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Abstract

The notion of weak measurement was introduced in 1988 by Aharonov. In this report, we will
apply the weak value formalism to �eld of quantum optics. First, we will need to de�ne the math-
ematical formulation of the measurement in quantum mechanics using the measurement postulate.
We will also study two particular cases, namely the projective measurement and the POVM for-
malism. Then, we will detail the notion of weak measurement using the two-state vector formalism.
The starting point of the weak measurement is to reduce the coupling between the measuring de-
vice and the system, so as to decrease the disturbance of the wavefunction. We will see that it
naturally leads to the de�nition of the weak value which can take strange values. Then, we will
give some applications of the weak measurement formalism. The transient density matrix which
will be studied later will also be de�ned there. Afterwards, we will study the second quantization
in order to introduce the coherent states which will be the main focus of the report. We will need
to review the phase space distribution framework as well, including the Wigner quasi-probability
distribution, the Q representation, and the P representation. Finally, we will study the transient
density matrix using the tools de�ned earlier. We will see how we can extend the phase space
distribution framework to the weak measurement formalism. The weird properties of the transient
density will imply certain peculiar properties for the extended phase space distributions.
Keywords: weak-value measurement, quantum phase space, Wigner quasi-probability distribu-
tion, Q representation, P representation, coherent states, transient density matrix



Abstract

La notion de mesure faible a été pour la première fois dé�nie par Aharonov en 1988. Depuis
lors, de nombreuses applications ont émergées. Dans ce rapport, nous nous intéresserons à l'étude
de la mesure faible dans le cadre de l'optique quantique. D'abord, nous aurons besoin de dé�nir
certaines notions mathématiques pour formaliser la notion de mesure dans le cadre du postulat de
la mesure. Nous étudierons notamment deux cas particuliers: les mesures projectives et les POVM.
Ensuite, nous introduirons en détails la mesure faible à l'aide du �two-state vector formalism�. Le
point de départ de la mesure faible est de réduire le couplage entre l'appareil de mesure et le
système a�n de diminuer la perturbation de la fonction d'onde. Nous verrons que cela conduit
naturellement à la notion des mesures faibles, qui peuvent prendre des valeurs étranges. Puis, nous
donnerons quelques applications possibles de la mesure faible. La �transient density matrix� sera
aussi introduite à ce moment, et sera étudier dans les chapitres suivant. Ensuite, nous étudierons la
seconde quanti�cation pour introduire les états cohérents qui seront l'objet d'étude central. Nous
aurons aussi besoin de voir le formalisme des distributions dans l'espace de phase, notamment la
fonction de Wigner, la fonction Q et la fonction P . Finalement, nous étudierons la �transient
density matrix� à l'aide des outils dé�nis précédemment. Nous verrons aussi comment étendre les
distributions dans l'espace de phase au formalisme de la mesure faible. Les propriétés étranges de la
�transient density matrix� produiront des comportements inattendus des distributions dans l'espace
de phase.
Mots-clés : mesure faible, distribution dans l'espace de phase, fonction de Wigner, fonction Q,
fonction P, états cohérents
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Nomenclature

c Speed of light, c = 299792458m · s−1.

ε0 Vacuum permittivity, ε0 = 8.854187817× 10−12 F ·m−1.

h Plank's constant, h = 6.62606957(29)× 10−34 J · s.

µ0 Vacuum permeability, µ0 = 4π × 10−7 H ·m−1.

|0〉 Vacuum state, see Eq. (3.2.4).
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Â
〉

Expected value of operator Â, see Eqs. (1.2.6) and (1.2.10).〈
Â
〉
w

Weak value of the observable Â, see Eq. (2.4.1).

c.c. Complex conjugate.

d2α d2α ≡ d< (α) d= (α) if α is a complex number.

= (α) Imaginary part of α.

< (α) Real part of α.

|α〉, |β〉, . . . Coherent states, see Eq. (3.3.1).

εks Polarization vector, see Eq. (3.1.17).

ρ̂ Density matrix (or density operator), see Section 1.1.

ωk Angular frequency of mode k, see Eq. (3.1.18).

A (r, t) Potential vector, see Eqs. (3.1.5) and (3.1.6).

Aks (t) Fourier coe�cients of the potential vector, see Eq. (3.1.12).

âks (t), â Creation operator, see Eq. .(3.1.41).

â†ks (t), â† Annihilation operator, see Eq. .(3.1.42).

B (r, t) Magnetic �eld.
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n̂ks (t), n̂ Number operator of mode (k, s), see Eq. (3.1.48).

p̂ks (t), p̂ Field quadrature operator associated with the imaginary part of the complex am-
plitude represented by â, see Eq. (3.3.4).

P̂m Projector associated with the outcome m, see Section 1.3.

P (γ) P representation, see Eq. (4.6.1).

Pα (γ) P representation of a coherent state, see Eq. (4.6.6).

q̂ks (t), q̂ Field quadrature operator associated with the real part of the complex amplitude
represented by â, see Eq. (3.3.3).

Q|α〉〈β| (γ) Extend Q representation, see Eq. (5.2.2).
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Introduction

The �eld of quantum mechanics has been around for more than a century, yet there are still many
things to discover. The strange concept of quantum teleportation �rst introduced in 1993 is one
example. Furthermore, while we have made many advances, there are still fundamental problems
that have not been solved. For instance, the measurement problem about how the wavefunction
collapse occurs in the Copenhagen interpretation (if it does) is still an unresolved problem. Some
avoid this problem by saying that we should only care if the predictions are correct or not. However,
others have tried to do away with this collapse by re-interpreting quantum mechanics (such as Hugh
Everett's many-worlds interpretation). Additionally, attempts have been made to derive Born's
rule (which links the wavefunction to the outcome of an experiment) instead of postulating, but the
results have been inconclusive.

Often, there comes a time when new and original mathematical tools are needed to go beyond
the current state of knowledge. One such possible example is the weak measurement formalism
introduced by Yakir Aharonov, David Z. Albert, and Lev Vaidman in 1988 [1]. The idea is
simple: instead of considering the usual strong measurement which produces a collapse of the wave-
function, they de�ned the notion of weak measurement. This measurement is such that the coupling
between the system and the measuring device is reduced, in order to decrease the disturbance of
the wavefunction caused by the measurement. At �rst, many were skeptical that de�ning such a
concept was rigorous or even useful. However, thirty years later, it is undeniable that this approach
has been advantageous in numerous problems. It is a very promising tool in the �eld of quantum
information theory where the measurement process and its impact on the system occupy a central
role. As we will see, it is even possible to directly measure the wavefunction using weak values.

In this report, we will explore the weak measurement formalism applied to the �eld of quantum
optics. More speci�cally, the pre- and post-selection scheme we will consider will always involve the
coherent sates of light. There are several reasons to this choice. First, the coherent states of light
hold a special place in quantum optics because of their similarity with classical states of light, and
they possess interesting properties which might help us in our analysis. In addition, they are also
important in the �eld of quantum information theory and computation when we use photons as
qubits. Also, the phase space distribution formalism, while not speci�c to quantum optics, is a very
powerful and advanced tool well adapted to this �eld. Finally, the weak measurement formalism
has not been applied a great deal in the case of continuous variables. Our analysis will allow us to
obtain a better insight of the weak measurement formalism as well as the phase space distributions.

Without much surprise, Chapter (1) will be dedicated to the theory of measurement in quantum
mechanics. In it, we will give the mathematical framework needed to understand the measurement
procedure. In Chapter (2), we will explain the weak measurement formalism in detail. The math-
ematical tools will be �rst introduced, then the implications and the applications will be explored.

1
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Finally, the last section will introduce the notion of the transient density matrix, by analogy with
the expected value, which we will try to characterize in the rest of the report. Chapter (3) will
contain the reasoning behind the second quantization, and this will naturally lead us to the notion
of Fock states and coherent states. Then, in Chapter (4), the phase space distributions will be
de�ned, and we will prove how they can be used as e�ective tools in quantum mechanics. Finally,
in Chapter (5), we will try to use all the notions developed earlier to study the transient density
matrix of an experiment pre- and post-selected on coherent states.

J. Alzetta 2



Chapter 1
Measurements in quantum mechanics

In this chapter, we will introduce notions that are usually encountered when reading the literature
about weak measurement, but are not speci�c to this formalism. We start by giving the de�nition
of the density matrix and its properties because it is an essential tool in quantum mechanics. The
subsequent sections deal with the measurement postulate (which tells us how the probability of an
outcome can be link to the wavefunction or the density matrix), as well as the two common ways to
implement this postulate using projection-valued measurement or the POVM formalism. Finally,
the last section discusses the broader interpretation of the measurement postulate, in addition to
its shortcomings. The main references are:

� General: [2, 3];

� Measurement: [4, Ch. 2], and [5];

1.1 Density matrix

The density matrix (or density operator) in quantum mechanics is an operator (usually written ρ̂)
which can be used to describe a system. It is Hermitian

ρ̂† = ρ̂, (1.1.1)

so its eigenvalues are real. The interpretation of those eigenvalues 1 is that they represent the
probabilities of having the corresponding eigenstates. Since the eigenvalues represent probabilities,
they must add up to one so that the following property is always veri�ed2:

Tr ρ̂ = 1, (1.1.2)

where the trace operator of an operator Â is de�ned as

Tr
(
Â
)
≡
∑
i

〈
i
∣∣∣Â∣∣∣ i〉 , (1.1.3)

where {|i〉} can be any orthonormal basis. Incidentally, in the case of a pure state, we also have

Tr ρ̂2 = 1. (1.1.4)

1The eigenvalues are the diagonal elements when the density matrix has been diagonalized, i.e. when it has been
written in the basis formed by its eigenstates.

2The trace is simply the sum of the eigenvalues.

3



MEMO-H506 1.2 The measurement postulate

One important aspect is that the density matrix contains all the information that we can get from
a state. Let us illustrate this concept with an example: consider a pure state |ψ〉. From quantum
mechanics, we know that this state |ψ〉 is de�ned up to a phase factor of the form eiθ (θ ∈ R)
such that the system can equivalently be described by eiθ |ψ〉. However, this global phase θ cannot
be determined experimentally, so it is a super�uous addition to the mathematical formulation.
Essentially, it means that the description of the system using |ψ〉 contains more information than
what we have access to in the laboratory. On the other hand, the corresponding density matrix is
simply

ρ̂ = eiθ |ψ〉 〈ψ| e−iθ = |ψ〉 〈ψ| . (1.1.5)

We see that the phase ambiguity disappears when the density matrix is used instead.
Furthermore, the density operator is a necessary tool to represent mixed states which are written

as
ρ̂ =

∑
i

pi |ψi〉 〈ψi| , (1.1.6)

where 0 ≤ pi ≤ 1 such that
∑

i pi 〈ψi|ψi〉 = 1. If the |ψi〉 are all normalized, we can interpret the pi
as the probabilities of having prepared the corresponding states |ψi〉 〈ψi|. We should insist on the
fact that pi are probabilities in the classical sense. This has nothing to do with quantum mechanics,
they simply model the fact that we do not have perfect control over the preparation process. As
a matter of fact, the density operator formalism is indispensable when we want to describe reality
because there is always an interaction between the system we want to study and the surrounding
environment. This is why it constitutes a fundamental tool in quantum information theory because
we have to take this (classical) uncertainty into account when studying quantum computers.

The (classical) statistical mixture of pure states should not be confused with the concept of
superposition in quantum mechanics de�ned as

|ψ〉 = c1 |ψ1〉+ c2 |ψ2〉 . (1.1.7)

Here, |c1|2 (resp. |c2|2) represents the probability of measuring the state |ψ1〉 (resp. the state |ψ2〉)
if the system is in the state |ψ〉, and they add up to unity |c1|2 + |c2|2 = 1. This is a purely
quantum mechanical e�ect, which has no classical analog. To further show the di�erence between
superposition and statistical mixture, we can calculate the density operator ρ̂ = |ψ〉 〈ψ|

ρ̂ = |ψ〉 〈ψ|
= (c1 |ψ1〉+ c2 |ψ2〉) (c∗1 〈ψ1|+ c∗2 〈ψ2|)
= |c1|2 |ψ1〉 〈ψ1|+ |c2|2 |ψ2〉 〈ψ2|+ c1c

∗
2 |ψ1〉 〈ψ2|+ c∗1c2 |ψ2〉 〈ψ1| , (1.1.8)

which is obviously di�erent from a statistical mixture

ρ̂mix = |c1|2 |ψ1〉 〈ψ1|+ |c2|2 |ψ2〉 〈ψ2| . (1.1.9)

1.2 The measurement postulate

According to [4, p. 84], the measurement postulate can be stated using a very general type of
measurement. In that case, a quantum measurement of an arbitrary observable Â3 can be described

by a set of measurement operators
{
M̂m

}
acting on the state space of the system being measured.

3An observable is any Hermitian operator associated with a physical measurement. All the observables have real
eigenvalues.
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MEMO-H506 1.2 The measurement postulate

Each index m corresponds to a speci�c possible outcome of the experiment. Those operators satisfy
the completeness relation ∑

m

M̂ †mM̂m = 1̂, (1.2.1)

where 1̂ is the identity operator. The relation between the observable Â and its measurement

operators
{
M̂m

}
is

Â =
∑
m

λmM̂
†
mM̂m (1.2.2)

Note that all possible measurement outcomes λm of a physical quantity described by an observable
Â are the eigenvalues of Â.

If the quantum system is in state |ψ〉 before the measurement, Born's rule tells us that the
probability P (m) of obtaining the result am is

P (m) ≡
〈
ψ
∣∣∣M̂ †mM̂m

∣∣∣ψ〉 , (1.2.3)

and the state |ψm〉 after the measurement is given by

|ψm〉 ≡
M̂m |ψ〉√〈

ψ
∣∣∣M̂ †mM̂m

∣∣∣ψ〉 . (1.2.4)

The corresponding expected value
〈
Â
〉
is

〈
Â
〉
≡
∑
m

λmP (m) =
∑
m

m
〈
ψ
∣∣∣M̂ †mM̂m

∣∣∣ψ〉 =

〈
ψ

∣∣∣∣∣∑
m

λmM̂
†
mM̂m

∣∣∣∣∣ψ
〉
, (1.2.5)

or 〈
Â
〉

=
〈
ψ
∣∣∣Â∣∣∣ψ〉 . (1.2.6)

Born's rule can also be stated in terms of density matrix ρ̂ = |ψ〉 〈ψ|. The probabilities are
given by

P (m) ≡ Tr
(
ρ̂M̂ †mM̂m

)
= Tr

(
M̂mρ̂M̂

†
m

)
= Tr

(
M̂ †mM̂mρ̂

)
, (1.2.7)

because the trace is invariant under cyclic permutations. The density matrix ρ̂m = |ψm〉 〈ψm| after
the measurement is

ρ̂m ≡
M̂mρ̂M̂

†
m

Tr
(
M̂mρ̂M̂

†
m

) . (1.2.8)

Finally, the expected value
〈
Â
〉
is

〈
Â
〉
≡
∑
m

λmP (m) =
∑
m

mTr
(
ρ̂M̂ †mM̂m

)
= Tr

(
ρ̂
∑
m

λmM̂
†
mM̂m

)
, (1.2.9)

or 〈
Â
〉

= Tr
(
ρ̂Â
)
, (1.2.10)

where we used Eq. (1.2.2).
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1.3 PVM formalism

In this section, we will see a particular case of the measurement operators de�ned in the measure-
ment postulate called the projective measurement. It is a necessary detour since this is the type of
measurement most people are familiar with in quantum mechanics. We will �rst review the associ-
ated mathematical formalism, then we will expose the shortcoming of this approach and why it is
necessary to work with another type of measurement called the POVM formalism which provides a
better framework for measurements in quantum mechanics.

The projective measurement (also called von Neumann measurement, projection-valued mea-
surement, or simply PVM) is the type of measurement that is usually assumed in most introductory
book on quantum mechanics because of its simplicity. The starting point is the spectral decom-
position theorem of an operator which states that any arbitrary operator Â can be decomposed
as

Â =
∑
m

λmP̂m, (1.3.1)

where λm is the value of a measurement associated with the projector P̂m. Note that the values
λm are simply the eigenvalues of the operator Â associated with the projector P̂m as stated in the
measurement postulate. Additionally, each projector is orthogonal to all the others such that

P̂iP̂j = δijP̂i. (1.3.2)

Now, in order to be called projectors, the set of operators
{
P̂m

}
must obey two rules:

1. They must be Hermitian
P̂ †m = P̂m, (1.3.3)

2. They must also be idempotent (i.e. application of the operator more than once does not
change the result):

P̂mP̂m = P̂ 2
m = P̂m. (1.3.4)

By comparing Eq. (1.3.1) with Eq. (1.2.2), we see that the projective measurement is a particular
case where

M̂m = P̂m. (1.3.5)

Indeed, in that case, we have
M̂ †mM̂m = P̂ †mP̂m = P̂m, (1.3.6)

since the projectors are Hermitian (Eq. (1.3.3)). Note that we have implicitly considered that the

operator Â can be decomposed in terms of a discrete number of projectors
{
P̂m

}
. The generalization

to the continuous case is, however, fairly straightforward because we only need to replace the sum
by an integral over all possible values of λ (x)

Â =

∫
λ (x) P̂ (x) dx, (1.3.7)

where we used the variable λ (x) here to distinguish it from the discrete case. Incidentally, the
orthogonality condition becomes

P̂ (x) P̂ (y) = δ (x− y) P̂ (x) . (1.3.8)
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An important thing to notice is that the idempotence (Eq. (1.3.4)) of the projector implies the
repeatability of a measurement, i.e. the measurement on a state that has just been measured will
give the same result.

At �rst sight, the repeatability of the projective measurement seems to be a main advantage
that is not necessarily found in the more general type of measurement. However, this is also where
its weakness lies: not all measurement can be repeated. For instance, consider the (destructive)
detection of a photon using a photo-detector. In this case, once the photon has been measured,
it has been annihilated; obviously this prevents from detecting the photon a second time. This is
one of the reasons why we need to de�ne a more general framework. Another drawback presented
by [4, p. 87] is that projective measurement can only e�ectively distinguish two states if they are
orthogonal to each other. On the other hand, the POVM formalism that will be presented in the
next section can be optimized to discriminate non-orthogonal states, if we allow that, some of the
time, we cannot tell them apart. The important thing is that we are able to tell which measurements
are inconclusive.

1.4 POVM formalism

The POVM (positive-operator valued measure) formalism is the most general type of measurement.
First, we de�ne the positive operators Êm as

Êm ≡ M̂ †mM̂m. (1.4.1)

Each operator Êm is known as a POVM elements, and the complete set of POVM elements
{
Êm

}
forms what we call the POVM. Obviously, they respect the completeness relation∑

m

Êm =
∑
m

M̂ †mM̂m = 1̂, (1.4.2)

and the probabilities of getting outcome λm of an arbitrary operator Â associated with the mea-
surement operators M̂m (see Eq. (1.2.2)) if the state is in ρ̂ before the measurement is simply

P (λm) = Tr
(
ρ̂Êm

)
. (1.4.3)

It is possible to see the projective measurement de�ned by the mutually orthogonal projectors{
M̂m

}
=
{
P̂m

}
as a particular case of the POVM formalism where all the POVM elements are

equal to the measurement operators

Êm = P̂ †mP̂m = P̂m. (1.4.4)

In reality, the POVM formalism can be seen as a projective measurement performed an extended
(Neumark's dilation theorem), so the two frameworks turn out to be equivalent. However, the
POVM formalism o�ers some advantages over the projective measurements such as [4, p. 91]

� It possesses a simpler structure because the measurement operators do not necessarily have
to be mutually orthogonal projectors;

� It can be used to optimize the distinction of orthogonal (or not) states as will be shown below;

� It does not imply repeatability of the measurement.
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Illustration

To better understand the advantage of the POVM formalism, let us consider that we want to
distinguish two states given by (see [4, p. 92])

|ψ1〉 = |φ0〉, (1.4.5)

|ψ2〉 =
|φ0〉+ |φ1〉√

2
, (1.4.6)

where |φ0〉 and |φ1〉a are two (normalized) states chosen such that

〈φ1|φ0〉 = 0. (1.4.7)

Obviously, |ψ1〉 and |ψ2〉 are not orthogonal:

〈ψ2|ψ1〉 =
1√
2

(〈φ0|+ 〈φ1|) |φ0〉

=
1√
2

(〈φ0|φ0〉+ 〈φ1|φ0〉) , (1.4.8)

so

〈ψ2|ψ1〉 =
1√
2
6= 0. (1.4.9)

As discussed in the previous section, the non-orthogonality implies that it is not possible to
distinguish them using projective measurement. Now consider the POVM de�ned as

Ê1 ≡
√

2

1 +
√

2
|φ1〉 〈φ1| , (1.4.10)

Ê2 ≡
√

2

1 +
√

2

(|φ0〉 − |φ1〉) (〈φ0| − 〈φ1|)
2

, (1.4.11)

Ê3 ≡ 1̂− Ê1 − Ê2. (1.4.12)

First of all, is it trivial to verify that
∑

m Êm = 1̂, so the positive operators Êm do form a
POVM. Now, we see that

Ê1 |ψ1〉 = 0, Ê1 |ψ2〉 6= 0, (1.4.13)

Ê2 |ψ1〉 6= 0, Ê2 |ψ2〉 = 0, (1.4.14)

Ê3 |ψ1〉 6= 0, Ê3 |ψ2〉 6= 0. (1.4.15)

Then

P (λ1, |ψ1〉) = 0, P (λ1, |ψ2〉) 6= 0, (1.4.16)

P (λ2, |ψ1〉) 6= 0, P (λ2, |ψ2〉) = 0, (1.4.17)

P (λ3, |ψ1〉) 6= 0, P (λ3, |ψ2〉) 6= 0, (1.4.18)

where P (λm, |ψi〉) (given by Eq. (1.2.3)) is the probability to obtain the outcome λm associated
with Êm when the system is in the state |ψi〉 before the measurement. From this, we deduce
that if we get the outcome λ1 (resp. λ2), then the state was necessarily in |ψ2〉 (resp. |ψ1〉).
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On the other hand, if λ3 is the outcome, then nothing can be said. Therefore, from this simple
reasoning, we see that it is possible to distinguish two non-orthogonal states |ψ1〉 and |ψ2〉 if we
choose the POVM cleverly. Of course, some of the time, we will get λ3, and the measurement
will be inconclusive, but the point is that we know when the measurement must be discarded,
and when we can use it to determine the discriminate the two states.

aNote that we have used a di�erent notation from [4] to avoid confusion with the notation later on.

Nevertheless, there is one drawback to the POVM formalism. If we write the expression of the state
after the measurement ρ̂m (see Eq. (1.2.8)):

ρ̂m ≡
M̂mρ̂M̂

†
m

Tr
(
M̂mρ̂M̂

†
m

) , (1.4.19)

we see that ρ̂m depends on the POVM element M̂m which cannot be inferred from the POVM alone
in general.

1.5 The measurement problem

Before moving on, it seems appropriate to brie�y discuss about the measurement postulate and
its consequence on the interpretation of quantum mechanics. Indeed, the process described by
Eq. (1.2.4) (or Eq. (1.2.8)) known as the collapse of the wavefunction (or reduction of the wavepacket)
has always been as source of much controversy in quantum mechanics. The main problem is the
irreversibility of the collapse. Some have tried to remove this phenomenon, and attempted to derive
Born's rule without assuming it, but the results have been inconclusive. The measurement prob-
lem is intrinsically linked to the role of the observer in quantum mechanics. Di�erent interpretation
exists besides the Copenhagen interpretation such as Everett's many-worlds interpretation or the
de Broglie�Bohm theory, but there hasn't been conclusive experiment favoring one or the other
as of right now. The weak measurement formalism described in the next chapter could perhaps
change this in the future. The measurement problem is treated in great detail in [6].

1.6 Summary

This chapter helped us de�ne all the mathematical notions needed to describe a state, as well as the
outcome of a measurement or the state after the measurement for example. We started by stating the
measurement postulate which tells us how we use the state |ψ〉 to calculate the probability density
functions through the use of Born's rule. We also looked into the two most common types of
mathematical implementation of the measurement operators: the projective measurement (which is
the one that is usually presented in introductory books about quantum mechanics), and the POVM
formalism. While the two can be shown to be equivalent, we saw that the POVM formalism possesses
some advantages over the projective measurement because of the lower number of restrictions to
de�ne the POVM. Finally, we brie�y evoked the measurement problem in quantum mechanics and
its implications. In the next chapter, we will explore the concept of weak measurement, and how it
can be used as a very powerful tool in quantum mechanics.
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Chapter 2
Weak measurement

The idea of weak measurement was �rst introduced by Yakir Aharonov, David Z. Albert, and
Lev Vaidman in their seminal paper entitled �How the Result of a Measurement of a Component
of the Spin of a Spin�1/2 Particle Can Turn Out to be 100�[1]. In this chapter, we shall explain
the train of thought which lead them to de�ne the notion of weak value and weak measurement
as presented in [7, 8] by Yakir Aharonov and Lev Vaidman which is very similar to the original
approach, but slightly more complete. We will then focus on the seemingly paradoxical aspects
of the weak values. A few examples of applications will be given to illustrate the importance of
weak values in quantum mechanics. Finally, we will de�ne the transient density matrix, and try to
generalize the notion of expected value in the case of the weak measurement. The main references
are:

� Weak measurement formalism: [9, 1, 7, 10];

� Weak measurement and experiments: [11, 12];

� Direct measurement of a wavefunction: [13];

� Transient density matrix: [14].

2.1 Two-state vector formalism

As discussed in the previous section, the �collapse� of the wavefunction after the measurement seems
to be an irreversible process, and fundamentally time asymmetric. This is somewhat disturbing
considering the fact the dynamical laws of quantum mechanics are time symmetric just like in
classical mechanics (Hamilton's equation of motion). They believe that the time symmetry can
be restored if we introduce a state evolving backwards in time. Normally, we consider that the
state is represented only by a wavefunction evolving forward in time. After the measurement, the
wavefunction is suddenly modi�ed according to the measurement postulate, and then continues to
move forward in time. However, this results from our conception of the arrow of time: as the authors
put it, �we view the past as existing and future as nonexisting (yet).�

Their idea is to consider the description of a system between two (complete) measurements, that
way, we can set boundary conditions in the past as well as in the future. Here, we have a wavefunction
evolving forward in time coming from the past just as we did in the normal case. However, because
of the time symmetry, we expect there also exists a wavefunction evolving backwards in time, coming
from the future.
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MEMO-H506 2.2 Disturbance between two non-commuting observables

To illustrate this, let us consider an experiment where we perform the measurement of the
observable Â and B̂ on a quantum system. We suppose that the outcome of the measurement
at time t1 (resp. t2) of Â (resp. B̂) is the (non-degenerate) eigenvalue a (resp. b). Then, at an
intermediate time, the system is characterized by a wavefunction evolving from the past |ψ1〉, and
another one coming from the future 〈ψ2|:

|ψ1〉 = exp

{
−i
∫ t

t1

Ĥ dτ

}
|A = a〉 , (2.1.1)

〈ψ2| = 〈B = b| exp

{
−i
∫ t2

t
Ĥ dτ

}
, (2.1.2)

with t1 < t < t2 (see Fig. 2.1.1 for an illustration).

B=b

A=aA=a

2

b)a)

1t

t

t

Ψ
2

Ψ
1

Ψ
1

Figure 2.1.1: Description of quantum systems: (a) pre-selected, (b) post-selected. Source: [8, p. 4].

2.2 Disturbance between two non-commuting observables

It is a well-known fact that if we measure the outcomes of two non-commuting observables Â and
B̂, the order in which we perform the measurement is going to a�ect the result. This is due to the
fact that the measurement on Â will disturb the wavefunction, so that the system is not described
by the two wavefunctions |ψ1〉 and 〈ψ2|, and subsequently in�uence the outcome on B̂, and vice

versa.
Moreover, let |ψ1〉 = |A = a〉 be the initial state is and 〈ψ2| = 〈B = b| be the �nal state. If the

free Hamiltonian is neglected, we might be inclined to say that the value of the observable Ĉ = Â+B̂
at an intermediate time will be the eigenvalue c = a + b. In reality, this is not the case because
the measurement of Â and B̂ will still disturb each other. The idea of the weak measurement is to
try to reduce the interaction between the system and the measuring device. In that case, we can
consider that both |ψ1〉 = |A = a〉 and 〈ψ2| = 〈B = b| are not disturbed signi�cantly. Therefore, we
should measure both A = a and B = b at the intermediate time, such that c = a+ b.
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MEMO-H506 2.3 Measurement process

Note that the reduction of the coupling between the system and the measuring device has a
negative consequence: it will increase the uncertainty on a single measurement. To remedy to this
problem, it is necessary to perform this measurement on a large number of systems prepared in the
same way, and then to compute the average value. That way, if we have N systems prepared in the
same state, then the uncertainty on the average value will scale as 1/

√
N .

2.3 Measurement process

So far, we have only described the measurement outcome and the state after the measurement; we
have not discussed how the measurement procedure can be modeled using a Hamiltonian. According
to von Neumann [5], we can view the measurement process as the result of the coupling between
the system |ψ〉 and the pointer of a measurement device |ψm〉. Let us suppose we want to perform
a measurement corresponding to an observable Â. Then, we can model this interaction by the
following Hamiltonian [5]:

Ĥ = g (t) p̂Â, (2.3.1)

where g (t) is a normalized function with a compact support corresponding to the coupling between
the system and the pointer, and p̂ is the canonically conjugate variable to the pointer variable q̂1.
Typically, in an ideal measurement, the coupling described by Ĥ will only last a small amount of
time (meaning the function g (t) is non zero during a short period of time), allowing us to neglect
the free Hamiltonian during the process of measurement.

2.4 Strange weak values

Now that we have de�ned all the mathematical tools to study the weak values, let us give its
de�nition. If a system is described by the two-state vector |ψ1〉 and 〈ψ2| (pre- and post-selection),
then the weak value of an arbitrary observable Â is

〈
Â
〉
w
≡

〈
ψ2

∣∣∣Â∣∣∣ψ1

〉
〈ψ2|ψ1〉

. (2.4.1)

Note that this weak value is generally a complex number because
〈
ψ2

∣∣∣Â∣∣∣ψ1

〉
〈ψ2|ψ1〉

† =

〈
ψ1

∣∣∣Â∣∣∣ψ2

〉
〈ψ1|ψ2〉

6=

〈
ψ2

∣∣∣Â∣∣∣ψ1

〉
〈ψ2|ψ1〉

, (2.4.2)

in general. When the state is only pre-selected, it reduces to

〈
Â
〉
w

=

〈
ψ1

∣∣∣Â∣∣∣ψ1

〉
〈ψ1|ψ1〉

=
〈
ψ1

∣∣∣Â∣∣∣ψ1

〉
=
〈
Â
〉
. (2.4.3)

1The pointer variables q̂ and p̂ do not necessarily correspond to the position and the momentum, respectively;
they can represent any observables of the pointer.
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Illustration

It is interesting to consider a simple example where the
〈
Â
〉
w
can take seemingly weird values.

Let us study the measurement of a spin�1/2 particle as proposed in [8, p. 14]. The experimental
scheme is the following:

1. Pre-selection on the spin �up� on the x-axis, written |↑x〉 (eigenstate of σ̂x);

2. Weak measurement of the spin component in the ξ direction which is the bisector (45°
angle) of x-axis and the y-axis. The corresponding operator can be written

σ̂ξ =
σ̂x + σ̂y√

2
. (2.4.4)

3. Post-selection on the spin �up� on the y-axis, written 〈↑y| (eigenstate of σ̂y) .

The corresponding weak value is

〈σ̂ξ〉w =
〈↑y |σ̂ξ| ↑x〉
〈↑y | ↑x〉

=
1√
2

〈↑y |(σ̂x + σ̂y)| ↑x〉
〈↑y | ↑x〉

=
√

2 > 1. (2.4.5)

This might seem paradoxical at �rst because the usual expected value of a spin component
along any arbitrary direction ξ is always bounded by

−1 ≤ 〈σ̂ξ〉 ≤ 1, (2.4.6)

since the eigenvalues are ±1. However, we have to remember that the de�nition in Eq. (2.4.1) is
clearly not a usual expected value. Therefore, it does not have to obey the usual rules governing
expected values. This important value 〈σ̂ξ〉w is the result of the pre- and post-selection: the
value of the spin component in-between has to be in accordance with both the measurement
in the past and in the future.

Illustration

Another elegant example is given by [15]. We start by writing the Hamiltonian of a harmonic
oscillator (mass m = 1)

Ĥ =
1

2

[
p̂2 + ω2q̂2

]
=

1̂

2
+ n̂, (2.4.7)

where n̂ is the number operator giving to the number of quanta in the harmonic oscillator, ω is
the angular frequency and where q̂ and p̂ could be the position and the momentum operators,
respectively. We can then write the number operator as

n̂ =
1

2

[
p̂2 + ω2q̂2

]
− 1̂

2
. (2.4.8)

We can then consider the follow experiment:

1. Pre-selection on |q = 0〉;
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2. Weak measurement of the number operator;

3. Post-selection on 〈p = 0|.

The weak value is simple to calculate:

〈n̂〉w =

〈
p = 0

∣∣∣12 [p̂2 + ω2q̂2
]
− 1̂

2

∣∣∣ q = 0
〉

〈p = 0|q = 0〉
, (2.4.9)

which yields

〈n̂〉w = −1

2
. (2.4.10)

Once again, we get a weak value that is unexpected because we normally have

〈n̂〉 ≥ 0. (2.4.11)

2.5 Measuring weak values

To have a better understanding of how weak values can be determined experimentally (especially
since it is a complex number), we will explore two di�erent cases: one where the system is only
pre-selected and another where the system is pre- and post-selected.

2.5.1 Pre-selected state

This experiment will be repeated on a large number of systems, each being coupled to a measuring
device. From Eq. (2.3.1), the interaction Hamiltonians are of the form

Ĥ = g (t) q̂Â. (2.5.1)

For convenience and as a good approximation of reality, we will suppose that the wavefunction each
measuring device is prepared in a Gaussian state (in the q basis) which can be written

ψMD
i (q) =

(
∆2π

)−1/4
e−

q2

2∆2 , (2.5.2)

where ∆ represents the spread of the Gaussian. The corresponding probability density function is

PMD
i (q) =

∣∣ψMD
i (q)

∣∣2 =
(
∆2π

)−1/2
e−

q2

∆2 (2.5.3)

If the initial state of the system is a superposition |ψ1〉 =
∑

i αi |ai〉, then the wavefunction of the
measuring device after the interaction resulting from (2.5.1) will be

ψMD
f (q) =

(
∆2π

)−1/4∑
i

αi |ci〉 e−
(q−ai)

2

2∆2 , (2.5.4)

with a probability density function given by

PMD
f (q) =

∣∣ψMD
f (q)

∣∣2 =
(
∆2π

)−1/2∑
i

|αi|2 e−
(q−ai)

2

∆2 . (2.5.5)
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This probability density function is the sum of the initial density probability (see Eq. (2.5.3)),
weighted by the coe�cients |αi|2, and centered on each eigenvalue ai. As said in Section 2.2,
when we reduce the coupling, the uncertainty, represented by ∆ here, will increase. The weak
measurement corresponds to the case where ∆ � ai for all eigenvalues ai. Hence, we can perform
the Taylor expansion of the exponential in Eq. (2.5.5) around q = ai:

PMD
f (q) '

(
∆2π

)−1/2∑
i

|αi|2
(

1− (q − ai)2

∆2

)
, (2.5.6)

which can be shown to be equivalent to [8, p. 12, (29)]

PMD
f (q) '

(
∆2π

)−1/2
exp

1−

(
q −

∑
i |αi|

2 ai

)2

∆2

 . (2.5.7)

This probability density function is identical to the initial one Eq. (2.5.2), except that it has been
shifted by ∑

i

|αi|2 ai ≡
〈
Â
〉

=
〈
Â
〉
w
. (2.5.8)

Therefore, in the case of a pre-selected state, the weak value can be obtained by averaging the result
of a weak measurement over a large number of identically prepared systems.

2.5.2 Pre- and post-selected state

Here, we consider the following experiment:

1. We pre-select on |ψ1〉, i.e. we prepare each system in the same state, at time t1;

2. We perform a weak measurement (i.e. the coupling between the system and pointer is very
small) at time t (t1 < t < t2) of the observable Â;

3. We post-select on 〈ψ2| at time t2. To implement this, we make a �nal measurement, and we
discard the systems which do not yield a certain outcome.

As before, the wavefunction each measuring device is initially in a Gaussian state:

ψMD
i (q) =

(
∆2π

)−1/4
e−

q2

2∆2 , (2.5.9)

After the post-selection, wavefunction of each measuring device will be, up to a normalization factor,
in the following state:

ψMD
f (q) =

〈
ψ2

∣∣∣e−i ∫ Ĥ dt
∣∣∣ψ1

〉
e−

q2

2∆2 =
〈
ψ2

∣∣∣eip̂Â∣∣∣ψ1

〉
e−

q2

2∆2 . (2.5.10)

After some calculations, we can write in the p basis

ψ̃MD
f (p) = 〈ψ2|ψ1〉 e−i〈Â〉wpe−∆2p2/2 + 〈ψ2|ψ1〉

∞∑
n=2

(ip)n

n!

(〈
Ân
〉
w
−
〈
Â
〉n
w

)
e−∆2p2/2. (2.5.11)
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If the spread ∆ is su�ciently large (which is the case when we reduce the coupling in Eq. (2.5.1)),
the second term can be neglected when we go back to the q basis. Then, the wavefunction of the
measuring device in the weak measurement formalism is

ψMD
f (q) =

(
∆2π

)−1/4
e−

(q−〈Â〉w)
2

2∆2 . (2.5.12)

The corresponding probability density function is a Gaussian centered on q = <
(〈
Â
〉
w

)
, so this

measurement allows us to �nd the real part of the weak value. Similarly, we can show that the
probability density function in the p basis is centered, up to a proportionality factor, the imaginary
part of the weak value.

2.6 Applications

At �rst, the weak measurement formalism might seem like a mathematical curiosity. Moreover,
because of the simplicity of the underlying principle, it would be easy to miss the importance
and the powerfulness of this framework. For that reason, it will not be super�uous to present a
few of the numerous and various applications of the weak measurement formalism. For example
Johansen [16, 17], used this formalism to characterize the non-classicality of certain states. In [18],
it has been found that any (strong) generalized measurement can be expressed as a sequence of
weak measurement. Others have been able to resolve certain paradoxes in quantum mechanics such
as Hardy's paradox [19, 20, 21]. Additionally, it has been applied to explore the very foundations
of quantum mechanics. Indeed, in [22, 23], as the title says, weak measurement was used to probe
the �average trajectories of single photons in a two-slit interferometer�, and they have found that
the results are in agreement with the Bohm trajectories predicted by the de Broglie�Bohm
interpretation of quantum mechanics. Hofmann has also employed this framework in a number of
fundamental problems [24, 25] such as a re-interpretation of the collapse of the wavefunction as
a Bayesian update of information. For example, he supports the idea that �Schrödinger's cat is
already dead or alive before the measurement.�

These are just a few, but certainly not all, areas where the weak measurement formalism has
proven to be advantageous. In the rest of this section, we will investigate a very intriguing exper-
iment that can be performed using the weak measurement formalism [13]. What is so fascinating
is that they show that it is possible to directly measure the wavefunction of a state. Often, the
wavefunction is only viewed as a mathematical tool used to do the calculations such as comput-
ing the probability density function (using Born's rule) of �nding a particle at a certain position.
However, if this result is correct, it rather favors an interpretation of the wavefunction as a real
physical object. Also, the simplicity of the principle makes it a very elegant application of weak
measurement.

As indicated before, the weak value is de�ned as

〈
Â
〉
w
≡

〈
ψ2

∣∣∣Â∣∣∣ψ1

〉
〈ψ2|ψ1〉

. (2.6.1)

Even though this is a complex number, we have seen (see Section 2.5) that it is possible to determine
experimentally both the real part and the imaginary part if we perform weak measurement on a
pre- and post-selected system. For example, we could couple a pointer such that its position gives

us <
{〈
Â
〉
w

}
while the momentum kick of that pointer allows us to deduce =

{〈
Â
〉
w

}
. Also,

it is necessary to repeat this experiment numerous times to attain the desired precision, since the
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MEMO-H506 2.6 Applications

uncertainty increases as the strength of the measurement decreases. Here, the pre- and post-selection
scheme in this experiment is as follows

1. Pre-selection: all the systems are prepared in the state |ψ1〉 = |Ψ〉;

2. Weak measurement of the position Â = |x〉 〈x|;

3. Post selection: strong measurement of the momentum p̂. In our �nal ensemble, we only keep
the systems which yielded the outcome pf , i.e. 〈ψ2| = 〈p = pf |.

In this case, the weak value of Â is〈
Â
〉
w

=
〈p = pf |x〉 〈x|Ψ〉
〈p = pf |Ψ〉

=
eipx/~Ψ (x)

Φ (pf )
, (2.6.2)

where Φ (p) is the initial state |Ψ〉 in the momentum basis (the two are linked by a Fourier

transform). Now, if we choose pf = 0, we simply get〈
Â
〉
w

=
Ψ (x)

Φ (0)
, (2.6.3)

or 〈
Â
〉
w

= kΨ (x) , (2.6.4)

where k = 1/Φ (0) is a constant (that we can eliminate by normalizing the wavefunction). As
stated above, we see that the weak value directly gives us the value of the wavefunction at any
arbitrary position x. The experimental realization (see Fig. 2.6.1). In order to compare the measured

f2 f2

Slit

px

f1

SM 
Fiber

Pol

FT LensRB

PBS

Preparation 
of � (x)

Weak meas. 
of x

Mask

Strong Meas. 
of p = 0

Readout of 
Weak meas.

Det 1

Det
2

�
(x)

�
2 sliver

�
4

�
2

y
z

Figure 2.6.1: Experimental setup for the direct measurement of the photon transverse wavefunction.
It can be divided into four parts: �preparation of the transverse wavefunction, weak measurement of
the transverse position of the photon, post-selection of those photons with zero transverse momenta,
and readout of the weak measurement.� Source: [13].

wavefunction, they prepared all the photons in the same known states. The data deduced from the
weak value seems to be in good agreement with the prepared state (see [13] for the graphics).
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MEMO-H506 2.7 Transient density matrix

2.7 Transient density matrix

There is one more property of the weak value that we have not discussed yet. For convenience, we
reproduce here the formula for the weak value of an arbitrary observable Â, where we pre-select on
|a〉 and post-select on 〈b|:

〈
Â
〉
w
≡

〈
b
∣∣∣Â∣∣∣ a〉
〈b|a〉

= Tr

(
|a〉 〈b|
〈b|a〉

Â

)
. (2.7.1)

When we compare it to the formula for the expected value (see Eq. (1.2.10)), we might be inclined
to de�ne a new type of operator [26, p. 20, (77)] (see Fig. 2.7.1):

σ̂|a〉〈b| ≡
|a〉 〈b|
〈b|a〉

, (2.7.2)

so that 〈
Â
〉
w

= Tr
(
σ̂|a〉〈b|Â

)
. (2.7.3)

The rest of this report will be dedicated to studying this new operator which we will cal the transient
density matrix because of the fact that it represents a sort of �density matrix� of the intermediate
state between the pre- and post-selection.

ba baσ̂

da daσ̂

ba baσ̂

bc bcσ̂

dc dcσ̂

Pre-selection Post-selectionWeak
measurement

Figure 2.7.1: Pre- and post-section scheme for the de�nition of the transient density matrix σ̂|a〉〈b|,
this means that we want to keep the systems that are pre-selected on |a〉 and post-selected on 〈b|.
Five di�erent systems were represented. A cross on the right of a system indicates that it must be
discarded because it does not respect the condition for the pre-selection and/or the post-section.

One interesting thing to note is that we have

Tr
(
σ̂|a〉〈b|

)
= 1, (2.7.4)
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MEMO-H506 2.7 Transient density matrix

like a usual density matrix (see Eq. (1.1.2)).

Proof

We want to calculate

Tr
(
σ̂|a〉〈b|

)
= Tr

(
|a〉 〈b|
〈b|a〉

)
. (2.7.5)

To compute the trace, we choose an arbitrary basis {|c〉}. Then

Tr
(
σ̂|a〉〈b|

)
=
∑
|c〉

〈c|a〉 〈b|c〉
〈b|a〉

=
∑
|c〉

〈b|c〉 〈c|a〉
〈b|a〉

=

〈
b
∣∣∣(∑|c〉 |c〉 〈c|)∣∣∣ a〉

〈b|a〉
. (2.7.6)

Since we have the completeness relation∑
|c〉

|c〉 〈c| = 1̂. (2.7.7)

Therefore, we have

Tr
(
σ̂|a〉〈b|

)
=
〈b|a〉
〈b|a〉

, (2.7.8)

or
Tr
(
σ̂|a〉〈b|

)
= 1, (2.7.9)

Moreover, the transient density matrix stays invariant if we apply the following transformation

|a〉 →
∣∣a′〉 = eiθ |a〉 ⇒ σ̂|a′〉〈b| = σ̂|a〉〈b|. (2.7.10)

This means the transient density matrix is una�ected by a global phase factor that could be present
in the state |a〉 (or |b〉), a property also found in a density matrix (see Eq. (1.1.5)). We already
know that this global phase factor will not have to be studied later on.

Proof

We �nd

σ̂|a′〉〈b| =
|a′〉 〈b|
〈b|a′〉

= �
�eiθ |a〉 〈b|
〈b|a〉��eiθ

=
|a〉 〈b|
〈b|a〉

= σ̂|a〉〈b|. (2.7.11)

.
However, we should refrain from interpreting σ̂|α〉〈β| as a usual density matrix. Indeed, the

transient density matrix is not Hermitian:

σ̂†|a〉〈b| 6= σ̂|a〉〈b|, (2.7.12)

unlike the density matrix (see Eq. (1.1.1)). This implies that the eigenvalues of σ̂|a〉〈b| can be
complex.
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MEMO-H506 2.7 Transient density matrix

Proof

We have

σ̂†|a〉〈b| =

(
|a〉 〈b|
〈b|a〉

)†
=
|b〉 〈a|
〈b|a〉

6= |a〉 〈b|
〈b|a〉

= σ̂|a〉〈b|, (2.7.13)

in general.

2.7.1 Coherent states

In this report, we will study this transient density matrix when the pre- and post-selected states
are both coherent states2, i.e.

σ̂|α〉〈β| ≡
|α〉 〈β|
〈β|α〉

. (2.7.14)

As we will see in the next chapter, the coherent states form an over-complete basis (see Eq. (3.3.11))
such that

1

π

∫∫
R2

|α〉 〈α| d2α =
1

π

∫∫
R2

|β〉 〈β| d2β = π. (2.7.15)

Also, the probability of measuring the state 〈β| if we prepare |α〉 can be shown to be

P (β|α) = P (α|β) =
|〈β|α〉|2

π
=
〈β|α〉 〈α|β〉

π
. (2.7.16)

Using those two expressions, we can test the consistency of the de�nition of the transient density
matrix. Indeed, if we have no post-selection (we integrate over all possible �nal states 〈β|, then∫∫

R2

P (β|α)× σ̂|α〉〈β| d2β =

∫∫
R2

��
�〈β|α〉 〈α|β〉
π

× |α〉 〈β|

�
��〈β|α〉

d2β

=

∫∫
R2

〈α|β〉
π
|α〉 〈β| d2β

=

∫∫
R2

|α〉 〈α|β〉
π
〈β| d2β

= |α〉 〈α| × 1

π

∫∫
R2

|β〉 〈β| d2β

= |α〉 〈α| , (2.7.17)

2The notion of coherent state will be introduced in Chapter 3.
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MEMO-H506 2.8 Summary

then we obtain the initial prepared state, which is what we would expect since the weak measurement
does not disturb the wavefunction. Similarly, if we have no pre-selection∫∫

R2

P (α|β)× σ̂|α〉〈β| d2α =

∫∫
R2

��
�〈β|α〉 〈α|β〉
π

× |α〉 〈β|

�
��〈β|α〉

d2α

=

∫∫
R2

〈α|β〉
π
|α〉 〈β| d2α

=

∫∫
R2

|α〉 〈α|β〉
π
〈β| d2α

= |β〉 〈β| × 1

π

∫∫
R2

|α〉 〈α| d2α

= |β〉 〈β| , (2.7.18)

we get the �nal state.

2.8 Summary

In this chapter, we have introduced the notion of weak measurement. We have seen that it naturally
leads to the de�nition of the weak value, which does not behave like the usual expected value: it
can be complex, or out of the normal bounds. Then, we looked into the possible applications of
the weak measurement formalism, and we focused our attention on the direct measurement of the
wavefunction using weak values. Finally, we de�ned a new mathematical object called the transient
density matrix by comparing the expression of the weak value to the expected value of an observable.
While this transient density matrix is not a state (at least not in the usual sense), we will try to
characterize this object in the next chapters. In order to do this, we will limit our analysis to
the particular case where the pre-selected state (written |α〉 from now on) and the post-selected
state (written 〈β| from now on) are both coherent states. The reason for this choice is twofold:
�rst of all, the coherent states possess a lot of interesting properties which might help us in the
characterization. Second of all, a lot of tools have been developed in the �eld of quantum optics to
better represent normal density matrices using phase space distributions3.

3Phase space distributions will be de�ned in Chapter 4.
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Chapter 3
Quantum optics

In the �rst quantization, the particles are treated using quantum mechanics (e.g. fermionic particles
respect Pauli's exclusion principle), but the surrounding environment (e.g. the electromagnetic
�eld) is treated classically. The name itself comes from the quantization of the energy suggested
by Max Planck when he studied the blackbody radiation [3, p. 10]. Indeed, he noticed that the
energy contained in an electromagnetic wave of frequency ν can only be an integer multiple of hν
where h = 6.62 × 10−34 J · s is called the Planck's constant. In turn, in order to explain the
photoelectric e�ect, this led Albert Einstein to postulate the existence of the photon, a particle
with an energy hν, and which corresponds to a quantum of electromagnetic energy1.

The �rst quantization described above is a fundamental principle of quantum mechanics. The
second quantization (which refers to the quantization of the electromagnetic �eld), on the other
hand, can be avoided for the description of a large range of phenomena. However, certain properties
of the electromagnetic �eld (such as the ones presented in this report) cannot be explored without
introducing the second quantization. For this reason, we will now describe the train of thought used
to quantize the electromagnetic �eld.

The beginning of this section explains the reasoning behind the second quantization of the free
non-interacting electromagnetic �eld to help us understand where the quantization of the �eld arises.
It should be emphasized that the goal of this section is not to present a thorough derivation of this
quantization (which would be too lengthy), but to provide an overview of this process. For this
reason, we will skip the lengthy calculations (or place them in the appendices) when possible and
focus instead on the physics behind the quantization.

Once that is done, it will allow us to introduce the creation and the annihilation operators, as
well as Fock states which have a simple physical interpretation. Then, for the rest of the chapter,
we will focus our attention on the coherent states of light and review their main properties.

� The main references are: [27, Ch. 10�11, 21], [28, Ch. 1], [29, Ch. 7], [30, 31, 32], [33, Ch.
2�3], [34, Ch. 1�2].

1Interestingly enough, while the notion of quantization was �rst introduced for the energy contained in the elec-
tromagnetic �eld, the electromagnetic �eld itself was not formulated immediately.
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MEMO-H506 3.1 Second quantization

3.1 Second quantization

3.1.1 Classical �elds

The starting point of this development is to determine the form of the electromagnetic �eld in
the classical picture. Then, we will show how it is possible to obtain the quantized form of the
electromagnetic �eld.

First, we write Maxwell's equations in empty space and in the absence of sources (e.g. charges
or currents):

∇×E (r, t) = − ∂

∂t
B (r, t) , (3.1.1)

∇×B (r, t) =
1

c2

∂

∂t
E (r, t) , (3.1.2)

∇ ·E (r, t) = 0, (3.1.3)

∇ ·B (r, t) = 0, (3.1.4)

where E (r, t) and B (r, t) are respectively the electric �eld and the magnetic �eld at the space-time
point (r, t). Let us now introduce the vector potential A (r, t) de�ned by the two relations

B (r, t) ≡∇×A (r, t) , (3.1.5)

E (r, t) ≡ − ∂

∂t
A (r, t) , (3.1.6)

and is chosen to satisfy the Coulomb gauge, i.e.

∇ ·A (r, t) = 0, ∀ (r, t) . (3.1.7)

Injecting Eqs. (3.1.5) and (3.1.6) in Eq. (3.1.2):

∇× [∇×A (r, t)] =
1

c2

∂2

∂t2
A (r, t) , (3.1.8)

⇔ ∇ · [∇ ·A (r, t)]−∆A (r, t) =
1

c2

∂2

∂t2
A (r, t) , (3.1.9)

where we have used the following vectorial identity in the last equation:

∇× (∇×C) = ∇ ·∇ ·C −∆C. (3.1.10)

Using the Coulomb gauge (Eq. (3.1.7)), Eq. (3.1.9) yields the wave equation for the vector potential:

∆A (r, t)− 1

c2

∂2

∂t2
A (r, t) = 0. (3.1.11)

From the Eqs. (3.1.5) and (3.1.6), we see that solving this equation will immediately give us the
form of the electromagnetic �eld.

3.1.2 Plane-wave decomposition

To �nd the general form of the solution to this wave equation, it is customary to write the Fourier
expansion ofA (r, t). While there is no fundamental problem in directly using the Fourier transform,
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MEMO-H506 3.1 Second quantization

it is also possible to decompose the vector potential using the Fourier series2, and introduce the
continuous case later on if need be.

In order to write the Fourier expansion associated with the vector potential, it is necessary to
postulate that the electromagnetic �eld (and therefore the vector potential) is contained in a cube
of side L. We then require A (r, t) to be periodic at the boundaries of that cube3. We can then
write

A (r, t) =
1

ε
1/2
0 L3/2

∑
k,s

Aks (t) eik·r, (3.1.12)

where ε0 is the vacuum permittivity, Aks (t) are the Fourier coe�cients , k is called the wave-
number vector (or wave vector for short), and where s corresponds to the polarization of the vector
potential (see for example [27, Ch. 10.2.2] for an extensive discussion on the polarization of the
vector potential). This allows us to interpret the vector potential as the superposition of vector
potentials for each mode de�ned by (k, s).

Since the vector potential must have the periodicity of the box, the wave vector k = (k1, k2, k3)
must respect the following constraints:

k1 =
2π

L
n1, n1 ∈ Z,

k2 =
2π

L
n2, n2 ∈ Z,

k3 =
2π

L
n3, n3 ∈ Z.

(3.1.13)

As for the polarization, we would normally need three linearly independent polarization vectors
(s = 1, 2, 3) to form a basis. However, the Coulomb gauge (Eq. (3.1.7)) applied to the Fourier
expansion (Eq. (3.1.12)) leads to

k ·Aks (t) = 0. (3.1.14)

Therefore, we only need two linearly independent polarization vectors (s = 1, 2) to describe the
vector potential. Note that their actual form is not important here; they can be chosen in di�erent
ways (two circular polarizations or two linear polarization for example) depending on the problem
we want to solve.

Furthermore, to insure that the vector potential remains real, we have to impose

A∗−ks (t) = Aks (t) (3.1.15)

Now, if we inject the expression given by Eq. (3.1.12) into the wave equation (Eq. (3.1.11)), we
get (

−k2 − 1

c2

∂2

∂t2

)
Aks (t) = 0, (3.1.16)

yielding the solution
Aks (t) = ckse

−iωktεks + dkse
iωktεks, (3.1.17)

where cks, dks are coe�cients to be determined, εks is the polarization vector and where ωk are the
angular frequencies for each mode, de�ned by the dispersion relation

ωk ≡ |k| c. (3.1.18)

2Using the Fourier series will lead to a discrete (but in�nite) number of modes instead of a continuous (also in�nite)
number of modes if we were using the Fourier transform.

3Note that the continuous case is simply obtained by making the cube in�nitely large.
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It can even be simpli�ed to

Aks (t) = ckse
−iωktεks + c∗−kse

iωktε∗−ks, (3.1.19)

by using the relation
dksεks = c∗−ksε

∗
−ks, (3.1.20)

which simply derives from Eq. (3.1.15). We substitute this result in Eq. (3.1.12):

A (r, t) =
1

ε
1/2
0 L3/2

∑
k,s

[
ckse

−iωktεks + c∗−kse
iωktε∗−ks

]
eik·r, (3.1.21)

or

A (r, t) =
1

ε
1/2
0 L3/2

∑
k,s

[
ckse

(k·r−iωkt)εks + c∗kse
−i(k·r−ωkt)ε∗ks

]
. (3.1.22)

Finally, from Eqs. (3.1.5) and (3.1.6), we obtain the expression of the corresponding electric �eld

E (r, t) =
i

ε
1/2
0 L3/2

∑
s

∑
k

ωk

[
cks (t) eik·rεks − c∗ks (t) e−ik·rε∗ks

]
, (3.1.23)

and magnetic �eld

B (r, t) =
i

ε
1/2
0 L3/2

∑
s

∑
k

[
cks (t) eik·r (k × εks)− c∗ks (t) e−ik·r (k × ε∗ks)

]
. (3.1.24)

3.1.3 Hamiltonian of the (classical) electromagnetic �eld

From classical electrodynamics, we know that the Hamiltonian of the electromagnetic �eld is [27,
p. 472, (10.2�25)]

H =
1

2

∫
R3

[
ε0E

2 (r, t) +
1

µ0
B2 (r, t)

]
d3r, (3.1.25)

which can be written, after some calculations (see Appendix A.1), as

H = 2
∑
k,s

ω2
k |cks (t)|2 , (3.1.26)

or

H =
1

2

∑
k,s

[
p2
ks (t) + ω2

kq
2
ks (t)

]
, (3.1.27)

where qks (t) and pks (t) are a pair of (real) canonical variables de�ned as

qks (t) = [cks (t) + c∗ks (t)] = 2< [cks (t)] , (3.1.28)

pks (t) = −iωk [cks (t)− c∗ks (t)] = 2ωk= [cks (t)] . (3.1.29)

This last form of the Hamiltonian can be easily interpreted as the sum of an in�nite (but discrete)
set of independent (i.e. uncoupled) harmonic oscillators, one for each mode de�ned by (k, s).

Moreover, it is important to note that, in our case, qks (t) and pks (t) are canonical coordinates
and not (resp.) the position and the momentum of a particle. They verify the Poisson brackets
relations:

{qks (t) , qmu (t)}P = 0, (3.1.30)

{pks (t) , pmu (t)}P = 0, (3.1.31)

{qks (t) , pmu (t)}P = δ3
kmδsu, (3.1.32)
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where

{f, g}P =
∑
ks

(
∂f

∂qks (t)

∂g

∂pks (t)
− ∂f

∂pks (t)

∂g

∂qks (t)

)
, (3.1.33)

where f (qks (t) , pks (t) , t) and g (qks (t) , pks (t) , t). The canonical variables also obey Hamilton's
equations of motion: 

q̇ks (t) =
∂H

∂pks (t)
= {qks (t) , H}P

ṗks (t) = − ∂H

∂qks (t)
= {pks (t) , H}P

(3.1.34)

There is one last remark we can make about this Hamiltonian: if qks (t) = 0, ∀k, s, t and
pks (t) = 0, ∀k, s, t, then the Hamiltonian is

H = 0. (3.1.35)

This is what we would normally expect since it means the amplitudes of each mode (k, s) of the
vector potential (related to the canonical variables by Eqs. (3.1.28) and (3.1.29)) are all equal to
zero, i.e. there is no electromagnetic �eld. We will see that in the quantum world, this intuition is
lost.

3.1.4 Quantization

This is where the quantization takes place: it consists of replacing the canonical variables qks (t)
and pks (t) by operators q̂ks (t) and p̂ks (t) where

p̂ks (t) ≡ −i~ ∂̂

∂qks (t)
. (3.1.36)

This process is called the correspondence principle. It is easy to demonstrate (see Appendix A.2)
that in this case, the Poisson brackets are replaced by commutators as follows4

[q̂ks (t) , q̂mu (t)] = 0, (3.1.37)

[p̂ks (t) , p̂mu (t)] = 0, (3.1.38)

[q̂ks (t) , p̂mu (t)] = i~δ3
kmδsu. (3.1.39)

Thus, the Hamiltonian operator is

Ĥ =
1

2

∑
k,s

[
p̂2
ks (t) + ω2

kq̂
2
ks (t)

]
. (3.1.40)

If we de�ne the annihilation âks (t) and creation â†ks (t) operators (we will see why they are called
that way later on) as [27, p.474�475, (10.3�5), (10.3�6)]

âks (t) ≡ 1

(2~ωk)1/2
[ωkq̂ks (t) + ip̂ks (t)] , (3.1.41)

â†ks (t) ≡ 1

(2~ωk)1/2
[ωkq̂ks (t)− ip̂ks (t)] , (3.1.42)

4There exists also another convention for this commutation where [q̂ks (t) , p̂mu (t)] = 2i~δ3
kmδsu. One should

always be careful when consulting the literature because this can lead to slightly di�erent expressions.
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the commutation relations can be written as

[âks (t) , âmu (t)] = 0, (3.1.43)[
â†ks (t) , â†mu (t)

]
= 0, (3.1.44)[

âks (t) , â†mu (t)
]

= δ3
kmδsu. (3.1.45)

Replacing the operators q̂ks (t) and p̂ks (t)by the newly de�ned operators âks (t) and â†ks (t), and
using the commutation rules (Eq. (3.1.45)), we obtain

Ĥ =
∑
k,s

~ωk
[
â†ks (t) âks (t) +

1

2

]
, (3.1.46)

or alternatively

Ĥ =
∑
k,s

~ωk
[
n̂ks (t) +

1

2

]
, (3.1.47)

where
n̂ks (t) ≡ â†ks (t) âks (t) , (3.1.48)

is called the number operator because it correspond to the number of quanta ~ωk in each mode (k, s).
As before, this Hamiltonian has the same form as the Hamiltonian for an in�nite sum of uncoupled
harmonic oscillator. We can decompose this sum into two parts. The �rst one Ĥ =

∑
k,s ~ωkN̂ks (t)

is the sum of quanta of energy which are called photons. This is where we can see the meaning and
the impact of the quantization of the electromagnetic �eld. Indeed, for a mode (k, s) the energy in
that mode can only vary by increments of ~ωk instead of varying continuously in between.

The second part Ĥ =
∑

k,s ~ωk/2 is a bit more mysterious. It means that, even if there are
no photons, the free non-interacting electromagnetic �eld possesses a residual energy which we call
the quantum vacuum zero-point energy. This is due to Heisenberg's uncertainty principle: a
quantum-mechanical harmonic oscillator can never be at rest (i.e. the ground level energy is not
zero). Conceptually, this is problematic because the sum is in�nite, and that would mean the
amount of energy in the vacuum is also in�nite. In practice, this is generally avoided because we
usually calculate di�erences of energy and this zero-point contribution disappears. This process is
one aspect of the renormalization process commonly used in quantum electrodynamics for example.

However, this is one of the reasons why we have trouble reconciling quantum mechanics with
General Relativity. In General Relativity, gravity is the consequence of the geometrical curvature
of space-time. The problem is that curvature depends on the (absolute, not relative) distribution
of energy in space-time. If the amount of energy was in�nite everywhere, the curvature would also
be in�nite, and so would be the force of gravity exerted on our bodies, which is fortunately not the
case.

The only way to completely avoid the in�nity is to truncate the sum to a certain kmax. One
possible justi�cation would be to say that the correspondence principle is a helpful tool to guide us
to the correct answer, but it does not always immediately give it to us. Nevertheless, there exists
no satisfactory explanation yet on how to treat this term.

3.2 Fock states

From now on, we will omit the (k, s) indices corresponding to the mode so as to simplify the
notation, and because we will only consider one mode. For the same reason, we will also remove
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the explicit time dependence in our notation, with the implicit assumption that all operators are
evaluated at the same time.

The Fock states, also called number states,5 represent states with a �xed number of quanta
(photons in our case). They are written as |n〉, where n is the number of quanta in the mode we
consider. Mathematically, they correspond to the eigenstates of the number operator n̂ de�ned
earlier (see Eq. (3.1.48)) associated with the eigenvalues n (called the occupation number) [27, p.
476, (10.4�3)]:

n̂ |n〉 ≡ n |n〉 , (3.2.1)

In the last section, we also de�ned the annihilation and creation operators (Eqs. (3.1.41) and (3.1.42))
without explaining this nomenclature. It is possible to show that those operators act on the Fock
states accordingly:

â† |n〉 =
√
n+ 1 |n+ 1〉 , (3.2.2)

â |n〉 =
√
n |n− 1〉 . (3.2.3)

It is now easy to understand their denomination: the creation operator â† adds a photon in the
mode, whereas the annihilation operator â destroys a photon in the mode. If we de�ne vacuum
state as the state where the number of quanta is equal to zero:

|0〉 ≡ |n = 0〉 , (3.2.4)

then, we can write any Fock state |n〉 as

|n〉 =

(
â†
)n

√
n!
|0〉 . (3.2.5)

Moreover, it is interesting to notice that they form an orthonormal basis:

〈n|k〉 = δnk, (3.2.6)

and verify the completeness relation
∞∑
n=0

|n〉 〈n| = 1̂, (3.2.7)

where 1̂ is the identity operator.

3.3 Coherent states

While the Fock states are easy to de�ne and interpret, they are not easy to manipulate in practice.
This is due to the fact that the electromagnetic is �eld not accurately portrayed by a single Fock
state, but more by a superposition of those states. To this end, we will introduce the coherent states
|α〉 which are particularly adapted to describe the state of the electromagnetic �eld coming from a
coherent source of light such as a laser. They were �rst discovered by Erwin Schrödinger, but
he discarded them as mathematical curiosities. It is Roy J. Glauber who showed that they were
considerably appropriate in the �eld of quantum optics.

5Rigorously, the Fock states correspond to the states resulting from the tensor product of all the eigenstates |nks〉
associated with each mode (k, s). However, since we only consider one mode here, we will also use this denomination
for the eigenstates |n〉.
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3.3.1 De�nition

These states are de�ned as the right eigenstates of the annihilation operator â associated with the
eigenvalues α [27, p. 523, (11.2�1)]:

â |α〉 ≡ α |α〉 , α ∈ C. (3.3.1)

It is trivial to remark that the corresponding states 〈α| are the left eigenstates of the creation
operator â†. The coherent states can be expressed in the Fock basis by

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , α ∈ C, (3.3.2)

where we can write α = q+ ip, q, p ∈ R, q being the real amplitude and p the imaginary amplitude
(they are also collectively referred to as the �eld quadratures). The corresponding operators are the
ones obtained by inverting Eqs. (3.1.41) and (3.1.42):

q̂ ≡
(

~
2ω

)1/2 [
â+ â†

]
, (3.3.3)

p̂ ≡ i

(
~ω
2

)1/2 [
â† − â

]
. (3.3.4)

Since they commute according to Eq. (3.1.39), it is possible to show that there exists the following
uncertainty principle between q̂ and p̂

∆q̂∆p̂ ≥ ~
2
. (3.3.5)

What is remarkable about the coherent states is that they saturate this inequality, namely,

∆q̂∆p̂ =
~
2
, with ∆q̂ = ∆p̂ =

(
~
2

)1/2

. (3.3.6)

This is the reason why the coherent states are sometimes labeled as quasi-classical states because
they represent the closest approximation of a quantum state to a classical one where ∆q = ∆p = 0.
Note that there also exists so-called squeezed state of light which also saturate the uncertainty
principle, but where ∆q̂ is allowed to be di�erent from ∆p̂. Schematically, we can represent coherent
states by a circle of diameter ∆q̂ = ∆p̂ in phase space (q, s). Similarly, squeezed states correspond
to an ellipse of dimension ∆q̂ and ∆p̂ as shown on Fig. 3.3.1.

3.3.2 Properties

Since they are physical states, they must be normalized:

〈α|α〉 = 1, ∀α ∈ C, (3.3.7)

but they do not form an orthonormal basis like the Fock states (in fact, they represent an over-
complete basis), because these states are not mutually orthogonal:

〈α|β〉 6= δ2 (α− β) ≡ δ (< [α− β]) δ (= [α− β]) . (3.3.8)
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∆q

∆p

q

p

(a) Coherent state.

∆q

∆p

q

p

(b) Squeezed state.

Figure 3.3.1: Schematic representation of states in phase space (q, s).

Proof

Indeed, using the orthonormality (Eq. (3.2.6)) of the Fock states

〈β|α〉 = e−|α|
2/2e−|β|

2/2
∞∑
n=0

∞∑
m=0

(β∗)n√
n!

αm√
m!

δmn︷ ︸︸ ︷
〈n|m〉

= e−|α|
2/2e−|β|

2/2
∞∑
n=0

(αβ∗)n

n!

= e−(|α|2+|β|2−2αβ∗)/2

6= δ2 (α− β) . (3.3.9)

This quantity, called the overlap, is generally a complex number. Its magnitude can be thought of
as a measure of how �close� the two states are. It can also be written as

〈β|α〉 = exp

{
−|α− β|

2

2

}
exp

{
β∗α− βα∗

2

}
, (3.3.10)

This is the formula we will use during the calculations. Since |〈β|α〉|2 = exp
(
− |α− β|2

)
, we see

that the overlap will decrease very rapidly to zero as the distance between α and β grows; this
means |α〉 and |β〉 become more and more orthogonal. While the coherent states clearly do not
obey the completeness relation, it can be shown that they verify a similar property

1

π

∫∫
R2

|α〉 〈α| dα2 = 1, (3.3.11)

where
dα2 ≡ dRe (α) dIm (α) . (3.3.12)
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3.3.3 Displacement operator

By virtue of the expansion of the Fock states on the vacuum state (Eq. (3.2.5)), the coherent state
can also be expressed as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!

(
â†
)n

√
n!
|0〉 = e−|α|

2/2
∞∑
n=0

(
αâ†
)n

n!
|0〉 (3.3.13)

or
|α〉 = e−|α|

2/2eαâ
† |0〉 . (3.3.14)

It is interesting to see that the coherent state |α〉 = |0〉 is the only one that coincides with a Fock
state (the vacuum state in this case). With this last expression, we can interpret the coherent state
as a displaced vacuum state [27, p. 526, (11.3�7)]:

|α〉 = D̂ (α) |0〉 , (3.3.15)

where D̂ (α) is called the displacement operator de�ned by

D̂ (α) ≡ e−|α|
2/2eαâ

†
e−α

∗â, (3.3.16)

because
e−α

∗â |0〉 = |0〉 . (3.3.17)

Using the Campbell�Baker�Hausdor� theorem (see Appendix B.1) with Â = αâ†, B̂ = −α∗â, x = 1
and because

[
â, â†

]
= 1, we can express it in a compact form

D̂ (α) ≡ eαâ
†−α∗â. (3.3.18)

It is a unitary operator and possesses the following interesting properties

D̂† (α) D̂ (α) = 1̂, ∀α ∈ C, (3.3.19)

D̂† (α) = D̂ (−α) , ∀α ∈ C, (3.3.20)

D̂ (γ) D̂ (α) = e(γα∗−γ∗α)/2D̂ (α+ γ) , ∀α, γ ∈ C. (3.3.21)

This last relation allows us to write (after some minor steps)

D̂ (γ) D̂ (α) |0〉 = e(γα∗−γ∗α)/2D̂ (α+ γ) |0〉 , (3.3.22)

i.e.
D̂ (γ) |α〉 = e(γα∗−γ∗α)/2 |α+ γ〉 . (3.3.23)

Therefore, the translation6 of a coherent state |α〉 → |α+ γ〉 is

|α+ γ〉 = e(γ∗α−γα∗)/2D̂ (γ) |α〉 . (3.3.24)

6Here, we refer to the translation of the α in the complex plane by a value of γ.
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3.3.4 Phase-shifting operator

The phase-shifting operator is de�ned as [35, p. 18, (2.6)]

Û (θ) ≡ e−iθn̂. (3.3.25)

It can be used to de�ne the rotation7 of a coherent state |α〉 →
∣∣αe−iθ〉 as [35, p. 26, (2.47)]∣∣∣αe−iθ〉 = Û (θ) |α〉 . (3.3.26)

The Hermitian conjugate of the phase-shifting operator is

Û † (θ) = e+iθn̂† . (3.3.27)

Since8

n̂† =
(
â†â
)†

= (â)†
(
â†
)†

= â†â = n̂, (3.3.28)

we �nally have
Û † (θ) = eiθn̂ ≡ Û (−θ) . (3.3.29)

This naturally leads to the unitarity of the phase-shifting operator

Û † (θ) Û (θ) = 1̂. (3.3.30)

3.4 Summary

In this chapter, we have introduced the quantization of the electromagnetic �eld which is an essential
tool to study the states of light in quantum mechanics. In order to do this, we started from classical
electrodynamics, and then added the quantization by imposing the canonical commutation relations.
After, we de�ned the Fock states (or number states); they correspond to states with a �xed number
of quanta (photons here). While they are easy to interpret, they are not easy to manipulate and
they do not accurately represent the state coming from the usual sources of light encountered in
laboratory (such as laser). This led us to the concept of coherent states of light. We studied them
in detail because we will use them later. In the next chapter, we will see how we can e�ciently
characterize the coherent states.

7Here, we refer to the rotation of the α in the complex plane by an angle −θ.
8One should not forget to permute the terms when taking the Hermitian conjugate of the product of operators.
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Chapter 4
Phase space distributions

The phase space distributions (such as the Wigner quasi-probability distribution, the P repre-
sentation and the Q representation) are mathematical tools that can be used to characterize a
state more e�ciently because they possess some interesting properties. It is important to note that
there exists a one-to-one correspondence between the density matrix and each of its corresponding
phase space distributions. This means that it is equivalent to describe the state using either the
density matrix or any of the available phase space distributions (which is not limited to the three
distributions cited above).

The shortcomings of using the density matrix ρ̂ directly might not be apparent at �rst. Indeed,
a coherent state can be written fairly simply

ρ̂ = |α〉 〈α| . (4.0.1)

However, if we want to represent it more precisely, we have to choose a basis. Naturally, we could
use the Fock basis for that purpose, since we have seen there exists a relation between the Fock
states and the coherent states (Eq. (3.3.2)). This is where the problems arise: in order to represent
ρ̂, it is necessary to write a matrix of in�nite dimension since we sum over all Fock states (which
are countably in�nite) in Eq. (3.3.2). Obviously, this method is not a very intuitive or e�cient way
to characterize an arbitrary state.

On the other hand, the phase space distribution can be represented graphically, so the visu-
alization is much easier. For instance, the Wigner quasi-probability distribution (that we will
describe below) of a coherent state is simply a Gaussian. As a result, it provides an alternative
way to characterize states instead of the usual density matrix formalism which is not always easy to
interpret/represent. Additionally, phase space distribution makes it possible to use one's intuition
much more easily.

Furthermore, each distribution possesses di�erent properties which o�er more insight about the
state in question. For instance, we know there exists certain bounds; if those bounds are exceeded,
then the density matrix does not represent a state (at least not in the conventional sense). This
can be used as a diagnostic tool to check if the calculations are correct. Moreover, the two marginal
distributions of the Wigner quasi-probability distribution W (q, p) directly give the probability
density of the state with respect to either q or p. Therefore, the form of the W (q, p) informs
us about the corresponding probabilities. These are just a few examples where the phase space
distributions o�er an advantage over the traditional matrix representation, but their bene�ts is
certainly not limited to those cases.

In the �rst section, we will formalize the de�nition of a phase space distribution using the
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expected value of an arbitrary operator. We will see that there does not exist a single de�nition
of a phase space distribution. Then, we will present a systematic way to introduce the di�erent
phase space distributions, and how this diversity can be used to our advantage. Finally, we will
review the main phase space distributions that are used in practice, and that will be used later one
as characterization tools: the Wigner quasi-probability distribution, the Q representation and the
Glauber-Sudarshan P representation.

Once again, we will not look into the time dependence of those phase space distributions, so
we will omit the time parameter in the equations, while keeping in mind that in all generality, the
phase space distributions depend on time. The main references are:

� General (and Q representation): [36, 37], [34, Ch. 3], [27, Ch. 11], [33, Ch. 4];

� Wigner: [38, 39, 40, 41, 42];

� P representation:[43, 44]

4.1 Motivation

The interest in the phase space formulation of quantum mechanics can be summarized by expressing
the expected value of an operator in phase space. Let ρ̂ (q̂, p̂) be the density matrix of a certain
state, let Â (q̂, p̂) be an arbitrary operator and let F f (q, p) and f (ξ, η) be a certain distribution
function. Then, we have〈

Â (q̂, p̂)
〉

= Tr
[
ρ̂ (q̂, p̂) Â (q̂, p̂)

]
=

∫∫
R2

A (q, p)F (q, p) dqdp, (4.1.1)

where the scalar function A (q, p) is obtained by replacing the operators q̂ and p̂ (left-hand side) by
the variables q and p (right-hand side). In essence, this equation means that the expected value of
an operator Â (q̂, p̂) (right-hand side) can be calculated using the scalar function associated with
this operator and a distribution function (left-hand side). We will see that this is a very powerful
mathematical framework of quantum mechanics because it allows to speed up the calculations.

From Eq. (4.1.1), we realize that the central tool that remains to be de�ned is the phase space
distribution function. In reality, it turns out that there does not exist a single de�nition of this
distribution function.

One way to illustrate the fact that the phase space distribution function is not unique is to use
Eq. (4.1.1) for two similar, but di�erent operators. First, if Â1 (q̂, p̂) = exp (iξq̂ + iηp̂), then

Tr
[
ρ̂ (q̂, p̂) eiξq̂+iηp̂

]
=

∫∫
R2

eiξq+iηpF1 (q, p) dqdp, (4.1.2)

and if Â2 (q̂, p̂) = exp (iξq̂) exp (iηp̂), then

Tr
[
ρ̂ (q̂, p̂) eiξq̂eiηp̂

]
=

∫∫
R2

eiξq+iηpF2 (q, p) dqdp. (4.1.3)

However, we see that the phase space distributions must be di�erent:

F1 (q, p) 6= F2 (q, p) , (4.1.4)

since the operators are not equal:

eiξq̂+iηp̂ = eiηp̂eiξq̂e−iξη~/2 6= eiξq̂eiηp̂, (4.1.5)
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where the �rst equality was obtained by applying Campbell�Baker�Hausdorff theorem (Eq. (B.1.2))
with x = i, Â = q̂, B̂ = p̂ and [q̂, p̂] = i~. This result comes from the fact that the operators q̂ and
p̂ do not commute. Therefore, in order to uniquely de�ne a phase space distribution, it is necessary
to choose a rule of associating the operators q̂ and p̂ to their scalar counterparts q and p.

According to Cohen [36], all the quantum phase space distributions F f (q, p) that will be studied
can be expressed in the following form:

Tr
[
ρ̂ (q̂, p̂) f (ξ, η) eiξq̂+iηp̂

]
=

∫∫
R2

F f (q, p) eiξq+iηp dqdp, (4.1.6)

This is also equivalent to (see Appendix A.3)

F f (q, p) =
1

4π2

∫∫∫
R3

〈
q′ +

1

2
η~ |ρ̂| q′ − 1

2
η~
〉
f (ξ, η) eiξ(q

′−q)e−iηp dξdηdq′. (4.1.7)

The function f (ξ, η)is the mathematical objects that models the rule of association that is chosen
between the operators q̂ and p̂ and the scalar variables q and p.

4.2 Distributions in complex phase space

So far, we have used the operators q̂ and p̂ to describe the phase space distributions. However, some
phase space distributions are usually de�ned for the operators â and â† (and their corresponding
scalar variables α and α∗). For this reason, we will show the correspondence of the phase space
distributions in terms of q̂ and p̂ or in terms of â and â†.

From Eqs. (3.1.41) and (3.1.42), we deduce

α =
1

(2~ω)1/2
[ωq + ip] , (4.2.1)

α∗ =
1

(2~ω)1/2
[ωq − ip] , (4.2.2)

or from Eqs. (3.3.3) and (3.3.4), we write

q =

(
~

2ω

)1/2

[α+ α∗] =

(
2~
ω

)1/2

< (α) , (4.2.3)

p = i

(
~ω
2

)1/2

[α∗ − α] = (2~ω)1/2= (α) . (4.2.4)

The two phase space distributions F f (q, p) and F f (α, α∗) can be linked using the normalization
condition: ∫∫

R2

F f (q, p) dqdp = 1 =

∫∫
R2

F f (α, α∗) d2α, (4.2.5)

where

dα2 ≡ d< (α) d= (α) =
1

2~
dqdp. (4.2.6)

Therefore,
F f (α, α∗) = 2~F f (q, p) . (4.2.7)

Also, the variables ξ and η will be replaced by z and z∗ de�ned by

z ≡ iξ

√
~

2ω
− η
√

~ω
2
. (4.2.8)
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In that case, the de�nition of the phase space distribution (Eq. (4.1.7)) transforms as follows

F f (α, α∗) ≡ 1

π2

∫∫
R2

Tr
{
ρ̂
(
â, â†

)
ezâ
†−z∗âf (z, z∗)

}
ez
∗α−zα∗ d2z. (4.2.9)

4.3 Rule of association and operator ordering

Before studying the common phase space distribution, let us make one last remark about the
functions f (ξ, η). In the literature, it is common to �nd references to the concept of operator
ordering associated with a choice of f (ξ, η). Actually, it refers to the order of the operators q̂ and
p̂ in the exponential factor exp (iξq̂ + iηp̂). For example, if we choose

fW (ξ, η) = 1, (4.3.1)

then
fW (ξ, η) eiξq̂+iηp̂ = eiξq̂+iηp̂ = ei(ξq̂+ηp̂)/2+i(ηp̂+ξq̂)/2. (4.3.2)

In that case, we see that the operators q̂ and p̂ are expressed in a symmetric order, and this order is
known as the Weyl order. In reality, this choice of fW (ξ, η) yields the Wigner quasi-probability
distribution that will presented in the next section.

A less trivial example can be obtained easily. Indeed, using Campbell�Baker�Hausdorff
theorem (Eq. (B.1.2)) with x = i, Â = q̂, B̂ = p̂ and [q̂, p̂] = i~, we can write

eiξq̂+iηp̂ = eiηp̂eiξq̂e−iξη~/2, (4.3.3)

eiξq̂+iηp̂ = eiξq̂eiηp̂eiξη~/2, (4.3.4)

or

eiξη~/2eiξq̂+iηp̂ = eiηp̂eiξq̂ =

( ∞∑
m=0

(ηp̂)m

m!

)( ∞∑
n=0

(ξq̂)n

n!

)
, (4.3.5)

e−iξη~/2eiξq̂+iηp̂ = eiξq̂eiηp̂ =

( ∞∑
m=0

(ξq̂)m

m!

)( ∞∑
n=0

(ηp̂)n

n!

)
, . (4.3.6)

Therefore, if we choose
fS (ξ, η) = e−iξη~/2, (4.3.7)

the operators will be arranged such that all the powers of the operator q̂ are on the left of all the
powers of the operator p̂: this is called the standard order. Similarly, the choice

fAS (ξ, η) = eiξη~/2, (4.3.8)

does exactly the opposite (all the powers of the operator q̂ are now on the right of all the powers of
the operator p̂), and it is named the anti-standard-order.

This is where the strength (or weakness) of a phase space distribution stems. To illustrate this
point, let Ω be an arbitrary operator ordering, Ω̄ be the reciprocal operator ordering, and Â

(
â, â†

)
be an arbitrary operator. Then, it can be shown that for the Ω-ordered operator Â(Ω)

(
â, â†

)
[27,

p. 559, (11.10�2)] 〈
Â(Ω)

(
â, â†

)〉
=

1

π

∫∫
R2

ρ(Ω̄) (α, α∗)A(Ω) (α, α∗) d2α. (4.3.9)
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Essentially, it means the following: if the representation is such that the phase space distribution
can be obtained by putting the operator ρ̂ in the Ω̄ order, and then replacing the operators â and
â† by α and α∗, then the representation of an arbitrary operator Â

(
â, â†

)
is obtained by putting

it in the Ω order, and then replacing the operators â and â† by α and α∗. This is important
because, depending on the problem, we might have an abundance of operators in a speci�c order
Ω. Consequently, we could take advantage of this fact by working in the representation which is
Ω-ordered because it will be easy to determine the corresponding scalar function A(Ω) (α, α∗).

Now that we have clari�ed the motivation behind the quantum phase space formalism and how
the operator ordering plays a special role in the choice of a phase space distribution, we can go on
to present the various representations we will use later on in a systematic way. First, we will give
the de�nition, then expose some of its properties and give an example. Note that the properties will
be sometimes be proven by writing the state ρ̂ as the (classical) statistical mixture of pure states
as de�ned by Eq. (1.1.6):

ρ̂ =
∑
i

pi |ψi〉 〈ψi| . (4.3.10)

4.4 Wigner quasi-probability distribution

4.4.1 De�nition

The Wigner quasi-probability distribution W (q, p) is undoubtedly the most famous example of a
phase space distribution because it is used in many other �elds, not just in quantum optics. As said
previously, it corresponds to a simple choice for fW (ξ, η) because

fW (ξ, η) = 1. (4.4.1)

In that case, Eq. (4.1.7) becomes

W (q, p) =
1

4π2

∫∫∫
R3

〈
q′ +

1

2
η~ |ρ̂| q′ − 1

2
η~
〉
eiξ(q

′−q)e−iηp dξdηdq′. (4.4.2)

This reduces to

W (q, p) ≡ 1

2π

∫ +∞

−∞

〈
q +

1

2
η~ |ρ̂| q − 1

2
η~
〉

e−iηp dη, (4.4.3)

because ∫ +∞

−∞
eiξ(q

′−q) dξ = 2πδ
(
q′ − q

)
. (4.4.4)

In the case of a coherent state ρ̂ = |α〉 〈α|, it simply becomes

Wα (q, p) ≡ 1

2π

∫ +∞

−∞

〈
q +

1

2
η~|α

〉〈
α|q − 1

2
η~
〉

e−iηp dη, (4.4.5)

or

Wα (q, p) ≡ 1

2π

∫ +∞

−∞
ψα

(
q +

1

2
η~
)
ψ∗α

(
q − 1

2
η~
)

e−iηp dη, (4.4.6)

where

ψα

(
q +

1

2
η~
)
≡
〈
q +

1

2
η~|α

〉
. (4.4.7)
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The result is a 2D Gaussian (see Section (4.7) for the derivation):

Wα (q, p) =
1

π~
exp

−2

[( ω
2~

)1/2
q −< (α)

]2

− 2

[
1

(2~ω)1/2
p−= (α)

]2
 . (4.4.8)

or

4.4.2 Properties

1. Quasi-probability distribution in which operators are described in Weyl order (q̂ and p̂ are
arranged symmetrically).

fW (ξ, η) = 1. (4.4.9)

2. Normalization to unity ∫∫
R2

W (q, p) dqdp = 1. (4.4.10)

Proof

We have

W (q, p) =
1

2π

∫∫∫
R3

〈
q +

1

2
η~ |ρ̂| q − 1

2
η~
〉

e−iηp dηdqdp

=
1

��2π

∫∫
R2

〈
q +

1

2
η~ |ρ̂| q − 1

2
η~
〉
��2πδ (η) dηdq

=

∫ +∞

−∞
〈q |ρ̂| q〉 dq

≡ Tr ρ̂

= 1, (4.4.11)

since the state is normalized.

3. Upper and lower bounds

|W (q, p)| ≤ 1

π~
. (4.4.12)

Proof

We have

|W (q, p)|2 =

∣∣∣∣∣ 1

2π

∫ +∞

−∞

〈
q +

1

2
η~

∣∣∣∣∣∑
i

pi |ψi〉 〈ψi|

∣∣∣∣∣ q − 1

2
η~

〉
e−iηp dη

∣∣∣∣∣
2

=

∣∣∣∣∑i pi
2π

∫ +∞

−∞
ψi

(
q +

1

2
η~
)
ψ∗i

(
q − 1

2
η~
)

e−iηp dη

∣∣∣∣2 . (4.4.13)
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We apply the Cauchy�Schwarz inequality:

|W (q, p)|2 ≤
∑

i pi

(2π)2

∫ +∞

−∞

∣∣∣∣ψi(q +
1

2
η~
)∣∣∣∣2 dη ×

∫ +∞

−∞

∣∣∣∣ψi(q − 1

2
η~
)∣∣∣∣2 dη. (4.4.14)

We then perform the substitutions

u = q +
1

2
η~, (4.4.15)

v = q − 1

2
η~, (4.4.16)

which leads to

dη =
2

~
du, (4.4.17)

dη = −2

~
dv, (4.4.18)

with

lim
η→−∞

u = −∞, lim
η→+∞

u = +∞, (4.4.19)

lim
η→−∞

v = +∞, lim
η→+∞

v = −∞. (4.4.20)

Therefore ∫ +∞

−∞

∣∣∣∣ψi(q +
1

2
η~
)∣∣∣∣2 dη =

2

~

∫ +∞

−∞
|ψi (u)|2 du =

2

~
,

and ∫ +∞

−∞

∣∣∣∣ψi(q − 1

2
η~
)∣∣∣∣2 dη = −2

~

∫ −∞
+∞

|ψi (v)|2 dv

= +
2

~

∫ +∞

−∞
|ψi (v)|2 dv

=
2

~
. (4.4.21)

Eq. (4.4.14) becomes

|W (q, p)|2 ≤
∑

i pi
4π2

× 2

~
× 2

~
=

1

π2~2
, (4.4.22)

or

|W (q, p)| ≤ 1

π~
. (4.4.23)

This is the best bound we can �nd, and it allows the Wigner quasi-probability distribution
to become slightly negative, but not too much. That is why we cannot interpret it directly as
a joint probability distribution of observing the state in (q, p) because negative probabilities
have no clear interpretation. This strange property should be not taken treated as a failure
of the formalism. Indeed, the phase space distribution is only a mathematical tool to make
the calculations easier. We can use any quasi-probability distributions as long as it yields the
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correct expected values according to Eq. (4.1.6)).
In reality, this property is the result of the Heisenberg's uncertainty principle: we cannot
attribute a signi�cation to a single point in phase space, we need to integrate over a small
region in order to obtain any meaningful information. In the case of the Wigner quasi-
probability distribution, it can be shown that if we integrate it over a sub-region of at least
a few ~, then the result is always positive [39], so the interpretation problem is gone. Also,
some [45] have proposed to use this negativity as a criterion for characterizing the degree of
non-classicality of a quantum state.

4. Reality
W ∗ (q, p) = W ∗ (q, p) . (4.4.24)

Proof

We have

W ∗ (q, p) =
1

2π

∫ +∞

−∞

〈
q +

1

2
η~ |ρ̂| q − 1

2
η~
〉∗

e+iηp dη

=
1

2π

∫ +∞

−∞

〈
q − 1

2
η~
∣∣∣ρ̂†∣∣∣ q +

1

2
η~
〉

eiηp dη

=
1

2π

∫ +∞

−∞

〈
q − 1

2
η~ |ρ̂| q +

1

2
η~
〉

eiηp dη, (4.4.25)

because ρ̂† = ρ̂. Now if we make the substitution η → −η, we obtain

W ∗ (q, p) = − 1

2π

∫ −∞
+∞

〈
q +

1

2
η~ |ρ̂| q − 1

2
η~
〉

eiηp dη

= +
1

2π

∫ +∞

−∞

〈
q +

1

2
η~ |ρ̂| q − 1

2
η~
〉

eiηp dη

≡W (q, p) . (4.4.26)

5. Marginal distributions (or reduced distributions)∫ ∞
−∞

W (q, p) dp = 〈q |ρ̂| q〉 = Tr (ρ̂ |q〉 〈q|) = 〈|q〉 〈q|〉 , (4.4.27)

and ∫ ∞
−∞

W (q, p) dx = 〈p |ρ̂| p〉 = Tr (ρ̂ |p〉 〈p|) = 〈|p〉 〈p|〉 . (4.4.28)

Proof
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We have ∫ ∞
−∞

W (q, p) dp =
1

2π

∫∫
R2

〈
q +

1

2
η~ |ρ̂| q − 1

2
η~
〉

e−iηp dηdp

=
1

��2π

∫ ∞
−∞

〈
q +

1

2
η~ |ρ̂| q − 1

2
η~
〉
��2πδ (η) dη

= 〈q |ρ̂| q〉 (4.4.29)

= Tr (ρ̂ |q〉 〈q|) . (4.4.30)

The other relation can be obtained similarly by using the completeness relation of the
momentum basis {|p〉} (this method will be used in Section 5.1.3.4).

In the case of a pure state ρ̂ = |ψ〉 〈ψ| this leads to∫ ∞
−∞

W (q, p) dp = |〈q|ψ〉|2 , (4.4.31)

and ∫ ∞
−∞

W (q, p) dq = |〈p|ψ〉|2 . (4.4.32)

Those two properties are very interesting because it allows us to have easy access to the
probability densities. Also, just by looking at the shape of theW (q, p), we can potentially get
an idea of the shape of these probability densities. In addition, this is one way to reconstruct
the Wigner quasi-probability distribution in a lab. Scientist have access to the marginal
distribution, and, by measuring them for di�erent angles, they can recover the shape ofW (q, p)
from the data in a process identical to medical tomography.

Illustration

Using Eq. (4.1.1), we can express expected values using the Wigner quasi-probability dis-
tribution. Let Â (q̂, p̂) be an arbitrary operator and ρ̂ be the density matrix of a state. If

A (q, p) ≡ 1

2π

∫ +∞

−∞

〈
q +

1

2
η~
∣∣∣Â (q̂, p̂)

∣∣∣ q − 1

2
η~
〉

e−iηp dη, (4.4.33)

and

W (q, p) ≡ 1

2π

∫ +∞

−∞

〈
q +

1

2
η~ |ρ̂| q − 1

2
η~
〉

e−iηp dη, (4.4.34)

then 〈
Â
〉

= Tr
[
ρ̂ (q̂, p̂) Â (q̂, p̂)

]
=

∫∫
R2

A (q, p)W (q, p) dqdp. (4.4.35)

4.4.3 Example

The Wigner quasi-probability distribution of a coherent is simply a Gaussian as presented on
Fig. 4.4.1 (see Section 4.7 for the derivation, Eqs. (4.4.8) and (4.7.15) for the �nal expressions).
We also notice that the Wigner quasi-probability distribution of a coherent state |α = 1 + 2i〉 is
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identical to the vacuum state one, except it has been translated. This mirrors what we said in
Section 3.3.3 where the coherent state can be viewed as a displaced vacuum state.

We should insist here on the fact that the Wigner quasi-probability distribution also plays a
special role in quantum information theory. Indeed, the states that are the most used in quantum
information using photons as qubits are the Gaussian states. They actually correspond to the states
that have a Gaussian Wigner quasi-probability distribution.

(a) Vacuum state |α〉 = |0〉. (b) Coherent state |α = −1− 2i〉.

Figure 4.4.1: Wigner quasi-probability distribution of two coherent states with ~ = ω = 1.

4.5 Q representation

4.5.1 De�nition

The Q representation1 is a quasi-probability distribution de�ned as [33, p. 65, (4.50)]

Q (γ) ≡ 〈γ |ρ̂| γ〉
π

=
1

π
Tr (ρ̂ |γ〉 〈γ|) . (4.5.1)

It is proportional to the expected value of the projector |γ〉 〈γ| for the state de�ned by ρ̂, i.e. to the
probability that the state |γ〉 〈γ| is measured when the system is prepared in the state ρ̂.

4.5.2 Properties

1. Quasi-probability distribution in which operators are described in anti-normal order (cre-
ation operators â† on the right of the annihilation operators â):

fQ (z, z∗) = exp

[
|z|2

2

]
. (4.5.2)

1It is sometimes called the Husimi quasi-probability distribution, but it is a particular case of the latter according
to [37].
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2. Normalization to unity ∫∫
R2

Q (γ) dγ2 = 1. (4.5.3)

Proof

We have ∫∫
R2

Q (γ) dγ2 =

∫∫
R2

1

π

∑
i

pi 〈γ|ψi〉 〈ψi|γ〉 dγ2

=
1

π

∑
i

pi

∫∫
R2

〈ψi|γ〉 〈γ|ψi〉 dγ2

=
∑
i

pi

〈
ψi

∣∣∣∣( 1

π

∫∫
R2

|γ〉 〈γ| dγ2

)∣∣∣∣ψi〉
=
∑
i

pi 〈ψi|ψi〉

= Tr (ρ̂)

= 1, (4.5.4)

where we used the over-completeness of the coherent states (Eq. (3.3.11)), the fact that
the states are normalized 〈ψi|ψi〉 = 1 and that the probabilities must add up to unity.

3. Upper and lower bounds

0 ≤ Q (γ) ≤ 1

π
. (4.5.5)

Proof

We have

Q (γ) =
1

π

∑
i

pi 〈γ|ψi〉 〈ψi|γ〉 =
1

π

∑
i

pi |〈γ|ψi〉|2 . (4.5.6)

Since |〈γ|ψi〉|2 corresponds to the probability of measuring the state |γ〉 〈γ| when system
is prepared in |ψi〉 〈ψi| so

0 ≤ |〈γ|ψi〉|2 ≤ 1. (4.5.7)

Then,

0 ≤ 1

π

∑
i

pi |〈γ|ψi〉|2 ≤
1

π

∑
i

pi =
1

π
, (4.5.8)

or

0 ≤ Q (γ) ≤ 1

π
. (4.5.9)
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Of all the quasi-probability distribution that we will study, this is the only one that is always
positive or equal to zero, no matter the state ρ̂.

4. Reality
Q∗ (γ) = Q (γ) . (4.5.10)

Proof

It is pretty easy to see

Q∗ (γ) =

(
1

π

∑
i

pi 〈γ|ψi〉 〈ψi|γ〉

)∗
=

1

π

∑
i

pi 〈γ|ψi〉∗ 〈ψi|γ〉∗

=
1

π

∑
i

pi 〈ψi|γ〉 〈γ|ψi〉

=
1

π

∑
i

pi 〈γ|ψi〉 〈ψi|γ〉

= Q (γ) . (4.5.11)

4.5.3 Example

The Q representation of a coherent state ρ̂ = |α〉 〈α| is very easy to calculate using the formula for
the overlap of two coherent states (Eq. 3.3.10):

Qα (γ) ≡ 〈γ |ρ̂| γ〉
π

==
〈γ|α〉 〈α|γ〉

π
=
|〈γ|α〉|2

π
, (4.5.12)

or

Qα (γ) =
e−|α−γ|

2

π
. (4.5.13)

Evidently, we see that this function is indeed positive, upper bounded by 1/π and always real.

4.6 Glauber--Sudarshan P representation

For completeness, we introduce here the Glauber--Sudarshan P representation because of its
importance in quantum optics. However, we will not be able to study it in details because its
de�nition make it hard to calculate.

4.6.1 De�nition

The Glauber--Sudarshan P representation is a quasi-probability distribution de�ned as [33, p.
58, (4.8)]

ρ̂ ≡
∫∫

R2

P (γ) |γ〉 〈γ| d2γ, (4.6.1)
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where
dγ2 ≡ d< (γ) d= (γ) . (4.6.2)

While the P representation does not always exist as a well-behaved function, it has been demon-
strated that it always exists as a distribution with singularities [46]. Also, according to [27], if the
system has a classical analog (e.g. a coherent state), it is non-negative everywhere like an ordinary
probability distribution. If the system has no classical analog (e.g. entangled system, incoherent
Fock state), P will be negative somewhere. Even if the P representation stays positive everywhere,
we should be careful about interpreting it as a true probability density. Indeed, since the coher-
ent states are not mutually orthogonal, �it would not describe probability of mutually exclusive
states� [27, p. 541].

An alternative de�nition can be given (here for a single mode) [44]

P (γ) =

+∞∑
n=0

+∞∑
n′=0

〈n |ρ̂| k〉
√
n!n′!

(n+ n′)! (2πr)
er

2+i(n−n′)θ

[(
− ∂

∂r

)n+n′

δ (r)

]
, (4.6.3)

where r and θ are respectively the amplitude and the phase of γ. Once again, we see that this is
certainly not an easy object to calculate, especially since there is an in�nite sum of derivatives of
Dirac's delta function. It's not surprising that the P representation can become highly singular
by looking at this de�nition.

Incidentally, in this quasi-probability distribution, the operators are described in normal order

(creation operators â† on the left of the annihilation operators â):

fP (z, z∗) = exp

[
−|z|

2

2

]
, (4.6.4)

In fact, it arises naturally in quantum optics because a lot of operators are in the normal order.

4.6.2 Example

The P representation is not easy to manipulate because of its de�nition. However, if we take the
case of a coherent where

ρ̂ = |α〉 〈α| , (4.6.5)

then, it is pretty obvious that
Pα (γ) = δ2 (α− γ) , (4.6.6)

because ∫
δ2 (α− γ) |γ〉 〈γ| d2γ = |α〉 〈α| = ρ̂. (4.6.7)

4.6.3 Generalization

As suggested by [43], it is also possible to generalize the P representation using the following
de�nition:

ρ̂ =

∫
D

Λ (γ, ζ)P (γ, ζ) dµ (γ, ζ) , (4.6.8)

where

Λ (γ, ζ) =
|γ〉 〈ζ∗|
〈ζ∗|γ〉

, (4.6.9)

dµ (γ, ζ) is the integration measure and D is the domain of integration. The choice of dµ (γ, ζ) will
de�ne di�erent P representations:
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1. Glauber�Sudarshan P representation

dµ (γ, ζ) = δ2 (γ∗ − ζ) d2γ d2ζ. (4.6.10)

2. Complex P representation
dµ (γ, ζ) = dγ dζ. (4.6.11)

3. Positive P representation
dµ (γ, ζ) = d2γ d2ζ. (4.6.12)

4.7 Relations between quantum phase space distributions

As we have seen each quantum phase space distribution constitutes an equivalent of a state described
by ρ̂. Also, depending on the ordering of the operators (see Section 4.3), some distributions might
be easier to evaluate than others. For that reason, it could prove to be useful to �nd relations
between the distributions because it could make the calculations easier. If we take two arbitrary
phase space distributions F 1 (α, α∗) and F 2 (α′, α′∗), then they are related by [37, p. 168]:

F 1 (α, α∗) =

∫∫
R2

g
(
α′ − α, α′∗ − α∗

)
F 2
(
α′, α′∗

)
d2α′, (4.7.1)

where

g (α, α∗) ≡ 1

π2

∫∫
R2

ezα
∗−z∗α f

1 (z, z∗)

f2 (z, z∗)
d2z. (4.7.2)

For simplicity, we will use the superscript Q, P or W for the Q representation, the Glauber�
Sudarshan P representation and the Wigner quasi-probability distribution, respectively. After
some calculations (see Appendix A.4), we obtain the following relations (see also [37, p. 169]:

FQ (α, α∗) =
2

π

∫
R2

e−2|α′−α|2FW
(
α′, α′∗

)
d2α′, (4.7.3)

FW (α, α∗) =
2

π

∫
R2

e−2|α′−α|2FP
(
α′, α′∗

)
d2α′, (4.7.4)

FQ (α, α∗) =
1

π

∫
R2

e−|α
′−α|2FP

(
α′, α′∗

)
d2α′. (4.7.5)

One interesting thing to remark about the Q representation is equal to the convolution of the
Wigner quasi-probability distribution with a Gaussian, which is itself equal to the convolution
of the P representation with the same Gaussian; this convolution can be viewed as a smoothing
of the function with a Gaussian �lter. We can therefore expect the Q representation to be the
smoothest of the three, while the P representation will contain the most irregularities. In fact, the
P representation can even become more singular than Dirac's delta function [27, p. 541].

Since the de�nition of the P representation (Eq. (4.6.1)) is not easy to manipulate, it might
be interesting to express the P representation with respect to the other phase space distributions.
Unfortunately, when trying to compute a relation expressing the P representation in terms of Q
representation or the Wigner quasi-probability distribution, the integration on d2z in g (α, α∗)
does not converge, so in that case, the best we can say when trying to write the P representation
in terms of Q representation is

FP (α, α∗) =

∫∫
R2

g
(
α′ − α, α′∗ − α∗

)
FQ

(
α′, α′∗

)
d2α′, (4.7.6)
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with

g (α, α∗) ≡ 1

4π2

∫∫
R2

ezα
∗−z∗α+z2

r+z2
i d2z. (4.7.7)

It is most likely necessary to integrate over α′ before integrating over z which is not possible without
postulating a form for FQ (α′, α′∗) or FW (α′, α′∗) (see Appendix A.4). There also exists a formal
di�erential relation [37, p. 169]:

FP (α, α∗) = exp

(
−1

2

∂2

∂α∂α∗

)
FW (α, α∗) = exp

(
− ∂2

∂α∂α∗

)
FQ (α, α∗) , (4.7.8)

but this expression is not necessarily simpler to use because of the exponential.

Illustration

As an example of the usefulness of these relations, we can calculate the Wigner quasi-
probability distribution of a coherent state |α〉 〈α|. In Section 4.6.2, we have seen that the
corresponding P representation is simply

FP (γ, γ∗) ≡ Pα (γ) = δ2 (α− γ) . (4.7.9)

Now, if we use Eq. (4.7.4), we have

FW (γ, γ∗) =
2

π

∫
R2

e−2|γ′−γ|2FP
(
γ′, γ′∗

)
d2γ′ =

2

π

∫
R2

e−2|γ′−γ|2δ2
(
α− γ′

)
d2γ′, (4.7.10)

or

FW (γ, γ∗) =
2

π
e−2|α−γ|2 . (4.7.11)

Equivalently, from Eq. (4.2.7), we can write the Wigner quasi-probability distribution in
terms of variables q and p (which are related to γ and γ∗ through Eqs. (4.2.3) and (4.2.4)):

q =

(
~

2ω

)1/2

[α+ α∗] =

(
2~
ω

)1/2

< (α) , (4.7.12)

p = i

(
~ω
2

)1/2

[α∗ − α] =

(
~ω
2

)1/2 [α− α∗]
i

= (2~ω)1/2= (α) . (4.7.13)

Wα (q, p) =
1

π~
exp

−2

[( ω
2~

)1/2
q −< (α)

]2

− 2

[
1

(2~ω)1/2
p−= (α)

]2
 . (4.7.14)

If we choose ~ = ω = 1 as is often done in quantum optics, and consider the vacuum state
|α〉 = |0〉, then it reduces to a very compact forma

Wα (q, p) =
1

π
e−q

2−p2
. (4.7.15)
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Once again, we should insist that these relations can be helpful to save some time in the
calculations. In this example, if we had to do the calculations

aSometimes, another form is found for the Wigner quasi-probability distribution in terms of q and p
variables (see [31] for example). This is simply due to the convention that is used for the commutator as
mentioned in footnote 4, p. 26).

4.8 Summary

In this chapter, we reviewed the notion of phase space distributions, and we showed that it is com-
pletely equivalent to the density matrix operator. However, the phase space distributions possesses
di�erent properties which can prove to be useful to interpret a state. We started by describ-
ing the motivation behind this framework, and then we gave the mathematical formulation. We
demonstrated that the de�nition of the phase space distribution associated with a speci�c density
matrix operator is not unique, and each de�nition correspond to a certain operator ordering. We
then studied systematically each of the three most common phase space distributions used in the
�eld of quantum optics: the Wigner quasi-probability distribution, the Q representation and the
Glauber--Sudarshan P representation. Their main properties were investigated, and we gave
the expression of the phase space distribution of a coherent state in each case. Finally, we derived
the main relations there exists between phase space distribution because they can turn out to be
very useful in practice. Now that we have all the tools we need, we will now be able to characterize
the transient density matrix that we de�ned in Chapter 2.

J. Alzetta 48



Chapter 5
Extension of the phase space distributions

As we said at the end of Chapter 2, we are interested in characterizing the transient density matrix,
when the pre- and post-selected are both coherent state. The transient density matrix which was
de�ned earlier (Eq. (2.7.14)) can be written as follows (using the formula for the overlap Eq. (3.3.10))

σ̂|α〉〈β| ≡
|α〉 〈β|
〈β|α〉

= |α〉 〈β| × exp

{
|α− β|2

2

}
exp

{
βα∗ − β∗α

2

}
. (5.0.1)

As we have seen in Chapter 2, we have de�ned this transient density matrix σ̂|α〉〈β| by making
comparing between the weak value (Eq. (2.4.1)) and the expected value (Eq. (1.2.10)). We could
pursue this analogy by looking at the de�nition of the expected value in terms of phase space
distribution (Eq. (4.1.1))〈

Â (q̂, p̂)
〉

= Tr
[
ρ̂ (q̂, p̂) Â (q̂, p̂)

]
=

∫∫
R2

A (q, p)F (q, p) dqdp. (5.0.2)

We could then decide to extend it using the transient density matrix as such〈
Â (q̂, p̂)

〉
w

= Tr
(
σ̂|α〉〈β| (q̂, p̂) Â (q̂, p̂)

)
=

∫∫
R2

A (q, p)F (q, p) dqdp, (5.0.3)

where the scalar function F (q, p) is given by (see Eq. (4.1.7))

F f (q, p) =
1

4π2

∫∫∫
R3

〈
q′ +

1

2
η~
∣∣σ̂|α〉〈β|∣∣ q′ − 1

2
η~
〉
f (ξ, η) eiξ(q

′−q)e−iηp dξdηdq′, (5.0.4)

or in the complex plane by (see Eq. (4.2.9))

F f (α, α∗) ≡ 1

π2

∫∫
R2

Tr
{
σ̂|α〉〈β|

(
â, â†

)
ezâ
†−z∗âf (z, z∗)

}
ez
∗α−zα∗ d2z. (5.0.5)

As discussed in Chapter 4, the functions f (ξ, η) (or f (z, z∗)) will uniquely de�ne the phase space
distribution. In this chapter, we will study the di�erent phase space distributions associated with the
transient density matrix. To do this, we will explore the di�erent properties of those distributions.
Indeed, we will see that they can behave di�erently (they can be complex for example) because of
certain properties of the transient density matrix. We will use the term extended for qualifying the
phase space distributions related to the transient density matrix to emphasize that we study an
operator which is not a density matrix.
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MEMO-H506 5.1 Extended Wigner quasi-probability distribution

Note that we will use the usual convention ~ = ω = 1 to make the calculations a bit easier to
follow. This is not a problem because we are mostly interested in the shape of the di�erent phase
space distributions, and not the actual values. Besides, a simple dimensional analysis of the result
will allows us to obtain the correct value if we decide to calculate it. The drawback being that we
will not be able to verify the validity of our expressions using a dimensional analysis.

5.1 Extended Wigner quasi-probability distribution

In the last section, we have de�ned a new kind of mathematical object called the transient density
matrix σ̂|α〉〈β|. In order to study it, we will �rst calculate the Wigner quasi-probability distribu-
tion of this element, instead the usual density matrix ρ̂. The corresponding distribution will be
referred to as the extended Wigner quasi-probability distribution subsequently and is given by
(from Eq. (4.4.3)):

W|α〉〈β| (q, p) ≡
1

2π

∫ +∞

−∞

〈
q +

1

2
η
∣∣σ̂|α〉〈β|∣∣ q − 1

2
η

〉
e−iηp dη, (5.1.1)

or

W|α〉〈β| (q, p) ≡
1

2π

1

〈β|α〉

∫ +∞

−∞

〈
q +

1

2
η|α
〉〈

β|q − 1

2
η

〉
e−iηp dη, (5.1.2)

where we used the de�nition of the transient density matrix σ̂|α〉〈β| (see Eq. (2.7.14)).

5.1.1 Derivation of the extended Wigner quasi-probability distribution

5.1.1.1 Calculation of the wavefunction of a coherent state

First of all, let us recall a few de�nitions which we will need for the calculations. A coherent state
|α〉 is de�ned by (see Eq. (3.3.1)):

â |α〉 ≡ α |α〉 , (5.1.3)

where (see Eq. (3.1.41))

â ≡ 1√
2

[q̂ + ip̂] , (5.1.4)

where ~ = ω = 1 for the same reason stated above. We also have (see Eq. (3.1.36))

p̂ ≡ −i ∂̂
∂q
. (5.1.5)

To �nd the wavefunction ψα (q), we may notice that

〈q |â|α〉 = α 〈q|α〉 ≡ αψα (q) . (5.1.6)
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Now, let us inject (5.1.4) into (5.1.6):〈
q

∣∣∣∣∣ 1√
2

[
q̂ +

∂̂

∂q

]∣∣∣∣∣α
〉

= αψα (q)

⇔ 1√
2

[
q +

∂

∂q

]
ψα (q) = αψα (q)

⇔ ∂ψα (q)

∂q
=
[√

2α− q
]
ψα (q)

⇔
∫ ψα(q)

ψα(0)

dψα (q′)

ψα (q′)
=

∫ q

0

[√
2α− q′

]
dq′

⇔ ln

[
ψα (q)

ψα (0)

]
=
√

2αq − q2

2
, (5.1.7)

which yields

ψα (q) = ψα (0)× exp

[
−1

2

(
q2 − 2

√
2αq

)]
. (5.1.8)

In order to �nd the constant ψα (0), we have to use the fact that the wavefunction of a physical
state must be normalized, i.e. ∫ +∞

−∞
|ψα (q)|2 dq = 1. (5.1.9)

Let us perform the integration:∫ +∞

−∞
|ψα (q)|2 dq =

∫ +∞

−∞
ψα (q)ψ∗α (q) dq

=

∫ +∞

−∞
|ψα (0)|2 × exp

[
−1

2

(
q2 − 2

√
2αq + q2 − 2

√
2α∗q

)]
dq

=

∫ +∞

−∞
|ψα (0)|2 × exp

[
−
(
q2 −

√
2 (α+ α∗) q

)]
dq. (5.1.10)

Using the formula (A.5.1) with 
a = 1,

b = −
√

2 (α+ α∗) ,

c = 0,

(5.1.11)

we obtain∫ +∞

−∞
|ψα (q)|2 dq = |ψα (0)|2

√
π exp

(
2 (α+ α∗)2

4

)
= |ψα (0)|2

√
π exp

(
(α+ α∗)2

2

)
, (5.1.12)

Since
2< (α) = (α+ α∗) , (5.1.13)

and using the result (5.1.12) in (5.1.9), we �nd

ψα (0) =
1

π1/4
exp

[
−<2 (α) + iφ

]
, (5.1.14)
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where φ ∈ R is an arbitrary phase factor which remains to be chosen. Since

q2 − 2
√

2αq = q2 − 2
√

2αq +

[
−2
√

2αq

2q

]2

−

[
−2
√

2αq

2q

]2

=
[
q −
√

2α
]2
− 2α2, (5.1.15)

we can re-write (5.1.8) as

ψα (q) =
1

π1/4
exp

[
−<2 (α) + iφ

]
× exp

{
−1

2

[
q −
√

2α
]2

+ α2

}
. (5.1.16)

Finally, to make this expression a bit simpler, we just have to observe that

α2 = [< (α) + i= (α)]2 = <2 (α)−=2 (α) + 2i< (α)= (α) , (5.1.17)

so that
α2 −<2 (α) = −=2 (α) + 2i< (α)= (α) . (5.1.18)

We then choose the global phase factor φ such that

iφ+ 2i< (α)= (α) = 0. (5.1.19)

This �nally gives us a compact expression for the wavefunction of a coherent state:

ψα (q) =
1

π1/4
exp

[
−=2 (α)

]
× exp

{
−1

2

[
q −
√

2α
]2
}
. (5.1.20)

Please note that there is a sign error before the term =2 (α) in [27, p. 529 (11.4�5)].

5.1.1.2 Calculations

Overlap We will express the di�erent terms separately. Using the formula for the overlap of two
coherent states (see Eq. (3.3.10)), the �rst term is

1

〈β|α〉
= exp

{
+
|α− β|2

2

}
exp

{
βα∗ − β∗α

2

}
. (5.1.21)

Wavefunction of |α〉 The second term can be expressed using Eq. (5.1.20):〈
q +

1

2
η|α
〉
≡ ψα

(
q +

1

2
η

)
=

1

π1/4
e−=

2(α) exp

{
−1

2

[(
q +

1

2
η

)
−
√

2α

]2
}

=
1

π1/4
e−=

2(α) exp

{
−1

2

[(
q +

1

2
η

)2

+ 2α2 − 2

(
q +

1

2
η

)√
2α

]}
, (5.1.22)

which yields 〈
q +

1

2
η|α
〉

=
1

π1/4
e−=

2(α) exp

{
−1

2

[
q2 +

1

4
η2 + qη

]}
× exp

{
−1

2

[
2α2 − 2

(
q +

1

2
η

)√
2α

]}
.

(5.1.23)

Note that α2 = <2 (α)−=2 (α) + 2i< (α)= (α) 6= <2 (α) + =2 (α) = |α|2.
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Wavefunction of 〈β| Similarly, the third term can be written as〈
β|q − 1

2
η

〉
≡ ψ∗β

(
q − 1

2
η

)
=

1

π1/4
e−=

2(β) exp

{
−1

2

[(
q − 1

2
η

)
−
√

2β∗
]2
}

=
1

π1/4
e−=

2(β) exp

{
−1

2

[(
q − 1

2
η

)2

+ 2β∗2 − 2

(
q − 1

2
η

)√
2β∗

]}
, (5.1.24)

such that 〈
β|q − 1

2
η

〉
=

1

π1/4
e−=

2(β) exp

{
−1

2

[
q2 +

1

4
η2 − qη

]}
× exp

{
−1

2

[
2β∗2 − 2

(
q − 1

2
η

)√
2β∗
]}

.

(5.1.25)

Integration Now, we want to evaluate the integral over η in Eq. (5.1.2), so let us separate the
which contain η and the other terms in the integrand:〈

q +
1

2
η|α
〉〈

β|q − 1

2
η

〉
e−iηp =

1√
π

exp
{
−=2 (α)−=2 (β)

}
× exp

{
−1

2

[
q2 +

1

4
η2 +��qη − 2

(
q +

1

2
η~
)√

2α

q2 +
1

4
η2 −��qη − 2

(
q − 1

2
η~
)√

2β∗

2
(
α2 + β∗2

)]
− iηp

}
(5.1.26)

then 〈
q +

1

2
η|α
〉〈

β|q − 1

2
η

〉
e−iηp =

1√
π

exp
{
−=2 (α)−=2 (β)

}
× exp

{
−
[
q2 +

(
α2 + β∗2

)
− q
√

2 (α+ β∗)
]}

× exp

{
−
[

1

4
η2 +

1

2

√
2 (β∗ − α) η

]
− iηp

}
.

(5.1.27)

From Eq. (5.1.2), we see that to continue, we need to calculate the following integral∫ +∞

−∞

〈
q +

1

2
η|α
〉〈

β|q − 1

2
η

〉
e−iηp dη =

1√
π

exp
{
−=2 (α)−=2 (β)

}
× exp

{
−
[
q2 +

(
α2 + β∗2

)
− q
√

2 (α+ β∗)
]}

× Iη,

(5.1.28)

where we have de�ned

Iη ≡
∫ +∞

−∞
exp

{
−
[

1

4
η2 +

[
ip+

1√
2

(β∗ − α)

]
η

]}
dη. (5.1.29)
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It is easy to notice that Iη has exactly the form as the integral given in Eq. (A.5.1) if we take
a = 1

4 ,

b = ip+ 1√
2

(β∗ − α) ,

c = 0.

(5.1.30)

Using the result (A.5.1), we thus obtain

Iη =

√
π
1
4

exp


[
ip+ 1√

2
(β∗ − α)

]2

�4× 1

�4

 = 2
√
π exp

{[
ip+

1√
2

(β∗ − α)

]2
}
. (5.1.31)

Extended Wigner quasi-probability distribution From the Eq. (5.1.31) we can deduce the
result of Eq. (5.1.28). Then, we inject this and Eq. (5.1.21) in the de�nition of the extendedWigner

quasi-probability distribution (Eq. (5.1.2)), we obtain

W|α〉〈β| (q, p) =
1

A2π
exp

{
|α− β|2

2
+

}
exp

{
βα∗ − β∗α

2

}
× 1

�
�
√
π

exp
{
−=2 (α)−=2 (β)

}
× exp

{
−
[
q2 +

(
α2 + β∗2

)
− q
√

2 (α+ β∗)
]}

× A2��
√
π exp

{[
1√
2

(β∗ − α) + ip

]2
}
,

(5.1.32)

Since

q2 − q
√

2 (α+ β∗) = q2 − 2q × 1

2

√
2 (α+ β∗) +

[
1

2

√
2 (α+ β∗)

]2

−
[

1

2

√
2 (α+ β∗)

]2

=

[
q − 1√

2
(α+ β∗)

]2

− 1

2
(α+ β∗)2 , (5.1.33)

and (
α2 + β∗2

)
− 1

2
(α+ β∗)2 =

1

2

(
�2α

2 + A2β
∗2 −��α2 −ZZβ∗2 − 2αβ∗

)
=

1

2

(
α2 + β∗2 − 2αβ∗

)
=

1

2
(α− β∗)2 ,

we �nally have a compact expression for the extended Wigner quasi-probability distribution:

W|α〉〈β| (q, p) =
1

π
exp

{
|α− β|2

2
+
βα∗ − β∗α

2
−=2 (α)−=2 (β)− (α− β∗)2

2

}

× exp

{
−
[
q +

1√
2

(α+ β∗)

]2

+

[
ip+

1√
2

(β∗ − α)

]2
}
.

(5.1.34)
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5.1.2 Transformation

Technically, if we wanted to study the newly de�ned extended Wigner quasi-probability distribu-
tion, we would have to vary 4 parameters (because α and β are complex numbers). For this reason,
it is useful to determine the set of transformations which leave this distribution invariant (or very
similar). That way, it will decrease the number of parameters that must be studied to characterize
this distribution.

5.1.2.1 Translation

Before verifying if the that Wigner quasi-probability distribution is invariant or similar under a
translation of α and β, it is useful to �rst prove the following relation:

D̂ (ζ) |q〉 = e
(ζ−ζ∗)√

2
q
e
(ζ2−ζ∗2)

4

∣∣∣∣q +
(ζ + ζ∗)√

2

〉
, (5.1.35)

or equivalently

〈q| D̂† (ζ) =

〈
q +

(ζ + ζ∗)√
2

∣∣∣∣ e (ζ∗−ζ)√
2

q
e
(ζ∗2−ζ2)

4 . (5.1.36)

Proof

From the de�nition of the displacement operator (Eq. (3.3.18)), we recall that

D̂ (ζ) ≡ eζâ
†−ζ∗â. (5.1.37)

Moreover, the de�nitions of the creation and annihilation operators (Eqs. (3.1.41) and (3.1.42))
allow us to write

â ≡ 1√
2

(q̂ + ip̂) , (5.1.38)

â† ≡ 1√
2

(q̂ − ip̂) . (5.1.39)

We thus have

ζâ† − ζ∗â = δ
1√
2

(q̂ − ip̂)− ζ∗ 1√
2

(q̂ + ip̂) =
(ζ − ζ∗)√

2
q̂ − (ζ + ζ∗)√

2
ip̂. (5.1.40)

The displacement operator can then be expressed as

D̂ (ζ) = exp

{
(ζ − ζ∗)√

2
q̂ − (ζ + ζ∗)√

2
ip̂

}
. (5.1.41)
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It is possible to re-write the exponential using the Campbell�Baker�Hausdorff theorem
with

Â =
(ζ − ζ∗)√

2
q̂, (5.1.42)

B̂ = −(ζ + ζ∗)√
2

ip̂, (5.1.43)

x = 1. (5.1.44)

In that case[
Â, B̂

]
2

=
1

2

[
(ζ − ζ∗)√

2
q̂,−(ζ + ζ∗)√

2
ip̂

]
= −1

4
(ζ − ζ∗) (ζ + ζ∗) i [q̂, p̂]︸︷︷︸

=i

= +

(
ζ2 − ζ∗2

)
4

, (5.1.45)

or [
Â, B̂

]
2

=

(
ζ2 − ζ∗2

)
4

. (5.1.46)

Using Eq. (B.1.2), we can write

D̂ (ζ) = e
− (ζ+ζ∗)√

2
ip̂
e

(ζ−ζ∗)√
2

q̂
e
(ζ2−ζ∗2)

4 . (5.1.47)

Since

eaq̂ |q〉 = eaq |q〉 , a ∈ C, (5.1.48)

eibp̂ |q〉 = |q − b〉 , b ∈ R, (5.1.49)

we obtain

D̂ (ζ) |q〉 = e
− (ζ+ζ∗)√

2
ip̂
e

(ζ−ζ∗)√
2

q̂
e
(ζ2−ζ∗2)

4 |q〉 , (5.1.50)

i.e.

D̂ (ζ) |q〉 = e
(ζ−ζ∗)√

2
q
e
(ζ2−ζ∗2)

4

∣∣∣∣q +
(ζ + ζ∗)√

2

〉
. (5.1.51)

Moreover

〈q| D̂† (ζ) =
[
D̂ (ζ) |q〉

]†
=

〈
q +

(ζ + ζ∗)√
2

∣∣∣∣ e (ζ∗−ζ)√
2

q
e
(ζ∗2−ζ2)

4 . (5.1.52)

Now, we will prove that

W|α+δ〉〈β+δ| (q, p) = W|α〉〈β|

(
q − (ζ + ζ∗)√

2
, p− (ζ − ζ∗)√

2i

)
, (5.1.53)

or

W|α+δ〉〈β+δ| (q, p) = W|α〉〈β|

(
q − < (ζ)√

2
, p− = (ζ)√

2i

)
. (5.1.54)

This means that the e�ect of a translation of α and β by a complex number ζ is just to translate
the extended Wigner quasi-probability distribution, without changing the shape. Therefore, we
can limit our analysis to

α ≡ 0 + 0i (5.1.55)
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This decrease the number of parameters to the two found in β.

Proof

We will consider the following transformation:{
|α〉 → |α′〉 = |α+ ζ〉 ,
|β〉 → |β′〉 = |β + ζ〉 .

(5.1.56)

Using the formula for the translation of a coherent state (Eq. (3.3.24)), we can write

|α+ ζ〉 = exp

{
ζ∗α− ζα∗

2

}
D̂ (ζ) |α〉 , (5.1.57)

|β + ζ〉 = exp

{
ζ∗β − ζβ∗

2

}
D̂ (ζ) |β〉 . (5.1.58)

To make it more readable, we will use the notation

φα ≡
ζ∗α− ζα∗

2
, (5.1.59)

φβ ≡
ζ∗β − ζβ∗

2
, (5.1.60)

so that

|α+ ζ〉 = eφαD̂ (ζ) |α〉 , (5.1.61)

|β + ζ〉 = eφβD̂ (ζ) |β〉 . (5.1.62)

In that case, the extended Wigner quasi-probability distribution becomes

W|α′〉〈β′| (q, p) =
1

2π

1

〈β′|α′〉

∫ +∞

−∞

〈
q +

1

2
η|α′

〉〈
β′|q − 1

2
η

〉
e−iηp dη

=
1

2π

1

〈β + ζ|α+ ζ〉

∫ +∞

−∞

〈
q +

1

2
η|α+ ζ

〉〈
β + ζ|q − 1

2
η

〉
e−iηp dη

=
1

2π

1〈
β
∣∣∣��eφβD̂† (ζ) D̂ (ζ)ZZe

φα
∣∣∣α〉

×
∫ +∞

−∞

〈
q +

1

2
η
∣∣∣D̂ (ζ)ZZe

φα
∣∣∣α+ ζ

〉〈
β + ζ

∣∣∣��eφβD̂† (ζ)
∣∣∣ q − 1

2
η

〉
e−iηp dη

=
1

2π

1

〈β|α〉

∫ +∞

−∞

〈
q +

1

2
η
∣∣∣D̂ (ζ)

∣∣∣α+ ζ

〉〈
β + ζ

∣∣∣D̂† (ζ)
∣∣∣ q − 1

2
η

〉
e−iηp dη,

(5.1.63)
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where we used the fact that the displacement operator is unitary (Eq. (3.3.19)). Using the
Hermitian conjugation of the displacement operator (Eq. (3.3.20)):

W|α′〉〈β′| (q, p) =
1

2π

1

〈β|α〉

∫ +∞

−∞

〈
q +

1

2
η
∣∣∣D̂† (−ζ)

∣∣∣α+ ζ

〉〈
β + ζ

∣∣∣D̂ (−ζ)
∣∣∣ q − 1

2
η

〉
e−iηp dη.

(5.1.64)

Let us simplify the integrand

I =

〈
q +

1

2
η
∣∣∣D̂† (−ζ)

∣∣∣α+ ζ

〉〈
β + ζ

∣∣∣D̂ (−ζ)
∣∣∣ q − 1

2
η

〉
e−iηp. (5.1.65)

Using Eq. (5.1.36), we know that〈
q +

1

2
η

∣∣∣∣ D̂† (−ζ) = 〈q| D̂† (ζ) =

〈(
q +

1

2
η

)
+

((−ζ) + (−ζ)∗)√
2

∣∣∣∣ e ((−ζ)∗−(−ζ))√
2

(q+ 1
2
η)e

((−ζ)∗2−(−ζ)2)
4

(5.1.66)
or 〈

q +
1

2
η

∣∣∣∣ D̂† (−ζ) =

〈
q − (ζ + ζ∗)√

2
+

1

2
η

∣∣∣∣ e− (ζ∗−ζ)√
2

(q+ 1
2
η)e−

(ζ∗2−ζ2)
4 . (5.1.67)

Similarly, with Eq. (5.1.35), we can write

D̂ (−ζ)

∣∣∣∣q − 1

2
η

〉
= e

((−ζ)−(−ζ)∗)√
2

(q− 1
2
η)e

((−ζ)2−(−ζ)∗2)
4

∣∣∣∣(q − 1

2
η

)
+

((−ζ) + (−ζ)∗)√
2

〉
,

(5.1.68)
or

D̂ (−ζ)

∣∣∣∣q − 1

2
η

〉
= e
− (ζ−ζ∗)√

2
(q− 1

2
η)e−

(ζ2−ζ∗2)
4

∣∣∣∣q − (ζ + ζ∗)√
2
− 1

2
η

〉
. (5.1.69)

Therefore

I =

〈
q +

1

2
η
∣∣∣D̂† (−ζ)

∣∣∣α+ ζ

〉〈
β + ζ

∣∣∣D̂ (−ζ)
∣∣∣ q − 1

2
η

〉
e−iηp

=

〈
q − (ζ + ζ∗)√

2
+

1

2
η

∣∣∣∣e− (ζ∗−ζ)√
2

(q+ 1
2
η)���

���

e−
(ζ∗2−ζ2)

4

∣∣∣∣α+ ζ

〉
×
〈
β + ζ

∣∣∣∣e− (ζ−ζ∗)√
2

(q− 1
2
η)���

���

e−
(ζ2−ζ∗2)

4

∣∣∣∣ q − (ζ + ζ∗)√
2
− 1

2
η

〉
e−iηp

=

〈
q − (ζ + ζ∗)√

2
+

1

2
η

∣∣∣∣e− (ζ∗−ζ)√
2

(+ 1
2
η)
∣∣∣∣α+ ζ

〉〈
β + ζ

∣∣∣∣e− (ζ−ζ∗)√
2

(− 1
2
η)
∣∣∣∣ q − (ζ + ζ∗)√

2
− 1

2
η

〉
e−iηp.

(5.1.70)
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Injecting Eqs. (5.1.67) and (5.1.69) into Eq. (5.1.64), we obtain

W|α′〉〈β′| (q, p) =
1

2π

1

〈β|α〉

∫ +∞

−∞

〈
q − (ζ + ζ∗)√

2
+

1

2
η|α+ ζ

〉〈
β + ζ|q − (ζ + ζ∗)√

2
− 1

2
η

〉
e
−
(
ip− (ζ−ζ∗)√

2

)
η
dη,

= W|α〉〈β|

(
q − (ζ + ζ∗)√

2
, p− (ζ − ζ∗)√

2i

)
= W|α〉〈β|

(
q − < (ζ)√

2
, p− = (ζ)√

2i

)
, (5.1.71)

because

(ζ + ζ∗) = 2< (ζ) , (5.1.72)

(ζ − ζ∗)
i

= 2= (ζ) . (5.1.73)

5.1.2.2 Rotation

While no formal proof is given (see Appendix (A.6)), it seems that the shape of the extended
Wigner quasi-probability distribution does not change signi�cantly (but it is rotated) when plotting
it. Therefore, we will limit our study to

β ∈ R+. (5.1.74)

5.1.3 Properties

5.1.3.1 Normalization

The extended Wigner quasi-probability distribution is still normalized to unity∫∫
R2

Wσ̂|i〉〈f | (x, p) dxdp = 1. (5.1.75)

Proof
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We have∫∫
R2

W|α〉〈β| (q, p) dqdp =
1

2π

1

〈β|α〉

∫∫∫
R3

〈
q +

1

2
η|α
〉〈

β|q − 1

2
η

〉
e−iηp dηdqdp

=
1

��2π

1

〈β|α〉

∫∫
R2

〈
q +

1

2
η|α
〉〈

β|q − 1

2
η

〉
��2πδ (η) dηdq

=
1

〈β|α〉

∫ +∞

−∞
〈q|α〉 〈β|q〉 dq

=
1

〈β|α〉

∫ +∞

−∞
〈β|q〉 〈q|α〉 dq

=
1

〈β|α〉

〈
β

∣∣∣∣(∫ +∞

−∞
|q〉 〈q| dq

)∣∣∣∣α〉
=
〈β|α〉
〈β|α〉

= 1, (5.1.76)

where we have used the fact that the states {|q〉} form an orthonormal basis, so they verify
the completeness relation: ∫ +∞

−∞
|q〉 〈q| dq = 1̂. (5.1.77)

5.1.3.2 Bounds ∣∣W|α〉〈β| (q, p)∣∣ ≤ 1

π |〈β|α〉|
=

e|α−β|
2/2

π
. (5.1.78)

Unfortunately, this gives us a bound for the absolute value of the extendedWigner quasi-probability
distribution. Indeed, we will see below that the values can become complex. This means that the
(magnitude of the) maximum values of the extended Wigner quasi-probability distribution can
potentially become very large if the distance between α and β is important. This makes sense
because when the separation increases, the pre-selection state |α〉 and the post-selection state 〈β|
become more and more orthogonal (the overlap decreases). Physically, this means that the two
events become more and more incompatible1, so it is not surprising that values of the extended
Wigner quasi-probability distribution becomes stranger as the separation increases. On the other
hand, when the two states are close to each other, the W|α〉〈β| (q, p) behaves potentially like the
usual Wigner quasi-probability distribution. In the limit where β → α, we obviously obtain the
normal bounds found in Section 4.4.

It is possible to obtain a bound for the real and imaginary part of the extended Wigner quasi-
probability distribution, even though it might be possible to get a better bounds using another
method

−e
|α−β|2/2

π
≤ <

(
W|α〉〈β| (q, p)

)
≤ e|α−β|

2/2

π
and − e|α−β|

2/2

π
≤ =

(
W|α〉〈β| (q, p)

)
≤ e|α−β|

2/2

π
.

(5.1.79)

1Indeed, the conditional probability of measuring the state 〈β| if we prepared |α〉 is P (β|α) = |〈β|α〉|2 /π.
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Proof

We have

∣∣W|α〉〈β| (q, p)∣∣2 =

∣∣∣∣ 1

2π

1

〈β|α〉

∫ +∞

−∞

〈
q +

1

2
η|α
〉〈

β|q − 1

2
η

〉
e−iηp dη

∣∣∣∣2
=

∣∣∣∣∑i pi
2π

∫ +∞

−∞
ψα

(
q +

1

2
η~
)
ψ∗β

(
q − 1

2
η~
)

e−iηp dη

∣∣∣∣2 . (5.1.80)

We apply the Cauchy�Schwarz inequality:

|W (q, p)|2 ≤ 1

(2π)2

1

|〈β|α〉|2

∫ +∞

−∞

∣∣∣∣ψα(q +
1

2
η

)∣∣∣∣2 dη ×
∫ +∞

−∞

∣∣∣∣ψβ (q − 1

2
η

)∣∣∣∣2 dη. (5.1.81)

We then perform the substitutions

u = q +
1

2
η, (5.1.82)

v = q − 1

2
η, (5.1.83)

which leads to

dη = 2 du, (5.1.84)

dη = −2 dv, (5.1.85)

with

lim
η→−∞

u = −∞, lim
η→+∞

u = +∞, (5.1.86)

lim
η→−∞

v = +∞, lim
η→+∞

v = −∞. (5.1.87)

Therefore ∫ +∞

−∞

∣∣∣∣ψα(q +
1

2
η

)∣∣∣∣2 dη = 2

∫ +∞

−∞
|ψα (u)|2 du = 2,

and ∫ +∞

−∞

∣∣∣∣ψβ (q − 1

2
η

)∣∣∣∣2 dη = −2

∫ −∞
+∞

|ψβ (v)|2 dv = +2

∫ +∞

−∞
|ψβ (v)|2 dv = 2 (5.1.88)

Eq. (5.1.81) becomes

|W (q, p)|2 ≤ 1

4π2

1

|〈β|α〉|2
× 2× 2 =

1

π2 |〈β|α〉|2
, (5.1.89)

or

|W (q, p)| ≤ 1

π |〈β|α〉|
=

e|α−β|
2/2

π
, (5.1.90)

where we used the overlap of the coherent states (Eq. (3.3.10)).
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5.1.3.3 Reality

The extended Wigner quasi-probability distribution is not real:

W ∗|α〉〈β| (q, p) 6= W|α〉〈β| (q, p) , (5.1.91)

this is due to the fact that the transient density matrix is not Hermitian in general. If it is, however,
then the Wigner quasi-probability distribution is real. In that case, σ̂|α〉〈β| could represent

Proof

We have

W ∗|α〉〈β| (q, p) =
1

2π

∫ +∞

−∞

(〈
q +

1

2
η
∣∣σ̂|α〉〈β|∣∣ q − 1

2
η

〉)∗
e+iηp dη

=
1

2π

∫ +∞

−∞

(〈
q − 1

2
η
∣∣∣σ̂†|α〉〈δ|∣∣∣ q +

1

2
η

〉)
eiηp dη

= − 1

2π

∫ −∞
+∞

(〈
q +

1

2
η′
∣∣∣σ̂†|α〉〈δ|∣∣∣ q − 1

2
η′
〉)

e−iη
′p dη′

=
1

2π

∫ +∞

−∞

(〈
q +

1

2
η′
∣∣∣σ̂†|α〉〈δ|∣∣∣ q − 1

2
η′
〉)

e−iη
′p dη′

6= W|α〉〈β| (q, p) , (5.1.92)

because, in general, the transient density matrix is not Hermitian (see Eq. (2.7.12)):

σ̂†|α〉〈β| 6= σ̂|α〉〈β|. (5.1.93)

5.1.3.4 Marginal distributions

We want to prove∫ ∞
−∞

W|α〉〈β| (q, p) dp =
〈
q
∣∣σ̂|α〉〈β|∣∣ q〉 = Tr

(
σ̂|α〉〈β| |q〉 〈q|

)
= 〈|q〉 〈q|〉w , (5.1.94)

and ∫ ∞
−∞

W|α〉〈β| (q, p) dq =
〈
p
∣∣σ̂|α〉〈β|∣∣ p〉 = Tr

(
σ̂|α〉〈β| |q〉 〈q|

)
= 〈|p〉 〈p|〉w . (5.1.95)

Proof
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We have ∫ ∞
−∞

W|α〉〈β| (q, p) dp =
1

2π

∫∫
R2

〈
q +

1

2
η
∣∣σ̂|α〉〈β|∣∣ q − 1

2
η

〉
e−iηp dηdp

=
1

��2π

∫ ∞
−∞

〈
q +

1

2
η
∣∣σ̂|α〉〈β|∣∣ q − 1

2
η

〉
��2πδ (η) dη

=
〈
q
∣∣σ̂|α〉〈β|∣∣ q〉 (5.1.96)

= 〈|q〉 〈q|〉w . (5.1.97)

For the other marginal distribution, we need to calculate∫ ∞
−∞

W|α〉〈β| (q, p) dq =
1

2π

∫∫
R2

〈
q +

1

2
η
∣∣σ̂|α〉〈β|∣∣ q − 1

2
η

〉
e−iηp dηdq. (5.1.98)

We use the completeness of the {|p〉} basis:∫ ∞
−∞

W|α〉〈β| (q, p) dq =
1

2π

∫∫
R4

〈
q +

1

2
η|p
〉〈

p
∣∣σ̂|α〉〈β|∣∣ p′〉〈p′|q − 1

2
η

〉
e−iηp dηdqdpdp′.

(5.1.99)
We know the overlap between the {|p〉} basis and the {|q〉}:〈

q +
1

2
η|p
〉

=
1√
2π

e−ip(q+
1
2
η), (5.1.100)〈

p′|q − 1

2
η

〉
=

1√
2π

eip
′(q− 1

2
η), (5.1.101)

so ∫ ∞
−∞

W|α〉〈β| (q, p) dq =
1

(2π)2

∫∫
R4

e−ip(q+
1
2
η) 〈p ∣∣σ̂|α〉〈β|∣∣ p′〉 eip′(q− 1

2
η) e−iηp dηdqdpdp′

=
1

(2π)2

∫∫
R4

〈
p
∣∣σ̂|α〉〈β|∣∣ p′〉 eiq(p′−p)e−iη(p+p′)/2e−iηp dηdqdpdp′

=
1

(2π)�2

∫∫
R3

〈
p
∣∣σ̂|α〉〈β|∣∣ p′〉��2πδ (p′ − p) e−iη(p+p′)/2e−iηp dηdpdp′

=
1

2π

∫∫
R2

〈
p
∣∣σ̂|α〉〈β|∣∣ p〉 e−iη(p+p)/2e−iηp dηdp

=
1

��2π

∫∫
R2

〈
p
∣∣σ̂|α〉〈β|∣∣ p〉��2πδ (p) dη

=

∫ +∞

−∞

〈
p
∣∣σ̂|α〉〈β|∣∣ p〉 dη

= Tr
(
σ̂|α〉〈β| |p〉 〈p|

)
(5.1.102)

= 〈|p〉 〈p|〉w . (5.1.103)

We see that the marginal distributions are related to the weak values (instead of the expected values
in the case of the normal Wigner quasi-probability distribution). This fact is very interesting
because it gives an experimental method to determine the extended Wigner quasi-probability
distribution using quantum tomography, except that we have to measure the weak values here.
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However, we have seen in Chapter 2, that the weak values can be determined, even though they are
complex in general using the pre- and post-selection.

5.1.4 Graphical representation

It is su�cient to limit our study to {
α ≡ 0 + 0i,

β ∈ R+.
(5.1.104)

For reference, the plots are given in the Appendix C.

5.2 Extended Q representation

5.2.1 Derivation of the extended Q representation

The Q function is de�ned as

Qρ (γ) ≡ 1

π
〈γ |ρ̂| γ〉 =

1

π
Tr (ρ̂ |γ〉 〈γ|) , (5.2.1)

In that case, we de�ne the extended Q representation by replacing ρ̂ by σ̂|α〉〈β|

Q|α〉〈β| (γ) ≡ 1

π

〈γ|α〉 〈β|γ〉
〈β|α〉

. (5.2.2)

The calculations can be done fairly easily

Q|α〉〈β| (γ) =
1

π

1

〈β|α〉
〈γ|α〉 〈β|γ〉

=
1

π
exp

[
1

2

(
|β|2 + |α|2 − 2β∗α

)]
× exp

[
−1

2

(
|γ|2 + |α|2 − 2γ∗α

)]
× exp

[
−1

2

(
|β|2 + |γ|2 − 2β∗γ

)]
=

1

π
exp

[
− |γ|2 − β∗α+ γ∗α+ β∗γ

]
, (5.2.3)

which can also be written as

Q|α〉〈β| (γ) ≡ exp [− (γ − α) (γ − β)∗]

π
, (5.2.4)

or

Q|α〉〈β| (γ) =
1

π
Tr

[(
|α〉 〈β|
〈β|α〉

)
|γ〉 〈γ|

]
, (5.2.5)

that we could compare to the Q representation of a coherent state |α〉 〈α| (see Eq. (4.5.13)):

Qα (γ) =
exp

[
− |γ − α|2

]
π

, (5.2.6)

which is simply proportional to the overlap squared of the two coherent states. We will see that
Q|α〉〈β| (γ) can be negative, whereas Qρ (γ) is always positive and bounded by 1/π.
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5.2.2 Transformation

Just like in the case of the extended Wigner quasi-probability distribution, let us �nd the trans-
formations which leave the extended Q representation unchanged (or almost identical), in order to
simplify the analysis (by reducing the number of parameters). Essentially, we will prove that it is
su�cient to vary the distance between α and β to reproduce all the possible shapes for the extended
Q representation. In the subsequent sections, it will be enough to study the cases de�ned by{

α ≡ 0 + 0i,

β ∈ R+.
(5.2.7)

5.2.2.1 Translation

Here, we will demonstrate that

Q|α+ζ〉〈β+ζ| (γ) = Q|α〉〈β| (γ − ζ) . (5.2.8)

This means that the e�ect of a translation in the complex plane of α and β by a complex number
ζ is equivalent to the translation of the whole Q representation by a complex number −ζ. This
property allows us to study the particular case

α ≡ 0 + 0i (5.2.9)

This reduces our analysis to only two parameters found in β.

Proof

We will consider the following transformation:{
|α〉 → |α′〉 = |α+ ζ〉 ,
|β〉 → |β′〉 = |β + ζ〉 .

(5.2.10)

Using the formula for the translation of a coherent state (Eq. (3.3.24)), we can write

|α+ ζ〉 = exp

{
ζ∗α− ζα∗

2

}
D̂ (ζ) |α〉 , (5.2.11)

|β + ζ〉 = exp

{
ζ∗β − ζβ∗

2

}
D̂ (ζ) |β〉 . (5.2.12)

To make it more readable, we will use the notation

φα ≡
ζ∗α− ζα∗

2
, (5.2.13)

φβ ≡
ζ∗β − ζβ∗

2
, (5.2.14)

so that

|α+ ζ〉 = eφαD̂ (ζ) |α〉 , (5.2.15)

|β + ζ〉 = eφβD̂ (ζ) |β〉 . (5.2.16)
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In that case, the extended Q representation becomes

Q|α′〉〈β′| (γ) =
1

π

〈γ|α′〉 〈β′|γ〉
〈α′|β′〉

=
1

π

〈γ|α+ ζ〉 〈β + ζ|γ〉
〈α+ ζ|β + ζ〉

=
1

π

〈
γ
∣∣∣ZZeφαD̂ (ζ)

∣∣∣α〉〈β ∣∣∣D̂† (ζ)�
�eφ
∗
β

∣∣∣ γ〉〈
β
∣∣∣D̂† (ζ)�

�eφ
∗
βZZe
φαD̂ (ζ)

∣∣∣α〉
=

1

π

〈
γ
∣∣∣D̂ (ζ)

∣∣∣α〉〈β ∣∣∣D̂† (ζ)
∣∣∣ γ〉〈

β
∣∣∣D̂† (ζ) D̂ (ζ)

∣∣∣α〉
=

1

π

1

〈β|α〉

〈
γ
∣∣∣D̂ (ζ)

∣∣∣α〉〈β ∣∣∣D̂† (ζ)
∣∣∣ γ〉 , (5.2.17)

where we used the unitarity of the displacement operator (Eq. (3.3.19)) in the last equation.
The property of the Hermitian conjugate of the displacement operator (Eq. (3.3.20)) gives us

Q|α′〉〈β′| (γ) =
1

π

〈
γ
∣∣∣D̂† (−ζ)

∣∣∣α〉〈β ∣∣∣D̂ (−ζ)
∣∣∣ γ〉

〈β|α〉
. (5.2.18)

Now, using the de�nition of the displacement operator (Eq. (3.3.18)), we can apply it to the
states |γ〉 the following way

Q|α′〉〈β′| (γ) =
1

π

〈
γ − ζ

∣∣eφ∗γ ∣∣α〉 〈β ∣∣eφγ ∣∣ γ − ζ〉
〈β|α〉

(5.2.19)

where

φγ ≡ −
(−ζ∗) γ − (−ζ) γ∗

2
=
ζ∗γ − ζγ∗

2
. (5.2.20)

Since

φγ + φ∗γ =
ζ∗γ − ζγ∗

2
+
ζγ∗ − ζ∗γ

2
= 0, (5.2.21)

we �nally get

Q|α′〉〈β′| (γ) =
1

π

〈γ − ζ|α〉 〈β|γ − ζ〉
〈β|α〉

,

or
Q|α′〉〈β′| (γ) = Q|α〉〈β| (γ − ζ) . (5.2.22)

5.2.2.2 Rotation

Here, we will demonstrate that

Q|αe−iθ〉〈βe−iθ| (γ) = Q|α〉〈β|

(
γeiθ

)
. (5.2.23)

This means that the rotation in the complex plane of α and β by an angle −θ will simply rotate (by
an angle +θ) the extended Q representation, without changing its shape. Taking into account the
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information from the last section, we can reduce our analysis to one parameter, namely the distance
between α and β, without a loss of generality. From now on, we will suppose that θ is chosen such
that β is positive and on the real axis:

β ∈ R+. (5.2.24)

Proof

We will consider the the following transformation:{
|α〉 → |α′〉 =

∣∣αe−iθ〉 ,
|β〉 → |β′〉 =

∣∣βe−iθ〉 . (5.2.25)

Using the formula for the rotation of a coherent state (Eq. (3.3.26)), we can write∣∣∣αe−iθ〉 = Û (θ) |α〉 , (5.2.26)∣∣∣βe−iθ〉 = Û (θ) |β〉 . (5.2.27)

The extended Q representation becomes

Q|α′〉〈β′| (γ) =
1

π

〈γ|α′〉
〈
βe−iθ|γ

〉
〈β′|αe−iθ〉

=
1

π

〈
γ|αe−iθ

〉 〈
βe−iθ|γ

〉
〈βe−iθ|αe−iθ〉

=
1

π

〈
γ
∣∣∣Û (θ)

∣∣∣α〉〈β ∣∣∣Û † (θ)
∣∣∣ γ〉〈

β
∣∣∣Û † (θ) Û (θ)

∣∣∣α〉 ,

=
1

π

〈
γ
∣∣∣Û (θ)

∣∣∣α〉〈β ∣∣∣Û † (θ)
∣∣∣ γ〉

〈β|α〉 eiθ
, (5.2.28)

where we used the unitary of the phase-shifting operator (Eq. (3.3.30)). The Hermitian con-
jugation of the phase-shifting operator is given by Eq. (3.3.29), so we have

Q|α′〉〈β′| (γ) =
1

π

〈
γ
∣∣∣Û † (−θ)

∣∣∣α〉〈β ∣∣∣Û (−θ)
∣∣∣ γ〉

〈β|α〉
. (5.2.29)

We now apply the phase-shifting operator on the states |γ〉 as per Eq. (3.3.25):

Q|α′〉〈β′| (γ) =
1

π

〈
γeiθ|α

〉 〈
β|γeiθ

〉
〈β|α〉

, (5.2.30)

or
Q|α′〉〈β′| (γ) = eiθQ|α〉〈β|

(
γeiθ

)
. (5.2.31)
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5.2.2.3 Conjugation conjugation

It is interesting to note that
Q∗|α〉〈β| (γ) = Q|β〉〈α| (γ) . (5.2.32)

Proof

We have

Q|α〉〈β| (γ) =
1

π

(
〈γ|α〉 〈β|γ〉
〈β|α〉

)∗
=

1

π

〈γ|α〉∗ 〈β|γ〉∗

〈β|α〉∗

=
1

π

〈α|γ〉 〈γ|β〉
〈α|β〉

=
1

π

〈γ|β〉 〈α|γ〉
〈α|β〉

≡ Q|β〉〈α| (γ) . (5.2.33)

5.2.3 Properties

5.2.3.1 Normalization

The extended Q representation is still normalized∫
R2

Q|α〉〈β| (γ) d2γ = 1. (5.2.34)

Proof

∫
R2

Q|α〉〈β| (γ) d2γ =
1

π

∫
R2

〈γ|α〉 〈β|γ〉
〈β|α〉

d2γ

=
1

π

∫
R2

〈β|γ〉 〈γ|α〉
〈β|α〉

d2γ

=

〈
β
∣∣( 1
π

∫
R2 |γ〉 〈γ| d2γ

)∣∣α〉
〈β|α〉

=
〈β|α〉
〈β|α〉

= 1, (5.2.35)

where we used the over-completeness of the coherent states (Eq. (3.3.11)).
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5.2.3.2 Bounds

Even though the Q|α〉〈β| (γ) can reach arbitrary large values by taking speci�c α and β, it still
remains bounded for a �xed couple (α, β):

∣∣Q|α〉〈β| (γ)
∣∣ ≤ exp {−< [(γ − α) (γ − β)∗] /2}

π
. (5.2.36)

.

Proof

Using Eq. (5.2.4), we have

∣∣Q|α〉〈β| (γ)
∣∣2 =

|exp [− (γ − α) (γ − β)∗]|2

π2
=

exp [− (γ − α) (γ − β)∗ − (γ − α)∗ (γ − β)]

π2
,

(5.2.37)
which can also be written as∣∣Q|α〉〈β| (γ)

∣∣2 =
exp {−< [(γ − α) (γ − β)∗]}

π2
, (5.2.38)

or ∣∣Q|α〉〈β| (γ)
∣∣ ≤ exp {−< [(γ − α) (γ − β)∗] /2}

π
.

5.2.3.3 Reality

The extended Q representation can be complex

Q∗|α〉〈β| (γ) 6= Q|α〉〈β| (γ) . (5.2.39)

5.2.4 Graphical representation

As we saw before, the extended Q representation of the transient density matrix is

Q|α〉〈β| (γ) ≡ exp [− (γ − α) (γ − β)∗]

π
. (5.2.40)

Moreover, it is su�cient to limit our study to{
α ≡ 0 + 0i,

β ∈ R+.
(5.2.41)

For reference, the plots are given in the Appendix C.

5.3 Extended P representation
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5.3.1 Possibility of derivation

As we saw in Chapter (4), the P representation is de�ned as

ρ̂ ≡
∫∫

R2

P (γ) |γ〉 〈γ| dγ2. (5.3.1)

Since the P representation exists for any mixture of coherent states, the extended P representation
de�ned as

σ̂|α〉〈β| ≡
∫∫

R2

P|α〉〈β| (γ) |γ〉 〈γ| dγ2, (5.3.2)

might exist as well. As always, this de�nition is not easy to implement. For this reason, we could
try to calculate the extended P representation using the relation between the Q representation and
the P representation de�ned by (see Eq. (A.4.2))

FP (γ, γ∗) =

∫∫
R2

g
(
ζ ′ − γ, ζ ′∗ − γ∗

)
FQ (ζ, ζ∗) d2ζ ′, (5.3.3)

with

g (γ, γ∗) ≡ 1

4π2

∫∫
R2

ezγ
∗−z∗γ+z2

r+z2
i d2z, (5.3.4)

where

zr ≡ < (z) , (5.3.5)

zi ≡ = (z) . (5.3.6)

Note that this relation was de�ned for normal phase space distributions. Therefore, it is not certain
that they remain valid in the case of the extended phase distributions. However, we could verify
the validity of the result by using the de�nition of the extended P representation (Eq. (5.3.2)). The
calculation is not given here since the P is usually ill-behaved.

5.3.2 Remark

If we take the generalized positive P representation de�ned in Section 4.6.3 by

ρ̂ ≡
∫∫

R2

Λ (γ, ζ)P (γ, ζ) d2γ d2ζ, (5.3.7)

where

Λ (γ, ζ) =
|γ〉 〈ζ∗|
〈ζ∗|γ〉

, (5.3.8)

then we could de�ne

σ̂|α〉〈β| ≡
∫∫

R2

Λ|α〉〈β| (γ, ζ)P (γ, ζ) d2γ d2ζ. (5.3.9)

In that case, it is trivial to see that

Λ|α〉〈β| (γ, ζ) = δ2 (γ − α) δ2 (ζ∗ − β) . (5.3.10)

While the derivation is simple and intriguing, it does not o�er a lot of information about the state
unfortunately because it's .

5.4 Summary

The results that we found are given in Table (5.4.1). We saw that the properties of the transient
density matrix (especially) lead to a strange behavior of the phase space distribution which is
exacerbated when the overlap of the pre- and post-selected states are reduced.
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Name W (q, p) W|α〉〈β| (q, p) Q (γ) Q|α〉〈β| (γ)

Normalized Yes Yes Yes Yes

Real Yes No Yes No

Non-negative No No Yes No

Bounds |W (q, p)| ≤ 1/π
∣∣W|α〉〈β| (q, p)∣∣ = e|α−β|

2/2/π |Q (γ)| ≤ 1/π e−<[(γ−α)(γ−β)∗]/2

π

Marginal distributions Yes Yes No No

Table 5.4.1: Summary of the properties of the extended phase space distributions.
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Conclusion

In this report, we tried to give a thorough overview of the weak value formalism applied to the
�eld of quantum optics. We started with a description of the measurement in quantum mechanics.
After reviewing the density matrix formulation, we stated the measurement postulate, as well as
Born's rule for obtaining probabilities in quantum mechanics. Then, we saw that there are multiple
possible implementations of the measurement postulate. Two of them were explored: the more
familiar projective measurement, and also the POVM formalism, an important concept in quantum
information theory.

The next step was to review the notion weak measurement as de�ned by Aharonov et al using
the two-state vector formalism. We saw that the reduced interaction between the measuring device
and the system implies a smaller disturbance, but also a bigger uncertainty on the measurement.
This drawback can be overcome by repeating the experiment on a larger number of system. This
led us to explore the strange concept of weak value. They are similar to the expected value, except
they have weird properties: they can be out the normal bounds for an expected value and, in
some cases, they can become complex. To emphasize the importance of the weak value, we gave
a few applications were it is used. Finally, we extended the density matrix by a transient density
matrix which was explored subsequently in the case where both the pre- and post-selected states
are coherent states of light.

Before studying this transient density light, we therefore needed to study the �eld of quantum
optics. We explained how the quantization of the electromagnetic �eld (second quantization) takes
place in quantum mechanics. The Fock states (or number states) emerged naturally from the
quantization. However, since they are not good approximation to real states of light by themselves,
we had to de�ne the coherent states which are a superposition of the Fock states. We then inspected
some of the main properties that would be useful later on.

The next chapter was dedicated to the phase space distributions. We motivated the reason for
this mathematical framework by showing how the expected value can be calculated more e�ciently.
We also saw that the phase space distributions possess a one-to-one correspondence with the density
operator; we could therefore use them as a characterization tool. However, we demonstrated that
the phase space distributions are not uniquely de�ned, so there are several ones. We presented
the three main distributions used in the �eld of quantum optics: the Wigner quasi-probability
distribution, the Q representation and the P representation. Each have their own advantages and
disadvantages based on their properties. For example, each of them correspond to a certain operator
ordering, so it might prove to be easier to employ one or the other depending on this fact.

Afterwards, by comparing the weak value with the expected, we extended the phase space
distribution framework to the weak measurement formalism using the transient density matrix
de�ned earlier. The reason for this was two-fold: �rst of all, it allowed us to inspect the nature
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of the transient density matrix in greater detail; second of all, we wanted to see if the phase
space distribution could be indeed extended to the notion of weak value. This way, we could use
this framework as a tool for calculating weak values, mirroring the method that is already used
for the calculations of expected values. We then studied the properties of those extended phase
space distributions. While the extended P representation could not be calculated, we saw that
the other two are in general complex and can contain values exceeding the normal bounds for these
distributions. This was partly linked to the non-Hermitian nature of the transient density matrix. If
we tried to interpret the transient density matrix as a state, it would mean that the probabilities are
negative or higher than one. We also observed that the abnormal behavior was strongly correlated
with the choice of the pre- and post-selected states. Additionally, we noticed that the phase space
distribution framework could therefore be used to calculate weak values.

While we have tried to be thorough as possible, there still remains several avenues worth ex-
ploring. One could perhaps extend the complete framework of phase space distribution to the weak
value. It would be interesting to study the in�uence of the operator ordering in this extended
framework. Another path is to try to directly link the shape of the phase space distributions with
certain properties of the weak value experiment, as well as to interpret the complex nature of the
transient density matrix. Weak values could also perhaps be used to give a better understanding of
the phase space distributions. Needless to say, the weak measurement formalism still has a lot to
o�er.
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Appendix A
Additional calculations

A.1 Hamiltonian of the (classical) electromagnetic �eld

We will show that the Hamiltonian of the Hamiltonian of the (classical) electromagnetic �eld can
be written as

H = 2
∑
k,s

ω2
k |cks (t)|2 (A.1.1)

where
cks (t) ≡ ckse−iωkt (A.1.2)

is introduced to simplify the notations.

Proof

We start from the de�nition of the Hamiltonian for the (classical) electromagnetic �eld (Eq. (3.1.25)):

H =
1

2

∫
R3

[
ε0E

2 (r, t) +
1

µ0
B2 (r, t)

]
d3r, (A.1.3)

where the electric and magnetic �elds are given by (Eqs. (3.1.23) and (3.1.24))

E (r, t) =
i

ε
1/2
0 L3/2

∑
s

∑
k

ωk

[
cks (t) eik·rεks − c∗ks (t) e−ik·rε∗ks

]
, (A.1.4)

B (r, t) =
i

ε
1/2
0 L3/2

∑
s

∑
k

[
cks (t) eik·r (k × εks)− c∗ks (t) e−ik·r (k × ε∗ks)

]
. (A.1.5)

Moreover, during the calculations, we will make use of the transversality condition

k · εks = 0, (A.1.6)

the orthonormality of the polarization vectors

ε∗ks · εkq = 0, (A.1.7)
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as well as the properties of the Fourier transform∫
L3

ei(k−p)·r d3r = L3δ3
kp, (A.1.8)

and
(k × ε∗ks) · (k × εkq) = k2ε∗ks · εkq = k2δsq, (A.1.9)

where we have used the orthonormality of the polarization vectors in the vectorial identity

(a× b) · (c× d) = (a · c)× (b · d)− (b · c)× (a · d) . (A.1.10)

Let us �rst calculate the contribution due to the electric �eld:∫
R3

ε0E
2 (r, t) d3r =

∫
R3
��ε0

 i

�
��ε

1/2
0 L3/2

∑
s

∑
k

ωk

[
cks (t) eik·rεks − c∗ks (t) e−ik·rε∗ks

]

× i

�
��ε

1/2
0 L3/2

∑
q

∑
p

ωp
[
cpq (t) eip·rεpq − c∗pq (t) e−ip·rε∗pq

] d3r

= − 1

L3

∫
R3

∑
s,q

∑
k,p

ωkωp

[
cks (t) eik·rεks − c∗ks (t) e−ik·rε∗ks

]

×
[
cpq (t) eip·rεpq − c∗pq (t) e−ip·rε∗pq

] d3r (A.1.11)

The integral

IE =

∫
R3

[
cks (t) eik·rεks − c∗ks (t) e−ik·rε∗ks

]
×
[
cpq (t) eip·rεpq − c∗pq (t) e−ip·rε∗pq

]
d3r,

(A.1.12)
can be computed easily:

IE =

∫
R3

cks (t) cpq (t) ei(k+p)·rεks · εpq d3r −
∫
R3

cks (t) c∗pq (t) ei(k−p)·rεks · ε∗pq d3r

−
∫
R3

c∗ks (t) cpq (t) e−i(k−p)·rε∗ks · εpq d3r +

∫
R3

c∗ks (t) c∗pq (t) e−i(k+p)·rε∗ks · ε∗pq d3r

= cks (t) cpq (t)L3δ3
−kpεks · εpq − cks (t) c∗pq (t)L3δ3

kpεks · ε∗pq
− c∗ks (t) cpq (t)L3δ3

kpε
∗
ks · εpq + c∗ks (t) c∗pq (t)L3δ3

−kpε
∗
ks · ε∗pq. (A.1.13)
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Plugging this result into Eq. (A.1.11):∫
R3

ε0E
2 (r, t) d3r = − 1

��L3

∑
s,q

∑
k,p

ωkωp

{
cks (t) cpq (t)��L3δ3

−kpεks · εpq

− cks (t) c∗pq (t)��L3δkpεks · ε∗pq
− c∗ks (t) cpq (t)��L3δkpε

∗
ks · εpq.

+ c∗ks (t) c∗pq (t)��L3δ3
−kpε

∗
ks · ε∗pq

}
.

= −
∑
s,q

∑
k

ω2
k

{
cks (t) c−kq (t) εks · ε−kq − cks (t) c∗kq (t) εks · ε∗kq

− c∗ks (t) ckq (t) ε∗ks · εkq + c∗ks (t) c∗−kq (t) ε∗ks · ε∗−kq
}

= −
∑
s,q

∑
k

ω2
k

{
cks (t) c−kq (t) εks · ε−kq − cks (t) c∗kq (t) δsq

− c∗ks (t) ckq (t) δsq + c∗ks (t) c∗−kq (t) ε∗ks · ε∗−kq
}
, (A.1.14)

which yields∫
R3

ε0E
2 (r, t) d3r =

∑
s

∑
k

ω2
k

{
2 |cks (t)|2 −

∑
q

[cks (t) c−kq (t) εks · ε−kq + c.c.]

}
.

(A.1.15)
We can apply the same reasoning to obtain the contribution due to the magnetic �eld:∫

R3

1

µ0
B2 (r, t) d3r =

∫
R3

1

µ0

{
i

ε
1/2
0 L3/2

×
∑
s

∑
k

[
cks (t) eik·r (k × εks)− c∗ks (t) e−ik·r (k × ε∗ks)

]
× i

ε
1/2
0 L3/2

∑
q

∑
p

[
cpq (t) eip·r (p× εpq)− c∗pq (t) e−ip·r

(
p× ε∗pq

)]}
d3r

= − 1

L3c2

∑
s,q

∑
k,p

{∫
R3

[
cks (t) eik·r (k × εks)− c∗ks (t) e−ik·r (k × ε∗ks)

]
×
[
cpq (t) eip·r (p× εpq)− c∗pq (t) e−ip·r

(
p× ε∗pq

)]
d3r

}
, (A.1.16)

where we have used the relation.
c2 = ε0µ0. (A.1.17)

We start by computing the integration over the variable r:

IB =

∫
R3

[
cks (t) eik·r (k × εks)− c∗ks (t) e−ik·r (k × ε∗ks)

]
×
[
cpq (t) eip·r (p× εpq)− c∗pq (t) e−ip·r

(
p× ε∗pq

)]
d3r. (A.1.18)

The calculation is slightly lengthier than in the case of the electric �eld, but not too compli-
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cated:

IB =

∫
R3

cks (t) cpq (t) ei(k+p)·r (k × εks) · (p× εpq) d3r

−
∫
R3

cks (t) c∗pq (t) ei(k−p)·r (k × εks) ·
(
p× ε∗pq

)
d3r

−
∫
R3

c∗ks (t) cpq (t) e−i(k−p)·r (k × ε∗ks) · (p× εpq) d3r

+

∫
R3

c∗ks (t) c∗pq (t) e−i(k+p)·r (k × ε∗ks) ·
(
p× ε∗pq

)
d3r, (A.1.19)

i.e.

IB = cks (t) cpq (t)L3δ3
−kp (k × εks) · (p× εpq)

− cks (t) c∗pq (t)L3δ3
kp (k × εks) ·

(
p× ε∗pq

)
− c∗ks (t) cpq (t)L3δ3

kp (k × ε∗ks) · (p× εpq)
+ c∗ks (t) c∗pq (t)L3δ3

−kp (k × ε∗ks) ·
(
p× ε∗pq

)
. (A.1.20)

We inject this result into Eq. (A.1.16):∫
R3

1

µ0
B2 (r, t) d3r = − 1

��L3c2

∑
s,q

∑
k,p

{
cks (t) cpq (t)��L3δ3

−kp (k × εks) · (p× εpq)

− cks (t) c∗pq (t)��L3δ3
kp (k × εks) ·

(
p× ε∗pq

)
+ c∗ks (t) cpq (t)��L3δ3

kp (k × ε∗ks) · (p× εpq)

−c∗ks (t) c∗pq (t)��L3δ3
−kp (k × ε∗ks) ·

(
p× ε∗pq

)}
= − 1

c2

∑
s,q

∑
k

{cks (t) c−kq (t) (k × εks) · (−k × ε−kq)

− cks (t) c∗kq (t) (k × εks) ·
(
k × ε∗kq

)
− c∗ks (t) ckq (t) (k × ε∗ks) · (k × εkq)
+c∗ks (t) c∗−kq (t) (k × ε∗ks) ·

(
−k × ε∗kq

)}
. (A.1.21)

By applying the formula given by Eq. (A.1.9) as well as the vectorial identity in Eq. (A.1.10),
this can be transformed into∫

R3

1

µ0
B2 (r, t) d3r = − 1

c2

∑
s,q

∑
k

{
−k2cks (t) c−kq (t) εks · ε−kq − k2cks (t) c∗kq (t) δsq

+ k2c∗ks (t) ckq (t) δsq − k2c∗ks (t) c∗−kq (t) ε∗ks · ε∗kq
}

d3k.

= +
∑
s,q

∑
k

(
k

c

)2 {
cks (t) c−kq (t) εks · ε−kq + cks (t) c∗kq (t) δsq

+ c∗ks (t) ckq (t) δsq − k2c∗ks (t) c∗−kq (t) ε∗ks · ε∗kq
}

d3k,

(A.1.22)
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which can be written as∫
R3

1

µ0
B2 (r, t) d3r =

∑
s,q

∑
k

ω2
k

{
2 |cks (t)|2 +

∑
q

[cks (t) c−kq (t) εks · ε−kq + c.c.]

}
.

(A.1.23)
because (see Eq. (3.1.18)) (

k

c

)2

= ω2
k. (A.1.24)

We can now determine the form of the Hamiltonian:

H =

∫
R3

ε0E
2 (r, t) d3r +

∫
R3

1

µ0
B2 (r, t) d3r

=
1

2

∑
s

∑
k

ω2
k

{
2 |cks (t)|2 + 2 |cks (t)|2

−
∑
q

[cks (t) c−kq (t) εks · ε−kq + c.c.]

+
∑
q

[cks (t) c−kq (t) εks · ε−kq + c.c.]

}
, (A.1.25)

which yields the expected result

H = 2
∑
k,s

ω2
k |cks (t)|2 . (A.1.26)

A.2 Correspondence rule

If we use the following correspondence rule

pks (t)→ p̂ks (t) = −i~ ∂̂

∂qks (t)
, (A.2.1)

then
[q̂ks (t) , p̂mu (t)] = i~δ3

kmδsu. (A.2.2)

Proof
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Let us �rst consider the case where m = k and u = s. Indeed, for any function f (qks (t)), we
have

[q̂ks (t) , p̂ks (t)] f (qks (t)) = (q̂ks (t) p̂ks (t)− p̂ks (t) q̂ks (t)) f (qks (t))

= −i~

(
q̂
∂̂

∂q
[f (qks (t))]− ∂̂

∂q
[q̂ks (t) f (qks (t))]

)

= −i~

(
q̂ks (t)

∂̂

∂q
[f (qks (t))]− q̂ks (t)

∂̂

∂q
[f (qks (t))]− f (qks (t))

)
= +i~f (qks (t)) , (A.2.3)

which leads to the expected commutation rule

[q̂ks (t) , p̂ks (t)] = i~. (A.2.4)

The case where m 6= k and/or u 6= s is trivial to demonstrate if we consider that two modes
(k, s) and (m, u) are uncoupled.

A.3 Inverting the relation given by Eq. (4.1.6)

Tr
[
ρ̂ (q̂, p̂) eiξq̂+iηp̂f (ξ, η)

]
=

∫∫
R2

eiξq+iηpF f (q, p) dqdp, (A.3.1)

can be written as

F f (q, p, t) =
1

4π2

∫∫∫
R3

〈
q′ +

1

2
η~ |ρ| q′ − 1

2
η~
〉
f (ξ, η) eiξ(q

′−q)e−iηp dξdηdq′.

Proof

First, we must recall that (see Eq. (1.1.3))

Tr
[
ρ̂ (q̂, p̂) eiξq̂+iηp̂f (ξ, η)

]
=

∫ +∞

−∞

〈
q′′
∣∣∣ρ̂ (q̂, p̂) eiξq̂+iηp̂f (ξ, η)

∣∣∣ q′′〉 dq′′

=

∫ +∞

−∞

〈
q′′
∣∣∣ρ̂ (q̂, p̂) eiξq̂+iηp̂

∣∣∣ q′′〉 f (ξ, η) dq′′. (A.3.2)

Using the Campbell�Baker�Hausdorff theorem (Eq. (B.1.2)) with x = i, Â = q̂, B̂ = p̂
and [q̂, p̂] = i~, we can write:

eiξq̂+iηp̂ = eiηp̂eiξq̂e−iξη~/2. (A.3.3)

Since
eiξq̂

∣∣q′′〉 =
∣∣q′′〉 eiξq′′ , (A.3.4)

and
eiηp̂

∣∣q′′〉 =
∣∣q′′ − η~〉 , (A.3.5)
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we have

Tr
[
ρ̂ (q̂, p̂) eiξq̂+iηp̂f (ξ, η)

]
=

∫ +∞

−∞

〈
q′′
∣∣∣ρ̂ (q̂, p̂) eiηp̂eiξq̂e−iξη~/2

∣∣∣ q′′〉 f (ξ, η) dq′′

=

∫ +∞

−∞

〈
q′′ |ρ̂ (q̂, p̂)| q′′ − η~

〉
eiξq

′′
e−iξη~/2f (ξ, η) dq′′. (A.3.6)

If we make the substitution q′′ = q′ + η~/2, then

Tr
[
ρ̂ (q̂, p̂) eiξq̂+iηp̂f (ξ, η)

]
=

∫ +∞

−∞

〈
q′ +

1

2
η~ |ρ̂ (q̂, p̂)| q′ − 1

2
η~
〉
eiξq

′
�
��eiη~/2��

��
e−iη~/2f (ξ, η) dq′′.

(A.3.7)
Finally, we take the inverse Fourier transform (see (B.2.2)) of Eq. (A.3.7), we obtain

F f (q, p, t) =
1

4π2

∫∫∫
R3

〈
q′ +

1

2
η~ |ρ| q′ − 1

2
η~
〉
f (ξ, η) eiξ(q

′−q)e−iηp dξdηdq′. (A.3.8)

A.4 Relations between phase space distributions

If we take two arbitrary phase space distributions F 1 (α, α∗) and F 2 (α′, α′∗), then they are related
by [37]:

F 1 (α, α∗) =

∫∫
R2

g
(
α′ − α, α′∗ − α∗

)
F 2
(
α′, α′∗

)
d2α, (A.4.1)

where

g (α, α∗) ≡ 1

4π2

∫∫
R2

ezα
∗−z∗α f

1 (z, z∗)

f2 (z, z∗)
d2z. (A.4.2)

For simplicity, we use the superscripts Q, P or W for theQ representation, theGlauber�Sudarshan
P representation and theWigner quasi-probability distribution, respectively. Also, we will use the
indices i and r to represent the real part and the imaginary part of a complex number as such

zr = < (z) , (A.4.3)

zi = = (z) . (A.4.4)

As a reminder, we have

fW (z, z∗) = 1, (A.4.5)

fQ (z, z∗) = e−|z|
2/2 = e−z

2
r/2−z2

i /2, (A.4.6)

fP (z, z∗) = e|z|
2/2 = ez

2
r/2+z2

i /2. (A.4.7)

We will try to �nd the relations in two cases, since the calculations are almost identical to determine
the other relations: one example where the integration on z in g (α, α∗) is possible (W in terms of
P), and another where it is not (P in terms of Q).
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A.4.1 Distribution W in terms of P

We want to show

FW (α, α∗) =
2

π

∫
R2

e−2|α′−α|2FP
(
α′, α′∗

)
d2α′. (A.4.8)

Proof

We have
fW (z, z∗)

fP (z, z∗)
= exp

{
−
(
z2
r + z2

i

)
2

}
. (A.4.9)

Since
zα∗ − z∗α = 2i= (zα∗) = 2i (ziαr − zrαi) (A.4.10)

we have

g (α, α∗) =
1

4π2

∫∫
R2

exp

{
−
(
z2
r

2
− 2iαizr

)
−
(
z2
i

2
+ 2iαrzi

)}
d2z. (A.4.11)

The integration on zr can be performed using Eq. (A.5.1) with
a = 1

2

b = −2iαi,

c = 0,

(A.4.12)

and the integration on zi using 
a = 1

2 ,

b = 2iαr,

c = 0,

(A.4.13)

and it yields

g (α, α∗) =
2π

π2
exp

{
(−2iαi)

2

4× 1
2

+
(2iαr)

2

4× 1
2

}
=

2

π
exp

{
−α

2
r + α2

i

2

}
, (A.4.14)

or

g (α, α∗) =
2

π
e−|α|

2/2, (A.4.15)

which yields the correct expression

FW (α, α∗) =
2

π

∫
R2

e−2|α′−α|2FP
(
α′, α′∗

)
d2α. (A.4.16)

J. Alzetta 84



MEMO-H506 A.5 Integration of a Gaussian

A.4.2 Distribution P in terms of Q

We want to show that it is not possible to �nd a simpler relation than

FP (α, α∗) =

∫∫
R2

g
(
α′ − α, α′∗ − α∗

)
FQ

(
α′, α′∗

)
d2α′. (A.4.17)

Proof

We have
fP (z, z∗)

fQ (z, z∗)
= exp

{
z2
r + z2

i

}
, (A.4.18)

then

ezα
∗−z∗α f

1 (z, z∗)

f2 (z, z∗)
= exp

{(
z2
r + 2iαizr

)
+
(
z2
i − 2iαrzi

)}
. (A.4.19)

We can re-write the argument of the exponential as(
z2
r + 2iαizr

)
+
(
z2
i − 2iαrzi

)
= (zr + iαi)

2 − α2
i + (zi + iαr)

2 + α2
r (A.4.20)

Clearly, we see that the integration on either zr or zi in g (α, α∗) will not converge because∫ +∞

−∞
eu

2
du2 (A.4.21)

diverges. The integration on α in Eq. (A.4.1) must thus be performed before the integration
on z to have a chance of having a relation between the two. Since the integration on α depends
on the actual form of FQ (α′, α′∗), the following relation is the simplest form we can write

FP (α, α∗) =

∫∫
R2

g
(
α′ − α, α′∗ − α∗

)
FQ

(
α′, α′∗

)
d2α′, (A.4.22)

with

g (α, α∗) ≡ 1

4π2

∫∫
R2

ezα
∗−z∗α+z2

r+z2
i d2z. (A.4.23)

A.5 Integration of a Gaussian

We will show that∫ +∞

−∞
e−(ax2+bx)+c dx =

√
π

a
exp

(
b2

4a
+ c

)
, a ∈ R+, b, c ∈ C. (A.5.1)

Proof
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First, note that

−
(
ax2 + bx

)
+ c = −

[(√
ax
)2

+ 2×
(√
ax
)
× b

2
√
a

]
+ c

= −
[(√

ax
)2

+ 2×
(√
ax
)
× b

2
√
a

+
b2

4a
− b2

4a

]
+ c

= −
[(√

ax
)2

+ 2×
(√
ax
)
× b

2
√
a

+
b2

4a

]
+
b2

4a
+ c, (A.5.2)

which allows us to write

−
(
ax2 + bx

)
+ c = −

(√
ax+

b

2
√
a

)2

+
b2

4a
+ c. (A.5.3)

Then, we want to evaluate the integral∫ +∞

−∞
e−(ax2+bx)+c dx = exp

(
b2

4a
+ c

)∫ +∞

−∞
exp

[
−
(√

ax+
b

2
√
a

)2
]
dx. (A.5.4)

In order to perform the integration on the right hand side, we will apply two successive sub-
stitutions. First, we use the following substitution:

y ≡
√
ax+

b

2
√
a
. (A.5.5)

In that case,
dy =

√
a dx, (A.5.6)

which means that

dx =
1√
a
dy. (A.5.7)

Moreover limx→+∞

(√
ax+ b

2
√
a

)
= +∞

limx→−∞

(√
ax+ b

2
√
a

)
= −∞

. (A.5.8)

The integral then becomes

exp

(
b2

4a
+ c

)∫ +∞

−∞
exp

[
−
(√

ax+
b

2
√
a

)2
]
dx = exp

(
b2

4a
+ c

)
1√
a

∫ +∞

−∞
e−y

2
dy

= exp

(
b2

4a
+ c

)
2√
a

∫ +∞

0
e−y

2
dy, (A.5.9)

since the function we want to integrate is symmetric with respect to the vertical axis. We now
introduce a new variable of integration u de�ned by

u ≡ y2. (A.5.10)

In that case,
du = 2y dy = 2u1/2 dy, (A.5.11)
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which is equivalent to

dy =
u−1/2

2
du. (A.5.12)

Furthermore {
limy→+∞ y

2 = +∞,
limy→0 y

2 = 0.
(A.5.13)

We thus have

exp

(
b2

4a
+ c

)
2√
a

∫ +∞

0
e−y

2
dy = exp

(
b2

4a
+ c

)
�2√
a

∫ +∞

0
e−u

u−1/2

�2
du.

Here, we can recognize the Gamma function Γ (z) de�ned by

Γ (z) ≡
∫ +∞

0
tz−1e−t dt. (A.5.14)

In our case, the integral equal to∫ +∞

0
e−u u−1/2 du = Γ (1/2) , (A.5.15)

where Γ (1/2) =
√
π (see [47] for example). Finally, we �nd the result∫ +∞

−∞
e−(ax2+bx)+c dx =

√
π

a
exp

(
b2

4a
+ c

)
. (A.5.16)

A.6 Attempt: application of the phase-shifting operator of the ex-
tended Wigner quasi-probability distribution

Here, we present the attempt made to determine the e�ect of the phase-shifting operator on a state
of the form |q〉. If this e�ect can be determined, it should be fairly easy to see how the extended
Wigner quasi-probability distribution is transformed when α and β are rotated by an angle of θ
in the complex plane.

From the de�nition of the phase-shifting operator (Eq. (3.3.25)),

Û (θ) ≡ e−iθn̂ = e−iθâ
†â. (A.6.1)

As before, we have

â ≡ 1√
2

(q̂ + ip̂) , (A.6.2)

â† ≡ 1√
2

(q̂ − ip̂) , (A.6.3)
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so that

−iθâ†â = −iθ1

2
(q̂ + ip̂) (q̂ − ip̂)

= −iθ
2

(
q̂2 − iq̂p̂+ ip̂q̂ + p̂2

)
= −iθ

2

(
q̂2 − i (q̂p̂− p̂q̂) + p̂2

)
= −iθ

2

q̂2 − i [q̂, p̂]︸︷︷︸
=i

+p̂2


= −iθ

2

(
1 + q̂2 + p̂2

)
. (A.6.4)

Then

Û (θ) = e−iθ/2 exp

{
−iθ

2

(
q̂2 + p̂2

)}
. (A.6.5)

We will use Campbell�Baker�Hausdorff theorem (Eq. (B.1.2)) with

Â = q̂2, (A.6.6)

B̂ = p̂2, (A.6.7)

x = −iθ
2
. (A.6.8)

In that case [
Â, B̂

]
2

=

[
q̂2, p̂2

]
2

=
1

2

(
q̂
[
q̂, p̂2

]
+
[
q̂, p̂2

]
q̂
)

=
1

2
(p̂q̂ [q̂, p̂] + q̂ [q̂, p̂] p̂+ p̂ [q̂, p̂] q̂ + [q̂, p̂] q̂p̂)

=
i

2
(p̂q̂ + q̂p̂+ p̂q̂ + q̂p̂)

= i (p̂q̂ + q̂p̂)

= i (2p̂q̂ + i)

= 2ip̂q̂ − 1. (A.6.9)

Therefore, the phase-shifting operator can be written

Û (θ) = e−iθ/2 exp
(
p̂2
)

exp
(
q̂2
)

exp

{
−iθ

2
(2ip̂q̂ − 1)

}
, (A.6.10)

or
Û (θ) = exp

(
p̂2
)

exp
(
q̂2
)

exp {θp̂q̂} . (A.6.11)

Unfortunately, it is not clear how the term exp {θp̂q̂} acts a state of the form |q〉.
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Theorems and de�nitions

B.1 Campbell�Baker�Hausdorff theorem

Here, we reproduce the statement of this theorem given in [27, Ch. 10.11.5, p. 519]. Let Â, B̂

be two operators that do not necessarily commute, but whose commutator
[
Â, B̂

]
commutes with

both Â and B̂, so that [
Â,
[
Â, B̂

]]
= 0 =

[
B̂,
[
Â, B̂

]]
. (B.1.1)

Then

exp
[
x
(
Â+ B̂

)]
= exp

(
xÂ
)

exp
(
xB̂
)

exp
(
−x2

[
Â, B̂

]
/2
)

= exp
(
xB̂
)

exp
(
xÂ
)

exp
(
x2
[
Â, B̂

]
/2
)

(B.1.2)

B.2 Fourier transform

Let F (q, p) be a function of two scalar variables q and p, and let F̃ (ξ, η) be its Fourier transform
where ξ and η are respectively the canonically conjugate variables of q and p. Then, the Fourier
transform is de�ned as

F̃ (ξ, η) ≡
∫ +∞

−∞

∫ +∞

−∞
F (q, p) eiξq+iηp dqdp, (B.2.1)

and the inverse Fourier transform is

F (q, p) ≡ 1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
F̃ (ξ, η) e−iξq−iηp dξdη. (B.2.2)
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Plots

C.1 Wigner quasi-probability distribution

C.2 Q representation
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MEMO-H506 C.2 Q representation

(a) Real part for α = 0, β = i. (b) Imaginary part for α = 0, β = i. (c) Absolute value for α = 0, β = i.

(d) Real part for α = 0, β = 2i. (e) Imaginary part for α = 0, β = 2i. (f) Absolute value for α = 0, β = 2i.

(g) Real part for α = 0, β = 5i. (h) Imaginary part for α = 0, β = 5i. (i) Absolute value for α = 0, β = 5i.

Figure C.1.1: Plots of the extended Wigner quasi-probability distribution representation.
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(a) Real part for α = 0, β = i. (b) Imaginary part for α = 0, β = i. (c) Absolute value for α = 0, β = i.

(d) Real part for α = 0, β = 2i. (e) Imaginary part for α = 0, β = 2i. (f) Absolute value for α = 0, β = 2i.

(g) Real part for α = 0, β = 5i. (h) Imaginary part for α = 0, β = 5i. (i) Absolute value for α = 0, β = 5i.

Figure C.2.1: Plots of the extended Q representation.
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Appendix D
Matlab code

D.1 Wigner quasi-probability distribution

1 %% Config
2 format long;
3 LineWidth = 1; %Taille de la ligne
4 FontSize = 12; %Taille du texte
5 MarkerSize = 12; %Taille des points
6 winSize = 0.95; %Window size proportion
7

8 nbPts = 200; %Number of points along one direction
9 q = linspace(−5, 5, nbPts);

10 p = linspace(−5, 5, nbPts);
11 [qmesh, pmesh] = meshgrid(q, p);
12

13 X = q;
14 Y = p;
15

16 alpha = 0 + 0*1i;
17 beta = 0 + 5i;
18

19 %% Wigner function of coherent state rho = |alpha><alpha|
20 % % W_a = (1/pi)*exp( −2*(qmesh/sqrt(2) − real(alpha)).^2 − 2*(pmesh/sqrt(2) − imag(

alpha)).^2 );
21 % W_a = @(alpha) (1/pi)*exp( −2*(qmesh/sqrt(2) − real(alpha)).^2 − 2*(pmesh/sqrt(2) −

imag(alpha)).^2 );
22 %
23 % Za = W_a(alpha);
24 % Zb = W_a(beta);
25 % title_name = '';
26 % figure_name = 'Wigner function of coherent state rho = |\alpha><\alpha|';
27 % xlabel_name = 'q';
28 % ylabel_name = 'p';
29 % zlabel_name = 'W_\alpha(q, p)';
30 % file_name = 'Wigner−coherent';
31 %
32 % h = figure('units', 'normalized', 'position', [0 0 1 winSize], 'name', figure_name)

;
33 % hold on; %Figure maximisee
34 % par = surf(X,Y,Z);
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35 % set(get(par, 'Parent'), 'FontSize', FontSize); grid on; grid minor;
36 % title(title_name, 'Fontsize', FontSize);
37 % xlabel(xlabel_name, 'Fontsize', FontSize);
38 % ylabel(ylabel_name, 'Fontsize', FontSize);
39 % zlabel(zlabel_name, 'Fontsize', FontSize);
40 % view(−23,38); %Orientation for plot
41 % % print(h,'−dpng', '−r200', [file_name, '_', num2str(alpha)]);
42

43 %%
44 %% W function of transient density matrix sigma = |alpha><beta|
45 %%
46 Cst = @(alpha, beta) (1/pi)*exp( abs(alpha − beta)^2/2 + (beta*conj(alpha) − conj(

beta)*alpha)/2 − imag(alpha)^2 − imag(beta)^2 − (alpha − conj(beta))^2/2 );
47 exp_qp = @(alpha, beta) exp( −(qmesh + (alpha + conj(beta))/sqrt(2)).^2 + (1i*pmesh +

(conj(beta) − alpha)/sqrt(2)).^2 );
48

49 W_ab = @(alpha, beta) Cst(alpha, beta).*exp_qp(alpha, beta);
50

51 Z1 = real(W_ab(alpha, beta));
52 Z2 = imag(W_ab(alpha, beta));
53 Z3 = abs(W_ab(alpha, beta));
54 title_name = '';
55 figure_name = 'W function of coherent state rho = |\alpha><\beta|';
56 xlabel_name = 'q';
57 ylabel_name = 'p';
58 file_name = 'W−transient';
59

60 %% Real part of W_|alpha><beta|(q,p)
61 zlabel_name = 'real[W_{|\alpha><\beta|}(q,p)]';
62

63 h = figure('units', 'normalized', 'position', [0 0 1 winSize], 'name', [figure_name,
' (real)']);

64 hold on; %Figure maximisee
65 par = surf(X,Y,Z1);
66 set(get(par, 'Parent'), 'FontSize', FontSize); grid on; grid minor;
67 title(title_name, 'Fontsize', FontSize);
68 xlabel(xlabel_name, 'Fontsize', FontSize);
69 ylabel(ylabel_name, 'Fontsize', FontSize);
70 zlabel(zlabel_name, 'Fontsize', FontSize);
71 view(−23,38); %Orientation for plot
72 print(h,'−dpng', '−r200', [file_name, '−real_', num2str(alpha), '_', num2str(beta)]);
73

74 %% Imaginary part of W_|alpha><beta|(q,p)
75 zlabel_name = 'imag[W_{|\alpha><\beta|}(q,p)]';
76

77 h = figure('units', 'normalized', 'position', [0 0 1 winSize], 'name', [figure_name,
' (conj)']);

78 hold on; %Figure maximisee
79 par = surf(X,Y,Z2);
80 set(get(par, 'Parent'), 'FontSize', FontSize); grid on; grid minor;
81 title(title_name, 'Fontsize', FontSize);
82 xlabel(xlabel_name, 'Fontsize', FontSize);
83 ylabel(ylabel_name, 'Fontsize', FontSize);
84 zlabel(zlabel_name, 'Fontsize', FontSize);
85 view(−23,38); %Orientation for plot
86 print(h,'−dpng', '−r200', [file_name, '−imag_', num2str(alpha), '_', num2str(beta)]);
87

88 %% Absolute value of W_|alpha><beta|(q,p)
89 zlabel_name = 'abs[W_{|\alpha><\beta|}(q,p)]';
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90

91 h = figure('units', 'normalized', 'position', [0 0 1 winSize], 'name', [figure_name,
' (abs)']);

92 hold on; %Figure maximisee
93 par = surf(X,Y,Z3);
94 set(get(par, 'Parent'), 'FontSize', FontSize); grid on; grid minor;
95 title(title_name, 'Fontsize', FontSize);
96 xlabel(xlabel_name, 'Fontsize', FontSize);
97 ylabel(ylabel_name, 'Fontsize', FontSize);
98 zlabel(zlabel_name, 'Fontsize', FontSize);
99 view(−23,38); %Orientation for plot

100 print(h,'−dpng', '−r200', [file_name, '−abs_', num2str(alpha), '_', num2str(beta)]);

D.2 Q representation

1 %% Config
2 format long;
3 LineWidth = 1; %Taille de la ligne
4 FontSize = 12; %Taille du texte
5 MarkerSize = 12; %Taille des points
6 winSize = 0.95; %Window size proportion
7

8 nbPts = 100; %Number of points along one direction
9 q = linspace(−5, 5, nbPts);

10 p = linspace(−5, 5, nbPts);
11 [qmesh, pmesh] = meshgrid(q, p);
12

13 X = q;
14 Y = p;
15

16 gamma = qmesh + 1i*pmesh;
17

18 %% Q function of coherent state rho = |alpha><alpha|
19 % alpha = 0 + 0*1i;
20 %
21 % Q_a = (1/pi)*exp(− abs(alpha − gamma).^2);
22 %
23 % Z = Q_a;
24 % title_name = '';
25 % figure_name = 'Wigner function of coherent state rho = |\alpha><\alpha|';
26 % xlabel_name = '';
27 % ylabel_name = '';
28 % zlabel_name = 'Q_\alpha(\gamma)';
29 % file_name = 'Q−coherent';
30 %
31 % h = figure('units', 'normalized', 'position', [0 0 1 winSize], 'name', figure_name)

;
32 % hold on; %Figure maximisee
33 % par = surf(X,Y,Z);
34 % set(get(par, 'Parent'), 'FontSize', FontSize); grid on; grid minor;
35 % title(title_name, 'Fontsize', FontSize);
36 % xlabel(xlabel_name, 'Fontsize', FontSize);
37 % ylabel(ylabel_name, 'Fontsize', FontSize);
38 % zlabel(zlabel_name, 'Fontsize', FontSize);
39 % view(−23,38); %Orientation for plot
40 % % print(h,'−dpng', '−r200', [file_name, '_', num2str(alpha)]);
41
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42 %%
43 %% Q function of coherent state rho = |alpha><beta|
44 alpha = 0 + 0*1i;
45 beta = 0 + 2*1i;
46

47 Q_ab = (1/pi)*exp( −(gamma − alpha).*conj(gamma − beta));
48

49 Z1 = real(Q_ab);
50 Z2 = imag(Q_ab);
51 Z3 = abs(Q_ab);
52 title_name = '';
53 figure_name = 'Q function of coherent state rho = |\alpha><\beta|';
54 xlabel_name = 'real(\gamma)';
55 ylabel_name = 'imag(\gamma)';
56 file_name = 'Q−transient';
57

58 %% Real part of Q_|alpha><beta|(gamma)
59 zlabel_name = 'real[Q_{|\alpha><\beta|}(\gamma)]';
60

61 h = figure('units', 'normalized', 'position', [0 0 1 winSize], 'name', [figure_name,
' (real)']);

62 hold on; %Figure maximisee
63 par = surf(X,Y,Z1);
64 set(get(par, 'Parent'), 'FontSize', FontSize); grid on; grid minor;
65 title(title_name, 'Fontsize', FontSize);
66 xlabel(xlabel_name, 'Fontsize', FontSize);
67 ylabel(ylabel_name, 'Fontsize', FontSize);
68 zlabel(zlabel_name, 'Fontsize', FontSize);
69 view(−23,38); %Orientation for plot
70 print(h,'−dpng', '−r200', [file_name, '−real_', num2str(alpha), '_', num2str(beta)]);
71

72 %% Imaginary part of Q_|alpha><beta|(gamma)
73 zlabel_name = 'imag[Q_{|\alpha><\beta|}(\gamma)]';
74

75 h = figure('units', 'normalized', 'position', [0 0 1 winSize], 'name', [figure_name,
' (conj)']);

76 hold on; %Figure maximisee
77 par = surf(X,Y,Z2);
78 set(get(par, 'Parent'), 'FontSize', FontSize); grid on; grid minor;
79 title(title_name, 'Fontsize', FontSize);
80 xlabel(xlabel_name, 'Fontsize', FontSize);
81 ylabel(ylabel_name, 'Fontsize', FontSize);
82 zlabel(zlabel_name, 'Fontsize', FontSize);
83 view(−23,38); %Orientation for plot
84 print(h,'−dpng', '−r200', [file_name, '−imag_', num2str(alpha), '_', num2str(beta)]);
85

86 %% Absolute value of Q_|alpha><beta|(gamma)
87 zlabel_name = 'abs[Q_{|\alpha><\beta|}(\gamma)]';
88

89 h = figure('units', 'normalized', 'position', [0 0 1 winSize], 'name', [figure_name,
' (abs)']);

90 hold on; %Figure maximisee
91 par = surf(X,Y,Z3);
92 set(get(par, 'Parent'), 'FontSize', FontSize); grid on; grid minor;
93 title(title_name, 'Fontsize', FontSize);
94 xlabel(xlabel_name, 'Fontsize', FontSize);
95 ylabel(ylabel_name, 'Fontsize', FontSize);
96 zlabel(zlabel_name, 'Fontsize', FontSize);
97 view(−23,38); %Orientation for plot
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98 print(h,'−dpng', '−r200', [file_name, '−abs_', num2str(alpha), '_', num2str(beta)]);
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