arbitrary Markovian correlated noise [DD09] was evaluated. The case of general
Pauli channels with memory was studied explicitly [Dae07], where it was shown that the
optimal states are either product states or Bell states separated by a memory threshold.
For higher dimensions, it has been shown that the capacity of qudit channels exhibits
the same threshold phenomenon as Pauli qubit channels [KM06].

For a quantum channel with continuous alphabet, it was first shown for an additive
bosonic channel and a lossy bosonic channel5, respectively, [CCMR05, CCRM06, GM05]
that in the presence of a memory, some degree of entanglement between the input states
is necessary to achieve the capacity, which is in contrast to the behavior reported for
discrete quantum channels. Indeed, the optimal input states correspond to Einstein-
Podolski-Rosen (EPR) states6 [EPR35] with finite squeezing which increases with the
degree of memory, in contrary to either maximally or non-entangled states in the discrete
case. For a lossy bosonic channel with non-Markovian correlated noise it was shown as
well that entanglement increases the transmission rate, when restricted to Gaussian
encodings [PZM08, LPM09, PLM12] (this memory channel will be considered in detail
in Sec. 8.2).

There are also cases of quantum channels with memory where entanglement does not
enhance the transmission rate. In [DM09] a periodic channel with depolarizing channel
branches and a convex combination of depolarizing channels were considered where it
was shown that the classical capacity is achieved without the use of entangled input
states. A bosonic channel with additive Markovian correlated noise was considered in
[LMM09] where it was shown that the optimal input encoding is given by non-entangled
coherent states7.

3.5. Quantum capacity

One may ask the question what is the maximal amount of quantum information that
can be reliably transmitted via a noisy quantum channel? The answer is provided by
the quantum capacity . First, we define the coherent information I(ρ̂,Ψ) that is the

5Bosonic channels will be introduced in detail in Chapter 5.3.
6The “EPR” states will be properly introduced in Sec. 5.1.
7We consider this channel and its solution in detail in Sec. 7.4.6.
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analogous quantity to the mutual information in Shannon Information Theory. It reads

I(ρ̂,Ψ) = S(Ψ[ρ̂])− S(ρ̂,Ψ), (3.44)

where S(ρ̂,Ψ) is the entropy exchange which is defined as

S(ρ̂,Ψ) = S((ΨA ⊗ IR)[ρ̂AR]), (3.45)

where ρ̂AR is the joint entangled input state shared by Alice A and a purifying reference
system R and ΨA acts only on system A. Then, the quantum capacity is given by

CQ = lim
n→∞

1

n
max
ρ̂(n)

I(ρ̂(n),Ψ⊗n), (3.46)

where similar to the definition of the one-shot capacity Cχ here maxρ̂ I(ρ̂,Ψ) is the
one-shot quantum capacity. There are known examples like e.g. depolarizing channels
[SS, DSS98, SS07] for which it was shown that the one-shot quantum capacity is non-
additive, and hence in general the limit in Eq. (3.46) has to be carried out.
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In the following chapter we give a brief introduction to quantum optics. First, we
quantize the electromagnetic field. Then we quickly review several examples of important
quantum states. Finally, we treat all optical transformations that are of relevance for
this thesis. Throughout the entire chapter we use definitions from [WM95], [Bra05b]
and [KL10], unless stated explicitly otherwise.

4.1. Quantization of the electromagnetic field

The electromagnetic field in classical electrodynamics is characterized by the Maxwell
equations, which, in the vacuum and without sources, read1:

∇ ·H = 0, (4.1)

∇×E = −µ0
∂

∂t
H, (4.2)

∇ ·E = 0, (4.3)

∇×H = ε0
∂

∂t
E, (4.4)

where E is the electric field, H the magnetizing field, µ0 and ε0 are the magnetic
constant and vacuum permeability, respectively. The electric and magnetizing field can
be expressed in terms of a vector potential A, i.e.

µ0H = ∇×A, (4.5)

E = − ∂

∂t
A. (4.6)

Without loss of generality2 we choose the Coulomb gauge for the vector potential, i.e.
∇ ·A = 0. Inserting Eqs. (4.5) and (4.6) in the left and right hand sides of Eq. (4.4)
leads to the wave equation

∇2A(r, t) =
1

c2

∂2

∂t2
A(r, t), (4.7)

where we expressed the explicit dependency of A on the space and time coordinates r
and t and where c = 1/

√
µ0ε0 is the speed of light in vacuum. Decomposing A(r, t) into

1Source free means the charge density and the current density are equal to zero.
2The choice of the gauge leaves the Maxwell equations invariant.
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its orthonormal modes and inserting it in Eq. (4.7) and Eq. (4.6) leads to the solution

E(r, t) =

2∑

j=1

∑

k

Ek e
(j)
k

[
αk,je

i(k·r−ωkt) + α∗k,je
−i(k·r−ωkt)

]
,

Ek =

√
~ωk
2ε0

,

(4.8)

where k is the propagation vector, e
(j)
k is the polarization vector (with two possible

polarizations j = 1, 2), ωk is the angular frequency, αk, α
∗
k are the complex amplitudes

of the mode k and ~ is the reduced Planck constant.
We now quantize the electromagnetic field by replacing the complex amplitudes by

the annihilation and creation operators3

αk,j , α
∗
k,j → âk,j , â

†
k,j . (4.9)

Photons are bosons which obey the commutation relations:

[âk,j , â
†
k′,j′ ] = δkk′δjj′ ,

[âk,j , âk′,j′ ] = [â†k,j , â
†
k′,j′ ] = 0.

(4.10)

The Hamiltonian of the free electromagnetic field reads4

Ĥ =
∑

k

~ωk
(
N̂k +

1

2

)
, (4.11)

where
N̂k = â†kâk. (4.12)

Hence, the energy of the quantized electromagnetic field is given by the sum of the
number of photons in each mode, where each term contains an additional ~ωk/2 taking
into account the zero-point energy.

4.2. Quadrature operators

The Hamiltonian (4.11) can be expressed in terms of two operators Q̂k, P̂k, that is

Ĥk =
1

2
(P̂ 2

k + ω2
kQ̂

2
k), (4.13)

where

Q̂k =

√
~

2ωk

(
âk + â†k

)
,

P̂k = −i
√

~ωk
2

(
âk − â†k

)
.

(4.14)

3We properly introduce the action of these operations in section 4.3.1.
4For simplicity we drop the sum over the possible polarizations.
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4.2. Quadrature operators

The operators Q̂k and P̂k are called quadrature operators and are the observables cor-
responding to the electric and magnetic amplitude of the electromagnetic field. For a
single-mode with angular frequency ω the quantized field [classically defined by Eq. (4.8)]
can now be written as

E(r, t) =
1

2ε0
e
[
Q̂ cos(k · r − ωt) + P̂ sin(k · r − ωt)

]
. (4.15)

The operators Q̂k, P̂k fulfill the same commutation relations as the position and moment
operators of a particle, i.e. [

Q̂k, P̂k′
]

= i~δkk′ . (4.16)

The commutation relation (4.16) implies the famous Heisenberg uncertainty principle:

∆Q̂k∆P̂k ≥
~
2
, (4.17)

where ∆Â denotes the uncertainty of the measurement outcome of observable Â which
corresponds here simply to the standard deviation of the quadrature operators. For
simplicity we work in the following with rescaled operators, i.e.

q̂k ≡
√
ωkQ̂k =

√
~
2

(
âk + â†k

)
,

p̂k ≡
1√
ωk
P̂k = −i

√
~
2

(
âk − â†k

)
.

(4.18)

The single-mode quadrature operators q̂, p̂ (for simplicity we omit the mode index k)
satisfy the eigenvalue equations

q̂ |q〉 = q |q〉 , p̂ |p〉 = p |p〉 , (4.19)

where |q〉 and |p〉 are the position and momentum eigenstates, respectively, and q and
p are the corresponding (real) eigenvalues. The eigenvectors are orthogonal and form a
complete basis, i.e.

〈q|q′〉 = δ(q − q′), 〈p|p′〉 = δ(p− p′), (4.20)

and complete
∞∫

−∞

dq |q〉 〈q| = I,
∞∫

−∞

dp |p〉 〈p| = I. (4.21)

The two eigenstates are mutually related to each other by the Fourier transformation:

|q〉 =
1√
π

∞∫

−∞

dp eiqp |p〉, |p〉 =
1√
π

∞∫

−∞

dq e−iqp |q〉 (4.22)

Quadrature operators are useful for the calculation of the wave function ψ for a given
quantum state.

ψ(q) = 〈q|ψ〉 ,
ψ(p) = 〈p|ψ〉 . (4.23)
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4.3. Quantum states of the electromagnetic field

In the following we present several important examples of quantum states of the elec-
tromagnetic field.

4.3.1. Fock states

Let us return to the Hamiltonian given in Eq. (4.11). Its eigenbasis is given by the
so-called Fock space, spanned by eigenvectors |nk〉, where nk = 0, 1, ...∞. This means

the number operator N̂k = â†kâk satisfies the eigenvalue equation

N̂k |nk〉 = nk |nk〉 , (4.24)

where one refers to |nk〉 as a “Fock state” or “number state” with photon number nk
associated to the mode k. The operators âk and â†k act as “ladder-operators” when
applied to number states, i.e.

âk |nk〉 =
√
nk |nk − 1〉 ,

â†k |nk〉 =
√
nk + 1 |nk + 1〉 .

(4.25)

Note that the annihilation operator always decreases the photon number by one and
after subsequent application eventually reaches the ground state or vacuum state |0〉,
that is

âk |0〉 = 0 |0〉 = 0. (4.26)

The Fock states form an orthonormal and complete basis, i.e.

〈nk|mk〉 = δmn,
∞∑

n=0

|nk〉 〈nk| = 1.
(4.27)

The expansion of a general pure quantum state |ψ〉 in terms of the Fock basis reads

|ψ〉 =

N∑

n=0

cn |n〉 , (4.28)

where cn are complex coefficients that satisfy

N∑

k=0

|ck|2 = 1. (4.29)

Note, that N may be infinite. Therefore, depending on the given system a different
representation may be more convenient.
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4.3.2. Coherent states and displacement operator

The Fock state representation is particularly useful when describing quantum states
which occupy number states with low photon numbers. For many applications in quan-
tum optics a more suitable representation is given by the coherent state. These states
belong to the class of minimal uncertainty states which saturate Heisenberg’s uncertainty
principle, i.e.

∆q̂∆p̂ =
1

2
. (4.30)

The quadrature operators of coherent states have in addition equal uncertainties,

∆q̂ = ∆p̂. (4.31)

Due to these properties coherent states are often referred to as “quasi-classical” states.
The coherent state |α〉 is defined as the eigenvector of the annihilation operator,

â |α〉 = α |α〉 , (4.32)

where α is a complex number. Furthermore, a coherent state can be generated by
applying the unitary displacement operator

D̂(α) = eαâ
†−α∗â, (4.33)

where α is a complex number, on the vacuum state:

D̂(α) |0〉 = e−|α|
2/2eαâ

† |0〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉 = |α〉 .

In addition, it has the properties

D̂†(α) = D̂−1(α) = D̂(−α). (4.34)

Applying D̂(α) to â will “displace” it by the complex number α, i.e.

D̂†(α) â D̂(α) = â+ α,

D̂†(α) â† D̂(α) = â+ α∗.
(4.35)

The action of the displacement operator on the quadrature operators reads

D̂†(α) q̂ D̂(α) = q̂ +
√

2~<{α},
D̂†(α) p̂ D̂(α) = p̂+

√
2~={α},

(4.36)

and on the position eigenstate is given by

D̂(α) |q〉 = ei
√

2q={α}/
√
~ |q +

√
2~<{α}〉 . (4.37)

Note that the displacement operator only shifts the expectation values of the quadrature
operators and leaves higher order moments such as the variance invariant. This is an
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important property, because as we will show in Sec. 4.4 this implies that the entropy of
the quantum state is not affected by displacements. The optical implementation of the
displacement operator is discussed in Sec. 4.4.3.

The expansion of a coherent state in terms of Fock states reads

|α〉 = e−|α|
2/2
∑

n

αn√
n!
|n〉 . (4.38)

From expansion (4.38) it follows that the probability of measuring n photons in the state
|α〉 is given by the Poisson distribution, i.e.

P (n) = | 〈n|α〉 |2 = e−〈n〉
〈n〉n
n!

, (4.39)

where 〈n〉 = |α|2 is the mean and variance of the photon number distribution. Finally,
we remark that coherent states are non-orthogonal, that is

| 〈β|α〉 |2 = e
1
2

(|α|2+|β|2−2β∗α), (4.40)

but become orthogonal in the limit |α − β| � 1. Furthermore, coherent states form an
over complete basis, i.e. ∫

d2α |α〉 〈α| = πI, (4.41)

where d2α = d<(α) d=(α).

4.3.3. Squeezed states

Coherent states can be generalized to a larger class of states that still satisfies the minimal
uncertainty condition (4.30), but no longer have equal uncertainties in the quadratures.
This class of states is called squeezed states. They can be generated using the squeezing
operator defined as

S(ε) = exp [
1

2
(ε∗â2 − ε â†2)], (4.42)

where ε = se2iφ, with the squeezing parameter s and the squeezing angle φ. Throughout
this work we do not require a squeezing angle and therefore we fix ε = s. Using definition
(4.42) we can generate an arbitrary squeezed state from “squeezing the vacuum” and
then displacing it, i.e.

|α, s〉 = D(α)S(s) |0〉 . (4.43)

We discuss the optimal implementation of the squeezing operator in Sec. 4.4.4.
The expansion of the squeezed vacuum state in the Fock basis reads

S(s) |0〉 =
1√

cosh s

∞∑

n=0

√
(2n)!

2nn!
tanh sn |2n〉 . (4.44)

We notice that the squeezed state contains only even Fock states. This becomes clear in
Sec. 4.4 where the optical implementation of the squeezing operation is explained. The
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mean number of photons of the squeezed vacuum state can be calculated using Eq. (4.44)
and reads

〈n〉 = sinh2 r. (4.45)

An alternative way to compute the latter is presented in Sec. 5.1 which treats Gaussian
states.

4.4. Optical transformations

In this section we present the mode transformations that are of relevance for this thesis
and can be implemented by optical elements. First, we shall discuss transformations that
are passive (photon number preserving) and stem from linear optics, and then move to an
example of an active (non-photon number preserving) operation that requires non-linear
effects. We discuss the transformations on the level of the annihilation and creation
operators, as well as the quadrature operators, respectively. Therefore, we work in the
Heisenberg picture in which the time dependence is incorporated in the operators and the
state-vectors are time-independent. The Heisenberg equation of motion of an operator
A which has no explicit time dependence reads

dA

dt
=
i

~
[Ĥ, A]. (4.46)

For a given Hamiltonian Ĥ this equation will lead to the transformation of the mode
operators.

4.4.1. Phase shift

Let us start with the most simple single-mode passive transformation given by the Hamil-
tonian of the free field stated in Eq. (4.11) for a single-mode i.e.

Ĥφ = ~ωâ†â. (4.47)

This Hamiltonian corresponds to the transmission of the field mode through free space
without interaction with any medium. We shall see that the free oscillation of the field
for a time duration ∆t will lead to a phase shift. Equation (4.46) leads to the differential
equation

dâ

dt
=
i

~
[Ĥφ, â] = −iωâ. (4.48)

With the initial condition that â = âin at t = 0 the solution to Eq. (4.48) reads

âout = âine
−iφ, (4.49)

where φ = ω∆t for an interaction time ∆t. Equivalently, one obtains â†out = â†ine
iφ.

Solving the equation of motion for the quadrature operators q̂ and p̂ leads to the trans-
formation (

q̂out

p̂out

)
=

(
cosφ sinφ
− sinφ cosφ

)(
q̂in

p̂in

)
. (4.50)
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(a)

âin1

âin2
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T
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Figure 4.1.: Optical transformations: (a) Beamsplitter operation. (b) Implementation
of the displacement operator by mixing an input field mode with operator
âin with a classical coherent state |β〉 with β = α/

√
1− T and |β| � 1. (c)

“Photon splitting” using optical parametric amplification.

We conclude that the phase shift corresponds to a rotation of the quadrature operators
in phase space.

4.4.2. Beamsplitter

A fundamental passive two mode operation is the beamsplitter , which physically cor-
responds for instance to a plate of glass with a thin coating of aluminum. It mixes two
incoming modes with mode operators âin1 and âin2 leading to output operators âout1 and
âout2 [see Fig. 4.1 (a)]. The corresponding interaction Hamiltonian reads

ĤBS = ~ω(e−iβ â†2â1 + eiβ â†1â2), (4.51)

where β is the relative phase of the two modes. The Heisenberg equation of motion
(4.46) leads to the system of differential equations

dâ1

dt
=
i

~
[ĤBS, â1] = −ieiβωâ2,

dâ2

dt
=
i

~
[ĤBS, â2] = −ie−iβωâ1.

(4.52)

The solution to this system of equations reads
(
âout1

âout2

)
=

(
cosφ −ieiβ sinφ

−ie−iβ sinφ cosφ

)(
âin1

âin2

)
, (4.53)

where φ = ω∆t, with interaction duration ∆t. A physical beamsplitter is usually de-
scribed with β = 0 or β = π/2, where we shall choose the latter. The beamsplitter
transmissivity T ∈ [0, 1] is simply given by T = cos2(φ). The four quadrature operators
grouped in the vector R̂in = (q̂in,1, q̂in,2, p̂in,1, p̂in,2)T are transformed by the beamsplitter
as

R̂out =

[( √
T

√
1− T

−
√

1− T
√
T

)⊕( √
T

√
1− T

−
√

1− T
√
T

)]
R̂in, (4.54)

where R̂out = (q̂out,1, q̂out,2, p̂out,1, p̂out,2)T.
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4.4. Optical transformations

4.4.3. Displacement

An important application of the beamsplitter is the implementation of the displacement
operator defined in Eq. (4.33). Mixing the input field mode with operator âin with a
(classical) bright coherent state |β〉, |β| � 1, on a beamsplitter with transmissivity T
yields according to Eq. (4.53) [see Fig. 4.1 (b)]

âout =
√
T âin +

√
1− Tβ. (4.55)

If one now fixes β = α√
1−T for the given transmissivity then Eq. (4.55) simplifies to

âout =
√
T âin + α. (4.56)

We observe that the latter indeed realizes the displacement stated in Eq. (4.35) in the
limit of perfect transmission T → 1. However, in this limit the amplitude of the bright
coherent state diverges to infinity. Therefore, in practical implementations there will
be a tradeoff between the tuning of the transmissivity and the intensity of the classical
state.

4.4.4. One-mode squeezing

The non-photon number preserving operation that is of great relevance in the following
is the one-mode squeezing operation. Its implementation requires a non-linear dielectric
medium, i.e. a medium where the relation between the polarization P and the electric
field E is non-linear. In general, the polarization can be expanded as

P ∝ χ(1)E + χ(2)E2 + χ(3)E3 + ..., (4.57)

where χ(n) is the nth order susceptibility of the medium. A non-linear medium has
terms that are proportional to χ(2) and higher, where we restrict ourselves now to cases
where quadratic terms are dominant and higher orders are negligible. Second order
non-linearities can be used to generate a higher frequency ω3 = ω2 + ω1 when pumping
a non-linear crystal with an intense beam of lower frequency ω2 and idler ω1 (“photon
combining”). Another second order effect is “photon splitting”, i.e. the generation of
two lower frequencies ω1 and ω2 out of one high frequency ω3. The latter is also referred
to as “optical parametric amplification” (OPA) [see Fig. 4.1 (c)]. By choosing ω3 = 2ω
one can generate two photons with frequencies ω out of one photon with frequency 2ω
(by conservation of energy) [see Ref. [ST91] for details]. This realizes the Hamiltonian

ĤSQ = ~ω(e−iβ â2 + eiβ â†2), (4.58)

which leads after solving Eq. (4.46) to

âout = cosh(r)âin − ie−iβ sinh(r)â†in, (4.59)
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where r = 2ω∆t is the squeezing parameter. We fix here without loss of generality the
phase to β = 3π/2 which yields the relations for the quadratures

(
q̂out

p̂out

)
=

(
er 0
0 e−r

)(
q̂in

p̂in

)
. (4.60)

Note that the squeezing parameter r here can be negative which is equivalent to a squeez-
ing parameter |r| and a phase β = π/2. For simplicity and without loss of generality we
assume for the following that r ∈ R and we omit all phases β. Equation (4.60) shows the
physical action of the one-mode squeezing operation. The variance of the p-quadrature
is reduced and due to the Heisenberg uncertainty relation the variance of the q-variance
is increased by the inverse factor. We refer to this reduction of variance as “squeezing
of the quadrature (or quantum state)”.

4.5. Phase-space Representation

As we shall see in the following this work is focused on the information encoding in the
field’s quadratures. For this reason we now introduce a useful formalism to describe those
operators, namely the phase-space representation. This representation is comparable to
the phase-space formalism known from classical mechanics. Whilst in classical mechanics
a single point (q, p) describes the position q and momentum p of the system without
uncertainty, an ensemble of particles with positions qi and momenta pi is described by
a distribution function, as e.g. Liouville’s phase-space distribution. This corresponds to
the properties of a quantum mechanical system, where due to Heisenberg’s uncertainty
principle, a single measurement outcome (q, p) of the quadrature observables Q̂, P̂ does
not give any information of the system’s state. Quantum mechanics is a statistical theory
and therefore requires many measurements of the same state in order to characterize
it. Thus, it needs to be described by a distribution function just like an ensemble of
particles in classical mechanics. In case of the phase-space this distribution is called
Wigner function and can be regarded as a quasi-probability distribution. For a single
mode of the field in the quantum state ρ̂ the Wigner function reads (the definitions in
this section are taken from [Bra05b, KL10])

W (q, p) =
1

2π~

∞∫

−∞

dy eiyp/~ 〈q − y/2| ρ̂ |q + y/2〉 , (4.61)

where q and p denote the coordinates in the phase space. The Wigner function completely
characterizes the state ρ̂ and vice versa. It can take negative values (e.g. for the Fock
state |1〉 〈1|), but is regarded as a quasi-probability distribution because it is properly
normalized, i.e. ∫

dq dpW (q, p) = 1, (4.62)
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and yields the proper marginal distributions

∞∫

−∞

W (q, p)dq = 〈p| ρ̂ |p〉 ,
∞∫

−∞

W (q, p)dp = 〈q| ρ̂ |q〉 . (4.63)

The Wigner function Wd(q, p) of a displaced state D̂(α)ρ̂D̂†(α) is found using Eqs. (4.34)
and (4.37):

Wd(q, p) =
1

2π~

∞∫

−∞

dy eiyp/~ 〈q − y/2| D̂(α)ρ̂D̂†(α) |q + y/2〉 ,

= W (q −
√

2~<(α), p−
√

2~=(α)).

(4.64)

This means that the displacement operator D̂(α) leads to a translation (with opposite
sign) of −

√
2~α of the Wigner function in phase space.

We consider in the following a canonical quantum system that consists of n bosonic
field modes. Each mode with quadrature operators q̂i and p̂i lives in an infinite dimen-
sional Hilbert space Hi spanned by Fock states {|ni〉}. The total Hilbert space of the
n-mode system is therefore given by

H =
n⊗

i=1

Hi. (4.65)

We group the 2n quadrature operators together in one vector

R̂(qq) = (q̂1, q̂2, ..., q̂n, p̂1, p̂2, ..., p̂n)T. (4.66)

Note that this ordering of operators is not unique and sometimes it may be more con-
venient to choose the alternative grouping

R̂(qp) = (q̂1, p̂1, q̂2, p̂2, ..., q̂n, p̂n)T. (4.67)

With the definition of the symplectic (or commutation) matrix

Ω =

(
On×n In×n
−In×n On×n

)
, (4.68)

the commutation relation given in Eq. (4.16) can for the dimensionless operators {q̂i, p̂j}
now be expressed as

[R̂
(qq)
k , R̂

(qq)
k+n] = iΩk,k+n. (4.69)

For the alternative grouping R̂(qp) the commutation matrix reads

Ω(qp) =

n⊕

i=1

(
0 1
−1 0

)
, (4.70)
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and the commutation relations can be expressed as

[R̂
(qp)
k , R̂

(qp)
j ] = iΩ

(qp)
k,j . (4.71)

Throughout this thesis we use the convention R̂ = R̂(qq) unless stated otherwise. Fur-
thermore, we fix from now on

~ = 1, (4.72)

in order to simplify notations.
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5.1. Gaussian states

The set of states that is of central interest in this work are the Gaussian states. They
are highly relevant to experimentalists, since they model very well the state that exits
a laser (= coherent state) and e.g. a the state of coherent light after having travelled
through atmospheric fluctuations (= thermal state). Gaussian states, though having a
density operator that lives in an infinite dimensional Hilbert space, have a very simple
description in the phase space. Namely, the Wigner function of an n-mode Gaussian state
ρ̂G(d,V ) is given by the multi-variate Gaussian distribution (definitions and examples
of this section can be found in [Bra05b, WPGP+12])

W (R) =
1

(2π)n
√

detV
exp

{
−1

2
(R− d)TV −1(R− d)

}
, (5.1)

where R ∈ R2n are the real coordinates in the phase space, d are the 2n first moments
and V is the 2n× 2n covariance matrix (CM) defined as

d = 〈R̂〉 = Tr[ρ̂R̂],

Vkj =
1

2
〈{(R̂k − dk), (R̂j − dj)}〉 =

1

2
Tr[ρ̂{(R̂k − dk), (R̂j − dj)}].

(5.2)

In Eq. (5.2) the brackets {A,B} denote the anti-commutator {A,B} = AB+BA. The
Heisenberg uncertainty principle imposes a constraint on the CM of the Gaussian states,
namely it has to fulfill

V +
i

2
Ω ≥ 0, (5.3)

in order to correspond to a physical state. In the following we list a set of particular
Gaussian states.

Vacuum state

The simplest quantum state is the vacuum state |0〉. It is (also) a Gaussian state and
has in the case of an n-mode state the covariance matrix

V =
1

2

(
I 0
0 I

)
. (5.4)

The vacuum is the fundamental resource to generate any Gaussian state. We plot its
Wigner function in Fig. 5.1 (a) and its variances schematically in Fig. 5.2 (a).
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Figure 5.1.: Wigner functions of Gaussian states: (a) Vacuum state. (b) Coherent state
(i.e. displaced vacuum state) with α = 1 + i1, centered at (

√
2,
√

2). (c)
Squeezed state with s = 1, centered at (0, 0). (d) Thermal state with Menv =
5, centered at (0, 0).
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(a)

q

p
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Figure 5.2.: Schematic plot of Wigner functions in phase space. The circles and ellipses
represent the covariances of the corresponding Wigner functions: (a) one-
mode vacuum state with equal variances ∆q̂ = ∆p̂ = 1/2 centered at (0, 0),
coherent state |−α〉 obtained by applying the displacement operator D̂(−α)
to the vacuum and the same coherent state after phase rotation of −2θ. (b)
Thermal state with equal variances Menv +1/2 and squeezed state satisfying
∆p̂ = 1/(4∆q̂).

Coherent state

We introduced the coherent state already in Sec. 4.3.2. It is obtained by displacing the
vacuum state. Since the displacement operator only changes the first moment of the
state the covariance matrix remains invariant, so it is again given by Eq. (5.4). An
example of the Wigner function of a coherent state is depicted in Fig. 5.1 (b) and we
plot the variances schematically in Fig. 5.2 (a).

Squeezed state

The squeezed state introduced in Sec. 4.3.3 is also a Gaussian state. It is obtained by
squeezing (and optionally displacing) the vacuum. In the case of one-mode its covariance
matrix is given by

V =
1

2

(
e2s 0
0 e−2s

)
, (5.5)

where s is the squeezing parameter. We depict the Wigner function of a squeezed state
in Fig. 5.1 (c) and its variances schematically in Fig. 5.2 (b).

Thermal state

A one-mode thermal state (sometimes referred to as “gauge-invariant” [HSH99, HW01])
ρ̂th is the output of a one-mode thermal Gaussian channel when injecting vacuum (or a
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5. Gaussian states and operations

coherent state). Those channels will be introduced and intensively discussed in Sec. 5.3.
The expansion of a thermal state in the Fock basis reads [Hol98a]

ρ̂th
Menv

=
1

Menv + 1

∞∑

n=0

(
Menv

Menv + 1

)n
|n〉 〈n| . (5.6)

We state from [Hol98a] that the thermal state has the maximal von Neumann entropy
among all density operators ρ̂ satisfying

Tr[ρ̂â†â] ≤Menv, Menv ≥ 0. (5.7)

Since â†â is the number operator Menv is the maximal mean number of photons of the
state. The CM of ρ̂th

Menv
is simply given by

Vth =

(
Menv + 1

2 0
0 Menv + 1

2

)
. (5.8)

An example of the Wigner function of a thermal state is shown in Fig. 5.1 (d) and its
variances are depicted schematically in Fig. 5.2 (b).

Thermal photon number and mean photon number

For the following it will be useful to distinguish two different quantities of an n-mode
Gaussian state with CM V and mean d = 0. The first quantity is the mean photon
number N̄ which can be directly calculated by the trace of the CM, i.e.

N̄ =
1

2n
Tr[V ]− 1

2
, (5.9)

where we do not count the number of photons of the vacuum. Interestingly, the deter-
minant of the CM yields another useful quantity, namely the number of thermal photons
given by

Menv =
2n
√

detV − 1

2
. (5.10)

The thermal photons of a Gaussian state may be regarded as a measure of purity, since
for a pure state Menv = 0. In the case of the thermal state we have N̄ = Menv, i.e. all
photons account for its temperature. Consider the example of a squeezed thermal state
with CM

V =

(
Menv +

1

2

)(
e2s 0
0 e−2s

)
, s ∈ R. (5.11)

The number of thermal photons Menv remains invariant under the squeezing, however
the mean photon number becomes now a function of the squeezing:

N̄ =

(
Menv +

1

2

)
cosh(2s)− 1

2
. (5.12)
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Two-mode squeezed vacuum

An important two-mode Gaussian state that is widely used in continuous variable quan-
tum information (see Ref. [WPGP+12] for examples) due to its entanglement properties
is the two-mode squeezed vacuum (TMSV). It can be generated by applying a two-mode
squeezer (TMS) to the vacuum state, which will be introduced in Sec. 5.2.2. The covari-
ance matrix of the two-mode squeezed vacuum state reads

VTMSV =
1

2




cosh (2s) sinh (2s) 0 0
sinh (2s) cosh (2s) 0 0

0 0 cosh (2s) − sinh (2s)
0 0 − sinh (2s) cosh (2s)


 . (5.13)

In the limit of infinite squeezing, i.e. s → ∞ this state becomes an EPR state, which
was first discussed in 1935 by Einstein, Podolski and Rosen [EPR35]. In this limit the q-
quadratures become perfectly correlated and the p-quadratures perfectly anti-correlated,
i.e.

lim
s→∞

∆(q̂1 − q̂2) = lim
s→∞

∆(p̂1 + p̂2) = 0. (5.14)

This limit however, is unphysical, since the corresponding state would carry an infinite
number of photons.

5.2. Gaussian operations

Gaussian operations are those quantum operations that map Gaussian states to Gaussian
states. They are highly relevant to experimentalists since they are easily accessible in
the laboratory. This is one of the main motivations for the use of Gaussian states in
quantum information science. Gaussian states are fully characterized by their first and
second moments and therefore, Gaussian operations are fully defined by their action on
both moments.

5.2.1. Gaussian unitary operations

A particular set of Gaussian operations are those that are reversible, i.e. Gaussian
unitary operations ÛG [Bra05b, WPGP+12]. The action ÛGρ̂

G(din,Vin)Û †G corresponds
to a symplectic transformation M ∈ Sp(2n,R) acting on the first and second moment
din,Vin and reads

dout = Mdin,

Vout = MVinM
T,

(5.15)

which furthermore satisfies the relation

MΩMT = Ω, (5.16)
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in order to preserve the canonical commutation relations. All symplectic transforma-
tions satisfy detM = 1 but only passive ones (i.e. photon-number preserving) fulfill in
addition MMT = I.

An important property of symplectic transformations is Williamson’s theorem [SCS99].
It states that for a Gaussian state with CM V there exists a symplectic transformation
M which realizes a symplectic diagonalization, i.e.

MV MT = diag(ν1, ν2, ..., νn; ν1, ν2, ..., νn), (5.17)

such that the Gaussian state with CM MV MT is a tensor product of thermal states
with CM Vthi = diag(νi, νi). The values νi are called symplectic eigenvalues and are the
doubly degenerate eigenvalues of the matrix |iΩV |, where |A| stands for

√
A†A.

Heisenberg’s uncertainty relation (5.3) implies

νi ≥
1

2
, ∀i = 1, ..., n. (5.18)

Note that since detM = 1, the symplectic eigenvalues are invariant under symplectic
transformations M , i.e.

detV = det (MV MT) =
n∏

i=1

ν2
i . (5.19)

As we show in Appendix B the entropy of an n-mode Gaussian state is given by

S(ρ̂G(d,V )) = S(V ) =

n∑

i=1

g

(
νi −

1

2

)
, (5.20)

where

g(x) =

{
(x+ 1) log2 (x+ 1)− x log2 (x), x > 0,
0, x = 0.

(5.21)

We remark that for a thermal state ρ̂th
Menv

the entropy is given by S(ρ̂th) = g(Menv).
Now we present particular Gaussian unitary operations that are essential to many

physical setups. Three important one-mode operations were in fact already presented in
Sec. 4.4: the phase shift, displacement and one-mode squeezing operations all preserve
the “Gaussianity” of a quantum state and we present them now in terms of their action
on the mean and covariance matrix.

Rotation in phase space

The phase shift introduced in Sec. 4.4.1 corresponds to a rotation in the phase space.
The symplectic transformation was already derived in Eq. (4.50), i.e. 1

O(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (5.22)

Note that in the following we use often the notation Θ = O(θ). The action of the phase
shift in the phase space is depicted in Fig. 5.2 (a).

1We use here the usual convention for the rotation matrix, which corresponds to changing the rotation
angle in Eq. (4.50) by θ → −θ.
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Beamsplitter

The beamsplitter transformation was introduced in Sec. 4.4.2 and its symplectic trans-
formation stated in Eq. (4.54), i.e.

MBS =




√
T

√
1− T 0 0

−
√

1− T
√
T 0 0

0 0
√
T

√
1− T

0 0 −
√

1− T
√
T


 . (5.23)

If one compares the latter with Eq. (5.22) and T = arccos(θ) one confirms that it
corresponds to a rotation matrix applied to two modes (leaving the q − p correlations
invariant). Since it preserves the photon number of the input state it is a passive trans-
formation and therefore satisfies MBSM

T
BS = I.

Displacement

We already described in Sec. 4.3.2 the action of the displacement operator D̂(α). Namely,
it “displaces the vacuum” by the complex number α and generates a coherent state. As
stated in Eq. (4.36) (here ~ = 1) this shifts the quadratures by

√
2α as shown in Fig. 5.2

(a).

One-mode squeezer

The symplectic transformation of the one-mode squeezing operation was already stated
in Eq. (4.60), i.e.

S(s) =

(
es 0
0 e−s

)
. (5.24)

Note that in the following, we sometimes omit the explicit dependence on s, namely, we
use the notation S = S(s) and consequently S−1 = S(−s). The action of the one-mode
squeezer is schematically shown in Fig. 5.2 (b). The one-mode squeezing operation is
essential in many optical schemes because it can be used to generate the previously
introduced two-mode squeezed state.

5.2.2. General symplectic transformation

In [Bra05a] it was shown, that for an arbitrary symplectic transformation M acting
on n-modes there exists a Bloch-Messiah decomposition. This decomposition consists of
a general n-mode interferometer Θ1 (a rotation acting on n modes, also called “multi-
port”)2, a set of n individual one-mode squeezers Si = diag(esi , e−si) followed by another
n-mode interferometer Θ2 [see Fig. 5.3]. The equation therefore reads

M = Θ1 S Θ2,

S = diag(es1 , es2 , ..., esn ; e−s1 , ..., e−sn).
(5.25)

2Note that we use for the n-mode rotation for simplicity the same notation as for the one-mode phase
rotation.
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M
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⇥
1
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=

Bloch-Messiah Decomposition

Figure 5.3.: Bloch-Messiah decomposition: Any symplectic transformation M can be de-
composed into an n-mode interferometer Θ1, a set of n one-mode squeezers
{Si} and another n-mode interferometer Θ2.

S�1
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Mode 1

Mode 2
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Mode 1
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Idler

Two-Mode Squeezer

Figure 5.4.: Scheme of a two-mode squeezer (TMS) given by the Bloch-Messiah decom-
position. The bold horizontal lines represent 50 : 50 beamsplitters and S
and S−1 stand for a one-mode squeezer and a one-mode anti-squeezer with
same squeezing parameter s. Note that the exits of the first beamsplitter
are swapped.

Interferometers are passive transformations and therefore MT
Θ1MΘ1 = MT

Θ2MΘ2 = I.
We introduce in the following two important two-mode operations that are useful for
many optical setups.

Two-mode squeezer

The two-mode squeezer (TMS) generates the two-mode squeezed vacuum state when fed
with a two-mode vacuum state. It consists of a one-mode squeezer and a one-mode anti-
squeezer (both with same squeezing value) and two 50 : 50 beamsplitters. The scheme is
depicted in Fig 5.4, where we introduced the notion of the “signal” output for the first
exit and the “idler” output for the second one. The TMS can be decomposed into three
parts as follows: The first part corresponds to a transposed 50 : 50 beamsplitter, i.e. the
exits are swapped. The second part consists of two individual single-mode squeezers,
one with s and one with −s. Finally, the third part is a 50 : 50 beamsplitter. Using the
transformation matrices for the beamsplitter (with T = 1/2) stated in Eq. (5.23) and
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Control Mode

Target Mode

dC

dT

CV QND / CV-CNOT

Figure 5.5.: Schematic scheme of the CV-QND gate. In a particular case of perfect
interaction this becomes the CV-CNOT gate.

for the joint operation of the two one-mode squeezer stated in Eq. (5.25) (where s1 = s
and s2 = −s) we can compute the symplectic matrix of the TMS:

MTMS =MT
BS

(
S ⊕ S−1

)
MBS

=




1√
2
− 1√

2
0 0

1√
2

1√
2

0 0

0 0 1√
2
− 1√

2

0 0 1√
2

1√
2







es 0 0 0
0 e−s 0 0
0 0 e−s 0
0 0 0 es







1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1√
2

1√
2

0 0 − 1√
2

1√
2




=




cosh (s) sinh (s) 0 0
sinh (s) cosh (s) 0 0

0 0 cosh (s) − sinh (s)
0 0 − sinh (s) cosh (s)


 .

(5.26)

Using the latter one can easily confirm that MTMS
I
2M

T
TMS yields the covariance ma-

trix of the two-mode squeezed state given by Eq. (5.13), hence the name “two-mode
squeezer”. It will be useful for the following to use the parameter G = cosh2(s). Then
the transformation becomes

MTMS =




√
G

√
G− 1 0 0√

G− 1
√
G 0 0

0 0
√
G −

√
G− 1

0 0 −
√
G− 1

√
G


 . (5.27)

The parameter G physically corresponds to a gain, since the TMS can be used to imple-
ment an amplification channel with gain G (see Sec. 5.3).

CV-CNOT gate

Another important two-mode operation is the continuous variable quantum non-demolition
gate [Bra98] (CV-QND). It can be implemented via the interaction between polarized
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TMS

Creation of a thermal state

Figure 5.6.: Creation of a thermal state: Two vacuum modes are sent through a two-
mode squeezer and one mode is “traced out”. The remaining state is a
thermal state.

light and the total spin of an atomic cloud [FCP04]. In Fig. 5.5 the schematic rep-
resentation of this gate is sketched. We group the first moments of the control mode
dC = (dCq,dCp)

T and of the target mode dT = (dT q,dT p)
T in the vector

din = (dCq,dT q,dCp,dT p)
T. (5.28)

Then, the action of the symplectic matrix of the CV-QND MND reads

dout = MNDdin =




1 κ 0 0
0 1 0 0
0 0 1 0
0 0 −κ 1







dCq
dT q
dCp
dT p


 =




dCq + κdT q
dT q
dCp

dT p − κdCp


 , (5.29)

where κ ≥ 0 is an interaction parameter. In the particular case κ = 1 the transfor-
mation MND becomes the continuous-variable analogue to the controlled-NOT gate3

(CV-CNOT) which will be very useful in this thesis.

5.2.3. Partial trace

Let us consider an arbitrary two-mode Gaussian state ρ̂G
AB with CM

VAB =




vqA vqAqB vqApA vqApB

vqAqB vqB vqBpA vqBpB

vqApA vqBpA vpA vpApB

vqApB vqBpB vpApB vpB


 . (5.30)

Applying the partial trace on the mode B (also called “tracing out” mode B) yields the
reduced Gaussian state ρ̂G

A, i.e.
ρ̂G
A = TrB[ρ̂G

AB], (5.31)

with 2× 2 covariance matrix

VA =

(
vqA vqApA

vqApA vpA

)
. (5.32)

3The controlled-NOT gate, implemented by unitary UCNOT, acts on a two qubit state as follows:
UCNOT |c〉 |t〉 = |c〉 |t⊕ c〉, where c, t ∈ {0, 1}.
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5.2. Gaussian operations

This rule can be straightforwardly generalized to Gaussian states of n-modes. However,
for an n-mode state it is more convenient to choose the ordering R̂ = R̂(qp) defined in
Eq. (4.67). Then, the CM of an n-mode bipartite state simply reads

V
(qp)
AB =

(
V

(qp)
A C

CT V
(qp)
B

)
, (5.33)

where V
(qp)
A corresponds to the CM of system A, V

(qp)
B to the CM of system B and the

matrix C contains the correlations between A and B. Tracing out system B corresponds
simply to the reduction

(
V

(qp)
A C

CT V
(qp)
B

)
partial trace−→

overB
V

(qp)
A , (5.34)

such that the remaining state has the CM V
(qp)
A .

Note that the partial trace is not a unitary operation because one loses the information
of the traced out system, and therefore it is not reversible. An example for the partial
trace is depicted in Fig. 5.6. Two vacuum modes are sent through a TMS with gain G.
Tracing out the second mode leads to a thermal state at the output. This is clear, since
the output of the TMS is the two-mode squeezed state with CM stated in Eq. (5.13).
Applying the above transformation leads to the reduced thermal state with CM

Vth =
1

2

(
G 0
0 G

)
. (5.35)

We observe that an infinitely entangled two-mode squeezed state would lead (after trac-
ing out one mode) to a thermal state with an infinite number of thermal photons (or
infinite temperature).

Partial measurement

Suppose we are given an (n + 1)-mode state and we would like to measure the n + 1st
mode. With the ordering R̂ = R̂(qp) the CM can be written as

V
(qp)
AB =

(
V

(qp)
A C

CT V
(qp)
B

)
, (5.36)

where V
(qp)
A is a 2n× 2n CM, V

(qp)
B a 2× 2 CM and C is of dimension 2n× 2. After the

measurement of mode B the state will be reduced to an n-mode state whose covariance
matrix depends on the type of measurement. We discuss in the following two standard
measurement tools of quantum optics.
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Homodyne detection
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Heterodyne detection
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H
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Figure 5.7.: (a) Homodyne detection: The input mode with quadrature q̂in is mixed on
a 50 : 50 beamsplitter with a local oscillator with (classical) quadrature
qLO. The phase φ between the two incoming beams must be controlled
(e.g. by using a piezoelectric crystal). The two outgoing beams enter two
photodetectors that measure photocurrents I1 and I2. Subtraction of the
photocurrents enables the estimation of q̂in, i.e. leads to a measurement
outcome qm. In order to measure the conjugate quadrature p̂in the phase φ
has to be shifted by π/2. (b) Heterodyne detection: The input mode is mixed
on a 50 : 50 beamsplitter with a vacuum mode. The quadratures of the
outgoing beam are then measured simultaneously by homodyne detections
leading to outcomes qm and pm.
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Homodyne detection

The quadratures of the electromagnetic field can be measured with the so-called homo-
dyne detection4 [CLP07]. First, one mixes the Gaussian input state with quadratures
(q̂in, p̂in) on a 50 : 50 beamsplitter with a classical coherent beam with quadrature qLO

(also called “local oscillator”). The fact that this beam is classical (with ∼ 109 photons)
allows us to choose without loss of generality pLO = 0. The quadratures of two outgoing
modes read (see Fig. 5.7)

q̂out1 = (q̂in + qLO)/
√

2,

p̂out1 = p̂in/
√

2,

q̂out2 = (q̂in − qLO)/
√

2,

p̂out2 = p̂in/
√

2.

(5.37)

The photocurrents I1 and I2 of the two output beams are then measured by two identical
high efficiency linear photodetectors. The difference of the photocurrents yields

I1 − I2 = c qLO qm, (5.38)

where c is a constant. The intensity c q2
LO of the local oscillator can be measured without

disturbing it, since it is classical. Then Eq. (5.38) leads to the measurement outcome
of the quadrature q̂in denoted by qm. The outcome of the conjugate quadrature p̂in

is obtained in the same way but by introducing a phase shift φ = π/2 to the local
oscillator, such that it has classical quadratures (0, pLO). The homodyne detection can
be considered as a standard tool in continuous variable quantum information and has
been implemented successfully with detection efficiencies of 90% [GVW+03, LDTBG05,
ZVB04].

Now let us discuss how the covariance matrix of the general (n+1)-mode Gaussian in-
put state is transformed under a homodyne measurement. We choose again the ordering
R̂ = R̂(qp) such that the CM reads as in Eq. (5.36), i.e.

V
(qp)
AB =

(
V

(qp)
A C

CT V
(qp)
B

)
. (5.39)

The homodyne measurement of mode B leads to the reduction [EP03]

V
(qp)
AB → V

(qp)
A −C(X̃V

(qp)
B X̃)MPCT, (5.40)

where X̃ = diag(1, 0) and MP indicates the Moore-Penrose pseudo-inverse since the
resulting matrix is no longer invertible5. Equation (5.40) is a limiting case of the general
form stated in Eq. (C.3). Namely, it corresponds to the case when the CM Vin in
Eq. (C.3) becomes infinitely squeezed.

4We consider here only the ideal homodyne detection with perfect efficiency.
5For the case M = diag(a, 0) the pseudo-inverse reads MMP = diag(1/a, 0).
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Figure 5.8.: Quantum teleportation: Alice receives an unknown state ρ̂A and one half of
an EPR pair (if s→∞). After two homodyne detections (corresponding to a
Bell measurement) she sends the result to Bob. He applies two displacement
operators (depending on the measurement outcome of Alice) on his half of
the EPR pair, and thus teleporting Alice’s state. In the case of perfect
teleportation indeed ρ̂A = ρ̂B holds. In general however, Bob’s state will
contain additional noise due to finite squeezing and imperfect homodyne
detection.

Heterodyne detection

A heterodyne detection simply consists of two homodyne detections preceded by a bal-
anced beamsplitter. The input mode is mixed with a vacuum mode and then both
quadratures are measured simultaneously. Due to Heisenberg’s uncertainty relation this
leads to added noise to the quadratures outcomes. A heterodyne measurement of an
(n+1)-mode Gaussian state corresponds to the projection on the vacuum state. Namely,

performing a homodyne measurement of mode B of the CM V
(qp)
AB stated in Eq. (5.36)

reads on the level of CM as

V
(qp)
AB → V

(qp)
A −C

(
V

(qp)
B +

1

2
I2n×2n

)−1

CT. (5.41)

This follows directly from the general form of Gaussian operations (see Appendix C).

Quantum teleportation

The idea of teleporting the quantum state of a particle to the quantum state of another
particle was theoretically proposed in [BBC+93] (see also the explanation in [NC00]).
The scheme describes how the state of a spin-1

2 particle, described by a qubit |φ〉 =
α |0〉+β |1〉, is teleported from Alice to Bob, where here {|0〉 , |1〉} span a two dimensional
Hilbert space. Each party shares one half of a maximally entangled Bell state, given by
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e.g.

|Ψ−〉 =
1√
2

(|0〉 |0〉 − |1〉 |1〉). (5.42)

Then Alice performs a joint measurement on her half of the Bell state and on the
state |φ〉. She sends the (classical) outcome to Bob who then has to perform a unitary
operation (depending on Alice’s outcome) on his half of the Bell state. This completes
the teleportation of the state |φ〉 from Alice to Bob. The protocol was first realized
experimentally in [BPM+97].

Shortly after, the equivalent continuous variable protocol [Vai94] was realized experi-
mentally as well [FSB+98]. We depict the CV protocol in Fig. 5.8 (the following is taken
from [KL10], we list here only the operations on the q-quadratures): First two vacuum
modes are sent to two single-mode squeezers with squeezing parameters s and −s. This
leads to quadratures

q̂1 = esq̂
(v)
1 ,

q̂2 = e−sq̂(v)
2 ,

(5.43)

where q̂
(v)
1,2 denote the q-quadratures of the vacuum modes. Then both modes are mixed

on a balanced beamsplitter which leads to a two-mode squeezed vacuum state (TMSV)
with quadratures

q̂′1 =
1√
2

(e−sq̂(v)
2 − esq̂(v)

1 ),

q̂′2 =
1√
2

(e−sq̂(v)
2 + esq̂

(v)
1 ).

(5.44)

Alice receives a quantum state ρ̂A with quadrature q̂A and one half of the TMSV (see
Sec. 5.1). She applies the CV equivalent of a Bell measurement, i.e. a balanced beam-
splitter followed by two homodyne detections, leading to the quadrature outcome (pm
can be obtained similarly)

qm =
1√
2
qA +

1

2
(e−sq(v)

2 − esq(v)
1 ). (5.45)

The outcomes qm and pm are sent to Bob who applies two displacement operators (de-
pending on the outcomes) on his half of the TMSV, which then lead to state ρ̂B with
quadrature

q̂B = q̂A +
√

2e−sq̂(v)
2 . (5.46)

In the case of an (unphysical) EPR pair as resource, i.e. s → ∞ (and ideal homodyne
detection) the resulting state at Bob’s side becomes ρ̂B = ρ̂A.
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5. Gaussian states and operations

5.3. Gaussian channels

The class of unitary Gaussian operations contains those operations that are reversible.
However, there are also Gaussian operations that are irreversible. A subset of irre-
versible transformations, namely, the trace-preserving ones, are given by Gaussian quan-
tum channels6. Gaussian channels model very well most optical communication links,
such as optical fibers or free space information transmission [CD94, EW05, WHTH07,
WPGP+12]. Therefore, they are of great relevance to experimentalists, in particular for
the realization of quantum communication setups. Recall that in this work the quadra-
tures are rescaled such that the electromagnetic field modes have unit frequency which
implies that we do not have any operating bandwidth for the channel. Several channels
with an operating bandwidth such as the wideband and narrowband channel have been
studied in [CD94].

Note that throughout this thesis we focus on bosonic Gaussian channels, i.e. bosons
such as photons are used for information transmission. There is also the notion of
fermionic Gaussian channels where fermions (which obey the Pauli principle) are used
as information carriers, see, e.g. [Bra05c]. We do not discuss fermionic Gaussian channels
here, however, their mathematical description is strongly related to the one of bosonic
channels.

A Gaussian channel Φ is a completely-positive trace-preserving map which is closed on
the set of Gaussian states [HW01]. It transforms Gaussian input states ρ̂G

in = ρ̂G(din,Vin)
with input moments {din,Vin} to Gaussian output states

Φ
[
ρ̂G(din,Vin)

]
= ρ̂G(dout,Vout), (5.47)

with output moments {dout,Vout} according to

dout = Xdin + denv, Vout = XVinX
T + Y , (5.48)

where denv is the displacement introduced by the channel, X is a 2n × 2n real matrix,
and Y is a 2n × 2n real, symmetric, and positive semidefinite matrix. For simplicity,
we choose denv = 0 in the following discussion, because only first moments are affected
by denv. As we shall see in sections 5.6 and 5.7 the first moments do not play a role in
the calculation of transmission rates and capacities of Gaussian channels. Therefore, we
focus on the action of the map Φ on second-order moments using the simplified notation
Φ(Vin) = Vout. Then, the map Φ is fully characterized by matrices X and Y , which
must satisfy the relation [HW01]

Y +
i

2

(
Ω−XΩXT

)
≥ 0, (5.49)

in order for the map to correspond to a quantum channel.
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Figure 5.9.: Physical schemes of thermal Gaussian channels. (a) Thermal lossy channel:
The input state is mixed with a thermal state ρ̂th

Menv
on a beamsplitter with

transmissivity T . (b) Thermal amplification channel: the amplitude of the
input state is amplified by a factor G and thermal noise is added. (c)
Classical additive noise channel: The amplitude of the input state is not
changed and classical noise is added. (d) The phase of the input state is
conjugated, i.e. p→ −p.

63



5. Gaussian states and operations

5.3.1. One-mode Gaussian channels

In this subsection we focus on single-mode channels (n = 1). We first discuss the most
common, i.e. most physical one-mode Gaussian channels which are the thermal channels.
Those channels map thermal input states to thermal output states, which are sometimes
referred to as “gauge-invariant” channels [HSH99, HW01]. Afterwards, we move on to
the general one-mode case. The definitions throughout this subsection are taken from
[Hol07, CGH06], and we partly use the nomenclature of [Hol07].

Thermal lossy channel

The thermal lossy (or attenuation) channel CT with transmissivity T is probably the
most common Gaussian channel. It models very well transmission via an optical fibre
and free space, because it incorporates the attenuation of the amplitude of the input
signal as well as the addition of thermal noise. Its action is defined by

XCT =

(√
T 0

0
√
T

)
, YCT = (1− T )

(
Menv + 1

2 0
0 Menv + 1

2

)
, (5.50)

where 0 ≤ T ≤ 1 is the channel’s transmissivity and Menv ≥ 0 is the number of thermal
photons added by the channel. The channel can be implemented by mixing the input
state with a thermal state ρ̂th

Menv
on a beamsplitter with transmissivity T , see Fig. 5.9

(a). Notice that by applying the thermal lossy channel on a thermal state ρ̂th
Min

with a
number of thermal photons Min yields another thermal state with CM

Vout = XCT

(
Min +

1

2

)
IXTCT + YCT =

(
Mout + 1

2 0
0 Mout + 1

2

)
, (5.51)

where Mout = TMin + (1− T )Menv is the number of thermal photons at the output.

Thermal amplification channel

The thermal amplification channel (also simply called “amplifier”) CG deterministically
amplifies the amplitude of the input state by a factor G ≥ 1. Due to Heisenberg’s
uncertainty principle this amplification must induce noise. The action of the thermal
amplifier reads

XCG =

(√
G 0

0
√
G

)
, YCG =

(
G−1

2 0

0 G−1
2

)
. (5.52)

The channel is realized by a TMS where the input mode is sent to the upper entry and an
ancillary vacuum mode is sent to the lower entry. Then, the signal output corresponds
to the output of the channel, see Fig. 5.9 (b).

6We refer to them in the following simply as “Gaussian channels”. Their classical counterparts will be
referred to as “classical Gaussian channels”.
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Thermal classical additive noise channel

Another important one-mode Gaussian channel is the thermal classical additive noise
channel B2. It can be used to describe the transmission through thermal fluctuations
when losses are negligible. For conventional satellite communication the classical ana-
logue, i.e. the classical Gaussian channel with white Gaussian noise (see Sec. 2.3.1) is
often used as a model [CT05]. Since the added noise is classical it does not need to obey
Heisenberg’s uncertainty relation. Furthermore, the amplitude of the input signal is not
changed, so the action of the channel reads

XB2 = I, YB2 =

(
Menv 0

0 Menv

)
, (5.53)

where Menv ≥ 0 here corresponds to the variance of the classical bivariate Gaussian
distribution associated to the added noise. A physical scheme of this channel is depicted
in Fig. 5.9 (c): By combining a lossy channel (with vacuum as second input) with
transmissivity T and a thermal amplification channel with gain G = 1/T one realizes
the transformation stated in Eq. (5.53). The parameter Menv as a function of T and G
reads simply Menv = G− 1.

Thermal phase-conjugating channel

The setup of the thermal amplification channel, depicted in Fig. 5.9 (b), can in fact
realize another Gaussian channel. Namely, if one takes the idler output instead of the
signal output one realizes the thermal phase-conjugating channel D [see Fig. 5.9 (d)]. Its
action is given by

XD =

(√
G− 1 0

0 −
√
G− 1

)
=
√
G− 1σz, YD =

(
G
2 0

0 G
2

)
, (5.54)

where G ≥ 1 is the gain of the TMS in Fig. 5.9 (d) and σz = diag(1,−1) is one of the
Pauli matrices.

Canonical decomposition

In [Hol07] a canonical decomposition of the general one-mode Gaussian channel was
presented. It states that any single-mode Gaussian channel Φ can be decomposed as

Φ = U2 ◦ ΦC ◦ U1, (5.55)

where U1 and U2 are Gaussian unitaries, and ΦC is a canonical channel characterized
by the matrices (XC,YC) (further Refs. are [CGH06, ISS11]). Since the action of a
Gaussian unitary ÛG on a Gaussian state can be completely specified by a symplectic
transformation M the canonical decomposition may be written as (we ignore the first
moments here)

(U2 ◦ ΦC ◦ U1)(Vin) = M2 ΦC(M1VinM
T
1 )MT

2 . (5.56)
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(b)
�SQ

(a)
�CS Single-quadrature 

classical noise channel
classical signal channel

Input
Input

OutputTMS
Output

Figure 5.10.: Physical schemes of non-thermal canonical channels: (a) classical signal
channel ΦCS and (b) single-quadrature classical noise channel ΦSQ.

There are seven classes of canonical channels ΦC. Four of them we already discussed
above: they are the thermal channels B2, CT , CG and D. There is in addition the (trivial)
zero-transmission channel A1 which completely erases the input signal. Its action is
given by a thermal lossy channel with T = 0. The other two of the seven canonical
channels are non-thermal channels and will be presented in the following.

Non-thermal canonical channels

The sixth canonical channel is the classical signal (or quadrature erasing) channel, which
we denote by ΦCS. Its action is defined by

XCS =

(
1 0
0 0

)
, YCS =

(
y 0
0 y

)
, y ≥ 1

2
. (5.57)

This channel can be physically implemented with the previously defined CV-CNOT gate
stated in Eq. (5.29) with κ = 1. The corresponding scheme is depicted in Fig. 5.10 (a),
where y = G

2 . We show now that this scheme indeed leads to the desired output. As
mentioned previously in Sec. 5.2.3 the output of the TMS in Fig. 5.10 after tracing out
one of the output modes is a thermal state [see Fig. 5.6]. Therefore, one has to calculate
the output of the CV-CNOT operation where the control mode is the input mode with
CM

Vin =

(
vq vqp

vqp vp

)
, (5.58)

and the target mode is the thermal state coming from the TMS with CM Vth =
diag(G/2, G/2). The joint two-mode input state before the TMS therefore reads

Vin,th =




vq 0 vqp 0

0 G
2 0 0

vqp 0 vp 0

0 0 0 G
2


 . (5.59)
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Using the expression for the symplectic transformation of the TMS, stated in Eq. (5.27),
the two-mode output state of the CV-CNOT gate has the CM

Vout,th =




1 1 0 0
0 1 0 0
0 0 1 0
0 0 −1 1







vq 0 vqp 0

0 G
2 0 0

vqp 0 vp 0

0 0 0 G
2







1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1




=




vq + G
2

G
2 vqp −vqp

G
2

G
2 0 0

vqp 0 vp −vp

−vqp 0 −vp vp + G
2


 .

(5.60)

Tracing out the control mode leads to the CM of the output state of ΦCS:

Vout =

(
y 0
0 vp + y

)
= XCSVinXCS

T + YCS, (5.61)

where y = G
2 . From Eq. (5.61) one confirms the name “classical signal”: ΦCS completely

removes the q-quadrature of the input mode. Thus, one has only one degree of freedom
that can be used for encoding, just like in the case of classical Gaussian channels [CT05].
However, unlike in the classical case the added noise is bounded from below (due to its
“quantumness”), i.e. y ≥ 1/2.

The seventh and last canonical channel is the single-quadrature classical noise channel,
which we name ΦSQ. Its action is described by the matrices

XSQ = I, YSQ =

(
0 0
0 1

2

)
. (5.62)

The physical realization is shown in Fig. 5.10 (b) and is in fact a particular case of the
scheme depicted in Fig. 5.10 (a): Using Eq. (5.60) but for G = 1 (omitting the TMS)
and tracing out the target mode one obtains precisely the desired output CM, namely

Vout =

(
vq + 1

2 vqp

vqp vp

)
= XSQVinXSQ

T + YSQ, (5.63)

where Vin is defined as in Eq. (5.58). The name “single-quadrature classical noise” stems
from the fact that it adds one unit of vacuum to one quadrature and no noise to the
other one (the added noise is classical because det(YSQ) ≥ 0).

An important question is: how does one obtain the canonical decomposition for a given
arbitrary Gaussian channel, defined by X,Y ? The symplectic transformations that are
stated in (5.55) can be further decomposed as M = Θ2SΘ1 (using the Bloch-Messiah
decomposition, see Eq. (5.25)), where Θi are rotation matrices defined in Eq. (5.22)
and S is a one-mode squeezing operation given in Eq. (5.24). Since [Hol07] only states
the existence of M1 and M2, but does not explicitly show how to find them we will
provide in Chapter 6 a method to derive explicitly matrices M1,M2,XC and YC for
given matrices X and Y .
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Figure 5.11.: Gaussian memory channels that are considered in this work: (a) Multi-
mode classical additive noise channel. Classical noise is “added” to the
input mode and may stem from classically correlated noise with CM Venv.
(b) Multi-mode lossy channel, where each beamsplitter has the same trans-
missivity τ . The action corresponds to mixing each input mode with a noise
mode which stems from a possibly entangled n-mode state with CM Venv.

5.3.2. Multi-mode Gaussian channels

Let us now move to the multi-mode case n > 1. In this work we are interested in Gaus-
sian memory channels (recall the definition of quantum memory channels introduced in
Sec. 3.2.2). We recall that a past use of a memory channel may affect future uses, unlike
in the case of memoryless channels. For Gaussian channels one way to model a memory
is to introduce non-diagonal matrices X and/or Y . In this work we consider only cases
when

X2n×2n =
√
|τ |
(
I 0
0 sgn(τ)I

)
. (5.64)

The effective noise matrix Y can then be parametrized as follows:

Y2n×2n =

{
|1− τ |Venv, τ 6= 1,
Venv τ = 1,

(5.65)

where Venv is the covariance matrix of the n-mode Gaussian state of the environment
that is mixed with the n-mode input state (if τ 6= 1) or the covariance matrix of the
classical added Gaussian distributed noise (i.e. its symplectic eigenvalues may be smaller
than 1/2).

In particular, we are interested in the case τ = 1, i.e. the n-mode classical additive
noise channel. We depict the action of this channel schematically in Fig. 5.11 (a). In the
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Figure 5.12.: Generation of a Gaussian matrix-product state: A Gaussian channel Φ[i] is
applied to one half of m EPR pairs on each site i, so that a 2m-mode state
is mapped to a single output mode i.

case of τ ∈ [0, 1] the map corresponds to n beamsplitters with the same transmissivity
τ , see Fig. 5.11 (b). The (effective) noise CM Y of all channels that we study have to
fulfill (at least asymptotically) a particular property: there exists a passive symplectic
transformation ΘY such that

ΘY Y ΘT
Y = diag(yq1, yq2, ...yqn, yp1, ..., ypn), (5.66)

where we denote the first n eigenvalues (which belong to the q-quadratures) by yqi and
the second n eigenvalues (which belong to the p-quadratures) by ypi.

5.4. Generation of Gaussian matrix product states

Recently, matrix-product states (MPS) [KSZ91, FNW92, KSZ93, PGVWC07] were shown
to be a useful resource to sequentially generate (finite dimensional) multi-qubit entan-
gled states in the realm of cavity QED [SSV+05, SHW+07]. We state here the definition
of MPS taken from [PGVWC07]. One is given a pure quantum state |ψ〉 ∈ C⊗dn of a
system containing n parties, e.g. spins. They are aligned on a ring and one assigns two
ancillary systems of dimension D to each spin. The ancillas are in a maximally (unnor-
malized) entangled state |I〉 =

∑D
α=1 |α, α〉 (α should not be confused with a coherent
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amplitude) and referred to as bonds. Then, one applies to each site i the map

A =
d∑

i=1

D∑

α,β=1

Ai,α,β |i〉 〈α, β| , (5.67)

where Ai,α,β are the elements of the D×D matrix Ai. The dimension of |I〉 andAmay be

different for each site, therefore one writes A
[k]
i for the Dk×Dk+1 matrix corresponding

to site k ∈ {1, ..., n}. A state that is obtained by this procedure has the form

|ψ〉 =
d∑

i1,...,in=1

Tr[A
[1]
i1
A

[2]
i2
· · ·A[n]

in
] |i1, i2, ..., in〉 , (5.68)

and is called matrix-product state. It was shown in [Vid03] that every state can be
represented in this way if the bond dimensions Dk are sufficiently large. This brings us to
the definition of the Gaussian matrix-product state (GMPS) introduced in [SWC08]. The
GMPS is the extension of MPS to Gaussian states. The bonds are now Gaussian states
and the operations applied on each site are Gaussian channels Φ[i], such that Gaussian
input states are mapped to Gaussian output states. The bonds for finite dimensional
systems |I〉 were taken to be maximally entangled. The equivalent Gaussian state is the
EPR state introduced in Sec. 5.1. These bonds are unphysical, so a general GMPS may
not be implementable. However, for a subset of GMPS it is possible to replace them
by finitely entangled ones7. The scheme of general GMPS is depicted in Fig. 5.12: At
each site i a Gaussian channel Φ[i] is applied to one-half of m EPR pairs, so that a 2m-
mode state is mapped to a one-mode state. Note, that the output state of a Gaussian
channel applied to an n-mode input state can equivalently be obtained (using the Choi-
Jamiolkowski isomorphism) by projecting a Gaussian state of dimension n + m onto a
maximally entangled state (see Appendix C). In this work, we focus on a particular class
of GMPS, i.e. GMPS with nearest-neighbor correlations. Those states are introduced
and used in Chapter 8.

5.5. Encoding and decoding in phase space

Bosonic Gaussian quantum channels8 are highly relevant for information transmission,
because as mentioned before, they model well natural environments as well as laboratory
equipment such as optical fibers. However, they map input states to an infinite dimen-
sional Hilbert space which makes the treatment of their classical capacity a challenging
task. For this reason one may focus on a restricted set of encodings, such as Gaussian
states and Gaussian modulations. The resulting quantity, the Gaussian classical capac-
ity (or simply “Gaussian capacity”), can be treated analytically and at the same time
provides a useful lower bound and (for a restricted range of parameters) a tight upper

7We shall see that for our purposes finitely entangled bonds perform well enough.
8In the following we will refer to “Bosonic Gaussian quantum channels” simply as “Gaussian channels”.

Their classical counter parts will be referred to as “classical Gaussian channels”.
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p

Figure 5.13.: Encoding and action of a thermal channel in phase space: The informa-
tion may be encoded in a coherent state |α〉 by displacing the vacuum.
The channel adds a displacement denv to the first moment, changes the
amplitude as well as adds a noise CM Y to the input covariances.

bound. For particular Gaussian channels the Gaussian capacity was shown to coincide
with the classical capacity. This is why it is conjectured to coincide with the classical
capacity of all Gaussian channels (this will be discussed in more details in the following).

Let us now focus on the encoding of information in Gaussian states. A simple way
for Alice to encode a message (or message index) α in a Gaussian state is provided by
the displacement operator. For example, she can use the vacuum state |0〉 as a resource
state and displace it by the complex number α, i.e. D(α) |0〉 = |α〉. Thus, her symbol
state is given by the coherent state ρ̂α = |α〉 〈α| and the complex amplitude of the state
corresponds now to the classical information Alice tries to send to Bob via a Gaussian
channel Φ. The state Φ[|α〉 〈α|] that Bob receives has a modified amplitude and a priori
is no longer pure. We recall the action of a Gaussian channel Φ (see Sec. 5.3) on a
Gaussian state ρ̂G(din,Vin):

dout = Xdin + denv, Vout = XVinX
T + Y , (5.69)

where denv is an additional displacement of the channel. For the given example ρ̂G =

|α〉 〈α| we have din = (
√

2R{α},
√

2I{α})T and Vin = I
2 . Therefore, the output state on

Bob’s side has a modified amplitude, is shifted by denv and has increased covariances.
We depict the encoding and action of the noise in phase space for a thermal channel in
Fig. 5.13.

Clearly, if Alice always sends the same displaced state |α〉 〈α| then on average she does
not send any information to Bob. Therefore, she needs to modulate her input state; in
the case of a coherent state by varying its amplitude. One possibility is the encoding with
same absolute amplitude |α| but varied, discretized angles. A corresponding example is
a two-state protocol (=binary modulation) in which the input message is encoded in two
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Two-state protocol

q

p

q

p
Four-state protocol(a) (b)

q

p
Gaussian protocol(c)

Figure 5.14.: Different protocols for encoding in phase-space: (a) two-state proto-
col/binary modulation: Alice encodes her information in either of two co-
herent states that have the same amplitude but are situated in opposite
quadrants. (b) four-state protocol/quaternary modulation: Alice encodes
her information in four coherent states with same amplitude, situated in
all four quadrants. (c) Gaussian protocol: Alice encodes her information
in Gaussian phase-space translates of coherent states; in the given example
the Gaussian distribution is centered around zero.

quadrants of the phase-space [Rei00, HL06], see Fig. 5.14 (a). Alternatively, one may
choose all quadrants of the phase-space [NH03, NH04], i.e. one performs a quaternary
modulation, as shown in Fig. 5.14 (b). This may be generalized to protocols with higher-
dimensions, see e.g. [SL10]. Alternatively, a continuous, Gaussian modulation can be
used for information encoding: in [GVW+03, JKJL11, JKJL+13] coherent states and
in [CLA01, CIV02] squeezed states are modulated according to a Gaussian distribution,
which will also be the type of modulation considered in this thesis, see Fig. 5.14 (c).
Alternatively, one can also encode information in the value of squeezing of an input
squeezed state as proposed in [Ral99, Hil00]. All protocols mentioned in the previous
paragraph are practically highly relevant, because they can be used for the distribution
of keys using quantum key distribution (see Refs. stated above and references therein).
Bob on his side (depending on the encoding protocol) may apply a homodyne detection
to the state that he receives in order to discriminate the input states. Evidently, the
more the input states are separated, the lower Bob’s error rate will be and the higher
the transmission rate becomes. Here, the separation is bounded by the energy that
is available for the modulation of the states and the creation of the states. The total
average input energy that is available to Alice is the input energy constraint that is
imposed at the channel’s input [see Eq. (3.34)]. If the Gaussian channel is non-thermal,
i.e. acts in a non-symmetric way on the input quadratures, it may be favorable to spend
some energy on the squeezing of the input states. In general this leads to a non-trivial
trade-off between the energy spent for state preparation and energy that is left for the

72



5.6. Classical capacity of Gaussian channels

modulation of the states.

5.6. Classical capacity of Gaussian channels

The main problem that this thesis is concerned with is the maximal transmission rate of
Gaussian quantum channels, i.e. their classical capacity. Since Gaussian channels map
arbitrary input states to an infinite dimensional Hilbert space the definition of the one-
shot capacity stated in Eq. (3.35) must be generalized. Essentially, sums are replaced by
integrals, and instead of a maximization over probability distribution pi one maximizes
over a probability measure µ(x). The input encoding is then defined by a set of states
ρ̂x associated to µ(x), where the average input state ˆ̄ρin ∈ EN̄ now reads

ˆ̄ρin =

∫
µ(dx)ρ̂x, (5.70)

where EN̄ is the set of quantum states which have a mean photon number equal to N̄ ,
i.e.

Tr[ˆ̄ρin â
†â] = N̄ . (5.71)

Note that unlike in Eq. (3.34) we now saturate the input energy because we want to
maximize the transmission rate (a lower input energy than allowed by the constraint
would certainly not be optimal). The one-shot capacity of a Gaussian channel Φ then
reads [HSH99]

Cχ(Φ, N̄) = max
µ : ˆ̄ρin∈EN̄

χ(Φ, µ),

χ(Φ, µ) = S(Φ[ˆ̄ρin])−
∫
µ(dx)S(Φ[ρ̂x]).

(5.72)

The classical capacity, previously stated in Eq. (3.36) now generalizes to [HSH99]

C(Φ, N̄) = lim
n→∞

1

n
Cχ(Φ⊗n, nN̄). (5.73)

The problem of determining the classical capacity of Gaussian channels (as defined in
Sec. 5.3) proved to be very challenging, since up to today only the solution of the lossy
channel with vacuum noise is known for all input energies N̄ [GGL+04a]. This channel
is a restricted case of the thermal lossy channel CT (see Sec. 6.1), i.e. the case when the
noise becomes pure: Menv = 0. Its action is given by

X = τI, Y =
(1− τ)

2
I, (5.74)

and for simplicity we denote the corresponding map by CT,0. Now we briefly review the
solution to its classical capacity that was obtained in [GGL+04a]. The basic idea is to
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upper bound the classical capacity by the difference of the maximum of the first term
and the minimum of the second term, i.e.

C
(
CT,0, N̄

)
≤ lim

n→∞
1

n
max

µ : ˆ̄ρin∈EN̄
S
(
C⊗nT,0[ ˆ̄ρin]

)

− lim
n→∞

1

n
min
µ

∫
µ(dx)S

(
C⊗nT,0[ρ̂x]

)
.

(5.75)

Clearly this bound may be unphysical since one may violate the energy constraint by
the independent optimizations. Let us first calculate the first term in Eq. (5.75). It
is known that the von Neumann entropy of a state ρ̂ with mean photon number N̄ is
maximized by a thermal state ρ̂th

N̄
(see Sec. 5.1). If we choose the averaged input state to

be a thermal state, ˆ̄ρin = ρ̂th
N̄

its CM reads Vin = (N̄ + 1/2)I and according to Eq. (5.74)

the averaged output state is a thermal state as well, i.e. ˆ̄ρout = ρ̂th
N̄out

with CM

V̄out =

(
τN̄ + 1

2 0
0 τN̄ + 1

2

)
, (5.76)

with mean number of photons

N̄out =
1

2
Tr[V̄out]−

1

2
. (5.77)

This state can be generated by choosing as individual symbol states coherent states

ρ̂x = |x〉 〈x| (5.78)

and as a measure a bivariate Gaussian density function, i.e.

µ(x) =
1

πN̄
e−
|x|2
N̄ , (5.79)

where here x is a complex number. Then, the averaged input state is obtained by a
“Gaussian mixture” of displaced vacuum states, i.e.

ˆ̄ρin =
1

πN̄

∫
dx e−

|x|2
N̄ D̂(x) |0〉 〈0| D̂†(x) =

1

πN̄

∫
dx e−

|x|2
N̄ |x〉 〈x| . (5.80)

Thus, we obtain for the first term

lim
n→∞

1

n
max

µ : ˆ̄ρin∈EN̄
S
(
C⊗nT,0[ ˆ̄ρin]

)
= S

(
CT,0[ρ̂th(N̄)]

)
= S(ρ̂th(τN̄)) = g(τN̄), (5.81)

where g(x) is defined in Eq. (5.21). Let us now calculate the second term in Eq. (5.75)
for the Gaussian measure that we defined in Eq. (5.79). Since we use always the same
“seed” state, i.e. the vacuum |0〉 〈0| [which is then displaced according to µ(x)] the
output entropy of each symbol state is identical. The vacuum state is not changed when
mixed on a beamsplitter with vacuum, as stated in Eq. (5.74), and thus, each output
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state has second moments Vout = I
2 . By definition, the entropy of a pure state is equal

to zero, so we find

lim
n→∞

1

n
min
µ

∫
µ(dx)S

(
C⊗nT,0[ρ̂x]

)
= 0. (5.82)

Thus, the encoding defined in Eqs. (5.78) and (5.79) achieves at the same time the
maximum of the first term and the minimum of the second term of Eq. (5.75). This
means we saturate the upper bound by a physical encoding and thus found the classical
capacity, i.e.

C
(
CT,0, N̄

)
= g(τN̄). (5.83)

Equation (5.83) leads to the derivation of the classical capacity of the homogeneous
broadband channel ΦB [EW05]

C(ΦB, P ) = t

√
T

ln 2

√
πP

3
+O(1/t), (5.84)

where P is the average input power, t is the transmission time related to the frequency
spacing δω = 2π/t. In the lossless case T = 1 the capacity was previously derived in
[YO93, CD94].

For n parallel lossy channels (with vacuum noise)

C(n)
{Tk},0 = CT1,0 ⊗ CT2,0 ⊗ · · · ⊗ CTn,0, (5.85)

with different transmissivities Tk the additivity of Cχ follows straightforwardly: the
one-shot capacity of each individual channel can be upper bounded as above and the
total averaged output state is again optimal when chosen to be thermal. It follows that
[GGL+04a]

C
(
C(n)
{Tk},0, N̄

)
= max

N̄k

∑

k

g(TkN̄k), (5.86)

where the maximization over the optimal input energy distribution satisfying
∑

k N̄k =
N̄ must be carried out for the given transmissivities Tk.

The result stated in Eq. (5.83) was extended in [LPM09] to the case of a pure squeezed
environment, where the capacity was calculated exactly above an input energy threshold.
This will be discussed in detail in Sec. 6.4.1.

5.6.1. Minimum output entropy conjecture

In general, the upper bound (5.75) is not saturated by the encoding presented above for
the lossy channel with vacuum noise. In the case of the thermal lossy channel CT thermal
noise is added and then the second term in Eq. (5.75) no longer vanishes. However, due
to the symmetry of the noise one may conjecture that vacuum (as input state) also
minimizes the output entropy of CT . The so-called minimum output entropy conjecture
[GGL+04b, LGM+09] states that

min
ρ̂x

S(ΦC[ρ̂x]) = S(ΦC[|0〉 〈0|]), ΦC 6= {ΦCS,ΦSQ}, (5.87)
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where here ΦC is any of the four canonical thermal channels (we ignore the trivial
zero-transmission channel A1 which is included as a limiting case of the thermal lossy
channel). The right hand side of Eq. (5.87) is obtained as follows.

Note that originally the conjecture in [GGL+04b] was only stated for the thermal
classical additive noise channel and thermal lossy channel, but we extended it here
to all four thermal channels. In fact, if the conjecture is proven for any of the thermal
channels it immediately implies that it holds for the remaining ones. This follows directly
from the physical schemes of the thermal channels, shown in Fig. 5.9. An alternative
Stinespring dilation for the thermal lossy channel is a beamsplitter followed by a TMS,
both with vacua at the second entries (see details in Sec. 6.1). Then, if the state |0〉 〈0|
minimizes the output entropy of the thermal lossy channel then it also minimizes the
output entropy of the two-mode squeezer which is part of its Stinespring dilation because
the initial beamsplitter leaves |0〉 〈0| invariant. In addition, the output entropy of both
exits of the TMS is equal. As a conclusion, the vacuum minimizes the output entropy
of the other three thermal channels (see Fig. 5.9).

If the minimum output entropy conjecture was proven to be true, then the encoding
stated in Eqs. (5.78) and (5.79) would (trivially) be optimal and achieve the classical
capacity of thermal channels.

We remark that the minimum output entropy conjecture was stated as well for one-
mode fermionic Gaussian channels in [Bra05c], where the Gaussian capacity of one-mode
fermionic attenuation channels was studied in detail.

5.7. Gaussian classical capacity

Since the classical capacity of Gaussian channels is in general difficult to treat one may
restrict the input encoding, namely to Gaussian input states and Gaussian modulations.
As already mentioned previously, Gaussian states are of great interest to experimentalists
since they can be easily generated in the laboratory and furthermore easily manipulated
and measured (using homodyne and heterodyne detection). Another motivation to re-
strict to Gaussian encodings is the minimum output entropy conjecture discussed above.

We call the capacity restricted to Gaussian encodings the Gaussian classical capacity
(in the following simply “Gaussian capacity”) CG and define it as

CG(Φ, N̄) = lim
n→∞

1

n
CG
χ (Φ⊗n, nN̄),

CG
χ (Φ, N̄) = max

µG : ˆ̄ρG∈EG
N̄

χ(Φ, µG),
(5.88)

where CG
χ (Φ, N̄) is the one-shot Gaussian capacity. The maximum is taken now over all

measures µG for which

ˆ̄ρG(d̄in, V̄in) =

∫
µG(dd, dV )ρ̂G(d,V ) (5.89)

is in the set EG
N̄

of Gaussian states with a mean photon number not greater than N̄ .
Note that in Eq. (5.89) the mean d and CM V are the variables of integration, hence,
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µG depends on the differentials dd and dV , respectively. In a previous work [Hir06] the
Gaussian capacity was defined as the classical capacity with the restriction that only
the individual symbol states are Gaussian. Our definition requires both, the averaged
and the individual state to be Gaussian. For the case of an n-mode Gaussian channel Φ
the definition stated in Eq. (5.88) can be greatly simplified to the well known expression
[EW05]:

CG
χ (Φ, N̄) = max

Vin,Vmod

{
χG({νouti, ν̄outi})

∣∣∣ Tr[Vin + Vmod] ≤ 2nN̄ + n
}
.

χG({νouti, ν̄outi}) ≡
n∑

i=1

[
g

(
ν̄outi −

1

2

)
− g

(
νouti −

1

2

)]
.

(5.90)

Here, Vin is the CM of a pure Gaussian input state ρ̂G(0,Vin) fulfilling det (2Vin) = 1,
which may be regarded as a resource or seed state, and Vmod is the CM of a classical
Gaussian distribution used to displace this seed state. The displacement of the state
Vin generates the modulated input state ˆ̄ρG(0, V̄in) whose CM is V̄in = Vin + Vmod

with Tr[V̄in] ≤ 2nN̄ + n. Furthermore, νouti and ν̄outi in Eq. (5.90) are the symplectic
eigenvalues of the output and modulated output states with CM Vout = Φ(Vin) and
V̄out = Φ(V̄in), respectively. Note that in [EW05] the Gaussian capacity was directly
defined as in Eq. (5.90).

We prove in the following that Eq. (5.90) follows from our definition stated in Eq. (5.88).

Proof. Equation (5.90) states that among all possible Gaussian sources characterized
by a measure µG(dd, dV ) over the set of Gaussian states ρ̂G(d,V ) of mean d and CM
V , the source optimizing the Gaussian capacity corresponds to a single pure Gaussian
state ρ̂G(0,Vin) with covariance Vin fulfilling det (2Vin) = 1, modulated according to a
Gaussian bivariate distribution with CM Vmod. To achieve our goal we use the fact that
the maximization inside the Gaussian capacity definition

CG
χ (Φ, N̄) = max

µG : ˆ̄ρG∈EG
N̄

[
S(Φ[ˆ̄ρG])−

∫
µG(dd, dV )S(Φ[ρ̂G(d,V )])

]
, (5.91)

can be divided into two different steps. In the first step, among all the sources µG(dd, dV )
belonging to the set FGˆ̄ρG sharing the same average input state

ˆ̄ρG ≡ ρ̂G(0, V̄in) =

∫
µG(dd, dV )ρ̂G(d,V ), (5.92)

we maximize the modified Holevo quantity

χ̃(Φ, N̄ , ˆ̄ρG) = S(Φ[ˆ̄ρG])− min
µG∈FG

ˆ̄ρG

∫
µG(dd, dV )S(Φ[ρ̂G(d,V )]). (5.93)

Note that the choice of zero mean for the average input state ˆ̄ρG is natural because
displacements do not change the entropy, however require energy. In the second and
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final step we optimize χ̃(Φ, N̄ , ˆ̄ρG) over the average input state ˆ̄ρG satisfying the energy
constraint N̄ , thus obtaining CGχ (Φ, N̄). We use the fact that the minimum of the
average output entropy appearing in equation (5.93) can be rewritten as the Gaussian
entanglement of formation EG[σ̄BE] (see [WGK+04]), i.e.

min
µG∈FG

ˆ̄ρG

∫
µG(dd, dV )S(Φ[ρ̂G(d,V )]) = EG[σ̄BE] (5.94)

of a given bipartite mixed state σ̄BE = UΦ ˆ̄ρG
B ⊗ |0〉 〈0|E U

†
Φ with CM V̄BE obtained by

the unitary (Stinespring) dilation UΦ of channel Φ, such that Φ[ˆ̄ρG] = TrE [σ̄BE]. Indeed,
the Gaussian entanglement of formation is defined as

EG[σ̄BE] = EG[UΦ ˆ̄ρG⊗|0〉 〈0|U †Φ] = min
µG∈FG

ˆ̄ρG

[∫
µG(dd, dV )E[UΦρ̂

G(d,V )⊗ |0〉 〈0|U †Φ]

]
.

(5.95)

Here, E[UΦρ̂
G(d,V )⊗|0〉 〈0|U †Φ] is the entanglement of a bipartite Gaussian state σBE =

UΦρ̂
G(d,V ) ⊗ |0〉 〈0|U †Φ with CM VBE. The entanglement E of a bipartite state is

quantified by the von Neumann entropy of any of its two reduced density operators.
Equation (5.94) not only simplifies the capacity definition to

CG
χ (Φ, N̄) = max

ˆ̄ρG∈EG
N̄

[
S(Φ[ˆ̄ρG])− EG[σ̄BE]

]
, (5.96)

but also leads to the proof of Eq. (5.90). According to [WGK+04]

EG[σ̄BE] = min
VBE

{E[σBE] |VBE ≤ V̄BE}, (5.97)

where the minimum is taken over a single pure bipartite Gaussian state with CM VBE.
This implies the existence of a covariance matrix Vin such that the output entropy of
pure Gaussian states ρ̂G(d,Vin) achieves the minimum in Eq. (5.94) for any d. Due to
Eq. (5.97) and the fact that the symplectic transformation which corresponds to UΦ does
not change the positivity V̄BE−VBE ≥ 0 it follows that V̄in−Vin ≥ 0. Then modulating
ρ̂G(d,Vin) according to a Gaussian distribution with covariance matrix Vmod = V̄in−Vin,
generates a source with average input state ˆ̄ρG with CM V̄in saturating the bound of
Eq. (5.93). We recall from Eq. (5.20) that the entropy of an n-mode Gaussian state
ρ̂G(d,V ) can be calculated in terms of the n symplectic eigenvalues νi of V , namely

S(ρ̂G(d,V )) =

n∑

i=1

g

(
νi −

1

2

)
, (5.98)

In conclusion, the one-shot Gaussian capacity of a general n-mode Gaussian channel
simplifies to Eq. (5.90).

Let us clarify the physical meaning of Eq. (5.90) in the case of a one-mode channel. We
discussed already in the beginning of this chapter the action of the Gaussian channel on
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Figure 5.15.: Thermal Gaussian channel acting on a modulated Gaussian input state:
(a) In this example the vacuum state is the resource Gaussian input state
with CM Vin. It is displaced by an uncorrelated Gaussian distribution,
leading to the (thermal) Gaussian modulated input state with CM V̄in.
(b) The thermal channel displaces the input state and furthermore adds
noise to both quadrature variances, leading to the Gaussian modulated
output state with CM V̄out. An example for a single Gaussian output state
(with CM Vout) was previously depicted in Fig. 5.13.

a coherent input state. Namely, its amplitude is changed, the state is displaced as well as
noise is added to the variances. We proved above that the Gaussian capacity is achieved
by a single Gaussian input state that is displaced by a Gaussian modulation. This shows
that it is favorable to apply a continuous modulation opposed to a discrete modulation
that we discussed previously in Sec. 5.5. We draw in Fig. 5.15. the “complete picture”
of the action of Gaussian channels on Gaussian displaced input states in phase space: we
depict the action of a thermal channel on the modulated Gaussian state that consists of
the vacuum state displaced by an uncorrelated Gaussian distribution centered at (0, 0).
With all definitions at hand we can now begin to study in detail the classical capacity
and the Gaussian capacity of bosonic Gaussian channels.
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6. One-mode Gaussian channel

In this chapter we study in detail the classical capacity and Gaussian capacity of the
most general one-mode Gaussian channel. Before treating capacities we first reduce the
number of parameters by introducing a new equivalence relation between the general
channel and a newly defined fiducial channel, which depends only on three parameters.
Then, we study the fiducial channel in detail.

6.1. General thermal channel

We start by grouping the four thermal channels CL, CA,B2 and D that we discussed in
Sec. 5.3.1 to a single one. From Fig. 5.9 (a)-(d) we conclude that we only require a
beamsplitter and a TMS to generate any of the four thermal channels. We call this new
Gaussian channel ΦTH general thermal channel or simply “thermal channel”, extending
[GPNBL+12]. The scheme of ΦTH is depicted in Fig. 6.1 (a). Before defining the action
of ΦTH we introduce two new parameters that will be very useful when dealing with
one-mode Gaussian channels. For a given Gaussian channel with matrices X and Y we
define

τ = detX, y =
√

detY . (6.1)

The condition (5.49) for the Gaussian channel to be a quantum channel now simplifies
to

y ≥ |τ − 1|
2

. (6.2)

Then, the action of the thermal channel ΦTH = ΦTH
(τ,y) is defined by

XTH =

(√
|τ | 0

0 sgn(τ)
√
|τ |

)
, YTH =

(
y 0
0 y

)
, (6.3)

where τ ∈ R and y are functions of the parameters T and G used in scheme depicted
in Fig. 6.1. The exact relations between (τ, y) and (T,G) are listed in Table 6.1. If
τ < 0 then ΦTH is phase-conjugating, if 0 ≤ τ ≤ 1 then ΦTH corresponds to a thermal
lossy channel, if τ ≥ 1 then ΦTH is a thermal amplification channel and if τ = 1, y > 0
then ΦTH is a thermal classical additive noise channel [see Fig. 6.2 for a classification in
terms of parameters (τ, y)]. There are two limiting cases that we also include in the map
ΦTH. Namely, the case (τ = 0, y ≥ 1

2) which is a limiting case of the lossy channel and
called zero-transmission channel A1, and the case (τ = 1, y = 0), which is the perfect
transmission channel and a limiting case of the lossy, the amplification channel and the
classical additive noise channel (see Table 6.1).
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6. One-mode Gaussian channel

Thermal channel   �TH

TMS Signal

Idler

Input Input ⌧

⇢̂th
Menv

Output

(a) (b) Menvor

Figure 6.1.: Physical schemes of the thermal channel ΦTH that contains the thermal
lossy, thermal amplification, thermal classical additive noise, and the ther-
mal phase-conjugating channel. (a) Realization in terms of a beamsplitter
and a two-mode squeezer. (b) Alternative scheme where the input mode is
mixed with a thermal state ρ̂th

Menv
(if τ 6= 1) or with a classical Gaussian

noise with variance Menv (if τ = 1, y > 0). Depending on its value τ stands
for e.g. a transmissivity or a gain.

We partially have discussed an alternative parametrization of the general thermal
channel when we introduced the individual channels in Sec. 5.3.1. The parameter y can
be expressed as a function of (T,G) (as shown before), depending on the domain of τ
[see upper tabular in Table 6.1 and Fig. 6.1 (b)]. However, on can also express y as a
function of τ and another parameter Menv ≥ 0 (see lower tabular in Table 6.1). Here,
Menv is the number of thermal photons of a thermal state ρ̂th

Menv
(if τ 6= 1) or the variance

of a classical Gaussian noise (if τ = 1, y > 0) that is mixed with the input state. For
the lossy channel τ is the transmissivity of the beamsplitter and for the amplification
channel and phase-conjugating channel it is the amplification gain. Interestingly, we can
express the parameter y of the thermal channel ΦTH compactly as follows:

y =

{
|1− τ |

(
Menv + 1

2

)
, τ 6= 1,

Menv, τ = 1,
(6.4)

Note that τ = 1 and Menv = 0 corresponds to the perfect transmission channel. We
remark that in the parametrization (6.4) the case of the classical additive noise channel
τ = 1,Menv > 0 can be recovered as a limiting case from the other channels. For a given
classical additive noise channel with parameter y′ = M ′env we observe that

M ′env = lim
τ→1
|1− τ | M

′
env

|1− τ | +
|1− τ |

2
. (6.5)

Physically, this means that the classical additive noise channel can be recovered by an
almost perfect transmission through a beamsplitter, where the input signal is mixed with
a thermal state with mean number of photons diverging to infinity.

Since the class of thermal channels is just a subset of one-mode Gaussian channels
we now move on to the most general one-mode case. The above parametrization is
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6.1. General thermal channel

Channel Symbol Class XC YC τ Domain of τ

Zero-Transmission A1

ΦTH

0 (G− 1/2)I 0 0
Classical additive noise B2 I (G− 1)I TG = 1 1
Lossy CT

√
τI [G(1− T/2)− 1/2]I TG [0, 1]

Amplification CG
√
τI [G(1− T/2)− 1/2]I TG [1,∞)

Phase conjugating D
√
|τ |σz [(1− T )(G− 1) +G]/2I −T (G− 1) (−∞, 0]

Classical-signal A2 ΦCS (I + σz)/2 (G− 1/2)I 0 0

Single-quad. cl. noise B1 ΦSQ I (I− σz)/4 1 1

Channel Symbol Class XC y Domain of τ Domain of y

Zero-Transmission A1

ΦTH

0 Menv + 1
2

0 [1/2,∞)
Classical additive noise B2 I Menv 1 [0,∞)
Lossy CT

√
τI (1− τ)(Menv + 1

2
) [0, 1] [(1− τ)/2,∞)

Amplification CG
√
τI (τ − 1)(Menv + 1

2
) [1,∞) [(τ − 1)/2,∞)

Phase conjugating D
√
|τ |σz (1 + |τ |)(Menv + 1

2
) (−∞, 0] [(1− τ)/2,∞)

Classical-signal A2 ΦCS (I + σz)/2 Menv + 1
2

0 [1/2,∞)

Single-quad. cl. noise B1 ΦSQ I - 1 0

Table 6.1.: Canonical channels ΦC with corresponding symbols as defined in [Hol07,
CGH06, ISS11], new representation in terms of ΦTH,ΦCS, ΦSQ and the cor-
responding matrices (XC,YC), where σz = diag(1,−1). Upper tabular:
Parametrization of y in terms of parameters (T,G). The parameter T ∈ [0, 1]
is the transmissivity of the beamsplitter and the parameter G ≥ 1 is the
gain of the two-mode squeezer shown in the physical schemes in Fig. 6.1
and Fig. 5.10, respectively. Lower tabular: Parametrization of y in terms
of (τ,Menv), where Menv ≥ 0 is the number of thermal photons of the “cou-
pled” thermal state in Fig. 6.1 (if τ 6= 1), or the variance of an added classical
Gaussian noise (if τ = 1).
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⌧

y

0 Lossy Amplification
...

Ph. conjugating
...

1
...

entanglement breaking
Classical Add. Noise

1

2
(non-physical)(non-physical)

Figure 6.2.: Admissible regions in the parameter space (τ, y) for one-mode Gaussian
quantum channels. Each thermal channel ΦTH

(τ,y) is associated with one
point and vice-versa. The vertical line at τ = 0 corresponds to the zero-
transmission channel as well as the classical signal channel ΦCS. The vertical
line at τ = 1 corresponds to the classical additive-noise channel. The lim-
iting case (τ = 1, y = 0) is the perfect transmission channel as well as the
single quadrature classical noise channel ΦSQ.

very convenient for expressing the range of parameters when the canonical channels
become entanglement breaking. In [Hol08] it was shown that a canonical channel ΦC is
entanglement-breaking if

y ≥ |τ |+ 1

2
. (6.6)

This means that the thermal phase-conjugating channel D = ΦTH
(τ<0,y), as well as the

classical signal channel ΦCS (τ = 0, y ≥ 1/2) are always entanglement-breaking. For the
classical signal channel ΦCS this is obvious: since one input quadrature is completely
removed by the channel any entanglement that was present at the input will have been
destroyed at the output. It was shown in [Hol08] that the single-quadrature classical noise
channel ΦSQ is not entanglement-breaking. We plotted the condition (6.6) in Fig. 6.2.
We exploit the entanglement-breaking property in the following when calculating the
classical capacity.

6.2. Fiducial channel

The canonical decomposition stated in Eq. (5.55) is not always useful, especially when
evaluation capacities of bosonic channels with input energy constraint. Indeed, the Gaus-
sian unitary U1 that precedes the canonical channel ΦC changes, in general, the number
of photons that are given at the input. Therefore, we introduce a new decomposition
in terms of a fiducial channel ΦF, where the preceding unitary is passive and does not
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6.2. Fiducial channel

TMS Signal

Idler

Input

Fiducial channel   

Input ⌧

ÛS ⇢̂
th
Menv

Û †
S

Output

(b)
(Menv, s)or

(a)

Figure 6.3.: Physical schemes of the fiducial channel ΦTH. (a) Scheme using a beamsplit-
ter, a two-mode squeezer and two identical one-mode squeezers. (b) Alterna-
tive scheme (like in Fig. 6.1) where the input state is mixed with a squeezed
thermal state or a classical Gaussian noise with “squeezed” variances.

affect the input energy restriction. In Sec 6.3 we show that this decomposition has the
major advantage that the energy-restricted capacity of any Gaussian channel reduces to
that of the fiducial channel ΦF. The latter generalizes ΦTH by adding a squeezing to the
effective added noise, that is

XF = XTH =

(√
|τ | 0

0 sgn(τ)
√
|τ |

)
, YF = y

(
e2s 0
0 e−2s

)
. (6.7)

Thus, it depends on three parameters (τ, y, s), and will be denoted by ΦF
(τ,y,s). This

channel can be physically realized by the setup depicted in Fig. 6.3, where the “idler”
corresponds again to the output of the phase-conjugating channel and the “signal” to
the output of the other channels.

Equivalently to the general thermal channel ΦTH we can parametrize y also in terms
of τ and an additional parameter Menv as stated in Eq. (6.4). If τ 6= 1 then the input

state is mixed with a squeezed thermal state ÛS ρ̂
th
Menv

Û †S = ρ̂G(0,Venv), i.e. a Gaussian
state with CM

Venv =

(
Menv +

1

2

)(
e2s 0
0 e−2s

)
, τ 6= 1. (6.8)

If τ = 1 then the input state is mixed with a classical Gaussian noise with CM

Venv = Menv

(
e2s 0
0 e−2s

)
, τ = 1. (6.9)

Then we can write the effective noise matrix as

YF = |1− τ |Venv, τ 6= 1,

YF = Venv, τ = 1.
(6.10)

One of our central results is that the fiducial channel ΦF can be used to decompose any
Gaussian channel Φ (at least in a proper limit):
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6. One-mode Gaussian channel

Theorem 1. For a single-mode Gaussian channel Φ defined by matrices X and Y ,
there exists a fiducial channel ΦF defined by matrices XF = XF(τ), YF = YF(y, s) with
τ and y obtained from Eq. (6.1), a symplectic transformation M , and a rotation in
phase space Θ such that

if (rank(X), rank(Y )) ∈ {(2, 2), (0, 2), (2, 0)} (6.11)

then X = MXFΘ, Y = MYFM
T,

if rank(X) = 1, rank(Y ) = 2 (6.12)

then X = lim
s̃→∞

M(s̃)XF(s̃)Θ(s̃), Y = lim
s̃→∞

M(s̃)YFM
T(s̃),

if rank(X) = 2, rank(Y ) = 1 (6.13)

then X = lim
s̃→∞

M(s̃)XFΘ(s̃), Y = lim
s̃→∞

M(s̃)YF(s̃)MT(s̃),

where the explicit dependencies of M , Θ, s and s̃ on the parameters of the channel Φ
are presented in Eqs. (6.26), (6.36) and (6.41) (see following proof).

Proof. The action of the channel Φ on an input CM V reads as in Eq. (5.48)

Φ(V ) = XV XT + Y , (6.14)

where X is a real 2× 2 matrix and Y a real, symmetric and positive-semidefinite 2× 2
matrix. Recall the definitions τ = detX, y =

√
detY , which have to satisfy Eq. (6.2)

in order for the map to correspond to a quantum channel. In Eq. (5.56) we stated that
for any Gaussian channel Φ there exists a canonical decomposition U2 ◦ ΦC ◦ U1, where
ΦC is a map belonging to one of the seven canonical types that are stated in Table 6.1.
The corresponding action on the CM reads

Φ(V ) = M2(XCM1V MT
1 XC + YC)MT

2 , (6.15)

where XC,YC are the matrices defining the canonical channels (see Table 6.1). In the
following we obtain the new decomposition in terms of the fiducial channel as stated in
the Theorem and furthermore, confirm Eq. (6.15). The proof is structured as follows.
For given matrices X,Y we have to distinguish three cases which depend on the ranks of
X and Y and correspond to canonical decompositions for which ΦC is either ΦTH, ΦSQ

or ΦCS. In the first case our new decomposition will contain finite squeezing operations,
while for the other two cases the new decomposition is shown to be valid in a proper
limit of infinite squeezing.

Recall the symplectic matrices of the phase-space rotation O(θ) stated in Eq. (5.22)
and squeezing operation S(s) stated in Eq. (5.24). Then, for the given CM Y one can
find a rotation ΘY = O(θY ), such that ΘT

Y Y ΘY = diag(y1, y2), where y1, y2 ≥ 0 are the
eigenvalues of Y . Since matrix X is always real it has a singular value decomposition
(SVD)

X = Θ1XΛXJΘ2X , (6.16)
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6.2. Fiducial channel

where Θ1X = O(θ1X) and Θ2X = O(θ2X) are rotation matrices. Here

ΛX = diag(x1, x2), J =

{
I if τ ≥ 0,
σz if τ < 0,

(6.17)

where x1, x2 ≥ 0 are the singular values and σz = diag(1,−1). Using equality detX =
det (ΛXJ) and Eq. (6.1) we get τ = ±x1x2 and y =

√
y1y2. The condition on the deter-

minants of X and Y stated in Eq. (6.2) allows us to exclude the following combinations
of ranks because they are non-physical:

(rank(X), rank(Y )) /∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. (6.18)

The physically allowed combinations of ranks therefore read

(rank(X), rank(Y )) ∈ {(2, 2), (0, 2), (2, 0), (1, 2), (2, 1)}. (6.19)

Below we treat the first three “physical” couples together and the other two individually.

rank(X) = rank(Y ) = 2: First, we derive the relations for the case of full ranks. The
latter implies that x1, x2, y1, y2 6= 0. Then we can construct the squeezing operation
SY = S(sY ), with sY = 1

4 ln (y1/y2) such that S−1
Y diag(y1, y2)S−1

Y = diag(y, y). This
implies that

Y = ΘY SY YTHSY ΘT
Y = yΘY S

2
Y ΘT

Y , YTH = diag(y, y). (6.20)

Here the symplectic transformation ΘY SY realizes the symplectic diagonalization of Y ,
where y is the symplectic eigenvalue. Furthermore, we can define a squeezing operation
SX = S(sX), with sX = 1

2 ln (x1/x2), such that Eq. (6.16) can be written as

X = Θ1XSXXTHΘ2X , XTH =

(√
|τ | 0

0 sgn(τ)
√
|τ |

)
. (6.21)

Notice that the matrix XTH has the property that

XTHO(θ) = O(sgn(τ)θ)XTH. (6.22)

Now we obtain the decomposition Y = MYFM
T in the following way. We define

M = Θ1XSXΘT
F. (6.23)

Then, we multiply Y in Eq. (6.20) from both sides with the identity matrix I =
MΘFS

−1
X ΘT

1 X ,

IY I = yMΘFS
−1
X ΘT

1 XΘY S
2
Y ΘT

Y Θ1XS
−1
X ΘT

FM
T. (6.24)

Then we define

YF = yΘFS
−1
X ΘT

1 XΘY S
2
Y ΘT

Y Θ1XS
−1
X ΘT

F, (6.25)
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6. One-mode Gaussian channel

and thus, obtain the desired decomposition Y = MYFM
T. Moreover, we choose the

rotation ΘF in a way such that matrix YF is diagonal, i.e. YF = y diag(e2s, e−2s). This
implies the following expression for the squeezing parameter s

s =
1

2
ln

[
1

4
e−2(sX+sY )(ξ −

√
−16e4(sX+sY ) + ξ2)

]
,

ξ = (1 + e4sY )(1 + e4sX )− (−1 + e4sY )(−1 + e4sX ) cos(2(θY − θ1X)).

(6.26)

The angle θF of rotation ΘF = O(θF) reads

θF = −arcsin

(
sgn(λ)√
1 + λ2

)
, (6.27)

where

λ = −e
−2sX (ξ̃ +

√
−16e4(sX+sY ) + ξ2)

2 sin(2(θY − θ1X))(−1 + e4sY )
,

ξ̃ = (1 + e4sY )(−1 + e4sX )− (−1 + e4sY )(1 + e4sX ) cos(2(θY − θ1X)).

(6.28)

Using definition XF = XTH [see Eq. (6.7)] and Eq. (6.22) one can rewrite Eq. (6.21) as

X = Θ1XSXΘT
FΘFXFΘ2X = Θ1XSXΘT

FXFO(sgn(τ)θF)Θ2X = MXFΘ, (6.29)

where
Θ = O(sgn(τ)θF + θ2X). (6.30)

In summary, we found that

X = MXFΘ, Y = MYFM
T. (6.31)

Thus, we have proven the theorem for the case rank(X) = rank(Y ) = 2. Let us now
extend it to different combinations of ranks.

rank(X) = 2, rank(Y ) = 0: Since Y = 0 it follows that y = 0, which together with
Eq. (6.2) implies that τ = 1. Therefore, the channel is unitarily equivalent to the perfect
transmission channel. All relations derived above are found in the same way where one
has to fix sY = θY = 0, which leads to SY = ΘY = I.

rank(X) = 0, rank(Y ) = 2: This case can also be treated using the above relations. In
this case X = 0, τ = 0 which together with Eq. (6.2) implies that y ≥ 1/2. This channel
is unitarily equivalent to the zero-transmission channel and has trivially a capacity equal
to zero. The decomposition containing the fiducial channel is found above where one
has to fix sX = θ1X = θ2X = 0.

We remark that for (rank(X), rank(Y )) ∈ {(2, 2), (0, 2), (2, 0)} the physical action of
Φ corresponds (up to unitaries) to the action of ΦTH. Indeed, by inserting Eqs. (6.20)
and (6.21) in Eq. (6.14) one obtains the canonical decomposition Φ = U2 ◦ ΦTH ◦ U1,
which in terms of the symplectic transformations reads as in Eq. (6.15), with

XC = XTH, YC = YTH, M1 = S−1
Y Θ′Y

T
Θ1
′
XSXΘ2X , M2 = ΘY SY , (6.32)
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6.2. Fiducial channel

where Θ′Y = O(sgn(τ)θY ) and Θ1
′
X = O(sgn(τ)θ1X). In Fig. 6.4 we sketched the

equivalences found above.
rank(X) = 2, rank(Y ) = 1: This implies y = 0 and together with Eq. (6.2) that τ = 1.

The eigenvalues of Y now read y1 = 0, y2 > 0 (the case y1 > 0, y2 = 0 follows the
same treatment). Similarly to the case rank(Y ) = 2 one can find a rotation ΘY such
that ΘT

Y Y ΘY = diag(0, y2). Then, one can construct a squeezing operation SY with
sY = −1

2 ln(2y2) which yields

Y = ΘY SY YSQSY ΘT
Y , YSQ = diag

(
0,

1

2

)
, (6.33)

The matrix YSQ can be recovered with an additional squeezer S̃ = S(s̃) in the limit of
infinite squeezing, i.e. YSQ = lims̃→∞ 1

2e
−2s̃S̃−2 from which follows

Y = lim
s̃→∞

1

2
e−2s̃ΘY SY S̃

−2SY ΘT
Y = lim

s̃→∞
1

2
e−2s̃ΘY S̃

2
Y ΘT

Y , (6.34)

where S̃Y = S(sY − s̃). Since rank(X) = 2 we can decompose X as in Eq. (6.21) but
with the simplification τ = 1, i.e.

X = Θ1XSXXSQΘ2X , XSQ = I, (6.35)

We observe that we can replace XSQ = XF, where XF is defined as above with τ = 1.
Thus, we get the same decomposition as stated in Eq. (6.21). Now one can recover both
matrices X,Y as a limiting case of Eq. (6.31), namely,

X = lim
s̃→∞

MXFΘ, Y = lim
s̃→∞

MYFM
T, (6.36)

where in the definitions of M (6.23), Θ (6.30) and YF (6.25) one has to make replace-
ments τ → 1, sY → sY − s̃ and y → 1

2e
−2s̃. We remark that these replacements only

affects matrix YF and rotations ΘF and Θ. Thus, we recovered both matrices X and
Y as a limiting case of the decomposition stated in the theorem.

Note that the physical action of Φ in this case corresponds (up to unitaries) to the
action of ΦSQ: by inserting Eqs. (6.35) and (6.33) into Eq. (6.14) we find the canonical
decomposition Φ = U2 ◦ ΦSQ ◦ U1, which in terms of the symplectic transformations is
given by Eq. (6.15), with

XC = XSQ, YC = YSQ, M1 = S−1
Y ΘT

Y Θ1XSXΘ2X , M2 = ΘY SY . (6.37)

rank(X) = 1, rank(Y ) = 2: Since in this case τ = 0 it follows from Eq. (6.2) that

y ≥ 1
2 . The SVD of X now reads X = Θ1Xdiag(x1, 0) (the case x1 = 0, x2 > 0 follows

the same treatment). One can define SX = S(sX) with sX = ln(x1) such that

X = Θ1XSXXCS, XCS = diag(1, 0). (6.38)

Since XCS can be expressed as XCS = lims̃→∞ e−s̃S̃, where S̃ = S(s̃), Eq. (6.38)
becomes

X = lim
s̃→∞

e−s̃Θ1XSXS̃ = lim
s̃→∞

e−s̃Θ1XS̃X , (6.39)
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X, Y

XC, Y C M2

⇥ XF, Y F M
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Figure 6.4.: Equivalence of (a) an arbitrary Gaussian channel Φ, (b) the canonical de-
composition containing a canonical channel ΦC and (c) the decomposition
in terms of the fiducial channel ΦF as stated in Theorem 1.

where S̃X = S(sX + s̃). Since y ≥ 1
2 we find as in the case y > 0 treated above [see

derivation of Eq. (6.20)], a rotation ΘY and squeezing SY such that

Y = ΘY SY YCSSY ΘT
Y , YCS = diag(y, y), y ≥ 1

2
. (6.40)

Thus, we recover matrices X,Y as a limiting case of Eq. (6.31), i.e.

X = lim
s̃→∞

MXFΘ, Y = lim
s̃→∞

MYFM
T, (6.41)

where in the definitions of M (6.23) and Θ (6.30) one has to make replacements θ2X → 0,
sX → sX + s̃ and τ → e−2s̃. Note that these replacements affects M but does not affect
matrix Y stated in Eq. (6.40). Therefore, we found also for the last case both matrices
X,Y as limiting cases of the decomposition stated in the theorem.

Now we demonstrate that (up to unitaries) the physical action of Φ in this case
corresponds to the action of ΦCS. By inserting Eqs. (6.40) and (6.38) in Eq. (6.14), we
obtain

Φ(V ) = M̃(X̃V X̃T + YCS)M̃T, X̃ = S−1
Y ΘT

Y Θ1XSXXCS, M̃ = ΘY SY . (6.42)

For the real 2 × 2 matrix X̃ one can again obtain the SVD which leads to X̃ =
Θ̃XS̃XXCS. Since S̃XXCS = XCSS̃X we obtain the canonical decomposition Φ =
U2 ◦ ΦCS ◦ U1 in terms of the symplectic transformations as stated in Eq. (6.15), with

XC = XCS, YC = YCS, M1 = S̃X , M2 = ΘY SY Θ̃X , (6.43)

Thus, we extended the theorem to lower rank cases of X and Y .

Let us summarize the above presented equivalences. For an arbitrary Gaussian map,
defined by matrices (X,Y ), there exists a canonical decomposition X = M2XCM1,
Y = M2YCM

T
1 , where M1 and M2 are general (a priori non photon number pre-

serving) symplectic transformations and (XC,YC) define one out of seven canonical
channels. According to Theorem 1, there exists a fiducial decomposition in terms of the
newly defined fiducial channel, defined by matrices (XF,YF) such that X = MXFΘ,
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Y = MYFM
T, where now the preceding unitary Θ is passive (i.e. photon number

preserving). This means that

Vout = XVinX
T + Y = M(XFΘVinΘTXF + YF)MT. (6.44)

Therefore, the equivalence (up to displacements) in terms of Gaussian channels and
unitaries can be written as

Φ = U2 ◦ ΦC ◦ U1 = U ◦ ΦF ◦ UΘ, (6.45)

where U and UΘ are unitary transformations corresponding to the symplectic transfor-
mations M and Θ, respectively (UΘ is energy preserving). Note that in case of a canon-
ical decomposition containing non-thermal channels, Eq. (6.45) is valid in a proper limit
(as explained above in terms of symplectic transformations). The equivalences are also
stated in Fig. 6.4. The usefulness of these equivalences will become clear in the following
section.

6.3. Equivalence relations for capacities

We present now a way to greatly simplify the calculation of the classical capacity as
well as the Gaussian capacity. We showed above that any Gaussian channel Φ is (up to
displacements) equal to a fiducial channel ΦF preceded by a passive Gaussian unitary
transformation and followed by a general Gaussian unitary transformation. This implies
the following corollary:

Corollary 1. For a single-mode Gaussian channel Φ with parameters (τ, y) there exists
a fiducial channel ΦF as defined in Theorem 1 such that

C(Φ, N̄) = C(ΦF, N̄), (rank(X), rank(Y )) ∈ {(2, 2), (0, 2), (2, 0)},
C(Φ, N̄) = lim

s̃→∞
C(ΦF(s̃), N̄), (rank(X), rank(Y )) ∈ {(1, 2), (2, 1)}. (6.46)

Proof. First, any displacement denv 6= 0 that is introduced by Φ as well as the symplectic
transformation M that follows ΦF in Theorem 1 does not change the entropies in the
definition of χ. Second, there is no energy constraint at the output of the channel.
Hence, M can be dropped (even in the limit of infinite squeezing for the cases when
rank(X) = 1 or rank(Y ) = 1). Then, the rotation Θ preceding ΦF in Theorem 1 may
be regarded as change of a reference phase that can be chosen arbitrarily; therefore, Θ
can be dropped as well. Thus,

Cχ(Φ, N̄) = Cχ(ΦF, N̄), (rank(X), rank(Y )) ∈ {(2, 2), (0, 2), (2, 0)},
Cχ(Φ, N̄) = lim

s̃→∞
Cχ(ΦF(s̃), N̄), (rank(X), rank(Y )) ∈ {(1, 2), (2, 1)}. (6.47)

To evaluate the one-shot capacity of n copies of Φ the same reasoning can be applied,
where now the preceding and following transformations are given by

n⊕

i=1

M ,

n⊕

i=1

Θ, (6.48)
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6. One-mode Gaussian channel

respectively. Hence, it follows that

Cχ(Φ⊗n, nN̄) = Cχ((ΦF)⊗n, nN̄), (6.49)

which together with Eq. (5.73) implies Eq. (6.46) (as well as in the case of corresponding
limiting expressions).

Corollary 1 has also other implications. If the corresponding fiducial channel ΦF
(τ,y,s)

is entanglement breaking (see Sec. 6.1), then the one-shot capacities of both ΦF
(τ,y,s) and

Φ are additive, implying

C(Φ, N̄) = Cχ(ΦF, N̄), y ≥ 1 + |τ |
2

. (6.50)

For the case rank(Y ) = 1 it follows that y = 0 and so in this case the channel is
not entanglement breaking. The other pathological case rank(X) = 1 and y ≥ 1/2 in
contrary is always entanglement breaking and thus,

C(Φ, N̄) = lim
s̃→∞

Cχ(ΦF(s̃), N̄), rank(X) = 1, rank(Y ) = 2. (6.51)

We can directly extend Corollary 1 to the Gaussian capacity since the proof works
on the level of the χ-quantity. The Gaussian capacity is a restricted maximization over
the χ-quantity which is left invariant under unitaries, as well as the energy constraint.
Thus,

CG(Φ, N̄) = CG(ΦF, N̄), (rank(X), rank(Y )) ∈ {(2, 2), (0, 2), (2, 0)},
CG(Φ, N̄) = lim

s̃→∞
CG(ΦF(s̃), N̄), (rank(X), rank(Y )) ∈ {(1, 2), (2, 1)}, (6.52)

as well as

CG
χ (Φ, N̄) = CG

χ (ΦF, N̄), (rank(X), rank(Y )) ∈ {(2, 2), (0, 2), (2, 0)},
CG
χ (Φ, N̄) = lim

s̃→∞
CG
χ (ΦF(s̃), N̄), (rank(X), rank(Y )) ∈ {(1, 2), (2, 1)}. (6.53)

6.4. Gaussian capacity

Now we analyze CG
χ and CG of the one-mode Gaussian channel. For the particular case

0 ≤ τ < 1 (and τ = 1, y = 0) (i.e. the lossy channel), some of the following results were
obtained independently and in parallel in [PLM12].

According to equations (6.52) and (6.53) it suffices to compute the Gaussian capacity
CG (as well as the one-shot Gaussian capacity CG

χ ) of the fiducial channel ΦF in order
to obtain it for an arbitrary one-mode Gaussian channel.

The quantity of interest is therefore CG
χ (Φ, N̄) = CG

χ (ΦF, N̄), which reads (using
Eq. (5.90) with n = 1)

CG
χ (Φ, N̄) = max

Vin,Vmod

{
χG(νout, ν̄out)

∣∣∣ Tr[Vin + Vmod] ≤ 2N̄ + 1
}
,

χG(νout, ν̄out) = g

(
ν̄out −

1

2

)
− g

(
νout −

1

2

)
,

νout =
√

detVout, ν̄out =
√

det V̄out.

(6.54)
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6.4. Gaussian capacity

Using the definition of the thermal photon number (5.10) we alternatively can express
the Gaussian capacity as

CG
χ (Φ, N̄) = max

Vin,Vmod

[
g(M̄out)− g(Mout)

∣∣∣ Tr[Vin + Vmod] ≤ 2N̄ + 1
]
, (6.55)

where Mout = νout − 1/2 and M̄out = ν̄out − 1/2 are the number of thermal photons of
the output state and modulated output state, respectively. From now on we choose the
following notations for covariance matrices of the input state and modulation:

Vin =

(
iq iqp

iqp ip

)
, Vmod =

(
mq mqp

mqp mp

)
. (6.56)

The fact that the optimal input state is pure reads in terms of the CM

detVin = iqip − i2qp =
1

4
. (6.57)

The energy constraint is given by

1

2
Tr[Vin + Vmod]− 1

2
= N̄ (6.58)

which equivalently can be written as

iq + ip +mq +mp = 2N̄ + 1. (6.59)

Recall the definition of the fiducial channel:

XF =
√
|τ |diag(1, sgn(τ)), YF = y diag(e2s, e−2s)). (6.60)

Then, the output CM Vout and the modulated output CM V̄out are given by

Vout =

(
|τ |iq + y e2s sgn(τ)|τ |iqp

sgn(τ)|τ |iqp |τ |ip + y e−2s

)
,

V̄out =

(
|τ |(iq +mq) + y e2s sgn(τ)|τ |(iqp +mqp)
sgn(τ)|τ |(iqp +mqp) |τ |(ip +mp) + y e−2s

)
.

(6.61)

The corresponding symplectic eigenvalues νout =
√

detVout, ν̄out =
√

det V̄out, respec-
tively, read

ν2
out = (|τ |iq + y e2s)(|τ |ip + y e−2s)− τ2i2qp,

ν̄out
2 = (|τ |(iq +mq) + y e2s)(|τ |(ip +mp) + y e−2s)− τ2(iqp +mqp)2,

(6.62)

where furthermore

ν2
out = τ2 detVin + y2 + |τ |(iqye−2s + ipye

2s). (6.63)

In [PLM12] it was shown that for 0 ≤ τ < 1 it is optimal to choose iqp = mqp = 0. We
present now this proof and show that is also applicable to the fiducial channel.
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6. One-mode Gaussian channel

Lemma 1. For the fiducial channel ΦF it is optimal to choose

iqp = mqp = 0. (6.64)

Proof. First, it cannot be optimal to choose iqpmqp > 0. If iqp and mqp have the same
signs then we can replace mqp → −mqp (without violating the positivity of Vmod) which
leads to an increase of ν̄out and does not change νout. Thus, we obtain that

sgn(iqp) = −sgn(mqp). (6.65)

The latter implies that
(iqp +mqp)2 = (|iqp| − |mqp|)2. (6.66)

Now we show that indeed iqp = mqp = 0 is optimal. If the latter does not hold then
there are three possible scenarios:

1. |mqp| > |iqp| ≥ 0

2. |iqp| > |mqp| ≥ 0

3. |mqp| = |iqp| > 0

In the first case one can decrease |mqp| by choosing m′qp = −iqp which preserves the
positivity of Vmod. This increases ν̄out and leaves νout unchanged. Thus, the first term
in χG is increased and the second term is unchanged, which increases χG. Therefore,
the first scenario can be excluded.

In the second case one can decrease |iqp| by choosing i′qp = −mqp and choose i′q < iq
in order to preserve the purity constraint

iqiqp − i2qp = i′qi
′
p − i′2qp =

1

4
. (6.67)

The decrease of iq changes the total energy [according to Eq. (6.59)]. This can be
compensated by adding the difference iq− i′q to the modulation parameter m′q such that
i′q +m′q = iq +mq. Since detVin is not changed and i′q < iq the value of νout is decreased
according to Eq. (6.63). Then, the value of ν̄out is increased because (i′qp−mqp)2 = 0 and

the first term in ν̄out is left unchanged. Thus, χG is increased and the second scenario
can be excluded as well.

The last case is |mqp| = |iqp| > 0. One can always commonly decrease them to
|m′qp| = |i′qp| = 0 leaving ν̄out unchanged. Then in order to guarantee purity one
decreases iq as in the second scenario. It follows that ν̄out is not changed but νout is
decreased implying that the third case is non-optimal.

We excluded all three cases and proved therefore the Lemma. Note that if Vmod =
diag(mq, 0) or Vmod = diag(0,mp), i.e. mqp = 0, then only the second case can exist
and is proven straightforwardly.

Therefore, the optimal input and modulation CM are of the form

Vin = diag(iq, ip), Vmod = diag(mq,mp), (6.68)

and are diagonal in the same basis as the effective noise CM Y = diag(y e2s, y e−2s).
This implies that the optimal matrices Vout and V̄out are diagonal as well.
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6.4. Gaussian capacity

6.4.1. Quantum water-filling solution

Let us now calculate CG
χ of the fiducial channel. Using Eq. (6.55) for CG

χ we can state
the upper bound

CG
χ (ΦF, N̄) ≤ max

Vin,Vmod

g(M̄out)−min
Vin

g(Mout), (6.69)

where Vin and Vmod are given by Eq. (6.68). First, we minimize the second term in-
dependently of the joint energy constraint stated in Eq. (6.55) (which may lead to an
unphysical encoding). Again, since g(x) is a concave function it is sufficient to mini-
mize (maximize) its argument in order to minimize (maximize) its value. According to
Eq. (6.62) and Lemma 1 we have

Mout =
√

(|τ |iq + y e2s)(|τ |ip + y e−2s)− 1

2

=

√
τ2

2
+ |τ |y

(
iqe−2s +

e2s

4iq

)
+ y2 − 1

2
,

(6.70)

where we used the relation iqip = 1
4 . The inner bracket is then straightforwardly mini-

mized for

iq =
1

2
e2s, (6.71)

which implies

ip =
1

2
e−2s. (6.72)

and results to

Mout = y +
|τ | − 1

2
. (6.73)

We observe that the minimizing input state exactly matches the squeezing of the added
noise. Second, we try to maximize the first term in Eq. (6.69). We know from Sec. 5.1
that a thermal state maximizes the entropy, so the first term is maximized if

V̄out =

(
M̄out +

1

2

)
I. (6.74)

Using Eq. (6.61) and Lemma 1 we have

V̄out =

(
|τ |(iq +mq) + y e2s 0

0 |τ |(ip +mp) + y e−2s

)
. (6.75)

In order to satisfy Eq. (6.74) we need to satisfy the equation

|τ |(iq +mq) + y e2s = |τ |(ip +mp) + y e−2s. (6.76)

This equation can be regarded as the quantum equivalent of the water-filling solution
that we stated for classical information theory in Eq. (2.19). Therefore, we refer to
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6. One-mode Gaussian channel

Eq. (6.76) as quantum water-filling (QWF) solution 1. Here, the variances of the two
modulated output quadratures need to be equalized, which corresponds in the classical
case to two different channels. However, the fact that the energy needs to be divided
between the input state and its modulation adds additional difficulty to the problem.
Let us take the minimizing solution for the input state derived in Eqs. (6.71) and (6.72)
and inject it in Eq. (6.76):

e2s

( |τ |
2

+ y

)
+ |τ |mq = e−2s

( |τ |
2

+ y

)
+ |τ |mp. (6.77)

Using furthermore the input energy constraint given in Eq. (6.59) we obtain the solutions

mq = N̄ +
1

2
− 1

2
e2s +

y

|τ | sinh(−2s),

mp = N̄ +
1

2
− 1

2
e−2s +

y

|τ | sinh(2s).

(6.78)

Then, the number of thermal photons of the modulated output state reads

M̄out = |τ |N̄ + y cosh(2s) +
|τ | − 1

2
, (6.79)

and Eq. (6.74) is satisfied.
In order for the solutions stated in Eqs. (6.71), (6.72) and (6.78) to be physical we

have the conditions mq ≥ 0 and mp ≥ 0 for the given input energy N̄ . For s > 0 we
have mq < mp (equivalently for s < 0 we have mp < mq), i.e. the less noisy quadrature
is more modulated. This means that for given squeezing s > 0 the condition mq ≥ 0
suffices to guarantee that the solution is physical. The solution to the equation mq = 0
(and equivalently to mp = 0 for s < 0) is given by

N̄ = N̄ thr ≡
1

2

(
e2|s| − 1

)
+

y

|τ | sinh(2|s|). (6.80)

where N̄ thr is the input energy threshold. This means that for N̄ ≥ N̄ thr the solutions
given in Eqs. (6.71), (6.72) and (6.78) hold but for N̄ < N̄ thr become unphysical. We
observe that N̄ thr diverges for τ → 0 (and finite s) or s → ∞. Therefore, we already
see that this solution does not include the limiting cases of the fiducial decomposition
stated in Eqs. (6.12) and (6.13).

Using Eq. (6.53) we obtain the following theorem:

Theorem 2. The one-shot Gaussian capacity of a Gaussian channel Φ with parameters
(τ 6= 0, y > 0) and input energy N̄ ≥ N̄ thr is given by

CG
χ (Φ, N̄) = CG

χ (ΦF, N̄)

= g

(
|τ |N̄ + y cosh(2s) +

|τ | − 1

2

)
− g

(
y +
|τ | − 1

2

)
, N̄ ≥ N̄ thr.

(6.81)

1The notion of quantum water-filling appeared for the first time in the discussion of the capacity
of a memoryless phase-dependent Gaussian channel [HSH99]. However, in [HSH99] the quantum
information carriers were considered as part of the channel and only the energy cost of classical
modulation was considered, thus making this solution a straightforward analog to the classical one.
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6.4. Gaussian capacity

Proof. We showed above that the input encoding presented in Eqs. (6.71), (6.72) and
(6.78) is achievable for N̄ ≥ N̄ thr and therefore achieves the upper bound in Eq. (6.69).
For the given Gaussian channel Φ the squeezing parameter s of the corresponding fiducial
channel can be obtained by the method presented in Sec. 6.2.

Note that for the alternative parametrization Y = diag(yq, yp) the one-shot Gaussian
capacity reads

CG
χ (Φ, N̄) = g

(
|τ |N̄ +

yq + yp

2
+
|τ | − 1

2

)
− g

(
y +
|τ | − 1

2

)
, N̄ ≥ N̄ thr, (6.82)

where the input energy threshold for yq ≥ yp is given by2

N̄ thr =
1

2

(√
yq

yp
+
yq − yp

|τ | − 1

)
. (6.83)

The optimal input state and modulation (see Eqs. (6.71), (6.72) and (6.78)) is then given
by

iq =
1

2

√
yq

yp
, ip =

1

2

√
yp

yq
, (6.84)

mq = N̄ +
1

2
− 1

2

√
yq

yp
+
yp − yq

2|τ | , mp = N̄ +
1

2
− 1

2

√
yp

yq
+
yq − yp

2|τ | . (6.85)

We depict the QWF solution (for τ = 1) together with the optimal squeezed input
state in Fig. 6.5 (a) in a stack plot and in Fig. 6.5 (b) and (c) in phase space. The
quantum water-filling level is simply given by

ν̄wf ≡ v̄q = v̄p = |τ |
(
N̄ +

1

2

)
+
yq + yp

2
. (6.86)

A particular case is given by the lossy channel with (pure) squeezed noise, i.e. when
y = (1 − τ)/2. Then, we obtain Mout = 0, i.e. as in the case of the lossy channel with
vacuum noise (see Sec. 5.6) the entropy of the output state vanishes. This is clear because
the case y = (1 − τ)/2 corresponds to mixing two identical (pure) squeezed states [i.e.
the input and the noise state, see Fig. 6.3 (b)] on a beamsplitter which then outputs the
same two pure squeezed states. Then, Eq. (6.81) becomes an upper bound on the actual
one-shot capacity Cχ. Since only the first term in Eq. (6.81) needs to be maximized the
additivity of the one-shot capacity follows from the subadditivity property of the von
Neumann entropy such that the full classical capacity of the channel ΦF

(τ, 1−τ
2
,s)

is given

by

C
(

ΦF
(τ, 1−τ

2
,s)

)
= g(τ + (1− τ) sinh2 s), τ ∈ [0, 1], N̄ ≥ N̄ thr. (6.87)

2The choice yq ≥ yp is without loss of generality. For yp ≥ yq the Gaussian capacity remains unchanged
and one simply needs to replace q → p and p→ q in the energy threshold.
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Figure 6.5.: Quantum water-filling solution (schematically for the case τ = 1): (a) re-
lations between optimal eigenvalues; the quantum water-filling level ν̄wf

is given by the symplectic eigenvalue of the modulated output state [see
Eq. (6.86)]. (b) schematic plot of the Wigner functions of the input state,
the modulation and the noise state; the input state matches the squeezing
of the noise and the less noisy quadrature is more modulated. (c) schematic
plot of the modulated output state which is a thermal state.

This result was previously derived in [LPM09], where it was furthermore generalized to
a collection of independent lossy channels with squeezed noise.

A second important case is the one-shot Gaussian capacity of the general thermal
channel ΦTH. It corresponds to the limiting case s = 0 for which N̄ thr = 0. Thus, we
have

CG
χ (ΦTH, N̄) = g

(
|τ |N̄ + y +

|τ | − 1

2

)
− g

(
y +
|τ | − 1

2

)
. (6.88)

This result was obtained for the different thermal channels previously in [Hol98a, HSH99,
HW01, HG12] and summarized in [GLMS13].

In conclusion we have obtained an analytical expression for the Gaussian capacity,
stated in Eq. (6.81), which generalizes previous results of particular cases.

The so-called Holevo-Werner conjecture states that Eq. (6.88) is the classical capacity
of the general thermal channel [HW01]. For the thermal channel ΦTH this would be
already implied if the minimum output entropy conjecture (introduced in Sec. 5.6.1)
was proven to be true: one can always present an encoding that realizes a thermal state
for the modulated output state if the optimal input state is the (displaced) vacuum. In
this case, additivity of the one-shot classical capacity follows straightforwardly [GPC13].
The minimum output entropy conjecture would even imply that the Gaussian capacity
of an arbitrary one-mode Gaussian channel stated in Eq. (6.81) becomes the classical
capacity for N̄ ≥ N̄ thr, as shown in [GPC13].

A particular channel of interest is the classical additive noise channel with thermal
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noise, i.e. the case when τ = 1 and y = Menv (using the parametrization presented in
Eq. (6.4)). The Gaussian capacity then becomes

CG
χ

(
ΦTH

(1,Menv), N̄
)

= g(N̄ +Menv)− g(Menv). (6.89)

This may be regarded as the coherent rate (properly defined below in Sec. 7.4.4) because
it is a valid lower bound on the classical capacity, obtained by sending coherent states
as input states. Furthermore, it was found to be the capacity of a bosonic classical-
quantum channel (c-q channel) [Hol98a]. This channel is defined by a mapping of an
input codeword α to a thermal state

D̂(α)ρ̂th
Menv

D̂(α)†. (6.90)

It does not fall into the class of one-mode Gaussian channels because there is no freedom
to change the input state. The modulated “output” state of the channel is given by

ˆ̄ρout =

∫
d2αp(α)D̂(α)ρ̂th

Menv
D̂(α)†. (6.91)

Then, the one-shot capacity of the c-q channel reads

CG
χ

(c−q)
= max

p(α)

{
S(ˆ̄ρout)−

∫
d2αp(α)S

(
D̂(α)ρ̂th

Menv
D̂(α)†

)}
. (6.92)

Since the displacement operator does not change the entropy the second term is equal to
S(ρ̂th

Menv
) = g(Menv), ∀α. The first term is maximized for a symmetric bivariate Gaussian

distribution such that the modulated “output” state becomes a thermal state as well.
With the “input” energy constraint3

∫
d2α|α|2p(α) ≤ N̄ , (6.93)

this yields S(ˆ̄ρout) = g(N̄ +Menv) and thus, the classical capacity is given by Eq. (6.89).
Note that Eq. (6.89) recovers the Shannon capacity CSh of a classical channel with
additive white Gaussian noise in the classical limit, i.e. when the input energy N̄ as well
as the noise variance Menv is increased up to infinity while the signal-to-noise SNR =
N̄/Menv is kept constant. In this limit the arguments in the first and second term in
Eq. (6.89) diverge and since

lim
x→∞

[g(x)− log2(x)] =
1

ln 2
, (6.94)

we replace g(x) by the asymptotic function log2(x) which yields

lim
N̄→∞

Menv→∞
N̄

Menv
=SNR

CG
χ

(
ΦTH

(1,Menv), N̄
)

= log2(N̄+Menv)−log2(Menv) = log2

(
1 +

N̄

Menv

)
= 2CSh,

(6.95)

3Here the energy constraint is only imposed on the modulation.
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Figure 6.6.: Using the Bloch-Messiah decomposition any multimode pure Gaussian state
can be generated from the vacuum and a set of single mode squeezers Sini

preceded and followed by linear multi-port interferometers Θin1,Θin2. (a)
Reduction of the scheme for a collection of channels (ΦTH)⊗n and (b) de-
composition for the fiducial channel (ΦF)⊗n.

where we stated CSh previously in Eq. (2.16). The factor 2 stems from the fact that
the quantum channel has two degrees of freedom (i.e. two quadratures) and therefore in
total twice the input energy of the classical counterpart.

6.4.2. Additivity of the Gaussian capacity

In the previous section we found the one-shot Gaussian capacity CG
χ for N̄ ≥ N̄ thr. In

this energy regime we can prove furthermore that it is additive and thus, equal to the
Gaussian capacity CG:

Theorem 3. The Gaussian capacity of a Gaussian channel Φ with parameters (τ 6=
0, y > 0) and input energy N̄ ≥ N̄ thr is given by

CG(Φ, N̄) = CG
χ (ΦF, N̄), (6.96)

where CG
χ (ΦF, N̄) is stated in Eq. (6.81).
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Proof. The proof is structured as follows. First, we prove that the Gaussian minimum
output entropy of thermal channels ΦTH is additive (corresponding to ΦF with s = 0).
Then we extend this proof to the fiducial channel for input energies above the input
energy threshold N̄ thr (we present a simple and physically motivated proof, which is an
alternative to the one in [Hir06], where the energy constraint was not respected). Now
we show that this also implies the additivity of the one-shot Gaussian capacity in this
energy domain.

We introduced in Sec. 5.2.2 the Bloch-Messiah decomposition, which states that any
pure n-mode Gaussian (input) state can be generated from a set of n vacuum modes,
using n single-mode squeezers Sini preceded and followed by a linear multi-port in-
terferometer, corresponding to passive symplectic transformations Θin1 and Θin2 (see
Fig. 5.3). The multi-mode vacuum state with CM I/2 (where I is the 2n × 2n iden-
tity matrix) remains unchanged under the action of the first interferometer Θin1 and

therefore, we can omit it. The action of the channel (ΦTH
(τ,y))

⊗n
in terms of symplectic

transformation then reads

Vout =
1

2
XTHΘin2SinISinΘT

in2XTH + YTH, (6.97)

where

Sin = diag(esin1 , esin2 , ..., esinn ; e−sin1 , ..., e−sinn), (6.98)

corresponds to the joint operation of single mode squeezers, Θin2 is the symplectic
transformation of the second linear multi-port interferometer and

XTH =
√
|τ |
(
I 0
0 sgn(τ)I

)
, YTH = yI. (6.99)

Now we insert 1
|τ |XTHXTH = I between Θin2 and Sin and between Sin and ΘT

in2 in

Eq. (6.97) which leads to the equation

Vout =
1

2

1

|τ |XTHΘin2XTH

︸ ︷︷ ︸
≡Θ′in

XTHSinISinXTH
1

|τ |XTHΘT
in2XTH

︸ ︷︷ ︸
=Θ′Tin

+YTH

= Θ′in

(
1

2
XTHSinISinXTH + Θ′TinYTHΘ′in

)
Θ′Tin.

(6.100)

It is easy to prove that Θ′in is a symplectic (rotation) matrix corresponding to another
interferometer. In fact, for any matrix Θ′ defined as Θ′ = 1

|τ |XTHΘXTH (where Θ is a

passive symplectic transformation) we confirm orthogonality:

Θ′Θ′T =
1

τ2
XTHΘXTHXTHΘTXTH

=
|τ |
τ2

XTHΘΘTXTH = I,
(6.101)
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and the condition for the transformation to be a symplectic transformation:

Θ′ΩΘ′T =
1

τ2
XTHΘXTHΩXTH︸ ︷︷ ︸

=−Ω

ΘTXTH

= − 1

τ2
XTHΘΩΘTXTH

= − 1

τ2
XTHΩXTH = I.

(6.102)

We remark that Eqs. (6.101) and (6.102) imply the commutation relation

[Θ,XTH] = [XTH,Θ
′]. (6.103)

Furthermore, Θ′Tin leaves the noise matrix YTH invariant, i.e. Θ′inYTHΘ′Tin = YTH and
we obtain

Vout = Θ′in

(
1

2
XTHSinISinXTH + YTH

)
Θ′Tin. (6.104)

Thus, the general Gaussian input state entering the channel (ΦTH)⊗n is reduced to a
product state [see right hand side of Fig. 6.6 (a)]. Now we upper bound the one-shot
Gaussian capacity of (ΦTH)⊗n [in the same way as in Eq. (6.69)], i.e.

CG
χ

(
(ΦTH)⊗n, nN̄

)
≤ max

Vin,Vmod

S(V̄out)−min
Vin

S(Vout), (6.105)

where V̄out is the CM of the n-mode modulated output state, Vout the CM of the n-mode
output state and

Vin =
1

2
SinISin =

1

2
diag(e2sin1 , e2sin2 , ..., e2sinn ; e−2sin1 , ..., e−2sinn). (6.106)

The second term in Eq. (6.105) is then given by

min
Vin

S(Vout) =
∑

i

min
sini

g

(
νouti −

1

2

)
, (6.107)

where sini are the input squeezing parameters and

νouti =

√( |τ |
2
e2sini + y

)( |τ |
2
e−2sini + y

)
. (6.108)

Clearly, the latter is minimized if sini = 0, i.e. the optimal Gaussian input state is the
vacuum as before, which then leads to the minimum Gaussian output entropy

min
Vin

S(Vout) = n g

(
y +
|τ | − 1

2

)
, (6.109)

i.e. the minimum Gaussian output entropy of the one-mode thermal channel stated in
Eq. (6.88). As mentioned before, due to the subadditivity property of the entropy we
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6.4. Gaussian capacity

know that the first term in Eq. (6.105) is upper bounded by the entropy of n thermal
states with identical mean number of thermal photons, which is achieved by displacing
the input vacuum states with a non-correlated Gaussian modulation [in the same way
as in Eq. (6.76)]. Thus,

max
Vin,Vmod

S(V̄out) = n g

(
|τ |N̄ + y +

|τ | − 1

2

)
, (6.110)

from which follows that

1

n
CG
χ

(
(ΦTH)⊗n, nN̄

)
= CG

χ (ΦTH, N̄), (6.111)

which then implies the theorem for s = 0. Let us extend this proof to the fiducial
channel ΦF, i.e. to the general case when s 6= 0 as depicted in Fig. 6.6 (b). We use
again the Bloch-Messiah decomposition to decompose the general multi-mode Gaussian
input state. The first interferometer Θin1 can again be omitted because it does not
affect the n-mode vacuum state. From the definition of the fiducial channel we have the
equivalence

XF = XTH, YF = SYTHS, (6.112)

with S = diag(es, e−s). This leads to the equality

ΦF(V ) = S(XTHS
−1V S−1XTH + YTH)S. (6.113)

As a consequence we can replace each fiducial channel by a thermal channel preceded
by an anti-squeezer and followed by a squeezer [see right hand side of Fig. 6.6 (b)].

Now we focus again on the minimization of the output entropy. Then, the set of
squeezers S (at the individual outputs of the thermal channels) can be omitted since
they do not change the entropy and we have no energy constraint on the output. We
showed above that the entropy for the joint map (ΦTH)

⊗n
is minimized by the n-mode

vacuum state. Thus, the multi-mode input state that minimizes the output entropy
of the fiducial channel has to be in the n-mode vacuum state after passing the n anti-
squeezers S−1 [see right hand side of Fig. 6.6 (b)].

Therefore, one fixes the interferometer Θin2 = I and chooses each individual input
squeezer Sini to undo the individual anti-squeezers S−1, which fixes the overall input
state to

Vin =
1

2

(
e2sIn×n 0

0 e−2sIn×n

)
. (6.114)

It follows that

min
Vin

S
(

(ΦF)
⊗n

(Vin)
)

= n g

(
y +
|τ | − 1

2

)
, (6.115)

as before in Eq. (6.109). Then, one again maximizes the first term in Eq. (6.105) by the
entropy of n (identical) thermal states, which is obtained by the QWF solution for each
mode. It follows that

max
Vin,Vmod

S(V̄out) = n g

(
|τ |N̄ + y cosh(2s) +

|τ | − 1

2

)
, N̄ ≥ N̄ thr. (6.116)
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Figure 6.7.: Threshold function ythr vs. τ for different values of s and fixed input energy

N̄ = 1. All solid lines are mirror-symmetric around τ = 0.

Thus, for N̄ ≥ N̄ thr we maximize at the same time the first term and minimize the
second term in Eq. (6.105) by the same encoding (per channel) as in the single-mode
case and we find that

1

n
CG
χ

(
(ΦF)⊗n, nN̄

)
= CG

χ (ΦF, N̄), N̄ ≥ N̄ thr, (6.117)

which proves the theorem.

In order to visualize the validity of Theorem 3 we express N̄ thr in terms of a threshold
on y. Namely, for given input energy N̄ we solve Eq. (6.80) for the parameter y = ythr,
which gives the threshold value

ythr ≡
|τ |(e−2|s|(2N̄ + 1)− 1)

1− e−4|s| . (6.118)

Now, the QWF solution is applicable (implying CG = CG
χ ) if y ≤ ythr for given N̄ , s

and τ . We plot examples of ythr in the (y, τ) plane in Fig. 6.7 (recall Fig. 6.2). Since
ythr →∞ for s→ 0 we confirm that the one-shot Gaussian capacity of thermal channels
is always additive.

We recall from Sec. 6.3 that the one-shot capacity Cχ is known to be additive for
entanglement breaking channels. The proof that was presented in [HS04] can however
not be straightforwardly extended to the definition of the one-shot Gaussian capacity
CG
χ and therefore it is not known if CG

χ is additive in this domain as well.

6.4.3. Solution in the full input energy domain

Now we extend the solution to the one-shot Gaussian capacity to the input energy
domain N̄ < N̄ thr. Lemma 1 states that all CM are diagonal in the same basis so we
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6.4. Gaussian capacity

can choose the following notations:

Vout = diag(vq, vp), V̄out = diag(v̄q, v̄p), (6.119)

where

vq = |τ |iq + y e2s, vp = |τ | 1

4iq
+ y e−2s,

v̄q = |τ |(iq +mq) + y e2s, v̄p = |τ |
(

1

4iq
+mp

)
+ y e−2s.

(6.120)

Note that here we already introduced the purity constraint by replacing ip = 1/(4iq).
The optimization problem can in general be solved with the method of Lagrange

multipliers. We first obtain again the quantum water-filling solution with this method
and then analyze when the resulting equations no longer hold. Then, we show how the
optimization problem has to be modified in order to be valid for N̄ < N̄ thr.

We define the Lagrangian

L = g(M̄out)− g(Mout)−
β̄

ln 2

(
1

2

(
iq +

1

4iq
+mq +mp

)
− N̄ − 1

2

)
, (6.121)

where β̄ is a Lagrange multiplier in order to satisfy the energy constraint4 stated in
Eq. (6.59) and

Mout =
√
vqvp −

1

2
, M̄out =

√
v̄qv̄p −

1

2
. (6.122)

The extremum is obtained by solving

∇L = 0, ∇ =

(
∂

∂iq
,
∂

∂mq
,
∂

∂mp

)T

. (6.123)

We show in Appendix D.1 that the solution to this system of equations is precisely given
by the QWF solution

v̄q = v̄p, (6.124)

together with the optimal input squeezing iq = e2s/2, as obtained previously in Sec. 6.4.1.
For the more general parametrization

Y =

(
yq 0
0 yp

)
, (6.125)

where yq = y e2s and yp = y e−2s this solution furthermore implies the relations

vq

vp
=
yq

yp
=
iq
ip
, (6.126)

4We divided here the multiplier by ln 2 because both g-functions are expressed by log2(x) (i.e. expressed
in bits).
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6. One-mode Gaussian channel

i.e. the squeezing of the output matches the squeezing of the noise and of the input state.
However, we showed that in order for both modulations to be positive, i.e. mq ≥ 0 and
mp ≥ 0 the input energy has to satisfy N̄ ≥ N̄ thr. Thus, if N̄ < N̄ thr we know that
the resulting solution is unphysical. Therefore, the method of Lagrange multipliers has
to be modified and the solution must lay at the boarder of the (mq,mp) plane (where
trivially mq = mp = 0 cannot be optimal for N̄ > 0). Thus, we have

mq = 0 ∨ mp = 0, N̄ < N̄ thr. (6.127)

Therefore, the optimization problem depends only on two variables (with one constraint),
while one of the two modulation eigenvalues is kept equal to zero. If mq = 0 is optimal,
then the solution to the optimization problem is found by solving ∇L = 0 with

∇ =

(
∂

∂iq
,
∂

∂mp

)T

, (6.128)

which leads to the same equation that was obtained for the QWF solution (see Ap-
pendix D.1)

g′(M̄out)

(M̄out + 1
2)

(v̄p − v̄q) =
g′(Mout)

(Mout + 1
2)
y

(
e−2s − e2s

4i2q

)
, mq = 0, (6.129)

where, as mentioned above, for N̄ < N̄ thr the solution v̄q = v̄p together with the solution
iq = e2s/2 is no longer physical. If mp = 0 is optimal then one equivalently obtains the
equation

g′(M̄out)

(M̄out + 1
2)

(v̄q − v̄p) =
g′(Mout)

(Mout + 1
2)
y
(
e2s − 4i2q e

−2s
)
, mp = 0. (6.130)

Both equations lead to the following Lemma:

Lemma 2. For an input energy N̄ < N̄ thr the maximum of χG is achieved for

v̄q 6= v̄p. (6.131)

Proof. First, we state the following inequality:

g′(M̄out)

(M̄out + 1
2)
≤ g′(Mout)

(Mout + 1
2)
, (6.132)

because by definition M̄out ≥ Mout and 1
xg
′(x) is a monotonically decreasing function.

Then, if mq = 0 then Eq. (6.129) holds and implies that

|v̄p − v̄q| ≥ y
∣∣∣∣e−2s − e2s

4i2q

∣∣∣∣ , mq = 0. (6.133)

Equivalently, if mp = 0 then Eq. (6.130) holds and implies that

|v̄q − v̄p| ≥ y|e2s − 4i2q e
−2s|, mp = 0. (6.134)

Equality in Eqs. (6.133) and (6.134) can only by fulfilled (by a physical solution) if
N̄ ≥ N̄ thr. This proves the Lemma.
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Figure 6.8.: Solution for N̄ < N̄ thr (shown schematically for τ = 1): (a) the noisier
quadrature is no longer modulated, i.e. mq = 0. (b) and (c) resulting states
in the phase-space.

Lemma 2 implies that it is no longer optimal to match the squeezing of the environ-
ment, i.e. iq 6= e2s/2 (if mq = 0). Since at the same time v̄q 6= v̄p we conclude that for
N̄ < N̄ thr in χG neither the first is maximized nor the second term is minimized.

Now, we prove which modulation eigenvalue has to be fixed to zero:

Lemma 3. For an input energy N̄ < N̄ thr the χG is maximal if

mq = 0, s > 0,

mp = 0, s < 0,
(6.135)

i.e. the noisier quadrature is no longer modulated.

Proof. We prove in the following the statement mq = 0, s > 0. The second statement
in Eq. (6.135) can be proven equivalently.

Let us assume that in contrary to the statement of the lemma we have mp = 0, s > 0.
We know that according to Lemma 2 we have two possible cases: v̄q > v̄p or v̄q < v̄p.

Let us assume first that v̄q > v̄p and that we have found an optimal solution. Suppose
we remove a fraction of mq which is smaller than half of the difference v̄q − v̄p and set
mp equal to this fraction. This will not change the input energy as well as the output
entropy (second term in χG). However, the overall modulated output entropy (first term
in χG) will increase. The reason is that for a constant arithmetic mean (a + b)/2 the
geometric mean

√
ab increases if the difference between a and b decreases. Therefore,

by doing this we increased χG which shows that our original assumption is in fact not
optimal. Thus, for v̄q > v̄p it follows that mq = 0, s > 0 is indeed optimal.

Now we consider v̄q < v̄p and assume that we have found an optimal solution. Then
from Eq. (6.133) it follows that

iq >
1

2
e2s (6.136)
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lower dotted lines are iq and 1/(4iq). The input energy threshold is here
given by N̄ thr = 0.846.

and from the condition s > 0 we deduce easily that iq > 1/2 > 1/(4iq). Taking into
account that mq > mp = 0 we conclude that in fact v̄q > v̄p which contradicts to our
assumption. Thus, the lemma is proven.

Note that as a direct consequence of Lemma 3 it follows that

1

2
≤ iq <

1

2
e2s, N̄ < N̄ thr. (6.137)

Let us focus from now on (without loss of generality) to the case s > 0. We show that
it is optimal to fix mq = 0 for N̄ < N̄ thr, which implies

v̄q = vq, s > 0, N̄ < N̄ thr, (6.138)
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i.e. the noisier output quadrature is equal to the noisier modulated output quadrature.
In addition, we can replace the modulation eigenvalue mp with the energy constraint:

mp = 2N̄ + 1− iq −
1

4iq
. (6.139)

We showed above that the solution to the optimization problem is found by solving the
transcendental equation (6.129). Now we can express this equation alternatively as an
implicit function that (for given fixed channel parameters) depends only on iq, i.e.

F (iq) ≡ g′(M̄out)

(M̄out + 1
2)

(v̄p − vq)− g′(Mout)

(Mout + 1
2)
y

(
e−2s − e2s

4i2q

)
, (6.140)

where we used the fact that mq = 0 implies v̄q = vq. The solution is now found by
solving

F (iq) = 0. (6.141)

One way to prove that there exists only one solution to Eq. (6.141) is to prove that
∂F (iq)
∂iq

has a definite sign. We prove in Appendix D.3.2 (see Eq. (D.66) and discussion

before) that indeed
∂F (iq)

∂iq
< 0, τ = 1. (6.142)

For other values of τ one can find an example (e.g. N̄ = 10, τ = 0.15,Menv = 10−3, s =
0.1) for which the sign of the derivative changes (i.e. it has local extrema), and thus,
Eq. (6.142) is not valid for arbitrary τ . Therefore, we do not exclude that in general
F (iq) = 0 may have more than one solution. Intensive numerical calculations did not
lead to any case of more than one root and therefore, we take the uniqueness of the
solution of F (iq) = 0 in the following for granted.

Then, the one-shot Gaussian capacity can be expressed as

CG
χ (Φ, N̄) = CG

χ (ΦF, N̄) =
{
g(M̄out(iq))− g(Mout(iq))

∣∣∣ F (iq) = 0
}
, N̄ < N̄ thr,

(6.143)
where we stated the explicit dependence on the input squeezing iq.

We remark that up to now, we have not investigated the solution to the limiting cases
rank(X) = 1 or rank(Y ) = 1. We show in Sec. 6.4.7 that their solutions correspond in
fact to limiting cases of Eq. (6.143).

The optimal eigenvalues for an example (with τ = 1) are depicted in a stack plot in
Fig. 6.8 (a) and as variances in phase space in (b) and (c). The transition from the
QWF solution to the solution below the input energy solution is plotted in Fig. 6.9
(for particular chosen values): One clearly observes the “splitting” v̄q 6= v̄p when N̄
is decreased below N̄ thr. The noisier quadrature is then no longer modulated and we
observe that the squeezing decreases monotonically with decreasing input energy (this
is proven for τ = 1 in Appendix D.3.2, see Eq. (D.67) and discussion before). At N̄ = 0
both modulation eigenvalues are equal to zero and the input state corresponds to the
(unsqueezed) coherent state, i.e. iq = ip = 1/2.

111



6. One-mode Gaussian channel

6.4.4. Limiting cases

We begin by analyzing the behavior of CG
χ when the channel parameters tend to infinity.

We first investigate the Gaussian capacity in the limit s → ∞. Since χG = g(M̄out) −
g(Mout) depends on M̄out and Mout we first study the behavior of these two parameters
in this limit. Clearly, the input energy threshold N̄ thr (in the form stated in Eq. (6.171))
diverges in this limit and thus the solution below the energy threshold applies. We
observe that [using Eq. (D.7)]

lim
s→∞

Mout →∞,
lim
s→∞

M̄out →∞.
(6.144)

In this limit we can replace the function g(x) in χG by log2(x) [using Eq. (6.94)] and
thus,

lim
s→∞

χG = lim
s→∞

log2

(
M̄out

Mout

)

=
1

2
log2(4iq[2N̄ + 1− iq]).

(6.145)

Since log2(x) is a monotonous function it is sufficient to maximize its argument to find
the capacity in this limit. The argument is maximized for the encoding

iq = N̄ +
1

2
, (6.146)

which leads to

lim
s→∞

CG
χ (ΦF, N̄) = log2(2N̄ + 1). (6.147)

The derivation can be repeated for the limiting case s → −∞ and leads to the same
outcome. This result can be interpreted as follows: In the limit s→∞ one of the noise
quadratures vanishes (here: the p-quadrature) and the other becomes infinite. Then,
only one degree of freedom is available for information transmission but at the same
time no longer suffers noise, except for the “noise” induced by the input state itself. We
observe, that the one-shot Gaussian capacity then coincides with the Shannon capacity
CSh stated in Eq. (2.50) with signal to noise ratio N̄/(1/2) = 2N̄ . The limiting value
stated in Eq. (6.147) is confirmed in Figs. 6.10, 6.11 and 6.12 (c).

Let us now consider the limit when τ tends to ±∞. In order to treat this limit we need
to take into account the dependency of y on τ and therefore use the parametrization
previously introduced in Eq. (6.10) (both limiting cases concern only the amplification
channel and phase-conjugating channel)

YF = |1− τ |Venv, (6.148)
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Figure 6.10.: Gaussian capacity CG
χ vs. τ . The ×-markers are CG

χ for the classical addi-
tive noise channel (τ = 1), where from bottom to top s = {0, 1, 2, 5}. The
lines are CG

χ for the other channels (where τ = 1 is the perfect transmission
channel), where the dotted line corresponds to s = 0, the dashed-dotted
line to s = 1, the dashed line to s = 2 and the solid line to s = 5. The
other parameters are N̄ = 1 and Menv = 0.1.
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where in addition we choose the parametrization:

Venv = diag(eq, ep),

eq =

(
Menv +

1

2

)
e2s,

ep =

(
Menv +

1

2

)
e−2s.

(6.149)

According to Eqs. (6.120) and (6.122) the quantity χG only depends on the absolute
values |τ | and |1− τ |. Therefore, χG tends in both limits τ → ±∞ to the value the limit
|τ | → ∞. Thus, we only need to consider the latter. Again, both arguments Mout and
M̄out, respectively, diverge [according to Eq. (6.122)] which implies that the difference
of g-functions again can be replaced by a difference of logarithms, i.e.

lim
|τ |→∞

χG = lim
|τ |→∞

log2

(
ν̄out − 1

2

νout − 1
2

)

= lim
|τ |→∞

log2



|τ |
[√(

iq +mp + |1−τ |
|τ | eq

)(
ip +mq + |1−τ |

|τ | ep

)
− 1

2|τ

]

|τ |
[√(

iq + |1−τ |
|τ | eq

)(
ip + |1−τ |

|τ | ep

)
− 1

2|τ

]




=
1

2
log2

(
(iq +mq + eq)(ip +mp + ep)

(iq + eq)(ip + ep)

)
≡ χG

(|τ |→∞).

(6.150)

The input energy threshold stated in Eq. (6.83) in this limit behaves as follows:

lim
|τ |→∞

N̄ thr = lim
|τ |→∞

1

2

(√
eq

ep
+
|1− τ |
|τ | (eq − ep)− 1

)

=
1

2

(√
eq

ep
+ eq − ep − 1

)
.

(6.151)

Clearly, for input energies N̄ ≥ N̄ thr the limiting function χG
(|τ |→∞) is maximized by the

quantum water-filling solution and optimal squeezing:

iq +mq + eq = ip +mp + ep,

iq =
1

2

√
eq

ep
.

(6.152)

For input energies N̄ < N̄ thr we have (as before) mq = 0 and the limiting expression
simplifies to

χG
(|τ |→∞) =

1

2
log2

(
2N̄ + 1− iq + ep

1
4iq

+ ep

)
, N̄ < N̄ thr. (6.153)

As in the case s→∞ it is sufficient to maximize the argument in order to maximize the
logarithm. Deriving the argument with respect to iq and equalizing it to 0 leads to the
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6.4. Gaussian capacity

equation
2N̄ + 1− iq + ep

1
4iq

+ ep
= 4i2q, (6.154)

which yields

iq =
1

2

√
1 +

2N̄ + 1

ep
+

1

4e2
p

− 1

4ep
. (6.155)

The optimal input encodings for χG
(|τ |→∞) lead to the solution of the one-shot Gaussian

capacity in this limit:

lim
τ→±∞

CG
χ (ΦF, N̄) =





log2

(
2N̄ + 1 + eq + ep

)
− log2

(
1 + 2

√
eqep

)
, N̄ ≥ N̄ thr,

log2

(√
1 + (2N̄ + 1)e−1

p + e−2
p /4− e−1

p /2

)
, N̄ < N̄ thr,

(6.156)
If we replace ep = (Menv + 1/2)e−2s then it is straightforward to show that

lim
s→±∞

lim
τ→±∞

CG
χ (ΦF, N̄) = log2(2N̄ + 1), (6.157)

i.e. we recover the limit stated in Eq. (6.147). In order to study the monotonicity of the
classical capacity and Gaussian capacity on the parameter τ the following Lemma will
be useful.

Lemma 4. For given parameters τ1, τ2 where either τ1, τ2 ≥ 1 or τ1, τ2 ∈ [0, 1], the
following equality holds:

ΦF
(τ2,|1−τ2|(Menv+1/2),s) ◦ ΦF

(τ1,|1−τ1|(Menv+1/2),s) = ΦF
(τ1τ2,|1−τ1τ2|(Menv+1/2),s). (6.158)

Proof. In the following proof we use the parametrization

Y = |1− τ |Venv, Venv =

(
Menv +

1

2

)(
e2s 0
0 e−2s

)
. (6.159)

Let us first prove the Lemma for τ1, τ2 ≥ 1, which implies that yi = (τi−1)(Menv +1/2).
In this case the total output covariance matrix of the concatenated channel stated on
the left hand side of Eq. (6.158) reads

Vout = τ2(τ1Vin + (τ1 − 1)Venv) + (τ2 − 1)Venv

= τ1τ2Vin + (τ1τ2 − 1)Venv,
(6.160)

which confirms the Lemma for τ1, τ2 ≥ 1. Equivalently, in the case τ1, τ2 ∈ [0, 1] we have
yi = (1− τi)(Menv + 1/2) the total output CM reads

Vout = τ2(τ1Vin + (1− τ1)Venv) + (1− τ2)Venv

= τ1τ2Vin + (1− τ1τ2)Venv,
(6.161)

which completes the proof.
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6. One-mode Gaussian channel

Using Lemma 4 we can straightforwardly prove the monotonicity of the capacities for
the lossy channel (τ ∈ [0, 1]) and amplification channel (τ ≥ 1). The classical capacity
(as well as the Gaussian capacity) fulfills the pipelining property [stated in Eq. (3.37)].
Then, using Eq. (6.158) we have (where τ1, τ2 ≥ 1 or τ1, τ2 ∈ [0, 1])

C
(

ΦF
(τ2,|1−τ2|(Menv+1/2),s) ◦ ΦF

(τ1,|1−τ1|(Menv+1/2),s), N̄
)

= C
(

ΦF
(τ1τ2,|1−τ1τ2|(Menv+1/2),s), N̄

)
≤ C

(
ΦF

(τ1,|1−τ1|(Menv+1/2),s), N̄
)
.

(6.162)

In the case τ1, τ2 ≥ 1 the effective gain parameter τeff ≡ τ1τ2 satisfies τeff ≥ τ1, τ2,
∀τ1, τ2. Thus, a channel with increased gain τ ′ > τ can always be decomposed into
an amplification channel with gain τ followed by another amplification channel. Due
to the pipelining property the classical capacity (and the Gaussian capacity) of the
channel with gain τ ′ cannot have increased. In the case of τ1, τ2 ∈ [0, 1] the effective
transmissivity τeff ≡ τ1τ2 satisfies τeff ≤ τ1, τ2, ∀τ1, τ2. Consequently, increasing the
losses in the channel cannot increase the classical capacity (and Gaussian capacity).

For the amplification channel τ ≥ 1 the highest Gaussian capacity is given by the
lossless case τ = 1 for which CG = C = g(N̄). Since increasing τ cannot increase the
Gaussian capacity and CG

χ , we proved that CG
χ monotonically tends from above to its

limiting value stated in Eq. (6.156). Thus,

g(N̄) ≥ CG
χ

(
ΦF

(τ,y,s), N̄
)
≥ lim

τ ′→∞
CG
χ

(
ΦF

(τ ′,y,s), N̄
)
, τ ≥ 1. (6.163)

We plot CG
χ vs. τ for different values of squeezing in Fig. 6.10. We confirm the limiting

behavior stated in Eq. (6.156) in Fig. 6.11, where we choose the same parameters as in
Fig. 6.10 but plot for a larger range of τ . The limit limτ→+∞CG

χ is reached from above

(as proven above), whereas the limit limτ→−∞CG
χ is reached from below (with decreasing

τ). Unfortunately, the composition of two phase-conjugating channels with same noise
parameters Menv, s does not lead to another phase-conjugating channel. Therefore, the
above reasoning does not hold for the phase-conjugating channel and we have to rely on
numerics to argue on the monotonicity of CG

χ .
The last limiting case to consider is the case Menv → ∞. In this limit again both

values Mout and M̄out diverge, and thus, one can apply the same method as for the limit
|τ | → ∞ in order to find CG

χ in this limit. One straightforwardly confirms the expected
result:

lim
Menv→∞

CG
χ (ΦF, N̄) = 0. (6.164)

Since Bob at the output of the channel receives a signal which is maximally noisy (in
both quadratures) its decoded value becomes completely random and thus, the capacity
inevitably tends to zero.

We plot in Fig. 6.12 the one-shot Gaussian capacity CG
χ with respect to the input

energy N̄ and the thermal photons Menv, where we choose the parametrization stated
in Eq. (6.4). We plot in Fig. 6.12 (a)-(c) CG

χ with respect to N̄ ,Menv, τ and s. We

observe in Fig. 6.12 (a) that CG
χ increases monotonically with N̄ . Any other behavior
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Figure 6.11.: Gaussian capacity CG
χ vs. τ , where we do not plot the values for τ ∈ (0, 1)

and choose the same parameters as in Fig. 6.10, i.e. N̄ = 1 and Menv = 0.1:
the dotted line corresponds to s = 0, the dashed-dotted line to s = 1, the
dashed line to s = 2 and the solid line to s = 5. The gray horizontal lines
correspond to the analytical limiting values stated for limτ→±∞CG

χ stated

in Eq. (6.156).
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Figure 6.12.: One-shot Gaussian capacity CG
χ vs. channel parameters. (a) CG

χ vs N̄ , from
top to bottom τ = {1, 1.3, 0.41,−0.5}; the other parameters are s = 0.5 and
Menv = 0.1. (b) CG

χ vs Menv, from top to bottom τ = {1, 1.3, 0.41,−0.5};
the other parameters are s = 0.5 and N̄ = 0.1. (c) CG

χ vs s, from top

to bottom τ = {1, 1.1, 0.41,−0.5}; (d) CG
χ vs s, from top to bottom τ =

{0.34, 0.3759, 0.4, 0.4238, 0.455}; the other parameters for (c) and (d) are
N̄ = 0.1 and Menv = 10−3.
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would be non-physical: an optimal transmission rate CG
χ (Φ, N̄ ′) achieved for N̄ ′ > N̄

must be higher than CG
χ (Φ, N̄) since any increase in input energy can be used to use the

same input states with an increased modulation (note that in this comparison all other
channel parameters are fixed).

We confirm in Fig. 6.12 (b) that CG
χ decreases with Menv, which is the expected

behavior as well (though we do not provide an analytical proof here).
Finally, we observe in Figs. 6.12 (c) and (d) that the behavior with respect to the

environment squeezing s is not monotonous (in the case of the lossy channel we depict
an example where a maximum followed by a minimum appears). For this reason we
investigate the dependence of the Gaussian capacity on the environment squeezing in
detail in the following section where we introduce as well a new parametrization.

6.4.5. Frequency parametrization

In the following section we investigate the role of the channel parameters, in particular
the dependency of the one-shot Gaussian capacity on the environment squeezing. We
choose a new parametrization where we represent the squeezing in terms of “frequen-
cies”5: all optimal CM were shown to be diagonal which permits us to choose the general
form

V =

(
M +

1

2

)(
ω−1 0

0 ω

)
, (6.165)

for all covariance matrices that represent quantum states. A thermal state is then simply
given by ω = 1. For the effective added noise of the fiducial channel we choose the form

YF = y

(
ω−1

env 0
0 ωenv

)
, (6.166)

keeping the parameter y invariant. Without loss of generality we assume in the following
that ωenv < 1 (which is equivalent to s > 0 in the other parametrization). The CM of the
pure input state state and modulated input state V̄in = Vin + Vmod read, respectively,

Vin =
1

2

(
ω−1

in 0
0 ωin

)
, V̄in =

(
M̄in +

1

2

)(
ω̄−1

in 0
0 ω̄in

)
, (6.167)

and the CM of the output and modulated output CM are given by

Vout =

(
Mout +

1

2

)(
ω−1

out 0
0 ωout

)
, V̄out =

(
M̄out +

1

2

)(
ω̄−1

out 0
0 ω̄out

)
. (6.168)

We remark that since Vmod corresponds to a classical Gaussian distribution it physically
makes no sense to associate a frequency to it. Therefore, in the following we work instead
with the states with covariance matrices Vin and V̄in.

5We underline that ω is not a frequency as it does not have the same physical dimension. However,
in the solution the modulated output “frequency” enters in the same way as an actual frequency as
shown in what follows. We omit the quotation marks from now on for simplicity.
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6. One-mode Gaussian channel

This new parametrization offers a very elegant form for the solution to the optimization
problem. The quantum water-filling solution v̄q = v̄p is now simply expressed as

ω̄out = 1, N̄ ≥ N̄ thr. (6.169)

The optimal squeezing iq = e2s/2 is now expressed as a “resonance” of the input, envi-
ronment as well as the output state [see Eq. (6.126)], i.e.

ωin = ωenv = ωout, N̄ ≥ N̄ thr. (6.170)

The input energy threshold [see Eq. (6.80)] in this new parametrization reads

N̄ thr =
1

2ωenv

[
1 +

y

|τ |
(
1− ω2

env

)]
− 1

2
, (6.171)

where again for a thermal noise ωenv = 1 the threshold vanishes. Then, one can find an
alternative expression for the energy threshold by solving N̄ = N̄ thr with respect to the
noise frequency ωenv ≡ ωthr, i.e. one obtains the “threshold frequency”

ωthr =

√
4y(y + |τ |) + τ2(1 + 2N̄)2 − |τ |(1 + 2N̄)

2y
. (6.172)

For given parameters y, |τ | and N̄ we know that for ωenv < ωthr we have N̄ < N̄ thr. With
the solution stated in Eqs. (6.169) and (6.170) the one-shot Gaussian capacity reads

CG
χ (Φ, N̄) = g

(
|τ |N̄ +

y

2

(
ω−1

env + ωenv

)
+
|τ | − 1

2

)
− g

(
y +
|τ | − 1

2

)
, N̄ ≥ N̄ thr.

(6.173)
We treat the solution for N̄ < N̄ thr again with the method of Lagrange multipliers

but choose different degrees of freedom. Namely, we choose

∇ =

(
∂

∂ωin
,

∂

∂ω̄out

)T

. (6.174)

The Lagrangian is given by

L = g(M̄out)− g(Mout)−
β̄out

ln 2

(
1

2

(
M̄out +

1

2

)
(ω̄−1

out + ω̄out)− N̄out −
1

2

)
, (6.175)

where the input energy constraint N̄ is now translated to an output energy constraint
using the relation

N̄out =
1

2
Tr[V̄out]−

1

2
=
|τ |
2

(2N̄ + 1) +
y

2
(ωenv + ω−1

env)− 1

2
, (6.176)

because the noise parameters (y, ωenv) are fixed. The absence of modulation in the
noisier quadrature (mq = 0) is now expressed as

(
M̄in +

1

2

)
1

ω̄in
− 1

2ωin
= 0, N̄ < N̄ thr. (6.177)

120



6.4. Gaussian capacity

We obtain in Appendix D.2 the solution to the optimization problem in the new
parametrization. First, we find that the optimal number of thermal photons of the
modulated output state is given by a Bose-Einstein statistics:

M̄out =
1

eω̄outβ̄out − 1
, (6.178)

which means that the multiplier β̄out can be regarded as an inverse temperature of the
modulated output state. We can justify the definition of the inverse temperature further:
In thermodynamics the inverse temperature is defined as

∂S

∂E
≡ β. (6.179)

where E is the (fixed) energy of the system. Here, this quantity corresponds to the mean
number of photos N̄out (at the output). If we choose N̄out as a variable and define the
Lagrangian accordingly, i.e.

L′ = g(M̄out)− g(Mout)−
β̄out

ln 2

(
N̄out −

1

2
Tr[V̄out]−

1

2

)
, (6.180)

then
∂L′
∂N̄out

=
∂g(M̄out)

∂N̄out
− β̄out

ln 2
= 0, (6.181)

and we obtain
∂S(ρ̂G

M̄out
)

∂N̄out
=
β̄out

ln 2
, (6.182)

which coincides with the definition of thermodynamics6. The use of β̄out will become
clear when discussing the solution to a collection of one-mode Gaussian channels in
Chapter 7, where we show that the joint solution can indeed be interpreted as a “ther-
mal equilibrium” of all individual channels with common temperature β̄−1

out. Note, that
Eq. (6.178) was already derived previously for the lossy channel (τ ∈ [0, 1]) in [PLM12].

We define now in general the inverse temperature as the function

β(M,ω) =
g′(M) ln 2

ω
. (6.183)

Then, we use the additional short notation

βout = β(Mout, ωout). (6.184)

This leads (see Appendix. D.2) to the following solution to the optimization problem (in
the full input energy domain):

ω̄out =

{ √
1− βout

β̄out

(
ω2

in − ω2
out

)
, ωenv < ωthr,

1, ωenv ≥ ωthr.
(6.185)

6The factor ln 2 accounts for the fact that we use in the definition of the von Neumann entropy loga-
rithms to the base 2.
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6. One-mode Gaussian channel

“Resonance” occurs when ωin = ωout, i.e. we confirm that Eq. (6.185) recovers Eq. (6.169)
in the limit ωin → ωout for N̄ → N̄ thr. Thus, we have an “off-resonance” solution if
ωenv < ωthr (i.e. N̄ < N̄ thr) and a “resonance solution” if ωenv ≥ ωthr (i.e. N̄ ≥ N̄ thr).
Note that in order to evaluate Eq. (6.185) one needs to express βout, β̄out, ωout and ωin as
functions of ω̄out, the given noise parameters (τ, y, ωenv) and the input energy constraint
N̄ , or alternatively the output energy constraint N̄out. We express all parameters as
functions of ωin in Eq. (D.25) in the Appendix.

Finally, the one-shot Gaussian capacity for input energies below the threshold can be
expressed as

CG
χ (Φ, N̄) =

{
g(M̄out(ωin))− g(Mout(ωin))

∣∣∣ ω̄out =

√
1− βout

β̄out

(
ω2

in − ω2
out

)
}
, ωenv < ωthr.

(6.186)
In Fig. 6.13 we plot one-shot Gaussian capacities and different frequencies vs. the en-
vironment frequency ωenv. We clearly observe the transition to the resonance solution
when ωin and ωout coincide for ωenv ≥ ωthr. In addition, we see that ω̄out = 1 in this
regime. Interestingly, the modulated input frequency fulfills ω̄in = 1 whenever CG

χ has
an extremum. This will be further elaborated in the following.

6.4.6. Dependency on channel parameters

Now we analyze the behavior of the capacity with respect to its channel parameters,
primarily with respect to the environment frequency ωenv.

First, recall the solution in the limit s → ∞, which corresponds now to ωenv → 0.
Interestingly, Eq. (6.146) implies together with Eq. (6.177) that in this limit the optimal
modulated input state is a thermal state, i.e.

ω̄in = 1, M̄in = N̄ . (6.187)

The latter leads furthermore to the equation
(
M̄out +

1

2

)(
ω̄out −

1

ω̄out

)
= y

(
ωenv −

1

ωenv

)
, (6.188)

which states that the difference in the variances of the modulated output state are exactly
matched by the difference in the noise variances.

Next, we investigate the behavior of the capacity with respect to ωenv, where 0 ≤
ωenv ≤ 1. Namely, we try to find extrema of the capacity with respect to ωenv.

First, we investigate the behavior for N̄ ≥ N̄ thr, or, equivalently ωenv ≥ ωthr, where
ωthr is stated in Eq. (6.172). From Eq. (6.173) it is straightforward to deduce that

∂CG
χ

∂ωenv
< 0,

∂2CG
χ

∂ω2
env

> 0, ωenv ≥ ωthr, (6.189)

i.e. the capacity is decreasing with ωenv and a convex function with respect to ωenv.
Therefore, the extremum (or extrema) lays in the region [0, ωthr].
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Figure 6.13.: Frequencies (left axis) and one-shot Gaussian capacity CG
χ (right axis) vs.

ωenv. The dashed vertical line is ωthr. For τ = 0.41 only ω̄in and CG
χ are

plotted and the horizontal dashed line indicates the value 1. Values are: (a)
(τ = −1, N̄ = 1,Menv = 0.1, ωthr = 0.59), (b) (τ = 0.41, N̄ = 0.1,Menv =
10−3, ωthr = 0.92), (c) (τ = 1, N̄ = 1,Menv = 0.1, ωthr = 0.362), and (d)
(τ = 1.167, N̄ = 1,Menv = 0.1, ωthr = 0.358). One confirms in Fig. (b)-(d)
that if CG

χ is extremal then ω̄in = 1.
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Figure 6.14.: Capacities CG
χ vs. environment frequency ωenv (where for each plot

from bottom to top) (a): τ = {−0.125,−0.5,−1,−4}, (b): τ =
{0.34, 0.3759, 0.4, 0.4238, 0.455}, (c): y = {0.125, 0.2, 1/

√
12, 0.4} and (d):

τ = {1.2, 1.35, 1 + 1/
√

3, 1.9}. For all plots N̄ = 0.1, and furthermore
Menv = 10−3 except for the case τ = 1 (classical additive noise channel),
where y = Menv. For τ ∈ [0, 1] the curve corresponding to y = ỹ has
exactly a saddle point at finite squeezing, two extrema can be found for
ỹ < y < yc and one maximum is found for y < yc. For the classical additive
noise channel (τ = 1) and the amplifier (τ ≥ 1) the curves corresponding
to y ≥ yc = 1/

√
12 are monotonically increasing with decreasing ωenv

where for y < yc a maximum appears. The densely dashed curve indicates
CG
χ (N̄ = N̄ thr) at ωenv = ωthr for given y: for ωenv ≥ ωthr the quantum

water-filling solution holds, for ωenv < ωthr it is no longer satisfied.

124



6.4. Gaussian capacity

Again, in order to find an extremum we use the method of Lagrange multipliers. Since
we extremize now with respect to ωenv as well, the gradient reads

∇ =

(
∂

∂ωin
,

∂

∂ω̄out
,

∂

∂ωenv

)T

. (6.190)

and the Lagrangian reads still as in Eq. (6.175). Note however, that the output energy
constraint N̄out depends on ωenv and thus, we need to derive with respect to N̄out as
well. Now ∇L = 0 is a system of three equations which leads to the additional solution
(see Appendix D.2 for details):

ω̄out =

√
ω2

env −
βout

β̄out
(ω2

env − ω2
out). (6.191)

We can use Eq. (6.185) to express βout/β̄out and insert it in the latter leading to

ω̄2
out − 1

ω̄2
out − ω2

env

=
ω2

out − ω2
in

ω2
out − ω2

env

. (6.192)

By injecting the definition for ωout, stated in Eq. (D.25), in Eq. (6.192) its right hand
side is simplified to

ω2
out − ω2

in

ω2
out − ω2

env

= − 2yωin

|τ |ωenv
. (6.193)

Inserting the expression for ω̄out, given in Eq. (D.25), in the left hand side of (6.192)
and equalizing it with Eq. (6.193) leads to the joint solution

∂CG
χ

∂ωenv
= 0, ωin =

1

(1 + 2N̄)
, ω̄in = 1, M̄in = N̄ , (6.194)

identical to the case limωenv→0C
G
χ [see Eqs. (6.146) and (6.187)]. This joint solution is

shown for several examples in Fig. 6.13. Solving the transcendental equation (6.191)
with the solution for ωin stated in Eq. (6.194) leads to the value of ωenv (if there is a
solution) for which CG

χ is extremal. For the following, we shall use the notations to
denote a maximum, minimum and saddle point:

∂CG
χ

∂ωenv

∣∣∣∣∣
ωenv=ωenv,max

= 0,
∂2CG

χ

∂ω2
env

∣∣∣∣∣
ωenv=ωenv,max

< 0,

∂CG
χ

∂ωenv

∣∣∣∣∣
ωenv=ωenv,min

= 0,
∂2CG

χ

∂ω2
env

∣∣∣∣∣
ωenv=ωenv,min

> 0.

∂CG
χ

∂ωenv

∣∣∣∣∣
ωenv=ω̃env

=
∂2CG

χ

∂ω2
env

∣∣∣∣∣
ωenv=ω̃env

= 0.

(6.195)

Interestingly, according to Eq. (6.194) the optimal encoding at the squeezing value where
the capacity is extremal coincides with the optimal encoding at ωenv → 0. Injecting
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6. One-mode Gaussian channel

ωin = (1 + 2N̄)−1 into the transcendental Eq. (6.191) leads to the solutions for the
points ωenv,max and ωenv,min (when they exist), where numerical evidence shows that
there are only the following types of solutions to Eq. (6.192):

1. No solution, i.e. no extremum

2. One solution corresponding to a maximum at squeezing ωenv = ωenv,max ∈ (0, ωthr)

3. Two solutions corresponding to a maximum at squeezing ωenv = ωenv,max ∈ (0, ωthr)
and a minimum at squeezing ωenv = ωenv,min ∈ (0, ωthr)

4. One solution corresponding to a saddle point at squeezing ωenv = ω̃env ∈ (0, ωthr)

Only for the lossy channel (τ ∈ [0, 1]) we observe that all four scenarios occur (confirming
[PLM12]), whereas for the other channels either no solution (i.e. no extremum) or one
maximum can be found. We justify this in detail in what follows. The dependency
on ωenv can be classified using this numerical observation, i.e. that there are at most
two extrema, and the behavior of the capacity in the limit ωenv → 0. Since in this limit
the encoding ωin = (1 + 2N̄)−1 was shown above to be optimal, we evaluate the Taylor
expansion around ωenv = 0 of χG with this encoding. This is equivalent to expanding
CG
χ in this limit, i.e.

CG
χ ≈ log2(1 + 2N̄) + aωenv + b ω2

env + c ω3
env +O(ω4

env), (6.196)

where

a = K1(12y2 − 1),

b = K2

×
(

3

20
+

(3− 10τ2)λ̄2

20
− 2y2(λ̄2 + 1) + 12y4(λ̄2 + 1)

)
,

Kj =
λ̄2 − 1

12(y|τ |λ̄)j ln 2
,

(6.197)

λ̄ ≡ 1 + 2N̄ and c is not explicitly stated as its exact form is of no further use. We
observe that the dominant linear term is canceled if

yc ≡
1√
12
, (6.198)

which implies that ∂CG
χ /∂ωenv = 0 in the vicinity of ωenv = 0. Using the fact that for

ωenv ∈ [ωthr, 1] the capacity is a monotonically increasing and convex function of ωenv

and the previous claim that the capacity has never more than two extrema we conclude:
if y < yc then there is one maximum at a value ωenv,max ∈ [0, ωthr]. Furthermore, for
y < yc the limiting value limωenv→0C

G
χ = log2(2N̄ + 1) is reached from above with

decreasing ωenv.
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6.4. Gaussian capacity

τL τ̃R τR

yc

ỹ(N̄ = 0)

0 0.25 0.75 1 1.25
0

0.1

0.2

0.4

0.5

τ

y

(non-physical)

one max

monotonous

one max & one min
or saddle point

Figure 6.15.: Extremality properties of CG
χ (one-mode) with respect to environment “fre-

quency” ωenv, determined by y and τ , where τ = 1 corresponds to the
classical additive noise channel. North-East lines (y ≤ |1 − τ |/2): zone
where y no longer corresponds to a quantum channel. Dark gray trian-
gular region (y < yc): the capacity exhibits one maximum. Light gray
region [yc < y < ỹ(N̄ = 0)]: the capacity either exhibits one minimum
and one maximum or one saddle point (see Fig. 6.16 for a full classification
and Fig. 6.17 for concrete examples). White region (y ≥ ỹ, y ≥ yc): the
capacity is a monotonously decreasing function of ωenv.
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6. One-mode Gaussian channel
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Figure 6.16.: Parameter ỹ vs. N̄ and τ with respect to the noise squeezing ωenv (or
equivalently s). The semi-opaque diagonal surface is the physicality con-

straint y ≥ |1−τ |2 . If the given parameter y lays on the “grid” surface (i.e.
y = ỹ) then there exists a saddle point at finite squeezing. Above the
surface (y > ỹ) no extrema exist. Underneath the surface (y < ỹ) one
maximum and one minimum can be found (at finite squeezing values). For
y = yc = 1/

√
12 (dark gray area) the maximum is at infinite noise squeez-

ing ωenv = 0 (or equivalently s → ∞). For values below, i.e. y < yc there
exists one maximum at finite squeezing [see Figs. 6.15 and 6.17].
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6.4. Gaussian capacity

Since y is a function of τ for the given range of τ , the condition y = yc can only be
fulfilled when τ lays in a particular regime. We recall that for pure noise

y(Menv = 0) =
|1− τ |

2
, (6.199)

is a lower bound on the physical region of y (see Fig. 6.15). Note, that at τ = 1 the lower
bound reads y(Menv = 0) = 0, which corresponds to the perfect transmission channel.
The solutions of the equation y = yc with respect to τ are given by

τc = 1± 1√
12(Menv + 1/2)

(6.200)

which leads to the domain

τL ≤ τc ≤ τR, (6.201)

where

τL ≡ 1− 1√
3
, τR ≡ 1 +

1√
3
. (6.202)

This means that if τ 6= τc (or τc /∈ [τL, τR]) then the parameter y = yc becomes unphys-
ical. Note, that for the classical additive noise channel τc is not defined since τ = 1 and
thus, the condition y = yc can always be fulfilled.

We observe numerically that for y ≥ yc there is either no extremum, a saddle point
or a maximum followed by a minimum; all located in 0 < ωenv ≤ ωthr, see Fig. 6.14. In
order to discriminate the number of extrema further we need to study the term quadratic
in ωenv of the expansion stated in Eq. (6.196). If we fix y = yc such that a = 0 then the
quadratic term becomes dominant and its sign is determined by the sign of b. By jointly
solving a = b = 0 we find

τ̃c ≡
√

2

15

√
1 +

1

(1 + 2N̄)2
, (6.203)

where the range N̄ ∈ [0,∞) implies

τ̃L ≤ τ̃c ≤ τ̃R, (6.204)

where

τ̃L ≡
√

2

15
, τ̃R ≡

2√
15
. (6.205)

For y = yc and τ = τ̃c jointly ∂CG
χ /∂ωenv = ∂2CG

χ /∂ω
2
env = 0, i.e. a saddle point

lays in the vicinity of ωenv = 0. We observe that for small input energies N̄ and in the
neighborhood of the critical parameters τc, yc the polynomial can develop two extrema,
i.e. a minimum followed by a maximum (when increasing ωenv from 0 to 1). Since
the expansion given in Eq. (6.196) can approximate arbitrary well CG

χ in a certain

regime ωenv ∈ [0, δ] we deduce that these two extrema have to be present for CG
χ for
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Figure 6.17.: Value of squeezing for which CG
χ is extremal: (a) ωenv,max vs. y: from

bottom to top (solid lines): τ = {1.3, 1.2, 1.1, 1, 0.9, 0.8, 0.7, 0.6, 0.5}. The
dotted, encircling curve corresponds to the value at the physical lower
bound of y, i.e. ωenv,max(y = |1 − τ |/2). We fixed the input energy N̄ =
1 > N̄c. All maxima tend to infinite squeezing ωenv,max → 0 when y →
yc = 1/

√
12. (b) Squeezing at saddle point ω̃env(ỹ) (dashed line), ωenv,max

(solid lines above ỹ) and ωenv,min (dashed-dotted lines below ỹ), where
from left to right τ = {0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55}. We
choose N̄ = 0.01 < N̄c ≈ 0.36 One clearly observes the “splitting” of the
saddle point into a maximum and a minimum when y is decreased from ỹ
up to yc = 1/

√
12. Below yc no minimum is observed but the maximum

continues to exist.
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6.4. Gaussian capacity

`````````````̀y ∈
τ ∈

(−∞, 0] (0, τ̃R) [τ̃R,∞)

[0, yc) Monotonous One max. One max.

[yc,∞)
[yc, ỹ)

Monotonous
One max.+one min.

Monotonousy = ỹ Saddle point
(ỹ,∞) Monotonous

Table 6.2.: Extremality properties of CG
χ with respect to ωenv.

0 < ωenv < ωthr. This is confirmed numerically, see Fig. 6.17. In [PLM12] it was shown
that the two extrema fall together to one saddle point for 0 < ωenv < ωthr precisely when

y = ỹ = (1− τ̃)

(
Menv +

1

2

)
,

Menv ≤Mc =
1

2

[(√
3− 2√

5

)−1

− 1

]
≈ 0.0969,

N̄ ≤ N̄c =
1

2

[√
3

2
+

5√
12
− 1

]
≈ 0.3578,

(6.206)

where

τ̃ ≡
{
τ

∣∣∣∣∣
∂CG

χ

∂ωenv
=
∂2CG

χ

∂ω2
env

= 0, 0 < ωenv < ωthr

}
, (6.207)

can be found by a numerical algorithm. The ultimate bound on τ̃ is given by the value
of τ when both extrema fall together at ωenv = 0, i.e. from Eq. (6.203) and Eq. (6.204)
we have:

0 ≤ τ̃ ≤ τ̃c(N̄) ≤ 2√
15
. (6.208)

The parameters Mc and N̄c are the solutions of the equations

yc = (1− τ̃R)

(
Mc +

1

2

)
,

τL = τ̃(N̄ = N̄c).

(6.209)

In summary, we found the following behavior for the different channels, distinguished
by the domain of τ (also depicted in Figs. 6.15, 6.16 and summarized in Table 6.2):

1. τ ≤ 0 (phase-conjugating channel): since y ≥ 1/2, the linear term in the expansion
in Eq. (6.196) always dominates which means the limiting value log2(2N̄ + 1) for
ωenv → 0 is always approached from below. Thus, there are no solutions for y = yc
and y = ỹ and the capacity is always monotonically decreasing with ωenv.
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6. One-mode Gaussian channel

2. 0 ≤ τ ≤ τ̃R (lossy channel): The solutions y = yc and y = ỹ both exist and all
four behaviors can be observed: i) for y < yc = 1/

√
12 one maximum exists, ii)

for yc ≤ y < ỹ one maximum and one minimum coexist, iii) for y = ỹ a saddle
point exists and iv) for y ≥ max(yc, ỹ) the capacity is monotonically decreasing
with ωenv.

3. τ ≥ τ̃R (lossy channel, classical additive noise channel and amplification channel):
The solution y = yc exists, which means one maximum appears for y < yc. For
y ≥ yc the capacity is a monotonically decreasing function of ωenv (monotonically
increasing with s).

This completes the characterization of the fiducial channel on the environment squeezing.
We now move on to the channels with non-full rank matrices X and Y .

6.4.7. Non-thermal canonical channels

We studied above the Gaussian capacity of the fiducial channel for the cases when the
corresponding “fiducial decomposition” is obtained for full rank matrices X and Y ,
i.e. rank(X) = rank(Y ) = 2 as well as the perfect transmission and zero-transmission
channel7. Now we extend this study to the cases rank(X) = 2, rank(Y ) = 1 and
rank(X) = 1, rank(Y ) = 2. We showed in the proof of Theorem 1 that the physical
action of the channel is unitarily equivalent to the two non-thermal canonical channels
ΦSQ (single quadrature additive noise channel) and ΦCS (classical signal channel)8. Fur-
thermore, we showed that both cases can effectively be recovered as a limiting case of
the “fiducial decomposition”. Therefore, we analyze now for both cases the Gaussian
capacity in their respective limits.

We recall that the action of the Gaussian channel and the equivalent fiducial channel:

Vout = XVinX
T + Y = M(XFΘVinΘTXF + YF)MT. (6.210)

Since MT is acting after the cannel and not subject to an energy constraint it is irrelevant
for the Gaussian capacity. The rotation Θ at the input is just an initial reference phase
and therefore irrelevant to the capacity, as well9. Therefore we need to study matrices
XF and YF in the particular limits, i.e.

CG
χ (Φ, N̄) = lim

s̃→∞
CG
χ (ΦF, N̄). (6.211)

Let us first treat the case rank(X) = 2, rank(Y ) = 1 (i.e. the channel unitarily equiv-

alent to ΦSQ). The matrix XF is in this case independent of the limit, namely [see

7We remark that our study also contained the perfect transmission channel rank(X) = 2, rank(Y = 0)
and zero-transmission channel rank(X) = 0, rank(Y = 2) since they do not require a separate treat-
ment as shown in the proof of Theorem 1.

8In the following we sometimes omit the notion “unitarily equivalent” and refer to both combinations
of ranks simply as channels ΦSQ and ΦCS, respectively.

9For any given rotation Θ one can always find the best input CM Ṽin = ΘVinΘ
T and then rotate it

afterwards in order to express it in the original basis.
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6.4. Gaussian capacity

Eq. (6.35)] XF = XSQ = I which corresponds to a replacement τ → 1. For the effective
noise matrix one has to make replacements y → 1

2e
−2s̃ and sY → sY − s̃, which then in

this limit is given by [see Eqs. (6.25) and (6.36)]

lim
s̃→∞

YF = lim
s̃→∞

1

2
e−2s̃ΘFS

−1
X ΘXY S

2
Y ΘT

XY S
−1
X ΘT

F,

= lim
s̃→∞

ΘFS
−1
X ΘXY

(
1
2e

2sY −4s̃ 0
0 1

2e
−2sY

)
ΘT
XY S

−1
X ΘT

F,
(6.212)

where ΘXY = ΘT
1 XΘY = O(θY − θ1X) = O(θXY ). Again, any outer rotation ΘF is

irrelevant to the Gaussian capacity and thus we choose without loss of generality ΘF = I.
Then, Eq. (6.212) can be further simplified:

lim
s̃→∞

YF =
e−2sY

2
S−1
X ΘXY

(
0 0
0 1

)
ΘT
XY S

−1
X ,

=
e−2sY

2

(
e−2sX sin2(θXY ) cos(θXY ) sin(θXY )

cos(θXY ) sin(θXY ) e2sX cos2(θXY )

)
≡ ỸSQ.

(6.213)

Then, we can find a rotation

Θ̃SQ = O(θSQ),

θSQ = arcsin

(
sgn(cot(θXY ))√

1 + e4sX cot2(θXY )

)
,

(6.214)

where O(θ) is a rotation matrix (see Eq. (5.22)), which diagonalizes ỸSQ, i.e.

Θ̃SQỸSQΘ̃T
SQ = diag

(
0,
ζ

2

)
,

ζ(sX , sY , θXY ) =
e−2sY

2
[cosh(2sX) + cos(2θXY ) sinh(2sX)].

(6.215)

Thus, we found that the action of the channel in this limit reads

lim
s̃→∞

XFVinXF + YF = Vin + Θ̃SQỸSQΘ̃T
SQ

= Θ̃T
SQ(Θ̃SQVinΘ̃T

SQ + ỸSQ)Θ̃SQ.
(6.216)

Therefore the rotation Θ̃SQ is again a reference phase which does not change the capacity
and we choose it without loss of generality Θ̃SQ = I. In conclusion, we have reduced the
problem of finding the Gaussian capacity to the map Φ̃SQ with output CM

Vout = Vin + diag(0, ζ). (6.217)

The map Φ̃SQ is equivalently a limiting case of (another) fiducial channel ΦF with re-
placements τ = 1, y = ζe2s where s→ −∞, i.e.

diag(0, ζ) = lim
s→−∞

ζe2s

(
e2s 0
0 e−2s

)
. (6.218)
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6. One-mode Gaussian channel

In conclusion, the Gaussian capacity is given by the fiducial with these replacements and
in this particular limit, i.e. (we omit for simplicity in this equation the parameter N̄)

CG
χ (Φ) = CG

χ (Φ̃SQ) = lim
s̃→∞

CG
χ

(
ΦF

(1, e
−2s̃

2
,s(sX ,sY −s̃,θXY ))

)
,

= lim
s→−∞

CG
χ

(
ΦF

(1,ζe2s,s)

)
, rank(X) = 2, rank(Y ) = 1.

(6.219)

In the following we consider the parameter ζ = ζ(sX , sY , θXY ) as a single noise parameter
without discussing the sub-dependencies on sX , sY and θXY . Clearly, in the limit s →
−∞ the input energy constraint N̄ thr diverges to infinity and thus, we have to consider
the solution N̄ < N̄ thr. Then, we fix the modulation of the noisier quadrature to zero,
i.e. mp = 0 which implies v̄p = vp. The eigenvalues of the CM of the output and
modulated output state become with replacements τ = 1 and y = ζe2s in this limit

lim
s→−∞

vq = lim
s→−∞

iq + ζe4s = iq,

lim
s→−∞

v̄q = lim
s→−∞

iq +mq + ζe4s = iq +mq,

lim
s→−∞

v̄p = vp = lim
s→−∞

1

4iq
+ ζ =

1

4iq
+ ζ.

(6.220)

The solution, i.e. the optimal input eigenvalue iq, is obtained by taking the limit of equa-
tion (6.129) (which resulted from the Lagrange multiplier method), with replacements
τ = 1, y = ζe2s, i.e.

lim
s→−∞

g′(M̄out)

(M̄out + 1
2)

(v̄q − v̄p) =
g′(Mout)

(Mout + 1
2)
ζe2s

(
e2s − 4i2qe

−2s
)

(6.221)

⇔ g′(M̄out)

(M̄out + 1
2)

(v̄q − v̄p) = −4
g′(Mout)

(Mout + 1
2)
ζi2q, (6.222)

where in Eq. (6.222) all parameters are replaced by their limiting expressions stated
in Eq. (6.220). Note that Eq. (6.222) can also be obtained by applying the Lagrange
multiplier method directly to the limiting channel stated in Eq. (6.217).

First, we observe that

lim
ζ→∞

diag(0, ζ) = lim
s→−∞

ydiag(e2s, e−2s). (6.223)

Thus, by Eq. (6.147) we conclude that

lim
ζ→∞

CG
χ (Φ̃SQ, N̄) = lim

s→−∞
CG
χ

(
ΦF

(τ,y,s), N̄
)

= log2(2N̄ + 1), rank(X) = 2, rank(Y ) = 1.

(6.224)
Furthermore, we obtain (trivially) the solution when the channel becomes the perfect
transmission channel, i.e.

lim
ζ→0

CG
χ (Φ̃SQ) = g(N̄), rank(X) = 2, rank(Y ) = 1. (6.225)
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6.4. Gaussian capacity

CG
χ = C = g(N̄)
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Figure 6.18.: CG
χ vs. ζ (channel ΦSQ). From bottom to top we fixed N̄ = {0.5, 1, 1.5}; the

dashed horizontal lines indicate for each case the limiting values log2(2N̄ +
1). At ζ = 0 the one-shot Gaussian capacity achieves the classical capacity
CG
χ = C = g(N̄).

Unfortunately, Eq. (6.222) remains a transcendental equation and is therefore difficult
to analyze with respect to the parameter ζ. However, it is easy to show that CG

χ is
(as expected) a monotonically decreasing function of ζ. Since vq = iq, v̄q = iq + mq,
vp = v̄p = 1/(4iq) + ζ we have for any fixed (possibly non optimal) encoding (iq,mq):

χG(x) = f(x) = g

(√
(iq +mq)x(ζ)− 1

2

)
− g

(√
iqx(ζ)− 1

2

)
, x =

1

4iq
+ ζ. (6.226)

It is straightforward to show that f(x − δ) > f(x), ∀δ > 0, δ < x. Since this holds for
any given encoding it implies that

∂CG
χ

∂ζ
< 0, rank(X) = 2, rank(Y ) = 1. (6.227)

As a consequence we find, using the exact limits (6.224) and (6.225), that

log2(2N̄ + 1) ≤ CG
χ (Φ, N̄) ≤ C(Φ, N̄) ≤ g(N̄), rank(X) = 2, rank(Y ) = 1. (6.228)

Clearly, the upper bound g(N̄) is an obvious one, since any Gaussian channel is upper
bounded by the capacity of the perfect transmission channel. Interestingly though the
lower bound on the one-shot Gaussian capacity provides an analytical lower bound on
the actual classical capacity C. Since g(x)− log2(2x− 1) is a monotonically increasing
function and furthermore

lim
x→∞

[g(x)− log2(2x− 1)] =
1

ln 2
− 1, (6.229)
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6. One-mode Gaussian channel

we proved that10

CG
χ (Φ, N̄) ≤ C(Φ, N̄) ≤ CG

χ (Φ, N̄) +
1

ln 2
− 1, rank(X) = 2, rank(Y ) = 1, (6.230)

i.e. for this combination of ranks the classical capacity does not exceed the Gaussian
capacity by more than ∼ 0.44 bits. We plotted CG

χ vs. ζ for different input energies N̄

in Fig. 6.18. Finally, we prove that the channel Φ that is unitarily equivalent to ΦSQ is
optimal among all one-mode channels with τ = 1 and noise constraint ζ = Tr[Y ]:

Lemma 5. Let Φ′ be a one-mode Gaussian channel with τ = 1 and Y = diag(0, ζ) (or
Y = diag(ζ, 0)) and let Φ be a one-mode Gaussian channel with τ = 1 and ζ = Tr[Y ].
Then

CG
χ (Φ′, N̄) ≥ CG

χ (Φ, N̄), (6.231)

where equality holds iff Y is identical for both channels.

Proof. The proof follows directly from Lemma 9 stated in Appendix D.3.4.

Let us now treat the other case rank(X) = 1, rank(Y ) = 2, i.e. the channel unitarily

equivalent to ΦCS. We have to treat the limit stated in (6.211) as a limit of the whole
map, since XF and YF depend on the parameter s̃. With replacements τ → e−2s̃, θ2X →
0, sX → sX + s̃ [see Eqs. (6.38) to (6.41)] and definitions S̃ = S(s̃), ΘXY = ΘT

1 XΘY we
obtain

lim
s̃→∞

XFVinXF + YF

= lim
s̃→∞

e−2s̃Vin + yΘFS̃
−1S−1

X ΘXY S
2
Y ΘT

XY S
−1
X S̃−1ΘT

F,

= lim
s̃→∞

ΘFS̃
−1S−1

X (e−2s̃S̃SXΘT
FVinΘFSXS̃ + yΘXY S

2
Y ΘT

XY )S−1
X S̃−1ΘT

F,

(6.232)

Now we can again omit the symplectic transformation ΘFS̃
−1S−1

X at the output, as well
as the initial reference phase ΘT

F since they do not change the entropy and we have no
energy constraint on the output. Thus, we found another map with the same capacity
which has the output CM

Vout = lim
s̃→∞

e−2s̃S̃SXVinSXS̃ + yΘXY S
2
Y ΘT

XY

= XCSSXVinSXXCS + yΘXY S
2
Y ΘT

XY

= e2sXdiag(iq, 0) + yΘXY S
2
Y ΘT

XY

= ΘXY SY (e2sX iqS
−1
Y ΘT

XY diag(1, 0)ΘXY S
−1
Y + yI)SY ΘT

XY .

(6.233)

where we used the definitions

XCS =

(
1 0
0 0

)
, Vin =

(
iq iqp

iqp ip

)
, (6.234)

10We discuss bounds on the classical capacity in more details in Sec. 6.5.
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6.4. Gaussian capacity

and again moved the symplectic transformation behind the channel. Then, equivalently
to Eq. (6.213), we have

e2sX iqS
−1
Y ΘT

XY diag(1, 0)ΘXY S
−1
Y

= e2sX iq

(
e−2sY cos2(θXY ) − cos(θXY ) sin(θXY )
− cos(θXY ) sin(θXY ) esY sin2(θXY ),

)
≡ X̃CS.

(6.235)

Now we find the rotation

Θ̃CS = O(θCS),

θCS = arccos

(
sgn(tan(θXY ))√

1 + e4sY tan2(θXY )

)
,

(6.236)

such that
Θ̃CSX̃CSΘ̃T

CS = diag(2iqζ̃, 0), (6.237)

where ζ̃ reads as in Eq. (6.215) but with replacements sX → −sY and sY → −sX , i.e.

ζ̃ = ζ(−sY ,−sX , θXY )) =
e2sX

2
[cosh(2sY )− cos(2θXY ) sinh(2sY )]. (6.238)

Then we can insert I = Θ̃T
CSΘ̃CS in the last line of Eq. (6.233):

lim
s̃→∞

e−2s̃S̃SXVinSXS̃ + yΘXY S
2
Y ΘT

XY

=ΘXY SY Θ̃T
CS(e2sX iqΘ̃CSS

−1
Y ΘT

XY diag(1, 0)ΘXY S
−1
Y Θ̃T

CS + yI)SY ΘT
XY Θ̃CS

=ΘXY SY Θ̃T
CS(diag(2iqζ̃, 0) + yI)SY ΘT

XY Θ̃CS.

(6.239)

We omit again the symplectic transformation ΘXY SY Θ̃T
CS at the output and therefore

have found a simpler map Φ̃CS with the same capacity and energy constraint. The map
Φ̃CS can be expressed as the limiting case of another fiducial channel, i.e.

diag(2iqζ̃, 0) + yI = lim
s→−∞

2ζ̃e2sS−1VinS
−1 + yI (6.240)

= lim
s→−∞

S−1(2ζ̃e2sVin + yS2)S−1. (6.241)

where S = diag(es, e−s). Thus, we found the following equality for the Gaussian capacity
(we omit for simplicity the dependency on the parameter N̄)

CG
χ (Φ) = CG

χ (Φ̃CS) = lim
s̃→∞

CG
χ

(
ΦF

(e−2s,y,s(sX+s̃,sY ,θXY ))

)
,

= lim
s→−∞

CG
χ

(
ΦF

(2ζ̃e2s,y,s)

)
, rank(X) = 1, rank(Y ) = 2.

(6.242)

In the following we consider the parameter ζ̃ = ζ̃(sX , sY , θXY ) again as a fixed gain
parameter. Unlike in the case of the channel ΦSQ we have an additional degree of
freedom, namely the parameter y ≥ 1/2. Due to the limit of infinite squeezing the input
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6. One-mode Gaussian channel

energy threshold diverges in this case as well and we have to consider the solution in the
regime N̄ < N̄ thr. We derive the optimal solution now using the method of Lagrange
multipliers for the limiting map stated on the left hand side in Eq. (6.240). Here, the p-
quadrature is completely erased and we have only one degree of freedom for information
transmission (hence “classical signal”), implying that it is optimal to fix mp = 0. Then,
we have the following lists of eigenvalues and thermal photons:

vq = 2ζ̃iq + y,

v̄q = 2ζ̃(iq +mq) + y,

v̄p = vp = y.

Mout =

√
(2ζ̃iq + y)y − 1

2
,

M̄out =

√
(2ζ̃(iq +mq) + y)y − 1

2
.

(6.243)

Following the same steps as in the general case (see Appendix D.1) one obtains the
solution

iq =
1

2

√
(Mout + 1

2)g′(M̄out)

(M̄out + 1
2)g′(Mout)

, (6.244)

which, despite its compact form, is a transcendental equation as well.

It is straightforward to show that, as in the case of the channel ΦSQ, the limit ζ̃ →∞
is equivalent to the limit of infinite squeezing of the fiducial channel. The symplectic
output eigenvalue νout of a fiducial channel ΦF

(τ,y,s) in the limit s→ −∞ reads

lim
s→−∞

ν2
out = lim

s→−∞
(
|τ |iq + y e2s

)( |τ |
4iq

+ y e−2s

)
,

= lim
s→−∞

( |τ |
e2s

iq + y

)( |τ |
4iqe−2s

+ y

)
,

= lim
ζ̃→∞

(
|τ |ζ̃iq + y

)( |τ |
4iqζ̃

+ y

)
,

= lim
ζ̃→∞

(ζ̃iq + y)y.

. (6.245)

The same relations hold for the symplectic eigenvalue ν̄out with replacement iq →
iq +mq. Thus, in this limit the arguments of χG coincide and we showed that

lim
ζ̃→∞

CG
χ (Φ̃CS, N̄) = lim

s→−∞
CG
χ

(
ΦF

(τ,y,s), N̄
)

= log2(2N̄ + 1), rank(X) = 1, rank(Y ) = 2.

(6.246)
Furthermore, we (trivially) can evaluate the other limiting case, i.e.

lim
ζ̃→0

CG
χ (Φ̃CS, N̄) = 0, rank(X) = 1, rank(Y ) = 2. (6.247)
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Figure 6.19.: CG
χ vs. ζ̃ (channel ΦCS). For the upper three lines we fixed N̄ = 1, for the

three middle lines N̄ = 0.5 and for the three bottom lines N̄ = 0.25. For
each group of lines with fixed input energy we choose (from top to bottom)
y = {0.5, 1, 2}. For ζ̃ →∞ we observe that CG

χ → log2(2N̄ + 1). At ζ̃ = 0

the channel becomes the zero-transmission channel and thus C = CG
χ = 0.

This shows that in the limit ζ̃ → 0 the channel becomes the zero transmission channel. In
the same way as we showed the monotonicity of CG

χ over ζ for rank(X) = 2, rank(Y ) = 1
one can straightforwardly show that

∂CG
χ

∂ζ̃
> 0, rank(X) = 1, rank(Y ) = 2. (6.248)

Together with limits (6.246) and (6.247) it follows that

CG
χ (Φ, N̄) ≤ log2(2N̄ + 1), rank(X) = 1, rank(Y ) = 2. (6.249)

We plot CG
χ for different values of ζ̃ and y in Fig. 6.19.

6.5. Bounds on the classical capacity

In this section we show that the one-shot Gaussian capacity serves as a useful bound on
the classical capacity. For the general thermal channel ΦTH

(τ,y) with τ > 0 it was recently

proven that [KS13]

CG(ΦTH, N̄) ≤ C(ΦTH, N̄) ≤ CG(ΦTH, N̄) +
1

ln 2
. (6.250)

We can straightforwardly extend this result to the general case, above the input energy
threshold:
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6. One-mode Gaussian channel

Corollary 2. For a single-mode Gaussian channel Φ with parameters (τ > 0, y > 0)
and N̄ ≥ N̄ thr,

CG(Φ, N̄) ≤ C(Φ, N̄) ≤ C ≤ CG(Φ, N̄) +
1

ln 2
,

C = g

(
2τN̄ + (2y + 1− τ) sinh2 s

2y + 1 + τ

)
,

(6.251)

where CG(Φ, N̄) is stated in Eq. (6.81).

Proof. The fiducial channel corresponding to Φ can according to its definition be decom-
posed as

ΦF
(τ,y,s) = ΦF

(G,G−1
2
,s) ◦ ΦF

(T, 1−T2
,s), (6.252)

with T = 2τ/(2y + τ + 1) [see Fig. 6.3 and Table 6.1]. Since the capacity fulfills the
pipelining property [stated in Eq. (3.37)] we can upper bound the capacity of ΦF

(τ,y,s)by
the capacity of the first channel, i.e.

C(Φ, N̄) = C
(

ΦF
(τ,y,s), N̄

)
≤ C

(
ΦF

(T, 1−T2
,s), N̄

)
≤ C,

where

C = g(TN̄ + (1− T ) sinh2 s), (6.253)

is the classical capacity of the lossy channel with (pure) squeezed noise, stated in
Eq. (6.87). We define the function

∆(s) ≡ C − CG = g
[
A(B + 1)−1

]
− g(A+B cosh2 s) + g(B),

A = τN̄ +
[
y +

1− τ
2

]
sinh2 s,

B = y +
τ − 1

2
.

(6.254)

It was shown in [KS13] that ∆(0) < 1/ ln 2. Since

∆(s) ≤ ∆(0), ∀s, (6.255)

the Corollary is proven.

Note that the upper bound C(Φ, N̄) ≤ C holds independently of the input energy.
However, for high values of squeezing it diverges and can even overcome the ultimate
bound g(N̄) (i.e. it becomes useless above a certain squeezing value). Nevertheless it is
a valid bound even for the case τ < 0, where now C is given by Eq. (6.251) with the
replacement y → −y (in this case the last inequality in Eq. (6.251) does not hold). We
remark that for all N̄ the last inequality in Eq. (6.251) holds for all channels unitarily
equivalent to ΦSQ, i.e. for rank(X) = 2, rank(Y ) = 1, since it is included in the even
tighter bound presented in Eq. (6.230).
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6.5. Bounds on the classical capacity

We can generalize several additional bounds that were found for the thermal channel
ΦTH in [GLMS13]. The bounds were obtained by maximizing the first term of the
classical capacity and by obtaining a lower bound b on the second term, i.e.

C(Φ, N̄) ≤ max
µ : ˆ̄ρin∈EN̄

S(ΦTH[ ˆ̄ρin])− lim
n→∞

1

n
min
µ

∫
µ(dx)S

(
(ΦTH)⊗n[ρ̂x]

)

︸ ︷︷ ︸
≥b

(6.256)

where in total six bounds b are stated in [GLMS13]. We stated in the proof of Corollary 3
that the fiducial channel is equivalent to a thermal channel preceded by an anti-squeezer
and followed by a squeezer [see Fig. 6.6 (b)]. The following squeezer does not change
the output entropy. Furthermore, one can always undo the preceding squeezer because
the bound b is not subject to an energy constraint. Therefore, any lower bound b on the
minimal output entropy of the thermal channel is as well a lower bound on the minimal
output entropy of the fiducial channel:

C(ΦF, N̄) ≤ max
µ : ˆ̄ρin∈EN̄

S(ΦF[ ˆ̄ρin])− b. (6.257)

The first term of the bound stated in (6.257) is known to be maximized by a (Gaussian)
thermal state carrying the total number of photons. It corresponds precisely to the first
term of the one-shot Gaussian capacity (in case of the quantum water-filling solution)
stated in Eq. (6.81), i.e.

max
µ : ˆ̄ρin∈EN̄

S
(
ΦF[ ˆ̄ρin]

)
= g

(
|τ |N̄ + y cosh(2s) +

|τ | − 1

2

)
≡ g(M̄qwf

out ), (6.258)

Corollary 1 the states that C(Φ, N̄) = C(ΦF, N̄). Therefore, any bound on the classical
capacity of the fiducial channel ΦF is also a bound on the classical capacity of a an
arbitrary channel Φ. By replacing b in Eq. (6.258) by bounds stated in [GLMS13] which
are relevant11 we obtain the following upper bounds on the capacity of Φ (we omit here
for simplicity the explicit dependence on Φ and N̄):

C ≤ CEB = g(M̄qwf
out )− g

(
y − (1 + |τ |)

2

)
, τ > 0, y >

1 + |τ |
2

, (6.259)

C ≤ C log2 = g(M̄qwf
out )− log2(2y + τ), 0 ≤ τ ≤ 1, (6.260)

C ≤ C1/k = g(M̄qwf
out )−





(k−1)
k g

(
k
k−1

[
y + τ−1

2

])
, τ < 1/k,

(k−1)
k g

(
k
k−1

[
y − (1+τ)

2 + 1
k

])
, τ ≥ 1/k,

(6.261)

where inequality 6.261 holds for all integers k > 1. Equations (6.260) holds for the
lossy channel τ ∈ [0, 1] as well as the classical additive noise channel τ = 1 and in-
equality (6.259) only applies when the channel is entanglement breaking. Note that
with increasing s those bounds become less and less tight because the second term does

11We state only the dominant bounds here.
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Figure 6.20.: Dominant upper bounds (to the classical capacity) and one-shot Gaussian
capacity CG

χ : (a) vs. τ where N̄ = 0.1,Menv = 0.1 and s = 0.1; (b) vs.
τ where N̄ = 1,Menv = 1 and s = 2; (c) vs. τ where N̄ = 1,Menv = 10
and s = 0.5; (d) vs. Menv = y, where N̄ = 0.5, s = 0.5 and τ = 1
(classical additive noise channel). For (a)-(c) τ = 1 corresponds to the
perfect transmission channel.
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6.5. Bounds on the classical capacity

not depend on s (and g(M̄qwf
out ) increases with s). At last, we can state an additional

(obvious) upper bound: for the case τ ∈ [0, 1] the classical capacity is always lower than
the one of the lossy channel with pure vacuum noise stated in Eq. (6.87):

C(Φ, N̄) ≤ C0 = g(τN̄ + (1− τ) sinh2 s). (6.262)

We recall that the right hand side of the latter becomes the classical capacity if N̄ ≥ N̄ thr,
where y = (1− τ)/2. Again, this quantity is a valid bound (for any N̄) but becomes less
and less tight with increasing s.

We compare the different bounds in Fig. 6.20, where we choose the parametrization
y = |1 − τ |(Menv + 1/2) for τ 6= 1 and y = Menv for τ = 1. For τ ≤ 0 and (τ > 1, y <
(1 + τ)/2) even for the thermal channels our bound C is the only one that exists to our
knowledge. Interestingly, for 0 ≤ τ ≤ 1 in general all bounds are in competition as seen
in Fig. 6.20. For high squeezing values the bounds diverge and are even outperformed
by the trivial bound C ≤ g(N̄) as seen in Fig. 6.20 (b). This shows the need for bounds
that do not diverge with increasing squeezing.
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7. Multi-mode Gaussian channels

In this chapter we study the Gaussian capacity of multi-mode Gaussian channels with
memory models previously discussed in Sec. 5.3.2. First, we obtain a solution that,
equivalently to the single-mode case, is only valid above an input energy threshold. For
input energies below the input energy threshold we discuss the solution in detail for the
multi-mode classical additive noise channel.

7.1. Multi-mode Gaussian memory channel

The n-mode Gaussian memory channel Φ
(n)
M that we discuss in the following has zero

displacement (denv = 0) and is defined by the following matrices (recall Sec. 5.3.2):

XM = XTH =
√
|τ |
(
I 0
0 sgn(τ)I

)
, YM = ΘT

Y YΛΘY , (7.1)

where YΛ = diag(yq1, yq2, ...yqn, yp1, ..., ypn) and ΘT
Y ΘY = I.1 The output CM then

reads

Vout = XMVinXM + ΘT
Y YΛΘY (7.2)

= ΘT
Y (ΘYXMVinXΘT

Y + YΛ)ΘY (7.3)

= ΘT
Y (XMΘ′Y VinΘ′TYXM + YΛ)ΘY , (7.4)

where we used in the last line the commutation relation [ΘY ,XM] = [XM,Θ
′
Y ], where

Θ′Y is another rotation [see Eq. (6.103)]. Then Θ′Y can be regarded as a reference phase
and in addition the transformation ΘY at the output does not change the entropy. Thus,
we conclude that

CG
χ (Φ

(n)
M , nN̄) = CG

χ (Φ
(n)
Λ , nN̄), (7.5)

where Φ
(n)
Λ is defined by matrices X = XTH and Y = YΛ (and zero displacement

denv = 0). The map Φ
(n)
Λ can therefore be expressed as a tensor product of one-mode

fiducial channels:

Φ
(n)
Λ = ΦF

(τ,y1,s1) ⊗ ΦF
(τ,y2,s2) ⊗ · · · ⊗ ΦF

(τ,yn,sn), (7.6)

where

yi =
√
yqiypi, si =

1

4
ln

(
yqi

ypi

)
. (7.7)

1In other words: we only consider those noise CM YM which can be diagonalized by a passive symplectic
operation given by matrix ΘY .
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Figure 7.1.: Global quantum water-filling solution: the quantum water-filling solution is
satisfied for all modes if N̄ ≥ N̄glthr (here depicted schematically for τ = 1
and five modes). The common water-filling level is given by ν̄wf .

In [LGM10] a multi-mode memory channel was studied, which was shown to be unitar-
ily equivalent to a collection of lossy channels with different transmissivities, i.e. unitarily
equivalent to the form stated Eq. (7.6) with

yi =
1− τi

2
, τi ∈ [0, 1], (7.8)

and si = 0, ∀i. For this channel an analytical expression for the classical capacity was
found [using Eq. (5.86)] [LGM10]:

C =
1

2π

2π∫

0

dz g
(
τ(z)N̄(z)

)
, (7.9)

where N̄(z) is the optimal mean photon distribution found by solving a Lagrange mul-
tiplier problem.

7.2. Global quantum water-filling solution

Let us now study CG
χ of the channel Φ

(n)
Λ where we first obtain a solution valid above an

input energy constraint and then move on to the full input energy domain. Equivalently
to the one-mode case we state the (possibly unphysical) upper bound:

CG
χ (Φ

(n)
Λ , nN̄) ≤ max

Vin,Vmod

S(V̄out)−min
Vin

S(Vout), (7.10)
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7.2. Global quantum water-filling solution

where V̄out = XTHV̄inXTH + YΛ is the CM of the modulated output state, with V̄in =
Vin + Vmod. In [Hir06] it was shown that the minimal output entropy of multi-mode
Gaussian channels for multimode channels of the form stated in Eq. (7.6) is additive, i.e.

min
Vin

S(Vout) =
n∑

i=1

min
Vini

S(Vouti), (7.11)

where Vouti is the CM of the one-mode fiducial channel ΦF
(τ,yi,si)

. Thus, instead of

minimizing over all (possibly entangled) n-mode Gaussian input states it is sufficient to
minimize over the individual input states, i.e. to minimize each individual term S(Vouti).
The minimum is achieved (for each fiducial channel) if one injects for each channel i a
squeezed input state with CM Vini = diag(iqi, ipi), where (just like in the one-mode case,
see Sec. 6.4.1)

iqi
ipi

=
yqi

ypi

, ∀i, (7.12)

which together with the purity constraint iqiipi = 1/4 yields

iqi =
1

2
e2si =

1

2

√
yqi

ypi

, ipi =
1

2
e−2si =

1

2

√
ypi

yqi

, ∀i. (7.13)

Then, the output entropy reads

min
Vin

S(Vout) =
n∑

i=1

g

(
yi +

|τ | − 1

2

)
. (7.14)

The first term in Eq. (7.10) is (again) maximized for a thermal state, i.e. if all modulated
output states have the same number of thermal photons M̄out:

V̄out =

(
M̄out +

1

2

)
I2n×2n. (7.15)

The latter is fulfilled if the quantum water-filling solution holds for all modes, i.e.

|τ |(iqi +mqi) + yqi = |τ |(ipi +mpi) + ypi,∀i. (7.16)

This solutions is called global quantum water-filling solution (see Fig. 7.1) with water-
filling level

ν̄wf = M̄out +
1

2
=

1

2n

n∑

i=1

(
yqi + ypi

)
+
|τ |
2n

n∑

i=1

(
iqi + ipi +mqi +mpi

)

︸ ︷︷ ︸
=|τ |Tr[V̄in]=|τ |N̄+

|τ |
2

=
1

2n

n∑

i=1

(
yqi + ypi

)
+ |τ |N̄ +

|τ |
2
.

(7.17)
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In order to satisfy the solutions stated in Eqs. (7.14), (7.15) and (7.17) the (average)
input energy N̄ needs to fulfill the inequality

N̄ ≥ N̄glthr =
1

n

n∑

i=1

N̄ thri =
1

n

n∑

i=1

1

2

(√
yqi

ypi

+
yqi − ypi

|τ | − 1

)
, (7.18)

where N̄ thri is stated in Eq. (6.83) and we choose without loss of generality the convention
yqi ≥ ypi, ∀i.

Then we can express the Gaussian capacity of the channel Φ
(n)
Λ (and consequently of

Φ
(n)
M ) for an input energy above the energy constraint:

Theorem 4. The Gaussian capacity of the Gaussian memory channel ΦM is given by

CG(ΦM, N̄) = CG(ΦΛ, N̄)

= g

(
|τ |N̄ +

1

2n

n∑

i=1

(
yqi + ypi

)
+
|τ | − 1

2

)
− 1

n

n∑

i=1

g

(
yi +

|τ | − 1

2

)
, N̄ ≥ N̄glthr.

(7.19)

Proof. For input energy N̄ ≥ N̄glthr we showed above that the upper bound in Eq. (7.10)

is achievable. Since the minimum output entropy of the channel Φ
(n)
Λ was proven to be

additive it follows that (for N̄ ≥ N̄glthr) the one-shot Gaussian capacity is additive.
Then, injecting the solution stated in Eqs. (7.14), (7.15) and (7.17) in Eq. (7.10) leads
to the Gaussian capacity stated in Eq. (7.19).

Let us now derive the limiting expression in the case of an infinite number of uses. In
this case the solutions for the optimal input spectra read

|τ |[iq(x) +mq(x)] + yq(x) = |τ |[ip(x) +mp(x)] + yp(x), iq(x) =
1

2

√
yq(x)

yp(x)
,∀x (7.20)

The limit of the expression stated in Eq. (7.19) then reads

CG(ΦΛ, N̄) = g


|τ |N̄ +

1

2|A|

∫

x∈A

dx [yq(x) + yp(x)] +
|τ | − 1

2




− 1

|A|

∫

x∈A

dx g

(√
yq(x)yp(x) +

|τ | − 1

2

)
, N̄ ≥ N̄glthr,

(7.21)

where yq(x), yp(x) are the noise eigenvalue spectra. For noise spectra yq(x) ≥ yp(x), ∀x,
the input energy threshold N̄glthr in this limit becomes

N̄glthr =
1

2|A|

∫

x∈A

dx

(√
yq(x)

yp(x)
+
yq(x)− yp(x)

|τ | − 1

)
. (7.22)
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7.2. Global quantum water-filling solution

In the following we will compare the optimal transmission rate CG with subopti-
mal rates. One of them is the coherent rate Rcoh, i.e. the optimal transmission rate
when restricted to coherent states at the input. We define this quantity equivalently
to Eq. (5.90), but unlike in the case of the one-shot Gaussian capacity it is already
normalized by n:

Rcoh(Φ, N̄) =
1

n
max
Vmod

{
χG({νouti, ν̄outi})

∣∣∣ Tr[Vmod] ≤ 2nN̄
}
, (7.23)

=
1

n

(
max
Vmod

[
S(V̄out)

]
− S(Vout)

)
, (7.24)

where the input covariance matrix is fixed2 to Vin = I/2 and thus, only the first term
is maximized. Rcoh is easily calculated: the restriction to coherent input states leads to
the fixed output CM

Vout =
|τ |
2
I + Y , (7.25)

i.e. it is simply given by the noise spectra shifted by the variance of the vacuum. Thus,
we obtain

1

n
S(Vout) =

1

n

n∑

i=1

g

(√(
yqi +

|τ |
2

)(
ypi +

|τ |
2

)
− 1

2

)
. (7.26)

The entropy of the first term reads

1

n
S(V̄out) =

1

n

n∑

i=1

g

(
ν̄outi −

1

2

)
. (7.27)

This term can be maximized under the common energy constraint by the method of
Lagrange multipliers, which leads to the same solution as in the case of classical Gaussian
channels (recall Sec. 2.3.2), i.e. the (classical) water-filling solution stated in Eq. (2.19)
satisfied for all quadratures, i.e.

mqi = (ν̄wf − v̄qi)
+,

mpi = (ν̄wf − v̄pi)
+,

(7.28)

where the water-filling level ν̄wf is given by Eq. (7.17). This means quadratures that
are too noisy will be excluded from information transmission, just as in the case of the
classical water-filling solution. The coherent rate is thus given by Rcoh = [S(V̄out) −
S(Vout)]/n, where the solutions stated in Eqs. (7.26) and (7.28) have to be injected in
both terms.

A particular solution is given by a global water-filling, i.e. if v̄qi = v̄pi,∀i, which is
simplified in this case to

|τ |mqi + yqi = |τ |mpi + ypi, ∀i. (7.29)

2For this reason the variance of the vacuum is removed from the energy constraint

149



7. Multi-mode Gaussian channels

Then all modulated output states are given by the same thermal state (just as in the
case of the global quantum water-filling) such that the first term in Rcoh becomes equal
to the first term of CG stated in Eq. (7.19), i.e.

Rcoh(Φ, N̄) = g

(
|τ |N̄ +

1

2n

n∑

i=1

(
yqi + ypi

)
+
|τ | − 1

2

)

− 1

n

n∑

i=1

g

(√(
yqi +

|τ |
2

)(
ypi +

|τ |
2

)
− 1

2

)
, N̄ ≥ N̄cohthr

(7.30)

with

N̄cohthr =
1

n

n∑

i=1

yqi − ypi

2|τ | , (7.31)

where we choose without loss of generality the convention yqi ≥ ypi, ∀i. The threshold

N̄cohthr is obtained using Eq. (7.18) and substituting 1
2

√
yqi
ypi

= iqi = 1
2 (i.e. the input

states are all fixed to coherent states).

7.3. Full solution for the classical additive noise channel (τ = 1)

For input energies N̄ < N̄glthr the global quantum water-filling solution can no longer
be satisfied and we require again another treatment. The first problem we encounter is
that Eq. (7.11) does not help us to calculate the one-shot Gaussian capacity. The reason
is that we have not enough energy to realize the maximum of the first term and at the
same time the minimum of the second term. In fact, it is optimal to neither maximize
the first term nor to minimize the second one, and as a consequence to maximize the
difference (as in the one-mode case). For this reason the one-shot Gaussian capacity of

the multi-mode channel Φ
(n)
Λ is in general greater or equal than the sum of individual

one-shot Gaussian capacities:

CG
χ (Φ

(n)
Λ , nN̄) ≥ max

N̄i

n∑

i=1

CG
χ

(
ΦF

(τ,yi,si)
, N̄i

)
, nN̄ =

n∑

i=1

N̄i, N̄ < N̄glthr. (7.32)

However, for simplicity we denote in the following the right hand side of Eq. (7.32)

by CG
χ (Φ

(n)
Λ , nN̄). For this reason the one-shot Gaussian capacity CG

χ (Φ
(n)
Λ , nN̄), N̄ <

N̄glthr, obtained in the following must be regarded as a lower bound on the one-shot
Gaussian capacity.

According to the right hand side of Eq. (7.32) the problem of finding CG
χ (Φ

(n)
Λ , nN̄)

is reduced to finding the optimal input energy distribution N̄i. This problem can again
be solved with the method of Lagrange multipliers where we now obtain a system of n
equations with a common input energy constraint N̄ . The fact that the solution of the
system of equations indeed maximizes χG follows from the results on convex separable
minimization subject to bounded variables found in [Ste01].
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7.3. Full solution for the classical additive noise channel (τ = 1)

We treat now the solution in details for the case τ = 1 (i.e. the classical additive noise
channel) and use for compactness the following Lagrangian:

L =
n∑

i=1

g
(
M̄outi

)
− g (Mouti)− µ

(
n∑

i=1

(
iqi + ipi +mqi +mpi

)
− λ̄

)
, (7.33)

where the total input energy is expressed by

λ̄ =

n∑

i=1

λ̄i, λ̄i = 2N̄i + 1 = iqi + ipi +mqi +mpi, (7.34)

and the input energy distribution is given by {λ̄i}. The total output energy equivalently
is defined as

λ̄out = λ̄+
n∑

i=1

yqi + ypi. (7.35)

The system of equations we need to solve is then given by

∇i L = 0, ∀i,

∇i =

(
∂

∂iqi
,

∂

∂mqi

,
∂

∂mpi

)T

.
(7.36)

Note that we obtain a maximum by the solution of Lagrange multipliers provided that
for the one-mode case χG is a concave function of λ̄ on the solution. We present this
proof in Appendix D.3.3.

For the following it will be useful to relate the multiplier µ explicitly to the input energy
λ̄. We derive the relations for the one-mode case (n = 1) and then apply them to the
solution of the general, multi-mode case. The solution to the one-mode case (previously
derived in Appendix D.1) for τ = 1 and the noise parametrization Y = diag(yq, yp)
reads

g′
(
ν̄out − 1

2

)

ν̄out
(v̄p − v̄q) =

g′
(
νout − 1

2

)

νout

(
yp −

yq

4i2q

)
. (7.37)

Given the Lagrangian stated in Eq. (7.33) we find the following solution for the Lagrange
multiplier µ (equal to β̄ in Eq. (D.10) up to a factor 2):

µ =
g′(M̄out)

2(M̄out + 1
2)
v̄q =

g′(ν̄out − 1
2)

2ν̄out
v̄q. (7.38)

For λ̄ ≥ λ̄thr, where

λ̄thr =

√
yq

yp
+ yq − yp, (7.39)

the quantum water-filling solution holds which for τ = 1 is now given by [see Eq. (6.76)]

iq +mq + yq = ip +mp + yp, (7.40)
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7. Multi-mode Gaussian channels

where the optimal input state is given by [see Eq. (7.13)]

iq =
1

2

√
yq

yp
, ip =

1

2

√
yp

yq
. (7.41)

In addition, the water-filling level simplifies according to Eq. (6.86) to

ν̄wf = v̄q = v̄p =
λ̄+ yq + yp

2
. (7.42)

Inserting ν̄out = ν̄wf in Eq. (7.38) links the multiplier to the water-filling level, i.e.

µ =
g′(ν̄wf − 1

2)

2
, ν̄wf =

1

2
coth(µ ln 2), λ̄ ≥ λ̄thr. (7.43)

Since g′(x) is a monotonically decreasing function it follows that for λ̄ ≥ λ̄thr the multi-
plier µ is a monotonously decreasing function of λ̄. For λ̄ < λ̄thr we prove it in Lemma 7
in Appendix D.3.2. This property allows us to relate λ̄thr via Eq. (7.43) to

µthr =
1

2
g′
(

1

2
(λ̄thr + yq + yp)− 1

2

)
, (7.44)

such that if λ̄ ≥ λ̄thr, then the corresponding µ ≤ µthr. Moreover, for the lowest input
energy λ̄ = 1 (i.e. N̄ = 0) we can define [using Eq. (7.38)] an upper bound µ0 for all
possible values of µ that correspond to λ̄ > 1, that reads

µ0 =
1

2
g′
(√(

yq +
1

2

)(
yp +

1

2

)
− 1

2

)√
yq + 1

2

yp + 1
2

. (7.45)

Note that even for λ̄ < λ̄thr one can consider ν̄wf in Eq. (7.43) as a “virtual” water-filling
level which links all modes together (see an example further below in Fig. 7.2).

In general, the maximum of the Lagrangian given in Eq. (7.33) corresponds to a
partition of n modes into three different sets, corresponding to one of three types of input
energy distributions within each mode: the case of a quantum water-filling solution,
the case of one vanishing modulation eigenvalue, or the case when both modulation
eigenvalues vanish and the mode does not participate in information transmission (i.e.,
unmodulated vacuum is sent). We denote the corresponding sets by: N3, N2 and N1.
Furthermore, the number of modes in the sets is defined as n(1), n(2) and n(3), with
n = n(1) +n(2) +n(3). In addition, we denote the input energies per set by λ̄(1), λ̄(2), λ̄(3),
where

λ̄(1) =
∑

i∈N1

λ̄i, λ̄
(2) =

∑

i∈N2

λ̄i, λ̄
(3) =

∑

i∈N3

λ̄i, (7.46)

which sum up to the total input energy λ̄.
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7.3. Full solution for the classical additive noise channel (τ = 1)

Set N3: Modes with water-filling solution

For all modes that belong to N3 the quantum water-filling solution stated in Eq. (7.40)
is satisfied. This means that the input energy allocated to each mode cannot be lower
than its corresponding energy threshold, i.e.

λ̄i ≥ λ̄thri, i ∈ N3, (7.47)

where λ̄thri reads as in Eq. (7.39) (∀i). Then for all i ∈ N3 the energy equipartition
(7.40) holds. Moreover, Eq. (7.43) guarantees that ν̄wf is the common water-filling level
for all modes due to the common Lagrange multiplier µ, which is a monotonous function
of ν̄wf , which now reads

ν̄wf = v̄qi = v̄pi =
λ̄

(3)
out

2n(3)
, i ∈ N3, (7.48)

where λ̄
(3)
out is the total energy at the output of the modes belonging to set N3.

As the partition of the input energy between the modes is a priori not known the
distribution of the modes between the sets is also not defined. However, we can determine
whether a particular mode belongs to set N3 using the Lagrange multiplier µ. This is
possible, because as mentioned before, µ is a monotonically decreasing function of the
input energy λ̄. For λ̄i ≥ λ̄thri we have µ ≤ µthri [see (7.44)], where µthri depends only
on the noise eigenvalues of mode i. Then we can formalize the definition of N3 using
µthri as

N3 = {i| µthri ≥ µ}. (7.49)

If µthri ≥ µ for all i then the set N3 contains all modes and we have

λ̄(3) = λ̄. (7.50)

In this case, Eqs. (7.40), (6.84), and (7.48) determine the global quantum water-filling
solution (which we stated for the general case in Sec. 7.2) with

ν̄wf =
λ̄out

2n
, (7.51)

and

νouti =
√
yqiypi +

1

2
. (7.52)

If the condition (7.47) is not satisfied for at least one mode, then this solution has no
physical meaning because it will lead to negative values of some modulation eigenvalues.

Set N1: Modes excluded from information transmission

Modes for which both modulation eigenvalues are 0 do not contribute to the Holevo
quantity or, consequently to the information transmission. The zero modulation eigen-
values mqi = mpi = 0, i ∈ N1 imply

v̄qi = vqi, v̄pi = vpi, i ∈ N1. (7.53)
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7. Multi-mode Gaussian channels

Obviously if the mode is not modulated there is no reason to spend input energy on the
squeezing of this mode, which results in the vacuum state being the optimal input state

iqi = ipi =
1

2
, i ∈ N1. (7.54)

This is consistent with (7.37) from which we obtain Eq. (7.54) for λ̄i = 1.

In order to deduce the set of modes that are excluded from information transmission
we can use the threshold value µ0i defined in Eq. (7.45) which corresponds to λ̄i = 1
(vacuum energy)

N1 = {i| µ ≥ µ0i}.

Set N2: Single-quadrature modulated modes

For the modes for which 1 < λ̄ < λ̄thri the water-filling solution no longer holds. We
have to set the modulation eigenvalue of the noisier quadrature to 0 in the same way as
in the one-mode case. Again, as in the one mode case we assume that for each mode i the
q-quadrature is noisier than the p-quadrature. We can do this without loss of generality
because, first, for a one-mode channel a swap of the noise quadratures does not change
CG
χ , and second, CG

χ of the discussed multimode channel is assumed to be additive. Then
we have to set the modulation of the q-quadrature for all modes belonging to set N2 to
0, i.e.,

mqi = 0, i ∈ N2. (7.55)

This implies

v̄qi = vqi, i ∈ N2. (7.56)

With the functions µthri and µ0i defined in (7.44), (7.45) we can simply define this set,
i.e.,

N2 = {i| µthri < µ < µ0i}. (7.57)

The eigenvalues that solve the optimization problem for the modes of this set are
found using Eq. (7.37), (7.38).

We note that both, µ0i and µthri depend only on the noise eigenvalues. Therefore,
the partition into the three sets is completely determined by only one parameter µ.
Furthermore, we recall that µ is the common parameter which enters the equations for
sets N2,N3.

Algorithm for arbitrary number of modes

Finite number of modes

Recall that the solution of the problem for n modes is given by the optimal distribution
of the input energy between the modes. The optimal energy distribution within one
mode depends on its corresponding set, which is given by the noise spectrum and the
global parameter µ.
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7.3. Full solution for the classical additive noise channel (τ = 1)

yq,pi
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Figure 7.2.: Solution (with τ = 1) for input energies N̄ < N̄glthr and five noisy channels:
channel 2 is in set N1 (completely excluded from information transmission),
channels 1 and 4 are in set N2 (the noisier quadrature is not modulated) and
channels 3 and 5 are in set N3 (quantum water-filling solution can be satis-
fied). Here, ν̄wf is the “virtual” water-filling level as defined in Eq. (7.43).
We visualized the common Lagrange multiplier, i.e. the common inverse
temperature in Fig. 7.3.
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7. Multi-mode Gaussian channels

Now we present the algorithm that allows us to find the solution of our optimization
problem. First, we further develop the equations that correspond to modes of set N2.
We call the right-hand side of Eq. (7.37)

f(iqi) ≡
g′
(
νouti − 1

2

)

2νouti

(
vpi −

ipi
iqi
vqi

)
. (7.58)

We note that for given noise eigenvalues f is a function of only one independent variable
iqi. Using the definition of λ̄i (see (7.34)) and the fact that, for the modes belonging to
the second set mqi = 0, we rewrite

v̄pi − v̄qi = λ̄i − 2iqi − yqi + ypi. (7.59)

Furthermore, from (7.38) we express

g′(ν̄outi − 1
2)

2ν̄outi
=

µ

v̄qi

. (7.60)

Then we insert Eqs. (7.59) and (7.60) together into the left hand side of Eq. (7.37) and
obtain with v̄qi = vqi and (7.58)

λ̄i(iqi, µ) =
vqi

µ
f(iqi) + 2iqi + yqi − ypi. (7.61)

This means that we have established a relation between the optimal input eigenvalues
iqi, i ∈ N2, the global parameter µ and the optimal input energy distribution λ̄i between
the modes in N2. Using Eq. (7.61) and definition (7.34) we can now eliminate variable λ̄i
from Eq. (7.59). Thus, we obtain a transcendental equation that determines the optimal
input eigenvalues iqi as an implicit function of µ:

g′


vqi

√
1 +

f(iqi)

µ
− 1

2


 = 2µ

√
1 +

f(iqi)

µ
. (7.62)

Now we are ready to calculate the input energies of all three sets for a given µ. First,
we evaluate the total input energy of “water-filling” modes, i.e. modes in N3. Using
Eqs. (7.34), (7.46) and (7.48) we deduce the total input energy used for the modes in
N3 as a function of µ

λ̄(3)(µ) =
∑

i∈N3

(
2ν̄wf(µ)− yqi − ypi

)
. (7.63)

Second, the total (vacuum) energy of modes belonging to N1, using (7.45), reads

λ̄(1)(µ) =
∑

i∈N1

1 = n(1). (7.64)
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7.3. Full solution for the classical additive noise channel (τ = 1)

Functions λ̄(1)(µ) and λ̄(3)(µ) depend on µ through N1,N3 and ν̄wf , which are only
functions of µ and the noise eigenvalues. The total input energy for modes in N2 is the
sum

λ̄(2)(µ) =
∑

i∈N2

λ̄i(iqi, µ). (7.65)

Now we apply the overall input energy constraint

λ̄(1)(µ) + λ̄(2)(µ) + λ̄(3)(µ) = λ̄. (7.66)

Thus, Eq. (7.66) is a closed equation depending on µ which we can be solved by iterations.
The solution of the system of equations stated in Eq. (7.62) together with Eq. (7.66)
provides us the n(2) optimal eigenvalues iqi and µ, which determine all other eigenvalues.
Once the optimal spectra are obtained one can calculate the one-shot Gaussian capacity

of the n-mode channel Φ
(n)
Λ (where τ = 1), i.e. Eq. (7.32) simplifies to

CG
χ (Φ

(n)
Λ , nN̄) =

{
n∑

i=1

[
g

(
ν̄outi −

1

2

)
− g

(
νouti −

1

2

)] ∣∣∣∣∣λ̄
(1)(µ) + λ̄(2)(µ) + λ̄(3)(µ) = λ̄

}
,

(7.67)
where here ν̄outi, νouti contain the obtained optimal input and modulation spectra. We
plot the optimal eigenvalue distribution for an example in Fig. 7.2 where all three sets
N1, N2 and N3 are occupied.

Let us take a look at the physical interpretation of the solution. In the same way
as for the one-mode solution we choose the modified Lagrangian stated previously in
Eq. (6.180)3

L′ =
n∑

i=1

g
(
M̄outi

)
− g (Mouti)−

β̄out

ln 2

(
N̄out −

1

2n
Tr[V̄out]−

1

2

)
, (7.68)

where Mouti and M̄outi can be expressed in terms of the 2n symplectic eigenvalues νouti,
ν̄outi, respectively, as

Mouti = νouti −
1

2
, M̄outi = ν̄outi −

1

2
. (7.69)

We recall that the parameter β̄out (and hence µ) can indeed be regarded as a common
inverse temperature, since the solution satisfies

∂L′
∂N̄out

=
∂g(M̄outi)

∂N̄out
− β̄out

ln 2
= 0, ∀i, (7.70)

from which it follows that

ln 2
∂g(M̄outi)

∂N̄out
= β̄out, ∀i. (7.71)

3Since the noise distribution is fixed (it is a part of the given channel parameters) imposing an output
energy constraint N̄out is equivalent to imposing an input energy constraint constraint N̄ .
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Figure 7.3.: Solution for N̄ < N̄glthr, visualization of “thermal equilibrium”: We plot

ln 2∂g(M̄outi)
∂N̄out

[left hand side of Eq. (7.71)] vs. N̄ for individual channels, as

well as the common inverse temperature β̄out (noise values given in the plot;
we choose the same noise distribution as in Fig. 7.2 and present here exact
values). The noisiest channel with yq = 2, yp = 1 (channel 2 in Fig. 7.2) is
excluded from information transmission, i.e. N̄2 = 0 (it belongs to N1). The
channel yq = 2, yp = 0.5 receives N̄1 = 0.062 and channel yq = 0.5, yp = 0.3
receives N̄4 = 0.239 (channels 1 and 4 in Fig. 7.2). Since for both input
energies N̄ < N̄ thr they belong to set N2. The channel yq = 0.5, yp = 0.4
receives N̄3 = 0.187 > N̄ thr and channel yq = 0.25, yp = 0.1 receives N̄5 =
0.462 > N̄ thr (channels 3 and 5 in Fig. 7.2), i.e. they both receive enough
energy to satisfy locally the quantum water-filling solution and therefore
belong to set N3. The total input energy constraint was fixed to N̄ = 0.95.
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7.4. Classical additive channel with Gauss-Markov correlated noise

Thus, the energy constraint (associated to β̄out) implies that the capacity is achieved
when the modes (that participate in information transmission) are in thermal equilibrium
(too noisy modes are excluded as mentioned above). Note that Eq. (7.70), as mentioned
already in Sec. (6.4.5), can be expressed as a Bose-Einstein statistics:

M̄outi =
1

eω̄outiβ̄out − 1
, (7.72)

where ω̄outi is defined (∀i) as in Eq. (6.168). We illustrate the “thermal equilibrium”
stated in Eq. (7.68) in Fig. 7.3 for the same five noise distributions that were schemati-
cally depicted in Fig. 7.2.

Infinite number of modes

In order to make the transition to an infinite number of channel uses we have to consider
a parallel channel system with an infinite number of one-mode channels, n→∞. In this
limit all functions previously labeled with i depend now on a continuous parameter x
defined on a proper domain which depends on the particular noise model. All sums that
run from i = 1, ..., n, now become integrals over the whole domain of x. The three sets
become now sets of continuous variables and cover the whole domain of x; they read

N1 = {x| µ0(x) ≤ µ},
N2 = {x| µthr(x) < µ < µ0(x)},
N3 = {x| µthr(x) ≥ µ},

(7.73)

where µthr(x), µ0(x) are defined as in (7.44), (7.45) where index i is replaced by x.
Equations (7.62)-(7.65) remain the same, with the replacements iqi by iq(x) and the
sums over i by integrals over x.

Once the µ is found which is the solution of (7.66) we can determine the optimal
spectra iq(x), ip(x) and mq(x),mp(x), respectively. The found optimal spectra are used
to evaluate the Gaussian capacity in the limit n→∞:

CG(ΦΛ, N̄) = lim
n→∞

1

n
CG
χ (Φ

(n)
Λ , nN̄)

=
1

|A|

∫

x∈A

dx

[
g

(
ν(x)− 1

2

)
− g

(
νout(x)− 1

2

)]
,

(7.74)

where A is the spectral domain of x and |A| is its size. In case of a global quantum
water-filling, i.e. if µthr(x) ≥ µ, ∀x the solution reads as in Eq. (7.21).

7.4. Classical additive channel with Gauss-Markov correlated
noise

We consider now a concrete example of a memory model, namely, a Markov correlated
noise. We use the same noise model that we already studied for classical Gaussian
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7. Multi-mode Gaussian channels

channels in Sec. 2.3.4. Since this noise is “classical” (i.e. its symplectic eigenvalues can
be smaller than 1/2) we use it only for the multi-mode classical additive noise channel,
i.e. when X = I. As mentioned in Sec. 5.3.2, in this case Y = Venv. This channel
may be regarded as the quantum counterpart of the one defined in Eq. (2.35), with the
difference that in the quantum case we have two degrees of freedom as we have two input
quadratures.

Let us now construct the full noise covariance matrix Venv of the memory channel. We
choose the q-quadratures to be correlated and the p-quadratures to be anti-correlated.
Namely, the full noise CM reads

Y = Venv =

(
VMK(φ) 0

0 VMK(−φ)

)
, (7.75)

where VMK(−φ) is the matrix given in Eq. (2.33) with replacement φ → −φ. Let us
confirm that Venv can indeed be diagonalized by a passive symplectic transformation [as
requested from our channel definition stated in Eq. (7.2)]

Due to the particular block structure of Venv the rotation Θ that diagonalizes Venv

(or equivalently Y ) is of the form

Θ =

(
Θq 0
0 Θp

)
. (7.76)

Therefore, in order for Θ to be a symplectic transformation we find the requirement that

ΘqT Θp = Θq ΘpT = I, (7.77)

where Θq,Θp are orthogonal transformations. In the limit n → ∞ both quadrature
blocks

V q
env = VMK(φ), V p

env = VMK(−φ), (7.78)

of the noise CM (7.75) are diagonalized by the same orthogonal transformation Θq,=
Θp = Q, where Q is stated in the Appendix in Eq. (A.10), implying

lim
n→∞

[V q
env,V

p
env] = 0. (7.79)

Thus Θ corresponds asymptotically to a passive symplectic transformation and require-
ment (5.66) is fulfilled. In addition we find that [V q

env,V
p

env] = 0 for the case n = 2.
The latter was intensively studied numerically in [CCMR05, CCRM06] where it was
shown that entanglement at the input helps to increase the transmission rate. We shall
confirm those results analytically in the following and then extend it to the general case
of infinite modes.

7.4.1. Two modes

Let us first consider the case n = 2. The noise matrix reads in this case

Y
(2)

M = N




1 φ 0 0
φ 1 0 0
0 0 1 −φ
0 0 −φ 1


 , N ≥ 0, φ ∈ [0, 1], (7.80)
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Figure 7.4.: CG
χ

(
ΦF

(1,y,s), N̄
)

= CG
χ (Φ

(2)
Λ , 2N̄)/2 vs. φ, where s(φ) is given by Eq. (7.83).

We confirm that the one-shot Gaussian capacity is monotonically increasing
with φ, where here (from bottom to top) N = {2, 1, 0.5, 0.1}. In the limit
φ = 1 the capacity coincides with the one of the one-mode channel with
rank(X) = 2, rank(Y ) = 1, see Sec. 6.4.7. The dashed curve is the one-shot
Capacity at N̄ = N̄ thr(φthr, Nthr): for fixed N and φ ≤ φthr the quantum
water-filling solution is satisfied.

i.e. the two channels (or modes) are correlated with the parameter φ. This can alterna-
tively be seen as two successive, correlated uses of the same channel. When brought to

diagonal form we obtain the effective noise matrix Y
(2)

Λ of the channel Φ
(2)
Λ (which has

the same capacity), i.e.

Y
(2)

Λ = Ndiag(1− φ, 1 + φ, 1 + φ, 1− φ). (7.81)

We conclude that the channel Φ
(2)
Λ is equivalent to two independent one-mode fiducial

channels with identical but swapped noise variances, i.e.

Φ
(2)
Λ = ΦF

(1,y,s) ⊗ ΦF
(1,y,−s), (7.82)

where

s =
1

4
ln

(
1 + φ

1− φ

)
⇔ φ = tanh(2s). (7.83)

Since “noise inversion” does not change the capacity, i.e. CG
χ

(
ΦF

(τ,y,s)

)
= CG

χ

(
ΦF

(τ,y,−s)

)
,

it follows that
CG
χ (Φ

(2)
Λ , 2N̄) = 2CG

χ

(
ΦF

(1,y,s), N̄
)
. (7.84)

For input energies N̄ ≥ N̄ thr we find the full Gaussian capacity [using Eq. (6.96)]

CG(Φ
(2)
Λ , N̄) = g(N̄ +N)− g

(
N
√

1− φ2
)
, N̄ ≥ N̄ thr =

1

2

√
1 + φ

1− φ +Nφ− 1

2
. (7.85)
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Let us take a look at the dependency of CG
χ on the parameters N and φ. With the

substitution stated in Eq. (7.83) we can write the noise matrix of the one-mode fiducial
channel ΦF

(1,y,s) as

Y = N

(
1 + φ 0

0 1− φ

)
, φ ∈ [0, 1]. (7.86)

Note that since the noise in this case is classical the limiting case φ = 1 is physically
allowed. In fact, this case is even the optimal noise distribution, as proven in Lemma 9
(see Appendix Sec. D.3.4), i.e.

∂CG
χ (ΦF

(1,y,s))

∂φ
> 0. (7.87)

We plot CG
χ vs. φ in Fig. 7.4 and confirm that indeed the capacity is monotonically

increasing with the correlation parameter φ. Recall that this behavior is not observed
when the parameter s is varied (recall Sec. 6.4.6), i.e. we observed that for y < 1/

√
12

a maximum appears at a finite squeezing s. For the two parameterizations we have

1

2
Tr[Y ] = y cosh(2s),

√
detY = y,

1

2
Tr[Y ] = N,

√
detY = N

√
1− φ2.

(7.88)

Thus, increasing s leaves the determinant invariant and increases Tr[Y ]; increasing φ
leaves the trace invariant and decreases the determinant of Y . We summarize these
findings (valid for τ = 1):

• CG
χ

(
ΦF

(1,y,s)

)
is monotonically decreasing with

√
detY = N

√
1− φ2 = y.

• CG
χ

(
ΦF

(1,y,s)

)
is (for y < 1/

√
12) a non-monotonous function of Tr[Y ] = 2N .

Let us now discuss the optimal input state for the two-mode case. Recall that the

channel Φ
(2)
Λ is equivalent to two single-mode channels (with inverse squeezing) and

thus, the optimal two-mode input state corresponds to a product state consisting of two
one-mode squeezed states. If N̄ ≥ N̄glthr both input squeezed states exactly match the

squeezing of the noise such that the optimal input CM of Φ
(2)
Λ becomes

V
(2)

in,Λ =
1

2
diag

(
e2s, e−2s, e−2s, e2s

)
, N̄ ≥ N̄glthr. (7.89)

Then, the optimal input state V
(2)

in,M for the memory channel Φ
(2)
M is given by V

(2)
in,Λ,

rotated back to the original basis, i.e.

V
(2)

in,M = ΘT
Y V

(2)
in,ΛΘY . (7.90)
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where ΘY YΛΘT
Y = YM. The rotation ΘY in the two mode case reads

ΘY =
1√
2




−1 1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1


 , (7.91)

i.e. (up to a local and global phase) corresponds exactly to the symplectic transformation
of a beamsplitter (see Sec. 5.2.1). As a result the optimal input state in the original,
correlated basis is given by the two-mode squeezed vacuum state (where here s→ −s)

V
(2)

in,M = VTMSV =
1

2




cosh (2s) − sinh (2s) 0 0
− sinh (2s) cosh (2s) 0 0

0 0 cosh (2s) sinh (2s)
0 0 sinh (2s) cosh (2s)


 , N̄ ≥ N̄glthr.

(7.92)
where VTMSV was introduced in Sec. 5.1. For input energies N̄ below the threshold N̄glthr

the input state will still be of the form as in Eq. (7.92) but with a squeezing parameter
r < s. We conclude that for the Markov correlated noise model and n = 2 the optimal
input state is entangled (as previously suggested in [CCMR05, CCRM06]). This is
indeed not very surprising because already in the case of classical Gaussian channels
with correlated noise (see Sec. 2.3.3) we observed that the optimal modulation has to
be diagonalized in the same basis as the (correlated) noise matrix. As a consequence it
must be correlated in the original, correlated noise basis.

7.4.2. Infinite number of modes

We now move to the other case for which the matrix YM can be diagonalized by a passive
symplectic transformation, namely, the case n → ∞. In this limit the spectra of the
two blocks of the correlation matrix stated in Eq. (7.75) become continuous (as already
discussed in Sec. 2.3.4) and read

yq(x) ≡ λ(VMK(φ))(x) = N
1− φ2

1 + φ2 − 2φ cos (x)
,

yp(x) ≡ λ(VMK(−φ))(x) = N
1− φ2

1 + φ2 + 2φ cos (x)
,

(7.93)

where yq(x) is the noise spectrum of the q-quadrature given by the spectrum of limn→∞ VMK(φ)
and yp(x) the noise spectrum of the p-quadrature given by the spectrum of limn→∞ VMK(−φ).
Then, the spectra stated in Eq. (7.93) define the action of the channel

Φ
(∞)
Λ ≡ lim

n→∞
Φ

(n)
Λ . (7.94)

First, we compute the input energy threshold associated to the global quantum water-
filling solution. We stated the general formula in the limit of an infinite number of uses
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7. Multi-mode Gaussian channels

in Eq. (7.22). However, this equation requires yq(x) ≥ yp(x),∀x. For the given noise
spectrum there is an easier way to compute the water-filling threshold. The noise spectra
are symmetric, i.e.

λ(VMK(φ))(x) = λ(VMK(−φ))(π − x), (7.95)

and λ(VMK(φ))(x) is monotonically decreasing in x (for x ∈ [0, π]) which implies that the
optimal input spectrum iq(x) = 1

2

√
yq(x)/yp(x) is monotonically decreasing in x (for

x ∈ [0, π]) and symmetric [iq(x) = ip(π−x)] as well. Thus, in order to satisfy the global
quantum water-filling solution the following equation needs to be satisfied:

iq(0) + yq(0) = ν̄wf =
1

2π

π∫

0

dx [yq(x) + yp(x)]

︸ ︷︷ ︸
= 1
π

π∫
0

dx yq(x)=N

+N̄glthr +
1

2
, (7.96)

where the water-filling level ν̄wf was previously defined (for a finite number of uses) in
Eq. (7.17). Equation (7.96) simplifies to

N̄glthr =

(
1 + φ

1− φ − 1

)(
N +

1

2

)
. (7.97)

Then, the Gaussian capacity is obtained as in Eq. (7.21) inserting the given noise spectra:

CG
(

Φ
(∞)
Λ , N̄

)
= lim

n→∞
1

n
CG
χ

(
Φ

(n)
Λ , nN̄

)

= g(N̄ +N)− 1

π

π∫

0

dx g

(
N(1− φ2)√

1 + φ4 − 2φ2 cos(x)

)
, N̄ ≥ N̄glthr.

(7.98)

We note that for some noise parameters the threshold functions µ0(x), µthr(x) may have
a complicated profile as depicted in Fig. 7.6. In Fig. 7.7 we illustrate for a particular
choice of the noise parameters (N , φ) different partitions of the spectral domain between
the sets for different input energies λ̄ corresponding to different µ.

Our result confirms that the modes belonging to N2 are squeezed in the less noisy
quadrature (which is the one that is modulated), as depicted in Fig. 7.8. An example
plot of optimal input and modulation spectra for N̄ < N̄glthr is shown in Fig. 7.5 (b).
We see the naturally expected behavior of the capacity in Fig. 7.9. It decreases with
increasing noise variance N and increases with increasing noise correlations φ. We
note that the capacity increases with φ up to the noiseless capacity C = g(N̄) at “full
correlations” (φ→ 1). This limit will be discussed in section 7.4.4.

7.4.3. Optimal quantum input state

We discuss now the covariance matrix of the optimal input state in the original “corre-
lated” basis. We know that in the basis where the noise, modulation, and input matrices
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Figure 7.5.: Stacked area plot: optimal input and modulation eigenvalue spectra
iq(x),mq(x) and noise spectrum yq(x) (yp(x) and ip(x) are given by the
lower and upper dashed curve, respectively) for particular, fixed φ and N .
(a) Global quantum water-filling solution, where N̄ > N̄glthr. νwf (solid bar)
denotes the water-filling level. (b) Below threshold (N̄ < N̄glthr): Modes
with x ∈ [α, π − α] belong to N3 with water-filling level νwf (solid bar).
Modes with x ∈ [0, α] and x ∈ [π−α, π] belong to set N2, where the modu-
lation is below νwf .

are diagonal, the optimal input spectrum leads to the optimal input state given by a
product of one-mode squeezed states. Recall that the CM Y for the Markov correlated
noise matrix [given in Eq. (7.75)] is Toeplitz (see Appendix A). Following our assump-
tion that the Gaussian capacity of the given multi-mode channel is given by the sum (for
n → ∞ by an integral) of Gaussian capacities of one-mode channels it follows that the
optimal input covariance matrix Vin is diagonalized in the same basis as the total noise
covariance matrix Y . Thus, Vin is asymptotically Toeplitz with quadrature spectra

iq,p(x) =

∞∑

k=0

iq,pk e
−ikx, x ∈ [0, 2π],

where iq,pk are here the kth diagonal of Vin (and the Fourier coefficient of a Fourier
series) in the original basis. Since iq,p(x) is Riemann integrable we conclude that

iq,pk =
1

2π

2π∫

0

dx eikx iq,p(x), k = 0, 1, 2, ...,∞, (7.99)

which provides the covariance matrix of the input state in the case of a global water-
filling (N̄ ≥ N̄glthr), which we consider for the rest of this subsection. In this case the
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Figure 7.6.: Functions µ0(x) (upper dashed curve) µthr(x) (lower solid curve) for (a)
φ = 0.5, (b) φ = 0.7, (c) φ = 0.9, (d) φ = 0.99. For all plots we took N = 1.
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Figure 7.7.: Functions µthr(x) (lower dashed curve), µ0(x) (upper dashed curve) and
values for µ (solid bars) for different input energies λ̄, and noise parame-
ters φ = 0.85, N = 1. From top to bottom the values are µ = 1.45(N̄ =
0.003), 1.34(N̄ = 0.02), 0.42(N̄ = 1), 0.04(N̄ = 17). The numbers indicate
the intervals on the x-axis that belong to sets N1,N2 or N3.
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Figure 7.8.: Optimal input iq(x) (solid curve) and modulation mq(x) (dashed curve)
eigenvalue spectra of the q-quadrature (p-quadrature spectra are the same
but mirrored with respect to a vertical line at π/2) vs. spectral parameter x,
for φ = 0.85, N = 1 and N̄ < N̄glthr. The partitioning in sets is taken from
Fig. 7.7. In (a): N̄ = 1 which corresponds to µ = 0.42, in (b): N̄ = 0.02
which corresponds to µ = 1.34.

optimal input spectra read

iq,p(x) =
1

2

√
yq,p(x)

yp,q(x)
, ∀x. (7.100)

Inserting the noise spectra yq,p(x) of the Gauss-Markov channel given in Eq. (7.93) in
the latter leads to the k-th diagonal of the input covariance matrix:

iq,pk =
1

4π

2π∫

0

dx eikx

√
1 + φ2 ± 2φ cos(x)

1 + φ2 ∓ 2φ cos(x)
, (7.101)

where the upper sign is for q and the lower for p. In order to verify that the overall
state is entangled we can check whether the reduced single mode states are mixed, i.e.
whether the 2 × 2 covariance matrix (obtained by tracing out all other modes) of the
reduced state satisfies

detVin = iq0ip0 >
1

4
, φ > 0. (7.102)

Integration over the whole domain 0 to 2π leads to iq0 = ip0. Then we find for iq0(φ =
0) = 1/2, which means that in the absence of correlations the optimal input state is
a set of coherent states and not entangled. In the limit φ → 1 each single mode state
becomes a thermal state with its number of thermal photons tending to infinity. This
corresponds to an overall maximally entangled state. It is easy to show that (7.102) is
monotonically increasing from φ = 0 to φ = 1 and therefore we conclude that for all
φ > 0 the optimal input state is entangled.
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Figure 7.9.: (a) One-shot Gaussian capacity CG
χ vs. correlation φ, where from top to

bottom N = 1, 2 and 3. (b) One-shot Gaussian capacity CG
χ vs. noise

varianceN , where from top to bottom φ = 0.9, 0.7 and 0.5. The input energy
is N̄ = 1 (λ̄ = 3) for both plots. The dashed part of the curves corresponds
to the global water-filling solution with N̄ ≥ N̄glthr. One observes that the
capacity for full correlations φ → 1 tends to the capacity C = g(N̄) of the
noiseless channel N = 0.
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7.4.4. Full correlations

We observe in Fig. 7.9 that for fixed N and N̄ the capacity increases monotonically with
the correlation parameter φ. Furthermore, for φ→ 1 the capacity tends to the capacity
of the noiseless channel:

lim
φ→1

CG
(

Φ
(∞)
Λ , N̄

)
= C = g(N̄). (7.103)

Equation (7.103) can be proven as follows. For any φ the classical capacity C is upper
bounded by g(N̄). In addition, C is lower bounded by the coherent rate Rcoh [defined in
Eq. (7.23)]. As shown in Sec. 7.2 the coherent rate is obtained by a classical water-filling
solution. For the given Markovian noise the solution of the coherent rate is equivalent to
the solution of the classical capacity of the classical Gaussian channel with Markovian
noise (presented in Sec. 2.3.4). Namely, the solution is obtained by finding the position
κ, such that

π − κ
π

yq(κ) =
1

π

π∫

κ

dx yq(x) + N̄ , (7.104)

where used the fact that yq(x) = yp(π− x). Once κ is obtained the optimal modulation
eigenvalue spectra read

mq(x) = θ(x− κ)

[
ν̄wf − yq(x)− 1

2

]
,

mp(x) = θ(π − κ− x)

[
ν̄wf − yp(x)− 1

2

]
,

(7.105)

where the water-filling level reads ν̄wf = yq(κ) and the coherent rate is given by

Rcoh(Φ
(∞)
Λ , N̄) =

1

π

π∫

κ

dx g

(
ν̄out(x)− 1

2

)
− g

(
νout(x)− 1

2

)
. (7.106)

In the case of a global water-filling solution the coherent rate becomes for the given noise
spectrum

Rcoh(Φ
(∞)
Λ , N̄) = g

(
N̄ +N

)
− 1

π

π∫

0

dx g

(
1

2

√
(1 + φ2 + 2N(1− φ2))2 − 4φ2 cos2(x)

1 + φ4 − 2φ2 cos(2x)
− 1

2

)
,

N̄ ≥ N
(

1 + φ

1− φ − 1

)
,

(7.107)

where N̄cohthr is obtained by Eq. (7.96), substituting iq(0) = 1
2 .

We showed in Sec. 2.3.4 that the noise spectrum yq(x) (and equivalently yp(x) =
yq(π − x)) tends to 0 in the limit φ → 0 for all values of x except at x = 0 where it
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diverges. Since the contribution to the integral of the value at x = 0 is infinitesimally
small it can be neglected, and thus, in the limit φ→ 1 the coherent rate is given by the
solution for the global water-filling solution (stated in Eq. (7.107)) in this limit, which
yields

lim
φ→1

Rcoh(Φ
(∞)
Λ , N̄) = g(N̄). (7.108)

Since Rcoh ≤ C ≤ g(N̄) we proved Eq. (7.103).

7.4.5. Classical limit

In the classical limit we increase the input energy N̄ as well as the noise variance N
while keeping the signal-to-noise SNR = N̄/N constant. In this limit the symplectic
eigenvalue spectra entering in χG tend to infinity and therefore we can replace g(x) by
its asymptotic function log2(x) (we used this simplification already in Sec. 6.4.6). In the
case of a global water-filling N̄ ≥ N̄glthr the second term in Eq. (7.98) then simplifies to

lim
N̄→∞
N→∞
N̄
N

=SNR

1

π

π∫

0

dx log

(√
yq(x) yp(x)

)
= log2 (N(1− φ2)), (7.109)

where the integral is taken from Ref. [GR80]. Thus, the Gaussian capacity in this limit
is given by

lim
N̄,N→∞, N̄

N
=c

CG(Φ
(∞)
Λ , N̄) = log2(N̄ +N)− log2 (N(1− φ2)), N̄ ≥ N̄glthr. (7.110)

We conclude that

lim
N̄→∞
N→∞
N̄
N

=SNR

CG(Φ
(∞)
Λ , N̄)→ Ccl = log2

(
1

1− φ2

(
1 +

N̄

N

))
, N̄ ≥ N̄glthr, (7.111)

where CSh is the classical capacity given in Eq. (2.44) of the classical Gaussian additive
noise channel. Since g(x) < log (x) we reach this limit from below and hence, for finite
N̄ ≥ N̄ thr the classical capacity of the bosonic channel is always smaller than the capacity
of the classical Gaussian additive channel. This is the expected result because for the
bosonic channel (for φ 6= 0) a certain amount of energy is needed to prepare the input
squeezed state, which is not the case for the classical channel. In Fig. 7.10 we plotted the
Gaussian capacity CG versus the noise parameter N for different φ and fixed SNR = 1.
For a large range of N we have that N̄ < N̄glthr so CG is obtained numerically by the
algorithm stated in Sec. 7.3. We observe that for lower values of φ the Gaussian capacity
converges faster to the corresponding classical capacity CSh.
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Figure 7.10.: Gaussian capacity CG vs. noise variance N (solid lines) for fixed SNR =
N̄/N = 1, where from top to bottom we choose φ = {0.9, 0.7, 0.5, 0.3}. The
dashed horizontal lines correspond to (twice) the capacity Ccl of the clas-
sical Gaussian channel for the corresponding values of φ. For parameters
φ = {0.9, 0.7, 0.5} in the entire domain of N we find that N̄ < N̄glthr. For
the parameter φ = 0.3 we find that N̄ ≥ N̄glthr for N ≤ 3 and N̄ < N̄glthr

otherwise.
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Figure 7.11.: Gain G vs. N̄ for (a) two modes and (b) an infinite number of modes,
where φ = 0.7 (solid curve), φ = 0.9 (dashed curve), φ = 0.99 (dotted
curve). For both plots we took SNR = 3.

7.4.6. Symmetric correlations

Now we consider a modified, “symmetric” noise matrix, i.e. a CM with same correlations
in both quadratures:

YM =

(
VMK(φ) 0

0 VMK(φ)

)
, (7.112)

As both quadrature blocks have now identical spectra, we treat a set of independent
thermal channels, when YM is diagonalized. We recover from Eq. (7.20) immediately
that in the asymptotic limit the optimal input spectra read

iq,p(x) =
1

2

√
yq,p(x)

yp,q(x)
=

1

2
, ∀x, (7.113)

i.e. the overall optimal input state is a set of coherent states and entanglement does not
improve the transmission rate. This is in agreement with previous investigations of the
two-mode model discussed in [CCMR05]. The same observation was made independently
in Ref. [LMM09].

7.4.7. How useful are the optimal input states?

In this subsection we evaluate the gain G by the use of the optimal input states compared
to the use of coherent product states. We define the gain G as the ratio of the Gaussian
capacity CG and the coherent rate Rcoh, i.e.

G ≡ CG

Rcoh
. (7.114)
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Our motivation here is that the optimal input states are entangled and therefore may
be not easy to generate. On the contrary, coherent states are easily accessible in the
laboratory by standard tools of quantum optics.

The gain was already discussed in [CCMR05] for the case of two modes, where it
was shown that for such a channel G exhibits a maximum with respect to N̄ for fixed
signal-to-noise ratio SNR = N̄

N and correlation φ. Furthermore, it was deduced that the
gain increases with increasing correlations φ between the two modes.

In the case of an infinite number of modes, we know already that in the absence of
correlations the optimal input states are coherent states, and therefore there is no gain
(G = 1). For full correlations, the behavior is essentially different from the two-mode
case: since the channel becomes effectively noiseless, coherent input states are optimal
in this limit as well, whereas for two modes the highest available squeezing is best.
Therefore, an interesting question is where we find the maximum gain with respect to
the noise correlations in the limit of an infinite number of uses of the channel.

In Fig. 7.11 we plotted the gain G vs. N̄ for fixed SNR and different φ for an infinite
number of modes and for two modes. We see that unlike in the case of two modes, where
the gain with higher correlations is always higher, in the case of an infinite number of
modes the maximum of the gain is found for some intermediate correlations. However,
in this plot one does not see the dependency on the SNR. So the question that follows
is: What is the dependence of the maximal gain (with respect to N̄) on φ and the SNR?
In order to answer this question we make a contour plot of maxN̄ G vs. φ and SNR. In
the case of two modes we see in Fig. 7.12 (a) that the optimal gain is obtained at φ = 1
for a certain SNR. In addition, in this case, the increase in gain at high correlations is
very strong compared to that at lower correlations. Furthermore, a low SNR seems to
benefit from entanglement more than a higher SNR.

For an infinite number of modes the situation is different, as we can see in Fig. 7.12 (b):
instead of a sharp edge toward high correlations we see an almost-flat area of maximal
gain in the region of high correlations and low SNR. This holds, on one hand, for a
high correlation and low SNR but, on the other hand, also for less correlated noise and
a higher SNR. Furthermore, the enhancement is rather robust and does not drop as
sharply with decreasing correlations as in the two- mode case. However, as the region of
high gain has input energies below the global water-filling threshold, where the optimal
input squeezing becomes quite complex [as depicted, e.g., in Fig. 7.8 (b)] a modulation
of coherent states might be practically more favorable. We conclude that the gain due
to entanglement does not exceed 10% and therefore, a coherent state encoding achieves
at least 90% of the Gaussian capacity.
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Figure 7.12.: Contour plot of the maximal gain maxN̄ G vs. φ and SNR for (a) two
modes and (b) an infinite number of modes.
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8. Gaussian matrix-product states for
coding

8.1. Optical scheme for nearest-neighbor GMPS

We consider now a particular GMPS which only requires one finitely entangled state per
site (m = 1). Namely, a pure, translationally invariant one-dimensional GMPS that was
studied in [AE06, AE07]. Each GMPS mode i is obtained by performing two quantum
teleportations of two halves of two TMS and a three-mode entangled state with CM VBB

(also called “building block”, see [AE06, AE07] for details), such that the third mode of
the building block collapses into the ith GMPS mode1. We depicted the corresponding
setup in Fig. 8.1 (a).

The resulting CM of the one-dimensional GMPS can be written as [AE06]

VGMPS =
1

2

(
T (C)−1

0

0 T (C)

)
, (8.1)

where T (C) is a n×n circulant symmetric Toeplitz matrix (see Appendix A). Interestingly,
the setup shown in Fig. 8.1 can be realized by the sequential application of the same op-
tical transformation. We depict an alternative realization of the same setup in Fig. 8.2.
Here, only one TMSV is used together with a delay line, followed by the above explained
operations. One central difficulty is the connection of the very first half of the TMSV
and the very last one, which then needs to be connected in a cyclic way and therefore
would need to be stored in a delay line for a long time. In a practical scheme the first and
last half may be replaced by vacua leading to an imperfect but still usable multi-mode
entangled state. For the sake of completeness we depict the full optical scheme of a
1D-GMPS in Fig. 8.3 showing the explicit homodyne detections and teleportations (as
introduced in Secs. 5.2.3 and 5.2.3).

Now let us focus furthermore on the restricted case of a nearest-neighbor correlated
GMPS, i.e. the GMPS with the shortest entanglement range among one-dimensional

1The fact that the state is translationally invariant implies here that the left half of the first TMS has to
be used together with the right half of the TMS of the last mode in the setup depicted in Fig. 8.1 (a)
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Figure 8.1.: (a) and (b): Modification of the optical scheme defined in [AE06].
TMSV(rT ) is a two mode squeezed vacuum state with squeezing rT . For
the GMPS mode i, one half of the TMSV is used, the other half is sent
to a delay line (to be used in use i + 1). After two EPR measurements
(represented by curly brackets) involving the TMSV halves of uses i and
i− 1 and the two identical modes V1 of the three-mode building block VBB,
the mode V2 collapses into the ith GMPS mode. (c) Optical setup of the
three-mode building block VBB that, when used as described in (a), gener-
ates a 1D-GMPS. |0〉 denote vacuum modes, S(rBB) is a one mode squeezer
with squeezing parameter rBB and the bold horizontal lines represent 50 : 50
beamsplitters.
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Figure 8.2.: Sequential generation of a 1D-GMPS: The same TMSV state is used repeat-
edly together with a delay line.
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Figure 8.3.: Full optical scheme of the 1D-GMPS. Here Dq and Dp are short notations for
displacements depending on homodyne measurement outcomes qm and pm
(see Sec. 5.2.3) and bold vertical lines with label “1:99” correspond to highly
unbalanced beamsplitters needed for homodyne detection (see Fig. 5.7).
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8. Gaussian matrix-product states for coding

GMPS. In this case the CM VBB of the building block is given by [AE07]

VBB =
1

2




w v u 0 0 0
v w u 0 0 0
u u t 0 0 0
0 0 0 w v −u
0 0 0 v w −u
0 0 0 −u −u t



, (8.2)

with w = (t+ 1)/2, v = (t−1)/2 and u =
√

(t2 − 1)/2, where t ≥ 1. The optical scheme
for the three-mode building block is depicted in Fig. 8.1 (b), where S(rBB) is a one-mode
squeezing operation as defined in Eq. (5.24), and where t = cosh (2rBB) [AE07]. The
resulting CM of the n-mode nearest-neighbor correlated GMPS is given by [AE06]

VGMPS,nn = ΓT − ΓT
WT(ΓWW + PΓTMSVP )−1ΓWT, (8.3)

with P = I⊕−I, where I is the n× n identity matrix 2,

ΓT =
1

2

n⊕

i=1

diag{t, t}, ΓT
WT =

1

2

n⊕

i=1

(
u u 0 0
0 0 −u −u

)
,

ΓWW =
1

2

2n⊕

i=1

(
w v
v w

)
,

(8.4)

where

ΓTMSV =
1

2
VTMSV(rT )⊕ VTMSV(−rT ),

VTMSV(rT ) =




ch(2rT ) 0 0 · · · · · · · · · 0 sh(2rT )
0 ch(2rT ) sh(2rT ) 0 0 · · · · · · 0

0 sh(2rT ) ch(2rT ) 0 0 · · · · · · ...
... 0 0 ch(2rT ) sh(2rT ) 0 · · · ...
... 0 0 sh(2rT ) ch(2rT ) 0 · · · ...
...

...
...

. . .
. . .

. . .
. . .

...

0
...

. . .
. . .

. . . 0
sh(2rT ) 0 · · · · · · 0 · · · 0 ch(2rT )




,

(8.5)

with ch(2rT ) = cosh(2rT ) and sh(2rT ) = sinh(2rT ), respectively. In order to further
simplify the complexity we impose another restriction on the squeezing parameters,
namely we choose to fix

rT = rBB ≡ rin. (8.6)

Even with this restriction the resulting GMPS will prove very useful for information
transmission through Gaussian memory channels, as shown later in Section 8.2.

2We remark that the application of Θ on ΓTMSV corresponds to a partial transpose p̂i → −p̂i, which
however has no effect here as ΓTMSV does not contain any q − p correlations.
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8.2. Transmission rates using GMPS

8.2. Transmission rates using GMPS

We concluded in the previous section that for the Markov correlated classical additive
noise channel the coherent states achieve (at least) 90% of the Gaussian capacity. For
some applications it may be crucial to exploit the full potential of the given channel. For
this reason we investigate in the following a more sophisticated encoding protocol which,
though being suboptimal, may achieve a rate that is significantly closer to the Gaussian
capacity. Namely, we use the nearest-neighbor (n.n.) GMPS (discussed above) as an
input state. Since the GMPS is heavily entangled it is expected to be useful because
we showed that the optimal input state exhibits multi-mode entanglement. In order to
study the usefulness of GMPS we use it for two different noise models: the Markovian
correlated noise discussed in Sec. 7.4 and a non-Markovian noise model, introduced in
[PZM08]:

YΣ = yΣ

(
esΣ 0
0 e−sΣ

)
, (8.7)

where s ∈ R and Σ is a n× n matrix defined as

Σ =




0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1

0 0 1 0
. . .

...
...

. . .
. . .

. . .



. (8.8)

Recall that the effective noise matrix for the channels that we consider can be expressed
as Y = |1 − τ |Venv, τ 6= 1 and Y = Venv, τ = 1 and thus the parameter yΣ can be
expressed as

y =

{
|1− τ |

(
MΣ + 1

2

)
, τ 6= 1,

MΣ, τ = 1,
(8.9)

where MΣ is the number of thermal photons of the noise state (if τ 6= 1) and the (nor-
malized) determinant of the classical added noise (if τ = 1). We define the quadrature
blocks equivalently to Eq. (7.78), i.e.

Y q
Σ = yΣ exp(sΣ), Y p

Σ = yΣ exp(−sΣ). (8.10)

Then, in the limit n→∞ the spectra of the quadrature blocks read

λ̄(Y q
Σ )(x) = yΣ e

2s cos(x) ≡ y(Σ)
q (x),

λ̄(Y p
Σ )(x) = yΣ e

−2s cos(x) ≡ y(Σ)
p (x), x ∈ [0, 2π].

(8.11)

In order to distinguish the noise spectra yΣ
q,p from the Markovian noise we introduce the

notations:

λ(VMK(φ))(x) = N
1− φ2

1 + φ2 − 2φ cos (x)
≡ y(MK)

q (x),

λ(VMK(−φ))(x) = N
1− φ2

1 + φ2 − 2φ cos (x)
≡ y(MK)

p (x), x ∈ [0, 2π].

(8.12)
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where λ(VMK(±φ))(x) was defined in Eq. (7.93). Note that noise spectra y
(Σ)
q,p (x) [as well

as and y
(MK)
q,p (x)] are mirror symmetric around x = π and furthermore,

y(Σ)
q (x) = y(Σ)

p (π − x). (8.13)

Therefore we consider in the following only the domain x ∈ [0, π] for both noise spectra

yq,p(x) = {y(Σ)
q,p (x), y

(MK)
q (x)} which both satisfy the equality

π∫

0

dx yq(x) =

π∫

0

dx yp(x). (8.14)

Let us now investigate the transmission rates that can be achieved by using a GMPS
for Gaussian memory channels with noise CM YM and YΣ. Throughout this section we
restrict ourself to an infinite number of uses of the channel an the input energy regime
N̄ ≥ N̄glthr. Due to the symmetry properties of both noise spectra and the fact that
for both noises yq(x) is monotonically decreasing (for x ∈ [0, π]), the solution can be
obtained in the same way as in Eq. (7.96), i.e.

|τ |iq(0) + yq(0) = ν̄wf =
1

π

π∫

0

dx yq(x) + |τ |N̄ thr +
|τ |
2
, (8.15)

which simplifies for the particular noise spectra to

N̄ thr =

{ (
1+φ
1−φ − 1

) (
N + 1

2

)
, yq,p(x) = y

(MK)
q,p (x),

1
2

(
e2s − 1

)
+ yΣ|τ |−1[e2s − I0(2s)], yq,p(x) = y

(Σ)
q,p (x),

(8.16)

where I0(x) is the modified Bessel function of first kind. Note that we use the (classical)

noise spectra y
(MK)
q,p (x) only for the classical additive noise channel where τ = 1.

Recall that the covariance matrix of the one-dimensional GMPS [see Eq. (8.1)] can be

expressed as VGMPS = 1
2T

(C)−1 ⊕ T (C). In [SWC08] it was proven that the correlations
of one-dimensional GMPS decay exponentially. Therefore, in the limit n → ∞ the

spectrum of T (C)−1
reads (up to a change of variance) as the spectrum of the CM of the

Markovian correlated noise VMK(φ)3, i.e.

1

2
λ̄(T (C)−1

)(x) ≡ i(GMPS)
q (x) = NGMPS

(
1− φ2

in

1 + φ2
in − 2φin cos(x)

+ ∆

)
, (8.17)

with x ∈ [0, 2π], NGMPS ≥ 0, 0 ≤ φin < 1,∆ ∈ R, and the additional condition
∆NGMPS ≥ −1/2 ensuring the spectrum to correspond to a quantum state.

By comparison of the spectrum (8.17) with the optimal input spectra (7.20) (for
N̄ ≥ N̄glthr) for both noise spectra stated in Eqs. (8.11) and (8.12) one can directly

3We remark that in the limit of n → ∞ the spectrum of a symmetric circulant matrix tends to the
spectrum of its corresponding symmetric Toeplitz matrix (see Appendix A).
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verify that for these noises the optimal input state is not a GMPS. Thus, the 1D-GMPS
can only serve as an approximation to the optimal input state of both noise models.
Then one can define [similarly to the coherent rate stated in Eq. (7.23)] the GMPS rate

RGMPS

(
Φ

(∞)
M , N̄

)
≡ lim

n→∞
1

n
max

VGMPS,Vmod

χG, (8.18)

where we impose the additional energy restriction that the global quantum-water filling
solution is fulfilled, i.e.

|τ |i(GMPS)
q (x) + |τ |mq(x) + yq(x) =

|τ |
4i

(GMPS)
q (x)

+ |τ |mp(x) + yp(x), ∀x. (8.19)

We find numerically that for both noise models the highest transmission rate is indeed
achieved for the n.n. GMPS [defined in Eqs. (8.2)-(8.5)] with CM VGMPS,nn. The CM
VGMPS,nn can be expressed as in Eq. (8.1), i.e.

VGMPS,nn =
1

2

(
T

(C)
nn

−1
0

0 T
(C)
nn

)
. (8.20)

We observe that among all 1D-GMPS that can be generated with the setup defined in
Fig. 8.1 only the n.n. GMPS has a mirror symmetric spectrum:

i(nn)
q (x) = i(nn)

p (π − x), (8.21)

where i
(nn)
q (x) denotes the asymptotic spectrum of T

(C)
nn

−1
and i

(nn)
p (x) the asymptotic

spectrum of T
(C)
nn . Since the noise spectra of Markovian noise and non-Markovian noise

[stated in Eqs. (8.11) and (8.12)] satisfy the same symmetry it is intuitively clear that
this state is the most suitable for the given noise models. With relation (8.21) and the
fact that the GMPS is a pure state, i.e., γqGMPS(x) γpGMPS(x) = 1/4,∀x, we obtain the
following equality

N2
GMPS

(
1− φ2

in

1 + φ2
in − 2φin cos(x)

+ ∆

)(
1− φ2

in

1 + φ2
in + 2φin cos(x)

+ ∆

)
=

1

4
, ∀x. (8.22)

The latter leads after a few algebraic steps to the solutions

NGMPS =
1 + φ2

in

1− φ2
in

,

NGMPS∆ = −1

2
.

(8.23)

Thus, the nearest-neighbor correlated GMPS has quadrature spectra

1

2
λ̄(T

(C)
nn

−1
)(x) ≡ i(nn)

q (x) =
1 + φ2

in

1 + φ2
in − 2φin cos(x)

− 1

2
,

1

2
λ̄(T

(C)
nn )(x) ≡ i(nn)

p (x) =
1 + φ2

in

1 + φ2
in + 2φin cos(x)

− 1

2
.

(8.24)
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Therefore, when looking for the optimal transmission rate, one has to optimize only over
the parameter φin which eventually can be linked to the squeezing parameter rin [see
Eq. (8.6)]. Together with the constraint of global water-filling the GMPS rate of the
nearest-neighbor correlated state simplifies for both noise models to

Rnn

(
Φ

(∞)
M , N̄

)
= max

φin

g


|τ |N̄ +

1

2π

π∫

0

dx [yq(x) + yp(x)] +
|τ | − 1

2




− 1

π

π∫

0

dx g

(√[
|τ |i(nn)

q (x) + yq(x)
] [
|τ |i(nn)

p (x) + yp(x)
]
− 1

2

)
,

N̄ ≥ N̄nnthr,

(8.25)

where N̄nnthr is the input energy required in order to fulfill the global quantum water-

filling solution with the input spectra i
(nn)
q (x) and i

(nn)
p (x), respectively. Due to the

fact that i
(nn)
q (x) is monotonically decreasing in x (for x ∈ [0, π]) (as well as both noise

spectra) and that i
(nn)
q (x) = i

(nn)
p (π − x) we obtain the threshold value N̄nnthr in the

same way as in Eq. (8.15), i.e.

|τ |i(nn)
q (0) + yq(0) = ν̄wf =

1

π

π∫

0

dx yq(x) + |τ |N̄nnthr +
|τ |
2
, (8.26)

which simplifies with Eq. (8.24) to

N̄nnthr =
1 + φin

(1− φin)2
− 1 +

1

|τ |


yq(0)− 1

π

π∫

0

dx yq(x)


 . (8.27)

For the two particular noise spectra the latter becomes

N̄nnthr =
1 + φin

(1− φin)2
− 1 +

{
N
(

1+φ
1−φ − 1

)
, yq,p(x) = y

(MK)
q,p (x),

yΣ|τ |−1[e2s − I0(2s)], yq,p(x) = y
(Σ)
q,p (x).

(8.28)

Recall that we require the inequality N̄ ≥ N̄glthr to be fulfilled in order to satisfy the
“ordinary” global quantum water-filling solution. In the case of equality N̄ = N̄glthr we
find an upper bound on the physically allowed φin such that at the same time N̄ = N̄nnthr

holds:

N̄glthr = N̄nnthr

⇔ iq(0) = i(nn)
q (0),

(8.29)

which leads with Eq. (8.24) and the fact that iq(0) = 1
2

√
yq(0)/yp(0) to the upper bound

φin ≤

(
yq(0)
yp(0)

) 1
4 − 1

(
yq(0)
yp(0)

) 1
4

+ 1

. (8.30)
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Figure 8.4.: Gaussian capacity CG
χ (solid line), nearest-neighbor GMPS rate Rnn (×

markers) and coherent rate Rcoh (dashed line) vs. correlation parameters
and vs. τ (a) Classical additive noise channel (τ = 1) with Markov noise,
where from top to bottom N = {0.5, 0.7, 1}; in addition we choose N̄ = 5.
(b) Classical additive noise channel (τ = 1) and non-Markovian noise, where
from top to bottom yΣ = {0.5, 0.7, 1}; in addition we choose N̄ = 5. (c)
Lossy channel where from bottom to top τ = {0.5, 0.7, 0.9}. In addition we
fixed Menv = 1 and N̄ = 5. (d) Lossy channel and amplification channel,
where τ = 1 corresponds to the perfect transmission channel. From top to
bottom we choose the following combinations: s = 0.9, N̄ = 5, s = 0.5, N̄
and s = 0.25, N̄ = 1. The other parameter was fixed to Menv = 0.1.
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Figure 8.5.: Optimal input correlation φin (×markers, left axis), corresponding squeezing
rin (dashed line, right axis) vs. correlation parameter for (a) the channel
with additive Markov noise, where the solid line depicts φ/2 (left axis); (b)
the channel with non-Markovian noise (lossy and additive), where the solid
line depicts s/2 (left axis). We took for both plots N = yΣ = 1 and N̄ = 5
and for (b) τ = 0.7.

For the two noise models this bound can be expressed in terms of the respective corre-
lation parameters:

φin ≤





√
1+φ−√1−φ√
1+φ+

√
1−φ , yq,p(x) = y

(MK)
q,p (x),

tanh
(
|s|
2

)
, yq,p(x) = y

(Σ)
q,p (x),

(8.31)

where at the same time N̄ ≥ N̄glthr is fulfilled. We plot for several parameters the
Gaussian capacity CG, the optimal rate Rnn and the coherent rate Rcoh in Fig. 8.4.
We see that for all examples the nearest-neighbor correlated GMPS is close-to-capacity
achieving. Namely, in the plotted region we find Rcoh/C

G > 0.999. At the same time
we observe that the coherent rate becomes more distant from the Gaussian capacity for
higher correlation/squeezing values which corresponds to stronger correlated/entangled
noise. In this regime one expects input entanglement to play a stronger role and thus,
the GMPS to be more useful.

The optimal input correlations φin for both presented noise models are approximately
given by φ/2 and s/2, respectively, as shown by Fig. 8.5 (a) and Fig. 8.5 (b). This can
be verified as follows. Since the quantum water-filling solution holds for the GMPS (as
well as for the optimal input state) only the second term depends on φin [see Eq. (8.25)]
and we try to minimize it by minimizing the integrand, i.e.

∂

∂φin
g

(√[
|τ |i(nn)

q (x) + yq(x)
] [
|τ |i(nn)

p (x) + yp(x)
]
− 1

2

)
= 0, (8.32)
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which needs to hold for all x. We find the relation

yq(x)

yp(x)
=

(1 + φin
2 + 2φin cosx)2

(1 + φin
2 − 2φin cosx)2

. (8.33)

Since the optimal input correlation φin does not depend on x, Eq. (8.33) cannot be
solved for all x. Therefore, we approximate both noise spectra [defined in Eqs. (8.11)
and (8.12)] by dropping quadratic terms (and terms of higher order), i.e.

yq(x)

yp(x)
≈ 1 + 2α cos(x)

1− 2α cos(x)
, (8.34)

where α = φ for the Markovian noise and α = s for the non-Markovian noise, re-
spectively. Assuming in addition φ2

in � 1 we find the simple relations φin ≈ φ/2 and
φin ≈ s/2, respectively.

Finally, let us discuss the required optical squeezing strength to realize the optimal
input correlation φin for both noise models: recall the construction of the covariance
matrix of the nearest-neighbor GMPS presented in Sec. 5.4. We choose in Eq. (8.6) to
simplify the dependence of the nearest-neighbor GMPS to a single squeezing parameter
rin, which is at the same time the squeezing parameter of the three-mode building block
and the (finitely entangled) two-mode squeezed vacua (see Fig. 8.1). Interestingly, this
restriction still allows us to generate all required input correlations φin. For a given φin

we find numerically the best rin by fitting the spectra of the (large) CM VGMPS,nn to

the spectra i
(nn)
q (x, φin), i

(nn)
p (x, φin), respectively. We show the corresponding curves in

Fig. 8.5. For the Markov noise, in the plotted region, a maximal correlation of φin ≈ 0.3
is required, which can be realized by rin ≈ 1.08 (about 9.4 dB squeezing). For the
non-Markovian noise, a maximal correlation of φin ≈ 0.4 is required, which corresponds
to rin ≈ 1.18 (about 10.2 dB squeezing). This shows that the presented setup can be
realized with accessible non-linear optics for a realistic assumption of noise correlations,
since the maximal input squeezing values have recently been realized experimentally
[VMC+08, MAE+11].

8.3. Optimal input state and ground state of quadratic
Hamiltonian

We showed that the GMPS is not the optimal input state for the considered noise models.
Let us consider a new, effective noise matrix with CM

Ynn =

{
|1− τ |Venv,nn, τ 6= 1,
Venv,nn τ = 1,

Venv,nn = (Nenv ⊕Nenv)
1

2

(
T (C)

nn

−1 ⊕ T (C)
nn

)
,

(8.35)

where Nenv is a n × n matrix that commutes with T
(C)
nn [given in (8.20)]. Then, for all

noise matrices Y = Ynn the GMPS with CM VGMPS,nn is the exact optimal input state,
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i.e.
Rnn

(
Φ

(∞)
M , N̄

)
= CG

(
Φ

(∞)
M , N̄

)
, N̄ ≥ N̄glthr, (8.36)

where now trivially N̄glthr = N̄nnthr. This result follows directly from the fact that
the optimal input state (for the quantum water-filling solution) is given by iq(x) =
1
2

√
yq(x)/yp(x). Thus, if yq,p(x) are the spectra of matrix Ynn then it follows that

iq(x) = i
(nn)
q (x) which implies for N̄ ≥ N̄glthr Eq. (8.36).

Furthermore, as already mentioned in section 5.4, GMPS are known to be ground
states of quadratic Hamiltonians [SWC08]. More precisely, VGMPS,nn is the CM of the
exact ground state of the translationally invariant Hamiltonian, given in natural units
by

Ĥ =
1

2


∑

i

p̂2
i +

∑

i,j

q̂i Vij q̂j


 , (8.37)

where q̂i and p̂i are the position and momentum operators and where the potential

matrix is simply given by V = T
(C)
nn

2
, where T

(C)
nn is defined in Eq. (8.20). This already

hints to a connection between finding the channel capacity (for N̄ ≥ N̄ thr) and the
thermodynamic energy minimum of a chain of harmonic oscillators.

A realistic example for a noise with CM Venv,nn is given by the (Gaussian) state of the
system defined in Eq. (8.37) at a finite inverse temperature β. We assume the system to
be described by a canonical ensemble, thus the density matrix of the oscillators is given
by the Gibbs-state

ρGibbs =
expβĤ

Tr[expβĤ]
, (8.38)

The CM VG of Gaussian state ρGibbs is given by Eq. (8.35) with (see Ref. [AEPW02] for
details)

Nenv = I + [2 exp (βT (C)
nn )− I]−1, (8.39)

where indeed [Nenv,T
(C)
nn ] = 0 (which is the requirement for the effective noise matrix

to be diagonalizable by a symplectic passive transformation). Therefore, if we assume
the noise of the channel to be given by a set of coupled harmonic oscillators at finite
temperature as defined above, i.e. Venv,nn = VG, then for N̄ ≥ N̄glthr the GMPS with
CM VGMPS,nn is the exact optimal input state and the ground state of the system given
by (8.37).
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9. Conclusions & Outlook

We studied optimal transmission rates of Gaussian quantum channels and the corre-
sponding optimal input encodings. The central quantity of interest was the classical ca-
pacity C, which is the maximal number of bits that can be reliably transmitted through
the channel per use of the channel and given a fixed number of photons N̄ at the input.
The capacity C is given by C = limn→∞Cχ/n, where the one-shot capacity Cχ is the
Holevo χ-quantity maximized over all possible encodings. Due to the difficulty of the
optimization problem which needs to be treated in an infinite dimensional Hilbert space,
we focused in particular on the one-shot Gaussian capacity CG

χ and Gaussian capacity

CG = limn→∞CG
χ /n, where CG

χ corresponds to the Holevo χ-quantity maximized over
Gaussian encodings: the classical information is encoded in so-called Gaussian states for
which the mean field amplitudes are Gaussian distributed.

9.1. Single-mode Gaussian channel

First, we studied the single-mode case in depth. We introduced a new fiducial chan-
nel which consists of a beamsplitter, a two-mode squeezer and two identical single-mode
squeezers and depends only on three parameters: an effective input transmissivity or gain
τ , the effective added (thermal) noise y and the squeezing of the noise s. Depending on
the range of the input transmissivity/gain the fiducial channel corresponds physically
either to a a lossy channel, a classical additive noise channel, an amplification channel
or a phase-conjugating channel. Any single-mode Gaussian channel was then proven to
be equivalent (up to displacements) to the fiducial channel, preceded by a passive Gaus-
sian unitary transformation and followed by a general Gaussian unitary transformation.
This equivalence implies that the fiducial channel may be used to calculate the classical
capacity as well as the Gaussian capacity of any Gaussian channel (in particular cases
this equivalence holds in the limit of infinite squeezing).

We studied then the Gaussian capacity of the fiducial channel and its dependency on
the channel parameters. Above an input energy threshold N̄ thr the optimal input encod-
ing was found to be given by a quantum water-filling solution, which is equivalent to a
classical water-filling solution known from Shannon Information Theory. The difference
to the classical water-filling solution is that quantum states are used for information
encoding and the energy spent on their generation (squeezing) needs to be taken into
account. We showed that if N̄ ≥ N̄ thr and if the noise is squeezed (s 6= 0) then the
optimal input state is a squeezed state that matches exactly the squeezing of the noise.
Furthermore, the optimal modulated output state is a thermal state. We proved addi-
tionally that if N̄ ≥ N̄ thr, the Gaussian capacity is additive, i.e. that CG

χ = CG. For
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N̄ ≥ N̄ thr N̄ < N̄ thr

known if MOC holds known if MOC holds

y ≥ 1+|τ |
2 (EB)

C = Cχ ≤ 1
ln 2 + CG

χ ,

C = Cχ = CG
χ

C = Cχ C = Cχ
CG
χ = CG

y < 1+|τ |
2

C ≤ 1
ln 2 + CG

χ ,
? ?

CG
χ = CG

Table 9.1.: Summary of results and open questions for one-mode Gaussian channels.
Here, MOC stands for “minimum output entropy conjecture”. If y ≥ 1+|τ |

2
then the one-mode Gaussian channel is known to be entanglement-breaking.
Note that for the phase-conjugating channel (τ ≤ 0) y ≥ 1/2 and thus, it is
always entanglement-breaking. Note that for N̄ < N̄ thr, even if MOC holds,
no further conclusions can be made.

input energies N̄ < N̄ thr the solution was found to be given by a transcendental equa-
tion which needs to be solved numerically. We observed that the input state remains
squeezed (if s 6= 0). However only the less noisy quadrature is modulated.

While we confirmed that the one-shot Gaussian capacity CG
χ is a monotonous function

of the transmissivity (or gain) and the added thermal noise, we observed that (for input
energies below the input energy threshold) it is non-monotonous with respect to the
squeezing of the noise. In particular, we showed that CG

χ behaves as follows with respect
to the noise squeezing: for the phase-conjugating channel (τ < 0) it is a monotonously
increasing function, for the classical additive noise channel (τ = 1) and amplification
channel (τ > 1) it exhibits one maximum or is monotonically increasing and for the
lossy channel (0 ≤ τ ≤ 1) it can be a monotonous function, exhibit one maximum,
a saddle point or a maximum and a minimum. All behaviors were distinguished by
analytically obtained bounds on τ and y and thus, classified in the (τ, y) plane.

In addition, for the single-mode case, we derived useful bounds on the classical capac-
ity. In particular, we proved that above the input energy threshold and for a wide range
of parameters the classical capacity does not exceed the Gaussian capacity by more than
1/ ln 2 bits.

We summarize in Table 9.1 all known results on the classical capacity and Gaussian
capacity, as well as implications if the minimum output entropy conjecture (MOC) was
proven to be true (those implications rely on Ref. [GPC13]). Unfortunately, although we
can calculate the one-shot Gaussian capacity CG

χ for N̄ < N̄ thr, even if the MOC holds

it does not imply that CG
χ = Cχ. Therefore, in order to draw further conclusions, the

much stronger equality CG
χ = Cχ needs to be proven. Then, at least in the entanglement-

breaking regime y ≥ (1 + |τ |)/2 the classical capacity would be obtained even for input
energies N̄ < N̄ thr.
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9.2. Multi-mode Gaussian memory channels

Second, we investigated the solution to the Gaussian capacity of multi-mode Gaussian
memory channels where the noise exhibits correlations. Such an n-mode memory channel
is equivalent to n uses of a single-mode channel where the noise of each use is correlated to
the noise of previous uses. We restricted ourselves to correlations that can be unraveled
by passive symplectic transformations, thus, reducing the study to the case of a collection
of different, individual, uncorrelated single-mode Gaussian channels with a common
input energy constraint N̄ . We proved that above a global input energy threshold N̄glthr

the solution is obtained by a global quantum water-filling solution: the quantum water-
filling solution is satisfied for each individual channel and furthermore, each modulated
output state is the same thermal state. In addition, if for each single-mode channel the
parameter τ is identical it follows that CG

χ = CG. For input energies N̄ < N̄glthr the
solution was studied in detail for the (multi-mode) classical additive noise channel. We
showed that in this case, each channel may belong to one out of three sets: i) it is fully
excluded from information transmission, ii) only its less noisy quadrature is modulated
or iii) it satisfies the quantum water-filling solution. The overall solution was obtained
by the method of Lagrange multipliers, where a multiplier β is connected to the input
energy constraint N̄ . We showed that the resulting equation can be expressed as a Bose-
Einstein-statistics, such that β can be regarded as an inverse temperature. Then, the
maximum is obtained when all channels are in thermal equilibrium.

We applied our solution to a particular Markov correlated noise model in the case of
two channels (or uses) and in the limit of an infinite number of channels. We showed
that the Gaussian capacity increases with the correlation parameter. In the limit of full
correlations we proved that the Gaussian capacity coincides with the classical capacity
of the noiseless channel. Additionally, we recovered the Shannon capacity in the clas-
sical limit and demonstrated that the optimal multi-mode input state is given (in the
“unraveled basis”) by a collection of single-mode squeezed states. When rotated back to
the original, correlated basis it corresponds to a massively entangled multi-mode state.
We compared the performance of the optimal input state with a simple, coherent state
encoding and showed that it can gain up to 10% with respect to this simple encoding.

The number of open questions for the case of multi-mode Gaussian channels is as
expected much greater than in the one-mode case. First of all, the types of multi-mode
channels we considered were very restricted, i.e. each channel had the same transmis-
sivity/gain τ and the overall correlations could be “unraveled” by a passive symplectic
transformation. Although for this collection of single-mode channels it follows that
CG
χ = CG, if N̄ ≥ N̄glthr, generally, it is not known if the one-shot Gaussian capacity

of a collection of (general) single-mode channels is additive. If the MOC was proven
and the one-shot Gaussian capacity (of a collection of single-mode channels) was proven
to be additive, one could prove straightforwardly (using the results of [GPC13]) that
CG
χ = C (for N̄ ≥ N̄glthr) for the particular ensemble of channels that we considered.
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9.3. Gaussian matrix-product states as input states

In general one may be interested in exploiting the full potential of a given Gaussian
memory channel. Since in the case of the Markov correlated noise the optimal input state
may be complicated to produce, we focused on a sub-optimal input state with a known
generation scheme, namely, a Gaussian matrix product state (GMPS). In particular, we
used a GMPS with nearest-neighbor correlations which can be generated sequentially.
In order to study its performance we used it as an input state for the Markov correlated
noise model as well as a non-Markov correlated noise model (additionally no longer
restricting ourselves to the classical additive noise channel). We demonstrated that in a
large range of channel parameters, the GMPS achieves more than 99.9% of the Gaussian
capacity of both noise models, showing that it serves as a great resource for Gaussian
memory channels.

Finally, we defined a new class of memory channels for which the GMPS is proven
to be the exact optimal input state. Such noise physically corresponds to a many-body
system of Harmonic oscillators that are heated to a certain temperature. Since the GMPS
is known to be the exact ground state of such a system, we furthermore established a
starting point to find further links between optimization problems in many-body physics
and quantum communication.
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A. Toeplitz matrices

In the following we present definitions and properties of Toeplitz and circulant matrices
taken from [Gra05] and [SZ99]. Toeplitz matrices are often the covariance matrices
of (weakly) stationary stochastic processes, which are used in signal processing theory,
information theory (see e.g. [Gra05]), climate research (see e.g. [SZ99]) and many other
cases. A matrix T is called Toeplitz matrix if Tn×n = [tk,j ; k, j = 0, 1, ..., n− 1], with
tk,j = tk−j , i.e. it has the form

Tn×n =




t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1
...

t2 t1 t0 t−1
...

...
. . .

tn−1 · · · t0



. (A.1)

A Toeplitz matrix T belongs to the Wiener class if {tk} is absolutely convergent, that
is ∞∑

k=−∞
|tk| <∞. (A.2)

If (A.2) is fulfilled, then the Fourier series

ft(x) =

∞∑

k=−∞
tk e

ikx, x ∈ [0, 2π], (A.3)

exists and f(x) is Riemann integrable, with Fourier coefficients

tk =
1

2π

2π∫

0

df(x)e−ikx. (A.4)

For the given sequence {tk} or the function f(x) the matrix T is fully characterized,
thus T = T (f). The existence of the inverse of T requires that the essential infimum1

of f is greater than zero, that is
ess inf f > 0 (A.5)

If T is furthermore Hermitian, i.e.

T = T † = (T T)∗, (A.6)

1The largest essential lower bound of f ; in (A.5) f(x) ≤ 0 for only a negligible part of x ∈ R.
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and (A.2) and (A.5) are fulfilled, then the following statements hold: If the spectrum

λ(T ) =
{
λ

(T )
1 , λ

(T )
2 , ..., λ

(T )
n

}
(i.e. the eigenvalues of T ) is strictly positive, then its

inverse is asymptotically Toeplitz, i.e. T (f)−1 ∼ T (1/f).

t
(T−1)
k =

1

2π

π∫

−π

d
e−ikx

f(x)
, n→∞. (A.7)

A particular case of a Toeplitz matrix is the circulant matrix T (C), defined as T
(C)
ij =

ti−j mod n, i.e. it has the form

T
(C)
n×n =




t0 t−1 t−2 · · · t−(n−1)

t−(n−1) t0 t−1
...

t−(n−2) t−(n−1) t0 t−1
...

...
. . .

t−1 · · · t0



. (A.8)

Then, we can introduce the notation

k = (i− j) mod n (A.9)

which indicates the kth diagonal of T (C). The rotation matrix Q that diagonalizes any
circulant matrix C reads [Ful96]

QT =

√
2

n
×




1√
2

1√
2

1√
2

· · · 1√
2

1 cos (2π
n ) cos (4π

n ) · · · cos (2π(n−1)
n )

0 sin (2π
n ) sin (4π

n ) · · · sin (2π(n−1)
n )

1 cos (4π
n ) cos (8π

n ) · · · cos (4π(n−1)
n )

...
...

...
...

0 sin (n−1
2

2π
n ) sin (n−1

2
4π
n ) · · · sin (n−1

2
2π(n−1)

n )




.

(A.10)

For even n the same pattern holds, except for a row n−1/2(1,−1, 1, ...,−1) at i = n/2.
The diagonal matrix QT T (C) Q converges with increasing n to D, where

D = diag(d1, d2, ..., dn), (A.11)

where for odd n

d1 = fT (0)

d2j = d2j+1 = fT (2πkj/n),
(A.12)
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dn = ft(π) for even n, where j = 1, 2, ..., (n − 1)/2 and ft(x) as defined in (A.3). We
remark that if a Toeplitz matrix T belongs to the Wiener class, then QT T Q also
converges to D. This means that T (C) and T can be asymptotically diagonalized in
the same basis, and hence all Toeplitz matrices (which belong to the Wiener class)

asymptotically commute. The spectrum λ(T (C)) =
{
λ

(T (C))
1 , λ

(T (C))
2 , ..., λ

(T (C))
n

}
of T (C)

reads

λ(T (C))
m =

n−1∑

k=0

tk e
−i2πmk/n, m = 1, 2, ...n. (A.13)

In the limit n→∞ the λ
(T (C))
m becomes the Fourier series stated in Eq. (A.3), i.e.

λ(T (C))(x) =
∞∑

k=−∞
tk e
−ikx, x ∈ [0, 2π], (A.14)

where x ∈ [0, 2π] is now a spectral parameter. In this limit, Eq. (A.14) is also the
eigenvalue spectrum of all Toeplitz matrices that belong to the Wiener class.
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B. Entropy of Gaussian states

In the following we derive the von Neumann entropy of Gaussian states. Let us first
consider the thermal state ρ̂th

Menv
introduced in Sec. 5.1, which is a one-mode Gaussian

state with covariance matrix

Vth =

(
Menv + 1

2 0
0 Menv + 1

2

)
. (B.1)

In the Fock basis the density operator reads [Hol98b]

ρ̂th
Menv

=
1

Menv + 1

∞∑

m=0

(
Menv

Menv + 1

)m
|m〉 〈m|, (B.2)

where {|m〉}, m = 0, 1, ...,∞, are Fock states introduced in Sec. (4.3.1). Then, using
Eq. (3.5)

− Tr[ρ̂th log2 ρ̂
th]

=− Tr

[
1

Menv + 1

∞∑

m=0

(
Menv

Menv + 1

)m
|m〉 〈m| log2

(
1

Menv + 1

∞∑

m=0

(
Menv

Menv + 1

)m
|m〉 〈m|

)]

=− Tr

[
1

Menv + 1

∞∑

m=0

(
Menv

Menv + 1

)m
log2

1

Menv + 1

(
Menv

Menv + 1

)m
|m〉 〈m|

]

=− 1

Menv + 1

∞∑

k,m=0

(
Menv

Menv + 1

)m
log2

1

Menv + 1

(
Menv

Menv + 1

)m
〈k|m〉︸ ︷︷ ︸
=δkm

〈m|k〉︸ ︷︷ ︸
=δmk

=− 1

Menv + 1
log2

(
1

Menv + 1

) ∞∑

m=0

(
Menv

Menv + 1

)m

︸ ︷︷ ︸
=Menv+1

=− 1

Menv + 1
log2

(
Menv

Menv + 1

) ∞∑

m=0

m

(
Menv

Menv + 1

)m

︸ ︷︷ ︸
=Menv(Menv+1)

= (Menv + 1) log2 (Menv + 1)−Menv log2 (Menv),

(B.3)

we conclude that

S(ρ̂th
Menv

) = g(Menv), (B.4)
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where

g(x) =

{
(x+ 1) log2 (x+ 1)− x log2 (x), x > 0,
0 x = 0.

(B.5)

is a concave function. Let a state ρ̂th(n) be an n-mode thermal state, i.e. a Gaussian
state with CM

V
(n)

th = diag

(
Menv1 +

1

2
,Menv2 +

1

2
, ...,Menvn +

1

2
;Menv1 +

1

2
, ...,Menvn +

1

2

)
. (B.6)

This state can be decomposed as

ρ̂th(n) = ρ̂th
Menv,1

⊗ ρ̂th
Menv,2

⊗ ...⊗ ρ̂th
Menv,n

, (B.7)

where ρ̂th
Menv,i

is a one-mode thermal state with thermal photon number Menvi. Thus,
its entropy is additive, i.e.

S
(
ρ̂th(n)

)
=

n∑

i=1

S(ρ̂th
Menv,i

) =

n∑

i=1

g

(
νi −

1

2

)
, (B.8)

where νi = Menvi + 1/2 are the symplectic eigenvalues [see Sec. 5.2.1] of each one-mode
thermal state. It is straightforward to argue why Eq. (B.8) is valid for an arbitrary
n-mode Gaussian state. We stated in Sec. 5.2.1 that there exists a symplectic transfor-
mation M which realizes a symplectic diagonalization of a given covariance matrix V ,
i.e.

MV MT = diag(ν1, ν2, ..., νn; ν1, ν2, ..., νn). (B.9)

Since a symplectic transformation V corresponds to a unitary transformation ÛG on the
density operator ρ̂G of the Gaussian state its entropy is left invariant, i.e.

S
(
ρ̂G(MV M)

)
= S

(
ÛGρ̂

GÛG

)
= S

(
ρ̂G(V )

)
. (B.10)

Therefore, one can directly calculate the entropy of the Gaussian state with its CM in
the diagonal symplectic form MV MT which is then simply given by Eq. (B.8). An
alternative proof using the definition of the g function can be found in [HSH99].
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C. Gaussian Operations and
Choi-Jamiolkowski Isomorphism

We discuss in the following the general form of Gaussian operations. The basic idea is
to extend the Choi-Jamiolkowski isomorphism (recall Sec. 3.2) that was introduced in
[Fiu02, GI02] for a finite sized Hilbert space to Gaussian states and operations that live
in an infinite dimensional Hilbert space. It consists of replacing the positive operator
stated in Eq. (3.19) by a Gaussian operator as well as the maximally entangled state of
finite dimension9 by a maximally entangled Gaussian state. In this section we discuss
the equivalence for the ordering R̂ = R̂(qp).

Let Φ be a completely positive map which maps n-mode Gaussian input states with

quadratures R̂
(qp)
in and CM Vin to n-mode Gaussian output states1 with quadratures

R̂
(qp)
out and CM Vout, where furthermore I⊗Φ maps Gaussian states to Gaussian states. In

order to formulate the Choi-Jamiolkowski isomorphism for Gaussian states one replaces
in Eq. (3.23) the state |Φ+〉 by a tensor product of n EPR pairs (maximally entangled
two-mode squeezed vacua) and the map Ψ by Φ so that the operator ÔAB becomes a
Gaussian state ÔGAB. Effectively, this states that Gaussian CP maps are Jamiolkowski-

isomorphic (or Choi-isomorphic) to bipartite Gaussian quantum states ÔGAB, where we

group its quadratures in the vector R̂
(qp)
AB = (R̂

(qp)
A , R̂

(qp)
B )

T
. The bipartite Gaussian state

ÔGAB is completely characterized by its first moments dAB and its covariance matrix

Γ =

(
V

(qp)
A C

CT V
(qp)
B

)
, (C.1)

where V
(qp)
A stands for the CM that maps the input modes, V

(qp)
B for the CM that maps

the output modes and C contains the input-output correlations. Then, the output state
of the Gaussian map Φ is given by the Wigner function

W (R
(qp)
out ) =

1

(2π)n

∫
dnR

(qp)
A WΦ(R

(qp)
in ,R

(qp)
out )W (X̃R

(qp)
in ), (C.2)

where X̃ = diag(1,−1, 1,−1, ..., 1,−1) represent the transposition in phase-space (qj →
qj , pj → −pj) and WΦ is the Gaussian Wigner function with CM Γ associated to the
state ÔGAB. Then, after several simplifications one finds for a given input CM Vin the
CM of the output state

V
(qp)

out = V
(qp)
B −CT(V

(qp)
A + X̃V

(qp)
in X̃)−1C. (C.3)

1In Sec. 5.3 we properly introduce completely positive trace-preserving maps for which we use the same
symbol Φ.
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C. Gaussian Operations and Choi-Jamiolkowski Isomorphism

For a more detailed derivation consider Refs. [Fiu02, GI02].
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D. Calculations with Lagrange multiplier
method

D.1. Solution below input energy threshold

In the following we treat the Lagrange multiplier problem of Sec. 6.4.3. The Lagrangian
is given by

L = g(M̄out)− g(Mout)−
β̄

ln 2

(
1

2

(
iq +

1

4iq
+mq +mp

)
− N̄ − 1

2

)
, (D.1)

and the gradient is given by

∇L = 0, ∇ =

(
∂

∂iq
,
∂

∂mq
,
∂

∂mp

)T

. (D.2)

Equation ∇L = 0 is equivalent to the system of equations

∂L
∂iq

= g′(M̄out)
∂M̄out

∂iq
− g′(Mout)

∂Mout

∂iq
− β̄

2 ln 2

(
1− 1

4i2q

)
= 0, (D.3)

∂L
∂mq

= g′(M̄out)
∂M̄out

∂mq
− β̄

2 ln 2
= 0, (D.4)

∂L
∂mp

= g′(M̄out)
∂M̄out

∂mp
− β̄

2 ln 2
= 0., (D.5)

where Mout =
√
vqvp − 1/2, M̄out =

√
v̄q, v̄p − 1/2 and

vq = |τ |iq + y e2s, vp = |τ | 1

4iq
+ y e−2s,

v̄q = |τ |(iq +mq) + y e2s, v̄p = |τ |
(

1

4iq
+mp

)
+ y e−2s.

(D.6)

We can rewrite Mout and M̄out (given in Eq. (6.122)) as

Mout =

√
τ2

4
+ iq|τ |y e−2s + ip|τ |y e2s + y2 − 1

2
,

M̄out =

[
iq(τ2mp + |τ |y e−2s) +

1

4iq
(τ2mq + |τ |y e2s)

+mq(τ2mp + |τ |y e−2s) +mp|τ |y e2s +
τ2

4
+ y2

] 1
2

− 1

2
.

(D.7)
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D. Calculations with Lagrange multiplier method

Then, we find the following derivatives

∂M̄out

∂iq
=

|τ |
2(M̄out + 1

2)

[
|τ |
(
mp −

mq

4i2q

)
+ y

(
e−2s − e2s

4i2q

)]
=

|τ |
2(M̄out + 1

2)

(
v̄p −

v̄q

4i2q

)
,

∂Mout

∂iq
=

|τ |y
2(Mout + 1

2)

(
e−2s − e2s

4i2q

)
,

∂M̄out

∂mq
=

|τ |
2(M̄out + 1

2)

[
|τ |
(

1

4iq
+mp

)
+ y e−2s

]
=

|τ |v̄p

2(M̄out + 1
2)
,

∂M̄out

∂mp
=

|τ |
2(M̄out + 1

2)
(|τ |(iq +mq) + y e2s) =

|τ |v̄q

2(M̄out + 1
2)
.

(D.8)

Equalizing equations (D.4) and (D.5) yields the quantum water-filling solution [previ-
ously derived in Sec. 6.4.1]

v̄q = v̄p. (D.9)

Then we can use Eq. (D.5) to obtain the Lagrange multiplier, that is

β̄ =
g′(M̄out) ln 2

(M̄out + 1
2)
|τ |v̄q. (D.10)

We inject β̄ in Eq. (D.3) which simplifies together with (D.8) to the equation

g′(M̄out)

(M̄out + 1
2)

(v̄p − v̄q) =
g′(Mout)

(Mout + 1
2)
y

(
e−2s − e2s

4i2q

)
. (D.11)

Since v̄p − v̄q = 0 we find the solution

iq =
1

2
e2s. (D.12)

We showed previously in Sec. 6.4.1 that this is the optimal squeezing that minimizes the
second term of χG.

For N̄ < N̄ thr the Lagrange multiplier problem is modified where

∇ =

(
∂

∂iq
,
∂

∂mp

)T

. (D.13)

In this case Eq. (D.4) is replaced by mq = 0. We obtain β̄ again by Eq. (D.10), and
inserting it in Eq. (D.8) leads to Eq. (D.11). However, the quantum water-filling solution
is no longer applicable to this equation (see discussion in Sec. 6.4.3).

D.2. Solution for frequency parametrization

Now we present the solution for the frequency parametrization introduced in Sec. 6.4.5
for N̄ < N̄ thr.
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D.2. Solution for frequency parametrization

In order to express the parameters Mout and M̄out in terms of the new variables we
need to make the following substitutions:

e2s = ω−1
env, iq =

1

2
ω−1

in , iq +mq =

(
M̄in +

1

2

)
ω̄−1

in , ip +mp =

(
M̄in +

1

2

)
ω̄in. (D.14)

Since for N̄ < N̄ thr we have mq = 0 (where without loss of generality we choose here
s > 0) it follows that

(
M̄in +

1

2

)
1

ω̄in
=

1

2ωin
, N̄ < N̄ thr. (D.15)

Then, we can express the number of thermal photons at the output and modulated
output, respectively, as

Mout =

√
τ2

4
+ y2 +

y|τ |
2

(
ω2

env + ω2
in

ωenvωin

)
− 1

2
,

M̄out =

√( |τ |
2ωin

+
y

ωenv

)( |τ |ω̄2
in

2ωin
+ y ωenv

)
, N̄ < N̄ thr.

(D.16)

Note, that furthermore

ωout =
1

Mout + 1
2

( |τ |ωin

2
+ yωenv

)
,

ω−1
out =

1

Mout + 1
2

( |τ |
2ωin

+
y

ωenv

)
.

(D.17)

We choose as degrees of freedoms now ωin and ω̄out, i.e.

∇ =

(
∂

∂ωin
,

∂

∂ω̄out

)T

. (D.18)

The Lagrangian [stated in Eq. (6.175)] reads

L = g(M̄out)− g(Mout)−
β̄out

ln 2

(
1

2

(
M̄out +

1

2

)
(ω̄−1

out + ω̄out)− N̄out −
1

2

)
, (D.19)

where N̄out is given by Eq. (6.176). Then, the system of equations ∇L = 0 simplifies
with the help of Eqs. (D.16) and (D.17) to the two equations:

∂L
∂ωin

= g′(M̄out)
∂M̄out

∂ωin
− g′(Mout)

∂Mout

∂ωin

− β̄out

2 ln 2

(
1

ω̄out
+ ω̄out

)
∂M̄out

∂ωin
= 0, (D.20)

∂L
∂ω̄out

= g′(M̄out)
∂M̄out

∂ω̄out
− β̄out

2 ln 2

(
∂M̄out

∂ω̄out

)(
1

ω̄out
+ ω̄out

)

+
β̄out

2 ln 2

[
M̄out

(
1− 1

ω̄2
out

)
+

1

2

(
1− 1

ω̄2
out

)]
= 0. (D.21)
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D. Calculations with Lagrange multiplier method

For the individual derivatives we find

∂Mout

∂ωin
= −|τ |(ω

2
out − ω2

in)

4ω2
inωout

,

∂M̄out

∂ωin
= −|τ |ω̄out

2ω2
in

,

∂M̄out

∂ω̄out
=

(
M̄out +

1

2

)
1

ω̄out
.

(D.22)

Then, Eq. (D.21) simplifies to the Bose-Einstein statistics

M̄out =
1

eω̄outβ̄out − 1
, (D.23)

and after a couple of algebraic simplifications of Eq. (D.20) one obtains the “resonance”
equation given by

ω̄out =

√
1− βout

β̄out

(
ω2

in − ω2
out

)
. (D.24)

In order to solve Eq. (D.24) one needs to express all parameters as functions of ωin and
the channel parameters (τ, y, ωenv, N̄). Explicitly, those relations read:

ωin =
|τ |
2

(
2N̄out + 1

1 + ω̄2
out

− y

ωenv

)−1

,

ωout =

√√√√ |τ |ωin + 2yωenv

|τ |
ωin

+ 2y
ωenv

,

ω̄out =

√
2ωinωenv[yωenv + |τ |(2N̄ + 1)]− |τ |ωenv

2yωin + |τ |ωenv
,

M̄out =
2N̄out + 1

ω̄out + ω̄−1
out

− 1

2
.

(D.25)

Now let us treat the extended problem where also an optimization over the noise
frequency is performed, i.e.

∇ =

(
∂

∂ωin
,

∂

∂ω̄out
,

∂

∂ωenv

)T

. (D.26)

The Lagrangian reads as in (D.19) but since the output energy constraint N̄out also
depends on ωenv we need to derive with respect to ωenv as well. We obtain the additional
equation

∂L
∂ωenv

=
β̄outω̄out

ln 2

∂M̄out

∂ωenv
− g′(Mout)

∂Mout

∂ωenv

− β̄out

ln 2

(
1

2
(ω̄out + ω̄−1

out)
∂M̄out

∂ωenv
− ∂N̄out

∂ωenv

)
= 0.

(D.27)
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D.3. Proofs for the one-mode fiducial channel with τ = 1

First, we find that

∂Mout

∂ωenv
= −yω̄out

ω2
env

,

∂M̄out

∂ωenv
=

1

2(Mout + 1
2)

y|τ |
2ωin

(
1− ω2

in

ω2
env

)
,

∂N̄out

∂ωenv
= y(1− ω−2

env).

(D.28)

After injecting those relations in Eq. (D.27) and several simplifications we find the new
transcendental equation stated in Eq. (6.191)

D.3. Proofs for the one-mode fiducial channel with τ = 1

The following relations are derived for the one-mode fiducial channel with τ = 1 and
parametrization Y = diag(yq, yp). We choose without loss of generality yq > yp. For
the parametrization Y = diag(ye2s, ye−2s) this choice corresponds to s > 0.

D.3.1. Bounds below the threshold

Lemma 6. For the one-mode fiducial channel ΦF with τ = 1, yq > yp and input energy
λ < λthr the solution to the optimization problem implies

v̄p ≥ 1/2. (D.29)

Proof. For λ < λthr (or equivalently N̄ < N̄ thr) it follows that mq = 0 and the solution
is given by the solution of Eq. (D.11) which reads in the alternative parametrization

g′
(
ν̄out − 1

2

)

ν̄out
(v̄p − v̄q) =

g′
(
νout − 1

2

)

νout

(
yp −

yq

4i2q

)
. (D.30)

Now, we recall inequalities (6.133) and (6.137):

|v̄p − v̄q| ≥
∣∣∣∣yp −

yq

4i2q

∣∣∣∣ , (D.31)

1

2
≤ iq <

1

2

√
yq

yp
. (D.32)

which imply that
v̄p < v̄q. (D.33)

Furthermore, we can find a lower bound on v̄p. Suppose v̄p < 1/2, then we have

1

ν̄out
=

1√
v̄qv̄p

>
1√
1
2 v̄q

⇒ g′
(
ν̄out −

1

2

)
> g′

(√
1

2
v̄q −

1

2

)
,

(D.34)
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D. Calculations with Lagrange multiplier method

since g′(x−1/2) is a monotonically decreasing function of x. Then can state the following
bound on the left hand side of Eq. (D.30):

g′
(
ν̄out − 1

2

)

ν̄out
(v̄q − v̄p) >

g′
(√

1
2 v̄q − 1

2

)

√
1
2 v̄q

(
v̄q −

1

2

)
(D.35)

and by using (D.30) and the fact that below the threshold v̄q = vq we find

g′(νout − 1
2)

νout
Σ >

g′
(√

1
2vq − 1

2

)

√
1
2vq

(
vq −

1

2

)
(D.36)

where
Σ =

yq

4(iq)2
− yp. (D.37)

Thus, our assumption v̄p < 1/2 leads to an inequality which depends solely on iq, yq, yp

with the constraints on iq given by (D.32) and for the noise variances that yq > yp, 0 ≤
yp ≤ 1/2− 1/(4iq). Since, inequality (D.36) is always violated for the given constraints,
we come to a contradiction which proves the lemma.

D.3.2. Monotonicity of µ

Lemma 7. The Lagrange multiplier µ of the Lagrangian defined in Eq. (7.33) with
n = 1 is a monotonically decreasing function of the input energy λ on the solution, and
moreover

dµ

dλ
< 0. (D.38)

Proof. For λ ≥ λthr the quantum water-filling solution holds (see Eq. (6.86)) and µ is
simply given by Eq. (7.43). Since g′(x) is a monotonically decreasing function the lemma
is proven for λ ≥ λthr.

Now we prove the lemma for λ < λthr. Using Eq. (7.38) we can write

dµ

dλ
= g′′

(
ν̄out −

1

2

)
dν̄

dλ

v̄q

2ν̄out
+
g′
(
ν − 1

2

)

2ν̄out
2

(
dv̄q

dλ
ν̄out − v̄q

dν̄out

dλ

)
. (D.39)

We can upper bound this quantity if we use the following property of g(x):

− g′(ν̄out − 1/2)

ν̄out
> g′′(ν̄out − 1/2). (D.40)

This leads to
dµ

dλ
< −g

′ (ν̄out − 1
2

)

2ν̄out
3

(v̄q)2dv̄p

dλ
. (D.41)

Since all factors in (D.41) except for dv̄p/dλ are clearly positive the lemma will be proven
if we show that

dv̄p

dλ
= 1− diq

dλ
> 0. (D.42)
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D.3. Proofs for the one-mode fiducial channel with τ = 1

This derivative can be expressed in terms of the function

F ≡ g′(ν̄out − 1
2)

2ν̄out
(v̄p − v̄q)− g′(νout − 1

2)

2νout

(
vp −

ip
iq
vq

)
. (D.43)

Indeed, when Eq. (D.30) holds then we have

diq
dλ

= −
∂F
∂λ
∂F
∂iq

. (D.44)

We observe that

∂F

∂λ
=
g′′
(
ν̄out − 1

2

)

4ν̄out
2

v̄q(v̄p − v̄q)

+
g′
(
ν̄out − 1

2

)

4ν̄out

(
1 +

(v̄q)2

ν̄out
2

)
> 0,

(D.45)

because g′′(x) < 0, g′(x) > 0 and v̄q > v̄p. Thus, in order to prove inequality Eq. (D.42)
it suffices to prove that

∂F

∂λ
+
∂F

∂iq
< 0. (D.46)

By carrying out the partial derivatives we rewrite Eq. (D.46) in the form

− η

4ν̄out
3
v̄p(v̄q − v̄p)T1 −

1

4ν3
out

T2 < 0, (D.47)

where T1 and T2 denote the expressions

T1 = g′′
(
ν̄out −

1

2

)
ν̄out

η
+ g′

(
ν̄out −

1

2

)
,

T2 = g′′
(
νout −

1

2

)
νout ζ

+ g′
(
νout −

1

2

)(
yq

(iq)3
ν2

out − ζ
)
,

(D.48)

and

η =
v̄q + v̄p

v̄q − v̄p
, ζ =

(
yp −

yq

4(iq)2

)2

. (D.49)

Observe that all factors in front of T1 and T2 are positive, since v̄p, ν̄out, νout, v̄q− v̄p > 0.
If we prove positivity of T1 and T2, then inequality (D.47) will be proven as well as the
lemma.

The positivity of T1 can be verified via its partial derivatives with respect to v̄q, v̄p

which lead to:
∂T1

∂v̄q
= {v̄q + v̄p[3− 4v̄p(v̄p + 3v̄q)]}T11(v̄q, v̄p), (D.50)
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D. Calculations with Lagrange multiplier method

∂T1

∂v̄p
= (v̄q − v̄p)T12(v̄q, v̄p), (D.51)

where

T11(v̄q, v̄p) =
4
√
v̄qv̄p

(v̄q + v̄p)3(1− 4v̄qv̄p)2

T12(v̄q, v̄p) =
4(v̄q)2(1 + 4(v̄p)2)√

v̄qv̄p(v̄q + v̄p)2(1− 4v̄qv̄p)2
.

(D.52)

Clearly the two functions T11(v̄q, v̄p) and T12(v̄q, v̄p) are positive for all γq,p > 0. Then
(D.51) is also positive since v̄q − v̄p > 0. From equations (D.33) and (D.29) we have
that v̄p ≥ 1/2, v̄q ≥ 1/2. Then, for all these values of v̄q, v̄p it is easy to verify that the
factor in front of T11(v̄q, v̄p) in Eq. (D.50) is negative. Thus,

∂T1/∂v̄q < 0, ∂T1/∂v̄p > 0 (D.53)

and T1 takes its minimal value at the boundary of the allowed region for v̄q, v̄p, namely, at
the point where v̄q is maximal and v̄p is minimal. Observe that for N2 using Eqs. (D.32),
(D.33) and (D.29) we have

1

2
< v̄p < v̄q <

1

2

√
yq

yp
+ yq. (D.54)

Then T1 takes its minimal value for v̄min
p = 1/2 and v̄max

q = 1
2

√
yq/yp + yq. Therefore, if

T1 at this point is positive for all values of yq, yp then it is positive in the whole allowed
region of v̄q and v̄p.

In order to evaluate T1 at this point we derive it with respect to yq, yp and we find
that

∂

∂yq
T1|v̄max

q ,v̄min
p

< 0,

∂

∂yp
T1|v̄max

q ,v̄min
p

> 0.

(D.55)

Then, again T1 takes its minimal value at the point where yq is maximal and yp is
minimal. At this limit point we find

T1|yq→∞,yp→0 → 0,

where the limit is reached from above. This proves that T1 > 0.

Now we show that T2 > 0 as well. We rewrite T2 as

T2 = ξ

[
(z2 − 1)2κ(νout) +

8ν2
outz

νenv

]
(D.56)
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where

z =
iq

γqin(thr)

, ξ =
g′
(
νout − 1

2

)
(γpenv)2

z4
,

κ(νout) =
g′′
(
νout − 1

2

)

g′
(
νout − 1

2

) νout − 1,

(D.57)

where γqin(thr) was defined in Eq. (D.32) and therefore 0 ≤ z < 1. Using these notations
we express

νout =
√

1/4− νenv/2(z + 1/z) + ν2
env (D.58)

and since ξ > 0 we can rewrite the desired inequality T2 > 0 in the equivalent form

h(z, νout) > −
κ(νout)

ν2
out

, (D.59)

where

h(z, νout) =
32z2

(
√

(1− z2)2 + 16z2ν2
out − 1− z2)(1− z2)2

. (D.60)

We observe that

lim
z→0

h(z, νout) =
16

4ν2
out − 1

. (D.61)

It is easy to check that the inequality

16

4ν2
out − 1

> −κ(νout)

ν2
out

, (D.62)

holds ∀νout ≥ 1/2. Thus, if ∂h(z, νout)/∂z > 0 holds for all νout and z in the allowed
region then the desired inequality (D.59) holds. We find that

∂h(z, νout)

∂z
= 64z

a(z, νout)

b(z, νout)
, (D.63)

where

a(z, νout) = −1− 8z2ν2
out − 3z4(8ν2

out − 1)− 2z6

+ l(z, νout)(1 + z2 + 2z4),

b(z, νout) = (z2 − 1)3l(z, νout)(1 + z2 − l(z, νout))
2,

l(z, νout) =
√

1 + z4 + 2z2(8ν2
out − 1).

(D.64)

Clearly b(z, νout) is negative and therefore, if a(z, νout) is negative as well then

∂h(z, νout

∂z
> 0. (D.65)

Since the first line in a(z, νout) in Eq. (D.64) is negative in the allowed region of νout and
z, and the second line is positive we can make a comparison of squares of the first and
second line, which confirms that indeed a(z, νout) < 0. Thus, T2 > 0, as well as T1 > 0
which proves (D.46) which means that (D.42) holds and thus, the Lemma is proven.
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D. Calculations with Lagrange multiplier method

Since we proved that Eq. (D.46) holds it follows that

∂F (iq)

∂iq
< 0, (D.66)

which implies that there is only one solution for the equation F (iq) = 0. Additionally
by combining Eqs. (D.44), (D.45) and (D.46) we conclude that

diq
dλ

> 0. (D.67)

This means that the anti-squeezing in the more noisy quadrature is always increasing
until the squeezing value at λ = λthr is reached.

D.3.3. Concavity of the Holevo χG-quantity in λ

Lemma 8. The Holevo χG-quantity given by Eq. (5.90) with τ = 1 and n = 1 is a
concave function of λ, on the solution of the optimization problem.

Proof. For λ ≥ λthr we find that iq is given by (6.84) and independent of λ. Therefore,
we conclude from Eq. (6.86) that χG is on the solution a function of only one variable
λ. Then, at the extremum of L the second partial derivative of χG with respect to λ is
equal to the total second derivative, which reads

d2χG

dλ2
=
∂2χG

∂λ2
=
g′′(ν̄wf − 1

2)

4
< 0. (D.68)

Thus, we have shown that above the threshold χG is a concave function of λ.

For an input energy λ below the threshold, iq depends on λ via the implicit function
given by Eq. (D.30). Therefore, the total second derivative of χG with respect to λ has
to take into account this dependence. Now this reads

d2χG

dλ2
=
∂2χG

∂λ2
+
∂2χG

∂λ∂iq

diq
dλ

+
∂χG

∂iq

d2iq
dλ2

+

(
∂2χG

∂λ∂iq
+
∂2χG

∂(iq)2

diq
dλ

)
diq
dλ

.

(D.69)

One can easily show using that ∂χG/∂λ = µ and by Eq. (D.43) it follows that ∂χG/∂iq =
F . Thus, Eq. (D.69) simplifies on the solution to

d2χG

dλ2
=
dµ

dλ
< 0, (D.70)

as proven in Appendix D.3.2, which proves the lemma.
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D.3. Proofs for the one-mode fiducial channel with τ = 1

D.3.4. Optimal noise distribution for one-mode

Lemma 9. CG
χ of the one-mode fiducial channel ΦF

(1,y,s), with parametrization y =
√
yqyp and yq = y e2s, yp = y e−2s, N̄ > 0 and noise constraint yp = 2N − yq is

monotonically increasing with yq, i.e.

∂CG
χ

∂yq
> 0. (D.71)

Proof. We first consider the case N̄ ≥ N̄ thr. In this case we have [see Eq. (6.81)]

CG
χ = g(N̄ +N)− g(yq[2N − yq]). (D.72)

Since the first term is independent of yq and the second term is monotonically decreasing
with yq the lemma is proven for N̄ ≥ N̄ thr. Now consider the case N̄ < N̄ thr. We assume
without loss of generality that yq > yp which implies mq = 0. The two symplectic
eigenvalues with the above parametrization and noise constraint read

νout =

√
(iq + yq)

(
1

4iq
+ 2N − yq

)
,

ν̄out =
√

(iq + yq)(λ− iq + 2N − yq),

(D.73)

where λ = iq + 1/(4iq) +mp. Now we carry out the full derivate of χG with respect to
yq:

∂χG

∂yq
=
g′(ν̄out − 1/2)

2ν̄out

(
v̄p

(
∂iq
∂yq

+ 1

)
+ v̄q

(
− ∂iq
∂yq
− 1

))

− g′(νout − 1/2)

2νout

(
vp

(
∂iq
∂yq

+ 1

)
+ vq

(
− 1

4i2q

∂iq
∂yq
− 1

))

=
∂iq
∂yq

(
g′(ν̄out − 1/2)

2ν̄out
(v̄p − v̄q)− g′(νout − 1/2)

2νout

(
vp −

vq

4i2q

))

︸ ︷︷ ︸
= ∂χG

∂iq
,Eq. (7.37)

+
g′(ν̄out − 1/2)

2ν̄out
(v̄p − v̄q)− g′(νout − 1/2)

2νout
(vp − vq)

︸ ︷︷ ︸
= ∂χG

∂iq
+vq

g′(νout−1/2)
2νout

(
1− 1

4i2q

)

=
∂χG

∂iq

(
∂iq
∂yq

+ 1

)
+ vq

g′(νout − 1/2)

2νout

(
1− 1

4i2q

)
.

(D.74)

Now we evaluate the derivate of CG
χ with respect to yq. Since we are on the solution it

follows that ∂χG

∂iq
= 0. Then we obtain

∂CG
χ

∂yq
= vq

g′(νout − 1/2)

2νout︸ ︷︷ ︸
>0

(
1− 1

4i2q

)

︸ ︷︷ ︸
>0

> 0, (D.75)
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D. Calculations with Lagrange multiplier method

where the second term is positive due to inequality iq > 1/2 stated in Eq. (6.137) (it is
strictly greater since we imposed N̄ > 0). Thus, we proved that for a noise constraint
2N = yq + yp it is optimal to put all noise to one quadrature.
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