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Abstract

The theory of majorization is a powerful mathematical tool which naturally
arises in the quantum theory as a consequence of its fundamental connection with
unitarity. In this work, we look for majorization relations based on entropic in-
equalities. We begin by introducing the theory of majorization. We then give some
notions of quantum mechanics, like the density matrix and some algebra, before pre-
senting the concept of entropy which is closely related to the theory of majorization.
We define in the process the Shannon, von Neumann and Rényi entropies, along
with some of their properties and applications. We then define quantum entangle-
ment and give some criteria for separability, which turn out to be applications of
the concepts of majorization and entropy in the quantum theory. We present some
new majorization relations similar to already existing entropic inequalities, and ex-
hibit their advantages and limitations. The rest of the report is dedicated to the
study of the field of Gaussian quantum information. We present the theory, before
introducing other majorization relations, which turn out to be useful because they
allow one to know if it is possible to transform one quantum state into another when
there exists majorization relations between them.

Key Words: Majorization, Entropy, Rényi entropy, Entanglement, Separability,
Catalysis, Bell diagonal states, Gaussian states.
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Résumé

La théorie de la majorization est un puissant outil mathématique qui apparait
naturellement dans la théorie quantique comme une conséquence de sa connexion
avec l’unitarité. Dans ce rapport, nous recherchons des relations de majorization
basées sur des inégalités entropiques. Nous commençons par introduire la théorie de
la majorization. Nous donnons ensuite quelques notions de mécanique quantique,
comme la matrice densité et de l’algèbre, avant de présenter le concept d’entropie
qui est étroitement lié à la théorie de la majorization. Nous définissons dans le
processus les entropies de Shannon, von Neumann et Rényi, avec quelques-unes de
leur propriétés et applications. Nous définissons ensuite l’intrication quantique et
donnons quelques critères de séparabilité, qui s’avèrent être des applications des
concepts de majorization et entropie dans la théorie quantique. Nous présentons
quelques nouvelles relations de majorization similaires à des inégalités entropiques
déjà existantes, et exposons leurs avantages et inconvénients. Le reste du rapport
est dédié à l’étude du domaine de l’information quantique Gaussienne. Nous présen-
tons la théorie, avant d’introduire d’autres relations de majorization, qui s’avèrent
être utiles car elles permettent de savoir s’il est possible de transformer un état
quantique en un autre lorsqu’il existe des relations de majorization entre eux.

Mots clés: Majorization, Entropie, Entropy de Rényi, Intrication, Séparabilité,
Catalyse, États Bell diagonaux, États Gaussiens.
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Introduction

Introduction

Quantum information science, the study of the information processing tasks that can be
accomplished using quantum mechanics systems, has been experiencing a major growth
during the last thirty years. Coupling the subject of quantum mechanics with the theory
of information made it possible to uncover various fascinating applications, going from
quantum cryptography to quantum teleportation. These are the results of some curiosities
specific to the quantum world, like the intriguing phenomenon of entanglement, which is
surprisingly contrary to our intuition.

In order to understand entanglement better, be able to detect it and quantify it, quan-
tum information scientists have been looking for separability criteria as well as measures
of entanglement, a separable state being one which does not exhibit entanglement at
all. Thereby, a number of mathematical relations have been proposed by researchers in
order to accomplish this task. One of them, proposed by Nielsen and Kempe, is based
on an elegant and powerful theory, majorization. The concept of majorization, which
is closely related to the concept of disorder, allows to compare vectors based on their
"randomness". Naturally, this characteristic of the theory of majorization connects it to
the well known measures of disorder provided by entropies. As a consequence, Nielsen
and Kempe’s majorization criterion for separability is based on an entropic inequality for
separability, but is stronger than the latter.

This close relation between the criterion in terms of majorization relation and en-
tropic inequality is at the root of the present work. Taking inspiration from Nielsen and
Kempe’s result, the aim of this project is to look for majorization relations based on
well known entropic inequalities. When it is possible to find such relations, we expect
them, like Nielsen and Kempe’s criterion, to be stronger than the entropic inequalities
on which it is based. This last characteristic makes it interesting and motivating to look
for majorization relations. Furthermore, the application of the theory of majorization to
the field of quantum information is recent, and still has much to offer.

This report is organized as follows. In the first section, we will introduce the theory of
majorization in terms of "classical" probabilities. In the second section, we will exhibit
some notions of quantum mechanics which will be of importance for the application of
the mathematical subject studied in this work to the quantum theory. The majorization
being closely related to the notion of disorder, we will present the concept of entropy in
the third section. Quantum entanglement will be introduced in the fourth section, along
with some well known separability criteria in section 5. Section 6 will contain the first
half of the results investigated in this work. These result will be based on already existing
entropic relations, as we already explained. The second half of the results presented in
this report will be given in section 8, and will this time be related to the more particular
case of Gaussian quantum information, which we will have already introduced in section
7. Notice that apart from section 6 and 8 which contain the results investigated in
this project, every section will be related to the theory of majorization through a short
subsection exhibiting the connection between the mathematical theory and the section,
or simply giving some practical examples.

M. Jabbour 1



1 Theory of majorization

1 Theory of majorization

We begin this report by introducing the main mathematical theory explored in the present
work, the theory of majorization. It is a powerful and elegant mathematical tool which can
be applied to a wide variety of problems in quantum mechanics [17], as we are going to see.
However, before entering the quantum world with the tool of majorization in our hand, we
will present the theory in terms of more "classical objects", such as simple probabilities
distributions. Later, after giving some definitions specific to quantum mechanics, we shall
clearly exhibit in section 2.3 the close relation between the mathematical tool and the
quantum theory.

The theory of majorization is closely related to the notions of "randomness" and
"disorder". It indeed allows us to compare two probability distributions, in order for us
to know which one of the two is more random [14]. Let us now give the most general
definition of majorization.

Definition 1. Given two vectors a,b ∈ Rd, we say that a majorizes (or dominates) b,
written as a � b iff 

k∑
i=1

a↓i ≥
k∑
i=1

b↓i for k = 1, . . . , d− 1,

d∑
i=1

ai =
d∑
i=1

bi

(1.1)

where a↓i and b↓i are the elements of a and b, respectively, sorted in decreasing order.

Note that the original order of the elements in the vectors does not play any role in
terms of majorization. Furthermore, the second equation of system (1.1) is automatically
satisfied when the elements of vectors a and b are elements of probability distributions.

An important difference between te notion of inequality and the theory of majorization
is the fact that the latter only provides a partial order, since the fact that a is not
majorized by b does not automatically imply that b is majorized by a, i.e.

a ⊀ b ; b � a. (1.2)

If both a ⊀ b and a � b hold, the two vectors a and b are incomparable.
When a � b, it can be said that b is more disordered than a. Definition 1 does

not really exhibit the relation between majorization and disorder. In order to see this
connection, let us introduce a useful property, which is as follows.

Property 1. Given the two vectors a,b ∈ Rd, a � b if and only if

b = Da (1.3)

for some doubly stochastic matrix D.

Note that a doubly stochastic matrix (also called bistochastic), is a square matrix
D = (dij) of nonnegative real numbers, each of whose rows and columns sum to 1, i.e.,∑

i

dij =
∑
j

dij = 1. (1.4)

M. Jabbour 2



1 Theory of majorization

Thus, a doubly stochastic matrix is both left stochastic and right stochastic. The set
of bistochastic matrices of a given dimensions is convex. Now, the extreme points of
this convex set are given by the permutation matrices πn [8]. Therefore, any doubly
stochastic matrix can be expressed as a convex combination of permutation matrices.
Using property 1, we see that a � b if and only if there exists a set of d-dimensional
permutation matrices πn and probability distribution {tn} such that

b =
∑
n

tnπna. (1.5)

Consequently, we see that a � b if and only if b can be obtained by randomly permuting
the components of vector a and afterwards taking the average over all permutations [8].
This intuitively shows that b is indeed more disordered than a. As an example, let us
introduce the following proposition.

Proposition 1. Suppose the vector s is any probability distribution on d outcomes, which
means that its components are non-negative and sum to one. We then have [20](

1

d
, ...,

1

d

)
� s. (1.6)

This is indeed true, since the uniform distribution (1/d, ..., 1/d) can be obtained by
averaging over permutations of s. This agrees with our intuition that the uniform distri-
bution on d elements is at least as disordered as any other probability distribution over
d elements [20].

Since Majorization theory is related to the notion of disorder, it should also be con-
nected with measures of this disorder, such as entropies, which we will be defining later
in this report. In order to show this connection, let us introduce another property of
majorization we will often be using in this work. This property namely relates all the
Schur-convex functions (like entropies, as we will state later) to the theory of majoriza-
tion. Before giving this property and the definition of a Schur-convex function, we relate
majorization to the simpler concept of convex functions. The definition of a convex
function is as follows.

Definition 2. Let f be a function from Rn to [−∞,+∞]. Then f is convex if and only
if [23]

f((1− λ)x+ λy) < (1− λ)α + λβ, 0 < λ < 1, (1.7)

whenever f(x) < α and f(y) < β.

A property which relates convex functions to the concept of majorization is the
following[14].

Property 2. The inequality ∑
i

g(xi) ≤
∑
i

g(yi) (1.8)

holds for all continuous convex functions g : R→ R if and only if x ≺ y.

We see that for some majorization relation to hold, some similar inequalities should
hold for all the convex functions. However, the entropies are not related to the property
of convexity. They are in fact related to the concept of Schur-convexity. Let us give the
definition of a Schur-convex function [14].

M. Jabbour 3



2 Some fundamental notions of quantum mechanics

Definition 3. A real-valued function φ defined on a set A ⊂ Rn is said to be Schur-convex
on A if

x ≺ y on A → φ(x) ≤ φ(y). (1.9)

We see that, unlike the case of convex functions, the definition of Schur-convex func-
tions is directly related to the concept of majorization. We are now able to state the
property which connects majorization to the concept of Schur-convex functions. It is as
follows [14].

Property 3. x ≺ y if and only if φ(x) ≤ φ(y) for all Schur-convex functions φ.

As we will be saying when introducing the concept of entropy later in this work, all
the Rényi’s entropies, which are a measure of disorder, are in fact Schur-concave, a con-
cave function being the negative of a convex function. Therefore, for some majorization
relation to be true, some similar inequality should be verified for at least all the Rényi’s
entropies. We conclude that the concept of entropy, which we will be introducing in
section 3, is closely related to the theory of majorization.

As we already stated, majorization is a powerful tool when studying quantum systems.
We are going to show this, but we need to introduce some general concepts of quantum
mechanics before. This is the aim of the next section.

2 Some fundamental notions of quantum mechanics

We are now going to explain some fundamental notions in quantum mechanics, like
the density matrix, which is used to described any quantum system, as well as some
mathematical operations, which are used to manipulate quantum states.

2.1 Density matrix

Here we introduce one of the very basic concepts of quantum mechanics. In the quantum
mechanics formalism, a system can be described by a mathematical function, called wave
function, which completely describes the quantum state of the system. A wave function
ψ can be associated with a vector, which is represented by the notation

|ψ〉 (2.1)

in "bra-ket" notations. The vector |ψ〉 is called pure state, since the system is charac-
terized by one unique vector |ψ〉. However, in the general case, one does not have access
to the entire information about the system. Consequently, one does not know in which
pure state the quantum system is. That is why it is usually described as a statistical
ensemble of several quantum states (|ψ1〉, |ψ2〉, ...), with the use of a certain probability
distribution (p1, p2, ...). In this case, the system is described by a density matrix, usually
written as ρ (we omit the time dependence of the state here), which is an operator that
completely characterises any quantum state [7], and is a matrix associated to the wave
function of the state. The density matrix describing the state is defined by

ρ =
∑
i

pi |ψi〉 〈ψi| , (2.2)

M. Jabbour 4



2.1 Density matrix

with the conditions (characteristic of a probability distribution)
0 ≤ pi ≤ 1 ∀i∑
i

pi = 1. (2.3)

The density matrix described by equation (2.2) is called a mixed state in general, and
generalises the case of the pure state. Indeed, when the state is pure, the density matrix
reduces to

ρ = |ψ〉 〈ψ| (2.4)

where ψ is the wave function of the pure state. In this case, the vector |ψ〉 is sufficient
to characterize the quantum state.

Lets us exhibits some important properties of the density matrix that will be useful
in the following:

1. The density matrix is a hermitian operator : ρ† = ρ.

2. The density matrix is normalized : Tr ρ = 1 (the definition of the operator Tr will
be given later, see section 2.2.3).

3. The density matrix is positive : ρ ≥ 0.

The last property tells us in particular that all the eigenvalues of ρ are positive. There
is also one more property which is different whether we are in the case of pure states or
mixed states. In the case of pure states, the density matrix is a projector

ρ2 = ρ. (2.5)

The last condition leads to
Tr ρ2 = 1. (2.6)

This property is not verified in the case of a mixed state, for which

Tr ρ2 < 1. (2.7)

Note that the last condition often provides the easiest way to verify if a state is pure or
if it is in a statistical mixture. As we shall see, it is also connected to the Rényi entropy
of order 2, which we already mentioned before. We will define the Rényi entropy of order
α later, as we already said, but let us give the particular definition of the Rényi entropy
of order 2 in order to see its relation with condition (2.7). For a discrete random variable
X with probabilities pi, it is defined by

I2(X) = − log

(
n∑
i=1

p2
i

)
. (2.8)

In order to see the connection with relation (2.7), take a state ρ, which can always be
written in its diagonal decomposition

ρ =
n∑
i=1

λi |i〉 〈i| , (2.9)

M. Jabbour 5



2.2 Some linear algebra

where the λi are its eigenvalues and the {|i〉}i=1,...,n are orthogonal states. The trace of
ρ2 is given by (again, the definition of the trace operation will be given later)

Trρ2 =
n∑
i=1

λ2
i . (2.10)

We therefore see that condition (2.7) is equivalent to

I2(X) > 0, (2.11)

where the discrete random variable X has probabilities λi. We already mentioned in the
section where we introduced the concept of majorization that the entropy is a measure
of disorder. Indeed, we see that if I2(X) = 0, according to condition (2.7), ρ is a pure
state. In this case, it is not given by a statistical ensemble. This is consistent with the
fact that its measure of disorder is equal to 0. If ρ was a mixed state, its entropy of order
2 would be greater than 0, which is consistent with the fact that its density matrix would
be given by a statistical ensemble of pure states.

2.2 Some linear algebra

Let us now introduce some linear algebra that will be useful later. Setting forth some
mathematical definitions will allow us to choose them once and for all.

2.2.1 Tensor product

Vectors Suppose u is a vector in H1 and v is a vector in H2, where H1 and H2 are
Hilbert spaces of dimensions k and n, respectively. The tensor product w of u and v is
a vector in a Hilbert space H of dimension k × n. If u = (u1, ..., uk) and v = (v1, ..., vn),
w is given by (we write w as a column vector for simplicity)

w = u⊗ v =


u1v
u2v
...

ukv

 =



u1v1
...

u1vn
u2v1
...

u2vn
...

ukvn


Matrices Another useful tensor product is the one between matrices, since we will be
performing tensor product between density operators. Suppose B1 : H1 → H1 the space
of the linear operators acting on the Hilbert space H1. Suppose, similarly, B2 : H2 → H2

the space of the operators acting on the Hilbert space H2. Given A ∈ B1 and B ∈ B2

two matrices, defined by

A =

A11 · · · A1l
... . . . ...
Ak1 · · · Akl

 (2.12)

M. Jabbour 6



2.2 Some linear algebra

and

B =

B11 · · · B1q
... . . . ...
Bp1 · · · Bpq

 , (2.13)

the tensor product of A and B is a matrix C in the space B : H1⊗H2 → H1⊗H2 defined
by

C = A⊗B =

A11B · · · A1lB
... . . . ...

Ak1B · · · AklB

 (2.14)

which results in

C =



A11B11 · · · A11B1q A12B11 · · · A12B1q · · · A1lB11 · · · A1lB1q
... . . . ...

... . . . ...
... . . . ...

A11Bp1 · · ·A11Bpq A12Bp1 · · · A12Bpq · · · A1lBp1 · · · A1lBpq

A21B11 · · · A21B1q A22B11 · · · A22B1q · · · A2lB11 · · · A2lB1q
... . . . ...

... . . . ...
... . . . ...

A21Bp1 · · · A21Bpq A22Bp1 · · · A22Bpq · · · A2lBp1 · · · A2lBpq
... . . . ...

... . . . ...
... . . . ...

Ak1B11 · · · Ak1B1q Ak2B11 · · · Ak2B1q · · · AklB11 · · · AklB1q
... . . . ...

... . . . ...
... . . . ...

Ak1Bp1 · · ·Ak1Bpq Ak2Bp1 · · · Ak2Bpq · · · AklBp1 · · · AklBpq



. (2.15)

Let us state a useful property of tensor products we will be using later.

Property 4. Suppose u and v are two vectors, and A and B are two matrices. Then

(Au)⊗ (Bv) = (A⊗B) (u⊗ v) . (2.16)

The tensor product is a central operation in the field of quantum information, and
more generally in the field of quantum mechanics, because it allows us to combine different
systems. For example, if system A is characterized by density matrix ρA and system B is
characterized by density matrix ρB, then the total system resulting from the combination
of systems A and B will be characterized by the density operator

ρAB = ρA ⊗ ρB. (2.17)

The order with which we perform the tensor product is important because it will affect
the way an operator only acting on one of the spaces of the two subsystems A and B,
will act on the space of the total system AB.

2.2.2 Transpose and partial transpose

Transposition One basic operation in the field of quantum mechanics is the transpose
T of a matrix in a Hilbert space H. Using the basis |n〉 of H, the transposition is defined
as the mapping which transforms ρ =

∑
n,m ρnm |n〉 〈m| into [2]

T(ρ) = ρT ≡
∑
n,m

ρnm |m〉 〈n| (2.18)

The elements of the transpose ρT of ρ are

[ρT]nm = ρmn. (2.19)
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2.2 Some linear algebra

Partial Transposition Having shown earlier how to combine two systems, we can in-
troduce another important operation of linear algebra, known as the partial transpose. It
consists namely in performing the transpose operation on only one of the two subsystems
(here we take the case of only two subsystems, but the total system could be composed
of more). Suppose subsystem A is related to Hilbert space HA with basis

∣∣nA〉 and sub-
system B is related to Hilbert space HB with basis

∣∣µB〉, then the partial transposition
in HA, (TA ⊗ IB)ρAB = (ρAB)TA is given by the mapping of ρAB: [2]

ρAB ↔ ρmµ,nν =
〈
mA, µB

∣∣ ρAB ∣∣nA, νB〉 (2.20)

onto
(ρAB)TA ↔ ρTA

mµ,nν = ρnµ,mν . (2.21)

2.2.3 Trace and partial trace

Trace In section 2.1, one of the properties of the density matrix was based on the
trace (Tr), which acts on an operator (the density matrix in the case of section 2.1).
Here we define it in order to introduce another object, the partial trace. The trace is a
complex-valued function of a linear operator. Its action on an operator A is defined by
[2]

Tr[A] ≡
∑
i

〈i|A |i〉 , (2.22)

where |i〉 is any orthonormal basis.

Partial trace The partial trace acts on only one of the subspaces of the system. For
example, the partial trace over the space HA of an operator ZAB is defined by [2]

TrA[ZAB] ≡
∑
n

〈
nA
∣∣ZAB

∣∣nA〉 , (2.23)

where
∣∣nA〉 is any orthonormal basis in Hilbert space HA. The order in which one applies

the partial traces over different subsystems is irrelevant. Indeed,

TrB[TrA[ZAB]] =
∑
n

〈
nB
∣∣ (TrA[ZAB]

) ∣∣nB〉
=
∑
n

〈
nB
∣∣(∑

m

〈
mA
∣∣ZAB

∣∣mA
〉) ∣∣nB〉

=
∑
m

〈
mA
∣∣(∑

n

〈
nB
∣∣ZAB

∣∣nB〉) ∣∣mA
〉

=
∑
m

〈
mA
∣∣ (TrB[ZAB]

) ∣∣mA
〉

= TrA[TrB[ZAB]]

(2.24)

Furthermore, if one applies all the partial traces relative to all the subsystems, it is
equivalent to applying the trace. Therefore,

Tr[ZAB] = TrA[trB[ZAB]] = TrB[trA[ZAB]]. (2.25)
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2.3 Majorization in quantum mechanics

The importance of the partial trace reside in the fact that it allows us to recover one
of the subsystems starting from the total system. In other words, if one wants the density
matrix ρA of subsystem A when one has the density matrix ρAB of the total system, one
applies the partial trace over system B, namely

ρA = TrB[ρAB]. (2.26)

2.2.4 The Schmidt decomposition

The density matrix, the partial trace and the partial transposition are powerful tools for
the study of composite quantum systems, which are at the root of the field of quantum
information. There are additional tools of great value for the study of quantum systems.
One of them issubsubsec:The Schmidt decomposition the Schmidt decomposition.

Suppose, like previously, that we have a composite system AB in the Hilbert space
HAB. This system is the result of the composition of the two subsystems A and B, which
are in the Hilbert spaces HA and HB, respectively, such that

HAB = HA ⊗HB. (2.27)

Suppose furthermore that the dimensions of the subsystems are given by dimHA = a
and dimHB = b. Let

∣∣ψAB〉 be a pure state in the space AB. The density matrix
corresponding to this pure state is given by

ρAB =
∣∣ψAB〉 〈ψAB∣∣ , (2.28)

and, like previously, the reduced density matrices of the subsystems A and B are given
by ρA = trB[ρAB] and ρB = trA[ρAB], respectively. Then the following results are true:
[2]

1. The vector
∣∣ψAB〉 can be written in the form of a Schmidt decomposition

∣∣ψAB〉 =
k∑

n=1

√
pn
∣∣uAn 〉 ∣∣vBn 〉 with pn > 0 ∀ n (2.29)

with k ≤ min(a, b), where
∣∣uAn 〉 and

∣∣vBn 〉 are the orthonormalised eigenvectors of
ρA ∈ HA and ρB ∈ HB, respectively.

2. ρA and ρB have the same positive eigenvalues p1, ..., pk.

An interesting consequence of this result is the fact that for a bipartite pure state, all
the measures of entropies on subsytem A are respectively equal to the same measures of
entropy on subsystem B. Indeed, as we are going to see in the next section, the measure
of entropy of a state only depends on its eigenvalues. Since the density matrices of the
two subsystems A and B of a pure state have the same eigenvalues, one can conclude
that they also have the same measures of entropy.

2.3 Majorization in quantum mechanics

What connections are there between majorization and quantum mechaincs ? Having in-
troduced the notions of sections 2.1 and 2.2, we are now able to answer this question. In
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2.3 Majorization in quantum mechanics

the classical case of section 1, we used the majorization theory in order to analyze prob-
ability distributions. The different values of the probability distributions where arranged
in vectors, which were compared using majorization relations. In the field of quantum
mechanics, it is interesting to compare the eigenvalues of density matrices. The eigen-
values form probability distributions, since they are all non-negative and sum to 1 when
the density matrix represents a state.

The main reason for the close relation between majorization and quantum mechanics
may be appreciated by inspection of two elegant results [17] which we now state. The
first result is called Horn’s lemma and is as follows.

Proposition 2. Horn’s lemma: For two vectors r and s, r ≺ s if and only if ri =∑
j |uij|2sj for some unitary matrix u = (uij) of complex numbers.

The second result is called Uhlmann’s theorem and is as follows.

Proposition 3. Uhlmann’s theorem: For the two vectors λR and λS composed of the
eigenvalues of the two respective Hermitian matrices R and S, the relation R ≺ S is true
if and only if there exist unitary matrices Uj and a probability distribution {pj} such that

R =
∑
j

pjUjSU
†
j . (2.30)

Unitarity is of fundamental importance in the field of quantum mechanics. As we
will explain later, unitary transformations are an important type of quantum operations,
since they are in fact reversible. This ensures that relations of the type featuring in
Horn’s lemma and Uhlmann’s theorem arise frequently [17], and it is this which accounts
for many of the applications of majorization to quantum mechanics.

Let us exhibit an interesting application of the theory of majorization in the field of
quantum information. This application is related to one kind of transformations that can
be performed on quantum systems. These transformations are the processing of local
operations and classical communication (LOCC). Suppose we have two pure bipartite
states |ψ〉 and |φ〉 of Alice and Bob’s system. The theory of majorization allows us to
know if it possible to perform LOCC in order to transform |ψ〉 into |φ〉, by comparing the
vectors of eigenvalues of the states corresponding to one of the subsystems. Here, denote
the states of Alice’s system by

ρψ ≡ TrB (|ψ〉 〈ψ|) (2.31)
and

ρφ ≡ TrB (|φ〉 〈φ|) . (2.32)
Let λψ and λφ be the vectors of eigenvalues of ρψ and ρφ, respectively. Nielsen’s theorem
about LOCC is the following [16].

Theorem 1. |ψ〉 transforms to |φ〉 using local operations and classical communication if
and only if λψ is majorized by λφ. More succinctly,

|ψ〉 → |φ〉 iff λψ ≺ λφ (2.33)

There are many applications of the theory of majorization in the field of quantum
mechanics. Theorem 1 is one of them. Another one is one of the separability criteria we
will be introducing later. Furthermore, as we already explained, the goal in this work
will be to introduce new majorization relations, which will have more applications in the
field of quantum information.
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3 Entropy

3 Entropy

We will now introduce a key concept in the field of quantum information, the entropy.
Entropy measures the amount of uncertainty in the state of a physical system [18]. It is
a very powerful tool, since it allowed Shannon to establish a mathematical theory around
the concept of information. Indeed, before Shannon’s contribution, it was not possible to
quantify information. We will see how this concept also applies to the field of quantum
mechanics, generating the field of quantum information itself.

3.1 Shannon entropy

3.1.1 Definition

The Shannon entropy was introduced by Shannon himself in the field of classical infor-
mation. There are two ways of viewing the Shannon entropy. Suppose we have a random
variable X, and we learn its value. In one point of view, the Shannon entropy quantifies
the amount of information we gain when we learn the value of X (after measurement).
In another point of view, the Shannon entropy tells us the amount of uncertainty about
the variable X before we learn its value (before measurement).

Definition 4. Suppose there is a probability distribution p1, ..., pn associated to the ran-
dom variable X. The Shannon entropy associated with it is defined by

H(X) ≡ −
∑
x

px log px, (3.1)

where the log function is taken to base 2.

Note that there is no problem with the definition in the case of a zero probability,
since

lim
x→0

x log x = 0. (3.2)

The entropy is usually measured in bits of information, which means that when we learn
the value of a random variable X, we acquire H(X) bits of information about X in the
process. This also means that there is less uncertainty about the random variable X after
the measurement, consistent with the two interpretations of the entropy.

3.1.2 Conditional entropy and mutual information

Suppose we have two random variables X and Y . Now what would be interesting is
to relate the information content of X to the information content of Y . This can be
done using two powerful concepts of information theory, the conditional entropy and the
mutual information. Before introducing these two concept, we set forth a new definition,
which is the definition of the joint entropy of a pair of random variables.

Definition 5. The joint entropy of X and Y is defined by [18]

H(X, Y ) ≡ −
∑
x,y

p(x, y) log p(x, y). (3.3)

The joint entropy measures the total uncertainty about the pair (X, Y ).
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3.1 Shannon entropy

Suppose now that we only learn the value of Y . There is still some unknown informa-
tion about X, but this information content is not given by H(X) in general. Indeed, some
information could be common to X and Y . Therefore, in this case, if we know all the
information about Y , then we could know part of the information of X. The remaining
unknown information about X is called entropy of X conditional on knowing Y .

Definition 6. The entropy of X conditional on knowing Y is defined as [18]

H(X|Y ) ≡ H(X, Y )−H(Y ). (3.4)

This quantity is smaller than H(X) in general. Again, the conditional entropy
H(X|Y ) is a measure of the uncertainty on the value of X, given that we know the
value of Y .

We talked about the fact that their could be some information shared by the two
random variables X and Y . This information is called mutual information content of X
and Y .

Definition 7. The mutual information content of X and Y is defined by [18]

H(X : Y ) ≡ H(X) +H(Y )−H(X, Y ). (3.5)

Indeed, when we compute the value H(X) + H(Y ), we take the information content
that X and Y have in common twice. In addition to that, we have the remaining informa-
tion about X, and the remaining information about Y . That is why, in order to compute
the mutual information of X and Y , we need to remove this remaining information in
addition to the common information content, and this corresponds to the joint entropy
H(X, Y ). This explains equation (3.5).

In order to understand this further, suppose we’re in the case of independent variables
X and Y . In this case, we have p(x, y) = p(x)p(y), and the joint entropy reduces to

H(X, Y ) = −
∑
x,y

p(x, y) log p(x, y)

= −
∑
x,y

p(x)p(y) log[p(x)p(y)]

= −
∑
x,y

p(x)p(y) (log[p(x)] + log[p(y)])

= −
∑
y

p(y)
∑
x

p(x) log[p(x)]−
∑
x

p(x)
∑
y

p(y) log[p(y)]

= −
∑
x

p(x) log[p(x)]−
∑
y

p(y) log[p(y)]

= H(X) +H(Y )

(3.6)

since p(x) and p(y) are probability distributions. Since in this case, there is no common
information between the two variables, the conditional entropy of X should simply be
equal to the entropy of X. This is indeed the case:

H(X|Y ) = H(X, Y )−H(Y )

H(X|Y ) = H(X) +H(Y )−H(Y )

H(X|Y ) = H(X)

(3.7)
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3.1 Shannon entropy

Furthermore, it is obvious that the mutual information should be zero. Again, this is
verified since

H(X : Y ) = H(X) +H(Y )−H(X, Y )

H(X : Y ) = H(X) +H(Y )−H(X)−H(Y )

H(X : Y ) = 0

(3.8)

Note that an interesting equality relating the conditional entropy to the mutual in-
formation is given by

H(X : Y ) = H(X)−H(X|Y ). (3.9)

3.1.3 Properties

Here we give some basic properties of the Shannon entropy that might be useful [18].

1. The Shannon entropy H(X) is a concave function of the probability distribution
corresponding to its argument X.

2. H(X, Y ) = H(Y,X), H(X : Y ) = H(Y : X).

3. H(Y |X) ≥ 0 and thus H(X : Y ) ≤ H(Y ).

4. H(X) ≤ H(X, Y ).

5. H(Y |X) ≤ H(Y ) and thus H(X : Y ) ≥ 0.

The last property is in fact known as the subadditivity, and is often written in the
equivalent way

H(X, Y ) ≤ H(X) +H(Y ) (3.10)

with equality iff X and Y are independent variables. This property will be at the root of
some majorization relations we will be studying.

3.1.4 Connection with the theory of majorization

Here we show how the Shannon entropy is connected to the theory of majorization.
They are both linked to the measure of disorder in a system. However, the theory of
majorization usually gives stronger criteria than the entropic inequalities. In order to see
this, let us give the following proposition.

Proposition 4. Take a random variable X associated to probabilities {pi} and a random
variable Y associated to probabilities {qi}. If the vector p ≡ (p1, p2, ...) is majorized by
the vector q ≡ (q1, q2, ...), i.e. p ≺ q, then [17]

H(X) ≥ H(Y ), (3.11)

where H is the Shannon entropy.

Proposition 4 is in fact a particular case of property 2. Indeed, the Shannon entropy
is a concave fonction, as stated in its properties. Proposition 4 can be proved very easily
using the property of concavity of the Shannon entropy. Suppose p ≺ q, then according to
relation (1.5), there exists a set of permutation matrices πn and probability distribution
{tn} such that

p =
∑
n

tnπnq. (3.12)
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3.2 von Neumann entropy

From the concavity of the Shannon entropy, it follows that

H(X) ≥
∑
n

tnH(Y ) (3.13)

since permuting the elements of q does not change its Shannon entropy. Knowing that
{tn} is a probability distribution, we have

H(X) ≥ H(Y ). (3.14)

We therefore see that some relations of order based on the majorization theory imply
some relations of order based on the entropy. However, the opposite is not true. Indeed,

H(X) ≥ H(Y ) (3.15)

does not imply p ≺ q in general. This implies that measures based on the entropy are
essentially weaker than the notion of majorization.

3.2 von Neumann entropy

3.2.1 Definition

The Shannon entropy we described in the previous sections measures the uncertainty
about some random variables associated with some classical probability distributions.
The von Neumann entropy does the same, but in the field of quantum mechanics. Here,
the classical probability distributions are replaced by density operators.
Definition 8. The von Neumann entropy of a quantum state ρ is defined by [18]

S(ρ) ≡ −Tr(ρ log ρ). (3.16)

If the λx are the eigenvalues of ρ, then the von Neumann entropy becomes

S(ρ) = −
∑
x

λx log λx. (3.17)

The last equation is exactly the same as equation (3.1), but with the eigenvalues of the
state ρ replacing the classical probabilities.

3.2.2 Conditional entropy and mutual information

By analogy with what we did in section 3.1.2, it is possible to define joint entropies,
conditional entropies and mutual information for composite quantum systems. Suppose
we have a composite system AB in the Hilbert space HAB, resulting from the tensor
product of the two Hilbert spaces HA and HB, which correspond to subsystems A and
B, respectively. Let ρAB be a density matrix in HAB, such that

ρAB = ρA ⊗ ρB (3.18)

where ρA ∈ HA and ρB ∈ HB.
Definition 9. The joint entropy for the composite system is then obviously given by [18]

S(A,B) ≡ −Tr
(
ρAB log(ρAB)

)
. (3.19)

Definition 10. The conditional entropy is given by [5]

S(A|B) ≡ S(A,B)− S(B), (3.20)

Definition 11. The mutual information is defined by [5]

S(A : B) ≡ S(A) + S(B)− S(A,B). (3.21)
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3.2 von Neumann entropy

3.2.3 Properties

Some of the properties we introduced in section 3.1.3 are still valid in the field of quantum
information, but this is not the case for some others. Here we give some useful properties
of the von Neumann entropy [18].

1. The von Neumann entropy S(ρ) is concave.

2. The von Neumann entropy is non-negative. The entropy is zero iff the state is pure.

3. In a Hilbert space of dimension d, the entropy is at most log d. The entropy is equal
to log d iff the system is in the completely mixed state I/d.

4. If a composite system AB is in a pure state, then the entropies corresponding to
the reduced density matrices are equal, S(A) = S(B).

5. Joint entropy theorem: Suppose pi are probabilities, |i〉 are orthogonal states
for a system A, and ρi is any set of density operators for another system, B. Then

S

(∑
i

pi |i〉 〈i| ⊗ ρi

)
= H(pi) +

∑
i

piS(pi), (3.22)

where S(ρ) is the von Neumann entropy of ρ and H(ρ) is the Shannon entropy of
ρ.

One interesting feature of the quantum systems is that the von Neumann entropy of
the composite system can be lower than the entropy of the subsystems. This is the case
when the composite system exhibits some entanglement. We therefore have the following
property:

Suppose
∣∣ψAB〉 is a pure state of a composite system in a Hilbert space HAB.

∣∣ψAB〉
is entangled iff

S(B|A) < 0. (3.23)

Finally, in the quantum case, it is also possible to define the subadditivity. Sup-
pose again a composite system AB. The joint entropy for the two systems satisfies the
inequality [18]

S(A,B) ≤ S(A) + S(B). (3.24)

3.2.4 Connection with the theory of majorization

Like in the case of the Shannon entropy, the von Neumann entropy is connected to the
concept of majorization, since it is a measure of disorder applied to quantum systems.
We can state a proposition similar to proposition 4, and which relates the von Neumann
entropy to the theory of majorization. The proposition is as follows.

Proposition 5. Take two density matrices ρ and σ. If ρ ≺ σ, then [17]

S(ρ) ≥ S(σ), (3.25)

where S is the von Neumann entropy.
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3.3 Rényi entropy

This proposition can be proved using the concavity of the von Neumann entropy.
Suppose ρ ≺ σ, then according to Uhlmann’s theorem there exist probabilities pj and
unitaries Uj such that

ρ =
∑
j

pjUjσU
†
j . (3.26)

From the concavity of the von Neumann entropy it follows that

S(ρ) ≥
∑
j

pjS(UjσU
†
j ). (3.27)

Since S(UjσU
†
j ) = S(σ), we end up with

S(ρ) ≥ S(σ). (3.28)

Here we see the connection between the theory of majorization and the von Neumann
entropy, as we did for the Shannon entropy. In fact, one can show that some similar
relations can be found for all the Rényi entropies we are going to define in the next
section. This is a consequence of property 3, as we already said.

3.3 Rényi entropy

Here we briefly introduce a notion with generalises the Shannon entropy. It will be
useful later when studying some majorization relations. Suppose X is a random variable
associated with a probability distribution pk.

Definition 12. Rényi’s entropy of order α of X is defined by [22]

Iα(X) =
1

1− α
log

(∑
k

pαk

)
(3.29)

with α 6= 1 and α ≥ 0.

The Rényi entropy is another measurement of the uncertainty there is about the
random variable X. In the limit where α→ 1, it can be shown that Iα converges to the
Shannon entropy (3.1).

Let us exhibit some properties of the Rényi entropy [22], since it is of great important
in this work, as we will see later.

1. The Rényi entropy Iα(X) is a continuous function of all the probabilities pk associ-
ated to the random variable X.

2. The Rényi entropy Iα(X) is permuationally symmetric: that is, the position change
of any two or more probabilities pk associated to the random variable X will not
change the entropy value.

3. Additivity: If the random variable X is associated to the probabilities pk and if the
random variable Y is associated to the probabilities qk, where the pk and the qk
are two independent probability distributions, then the joint entropy of X and Y
is gven by

Iα(X, Y ) = Iα(X) + Iα(Y ). (3.30)
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4 Quantum Entanglement

4. The Rényi entropy Iα(X) is a Schur-concave function of the random variable X.

An additional interesting property is the fact that for all the values of α, the Rényi
entropy of the uniform distribution W on d-elements is equal to log d. Indeed, we have

Iα(W ) =
1

1− α
log

(
d∑

k=1

1

dα

)
(3.31)

with α 6= 1 and α ≥ 0. Therefore,

Iα(W ) =
1

1− α
log

(
d

dα

)
=

1

1− α
log
(
d1−α) = log d, (3.32)

for all the α ≥ 0, with α 6= 1. We consequently see that for the uniform distribution, all
the measures of order provided by the Rényi entropies with different values of α are the
same.

4 Quantum Entanglement

After introducing majorization, the main mathematical theory explored in the present
work, along with the concept of entropy, it would be fitting to exhibit a fascinating phys-
ical phenomenon for which majorization is a powerful modelling tool. This phenomenon
is nowadays known as entanglement and is considered as one of the main "resources" in
the field of quantum information.

Quantum entanglement is a purely quantum mechanical resource [18]. It is a kind of
quantum correlation between the states of different systems, which interacted at least at
one moment of their existence. Entanglement is fascinating in the sense that even if the
systems become separated by an arbitrarily important distance, they still can affect one
another through this quantum effect, and the speed at which they do it is arbitrarily high.
It is the effect which is responsible for a large quantity of interesting phenomena that
would make the field of quantum information much less captivating if they didn’t exist.
One of them is quantum teleportation, which we are going to explain in the next section,
in order to show how entanglement can be used as a resource for quantum information
processes.

4.1 Quantum Teleportation

In order to illustrate the utility of quantum entanglement, let us introduce the concept of
quantum teleportation [3] which, as the name suggests, would be impossible to perform
if the only accessible resources were classical (no entanglement). Entanglement is indeed
fundamental if we wish to perform quantum teleportation. Suppose Alice wants to send
some unknown quantum bit to Bob. Suppose, further, that they can only communicate
via classical means, and that they have at their disposal one pair of so called entangled
qubits. [12] What Alice could do is to measure the qubit and try to guess the state
knowing the results of the measurement, and then describe it to Bob via their classical
channel. However, this way there is a certain probability that the state described by Alice
won’t be the real qubit. Therefore, Alice needs a way to transfer the state with certainty,
and this can be done using entanglement as a resource.
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4.1 Quantum Teleportation

Suppose that the state which is to be teleported is [18]

|ψ〉 = α |0〉+ β |1〉 (4.1)

where α and β are unknown. The entangled state that Alice and Bob have at their
disposal is one of the four EPR states, or Bell states, which are defined as maximally
entangled quantum states of two qubits. Suppose the EPR state Alice and Bob possess
is of the form

|ψ+〉 =
|00〉+ |11〉√

2
(4.2)

In order to perform teleportation, Alice and Bob begin by taking the tensor product of
the state |ψ〉 and the EPR state

|ψ0〉 = |ψ〉 |ψ+〉 =
1√
2

[α |0〉 (|00〉+ |11〉) + β |1〉 (|00〉+ |11〉)] (4.3)

In our convention, the first two qubits on the left belong to Alice (It is Alice who wants
to teleport her state |ψ〉 to Bob, and she possesses a part of the EPR state) and the third
qubit belongs to Bob (Bob possesses the other part of the EPR state). Alice then send
her two qubits through a CNOT gate. Without going into details, we will only show the
effect of the CNOT gate on the states |00〉, |01〉, |10〉 and |11〉. The action of the CNOT
gate on these states is the following

|00〉 7−→ |00〉
|01〉 7−→ |01〉
|10〉 7−→ |11〉
|11〉 7−→ |10〉

(4.4)

After sending her two qubits into the CNOT gate, Alice obtains

|ψ1〉 =
1√
2

[α |0〉 (|00〉+ |11〉) + β |1〉 (|10〉+ |01〉)] (4.5)

Another important gate in the field of quantum information is the Hadamard gate, which
has the following effect on the particular states |0〉, |1〉, (1/

√
2)(|0〉−|1〉) and (1/

√
2)(|0〉+

|1〉)
|0〉 7−→ 1√

2
(|0〉+ |1〉)

|1〉 7−→ 1√
2

(|0〉 − |1〉)

1√
2

(|0〉 − |1〉) 7−→ |1〉

1√
2

(|0〉+ |1〉) 7−→ |0〉

(4.6)

Alice sends her first qubits through the Hadamard gate, obtaining

|ψ2〉 =
1

2
[α(|0〉+ |1〉)(|00〉+ |11〉) + β(|0〉 − |1〉)(|10〉+ |01〉)] (4.7)

The state |ψ2〉 can be rearranged into

|ψ2〉 =
1

2
[|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉) + |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)]

(4.8)
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4.2 Some important entangled states : The Bell states

We see from expression (4.8) that there are four terms, in which we have different com-
binations of the qubits |0〉 and |1〉, and of the amplitudes α and β (third qubit). For
example, in the first term, we find the state |ψ〉 = α |0〉 + β |1〉, but in the other terms,
some operations should be done on the third qubit in order to obtain the wanted state
|ψ〉. Therefore, if Alice performs some measurement on her two qubits and obtains the
result 00, then Bob’s system will be in the state |ψ〉. Similarly, we can read Bob’s state
according to Alice’s measurement:

00 7−→ |ψ3(00)〉 ≡ [α |0〉+ β |1〉]
01 7−→ |ψ3(01)〉 ≡ [α |1〉+ β |0〉]
10 7−→ |ψ3(10)〉 ≡ [α |0〉 − β |1〉]
11 7−→ |ψ3(11)〉 ≡ [α |1〉 − β |0〉]

(4.9)

If Alice’s measurement results in a different state then |00〉, Bob needs to perform some
quantum operation on his state in order to recover the state |ψ〉. In order to explain this,
we need to introduce two other quantum gates known as the sign flip and the bit flip.
The effect of the sign flip is the following:

a |0〉+ b |1〉 7−→ a |0〉 − b |1〉 (4.10)

while the effect of the bit flip is the following

a |0〉+ b |1〉 7−→ a |1〉+ b |0〉 (4.11)

for any two amplitudes a and b. For example, the combined effects of the two doors gives,
if we begin by applying the bit flip, followed by the sign flip

a |0〉+ b |1〉 7−→ −a |1〉+ b |0〉 (4.12)

for any two amplitudes a and b. If we apply the two doors in the opposite order, we get

a |0〉+ b |1〉 7−→ a |1〉 − b |0〉 (4.13)

for any two amplitudes a and b. Going back to Alice and Bob’s problem, we see that
if Alice gets the measurement result 01, Bob needs to apply the bit flip to his state. If
Alice’s measurement result is 10, he needs to apply the sign flip to his states. Finally, if
the measurement result is 11, Bob needs to apply both gates to his state. Of course, Alice
needs to send her measurement result to Bob in order for teleportation to be possible,
therefore the process of teleportation cannot be faster than light. However, teleportation
wouldn’t have possible without the entanglement resource. This example therefore shows
the importance of entanglement in the field of quantum information.

4.2 Some important entangled states : The Bell states

Let us now introduce some well known entangled states, which will be useful in the
following because they will allow us to verify some majorization relations.

A fundamental group of quantum states is the class composed by the Bell states, or
EPR states, which are defined as

|Φ+〉 =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) (4.14)
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4.3 Separable states

|Φ−〉 =
1√
2

(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B) (4.15)

|Ψ+〉 =
1√
2

(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B) (4.16)

|Ψ−〉 =
1√
2

(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B) (4.17)

These states are named after John S. Bell, who worked on his Bell inequality. The EPR
states characterize well the type of systems described by Einstein, Podolsky and Rosen
in their EPR paper [18], and are therefore a good example of entanglement. Indeed, it
is easy to notice that there are some correlations between the two subsystems composing
the total system, and that these correlations go beyond the classical world. In order to
see that, take the first Bell state

|Φ+〉 =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B). (4.18)

If one measures the first qubits of the state, one either obtains the qubit |0〉A with
probability 1/2, or the qubit |1〉A with probability 1/2. This is also the case for the
second qubit. The first thing we can conclude is that the state gives no knowledge about
the subsystems [12], since the subsystems are described by a probability distribution, and
are therefore in a mixture of states. However, the state of the total subsystem is pure,
and we have maximal knowledge about the whole subsystem. This is disturbing, because
it means there is more uncertainty about the subsystems than about the whole system.
This would not be possible classically, and is a direct result of quantum entanglement.
We will investigate this in more details when we will be talking about entropies, which
mathematically characterize the uncertainty about a state. Another interesting thing
about the state is the entanglement itself, which can also be easily seen after measuring
the first qubit. If we do the measurement and obtain |0〉A, than the second qubit is
automatically |0〉B. However, if we obtain |1〉A, than the second qubit is automatically
|1〉B. This is another feature which cannot be observed classically, and which characterizes
entanglement.

4.3 Separable states

We have seen in the previous sections that some states exhibit some kind of quantum
correlations called entanglement. These states sometimes don’t verify Bell’s inequalities.
However, all the states that have no entanglement at all (classical states) verify Bell’s
inequalities. These classical states are called separable states.

Definition 13. A separable mixed state of n systems is a state than can be written as a
convex combination of product states [12]

ρ =
∑
i

piρ
i
1 ⊗ · · · ⊗ ρin, (4.19)

where a mixed product state of n systems is a state that can be written in the form

ρ⊗ = ρ1 ⊗ · · · ⊗ ρn. (4.20)
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4.4 Characterization of entanglement and separability with majorization

A mixed entangled state of n systems is a state that cannot be written in the form
(4.19). It is important to be able to distinguish between separable state and entangled
states, in order to know what we are able to do with the state involved. For example,
it is impossible to perform teleportation using only separable states. The problem is
that it is often difficult to prove that a state cannot be written in the form (4.19). It is
sometimes easy to find such a form for a state (when it is possible) and prove that the
state is separable, but proving this way that a state is entangled is very difficult, and
the method is not a good approach. Therefore, we need some criteria for separability
or entanglement, in the form of some mathematical criteria or inequalities for example.
Later, we are going to present some of the most important separability criteria. These
criteria will make use of the concept of majorization and of the notion of entropy we
already introduced before. Before this, let us introduce some notions which will clarify
the connexion between the theory of majorization and the notions of entanglement and
separability.

4.4 Characterization of entanglement and separability with ma-
jorization

In the previous sections, we have introduced the concepts of entanglement and separa-
bility. The theory of majorization is in fact also closely related to these two notions.
In section 2.3, we presented the concept of local operations and classical communication
(LOCC). We also showed how majorization was a powerful tool in order to investigate
the possibility of performing LOCC on bipartite states. In fact, it is also possible to
analyze the evolution of entanglement of a bipartite state when performing LOCC. The
notion of majorization therefore becomes automatically connected to the entanglement
on a state through the concept of LOCC. In order to see this, let us introduce the no-
tion of entanglement monotone [24], a measure of entanglement, through the following
definition.

Definition 14. We call entanglement monotone EM any magnitude µ(ρ) that does not
increase, on average, under local transformations.

Now consider the ordered Schmidt coefficients λ↓1 ≥ ... ≥ λ↓d ≥ 0 of a state ψ, where
the Schmidt decomposition has been defined in section 2.2.4 For each l = 1, ..., d, define
the following entanglement monotone El(ψ) as [17]

El(ψ) ≡
n∑
i=l

λi. (4.21)

We have the following theorem.

Theorem 2. The pure state ψ can be transformed into one element of the ensemble
{pj, ψj} using only LOCC if and only if

El(ψ) ≥
∑
j

pjEl(ψj), l = 1, ..., d. (4.22)

Now, one generalization of theorem 1 is given by the following theorem.
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5 Separability criteria

Theorem 3. The pure state ψ can be transformed into one element of the ensemble
{pj, ψj} using only LOCC if and only if

λ(ψ) ≺
∑
j

pjλ(ψj), (4.23)

where λ(ψ) (λ(ψj)) corresponds to the spectrum of the reduced density matrix ρψA ≡
TrB |ψ〉 〈ψ| (ρ

ψj

A ≡ TrB |ψj〉 〈ψj|).

We see that in fact, each one of the inequalities in equation (4.22) is just one of the
majorization inequalities in equation (4.23). The notion of majorization is therefore here
equivalent to the notion of entanglement monotone when it comes to investigating the
possibility of performing LOCC.

As for the notion of separability, as we are going to show in the next section, the
theory of majorization can be used in particular to find conditions for the separability of
quantum states.

5 Separability criteria

In section 4, we introduced the concept of quantum entanglement, which is, as we already
showed, central in the field of quantum information. We then remarked, in section 4.3,
that some states, called separable states, don’t exhibit entanglement at all. Since this
property of entanglement is so important, it is useful to have some means to distinguish
between entangled states and separable states. Indeed, there are mathematical criteria
which allow us to detect entanglement. We will now introduce them, using the helpful
concepts of von Neumann entropy and majorization, which we already introduced in
section 3.2 and section 1, respectively. Most of these criteria are conditions which are
only necessary, but one of them is also sufficient (in some particular cases, as we will later
see).

5.1 Positive partial transpose

5.1.1 Arbitrary dimension

The first separability criterion we exhibit is also the most famous. It was proved by
Asher Peres in 1996 in his article Separability Criterion for Density Matrices [21]. It is a
necessary condition for separability of quantum states, and can be stated as follows:

Separability Criterion 1. If a state ρ is separable, then none of the eigenvalues of its
partial transpose σ is negative.

Note that the partial transpose is defined by (2.21). As an example, take the bipartite
2× 2 state introduced by Gisin [9] and defined by the density matrix

ρ1 =


1−x

2
0 0 0

0 x|a|2 xab∗ 0
0 xa∗b x|b|2 0
0 0 0 1−x

2

 . (5.1)
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5.1 Positive partial transpose

where x is a real number between 0 and 1 and a and b are two complex numbers which
verify

|a|2 + |b|2 = 1. (5.2)

This state can be seen as [21] a fraction x of the pure state a |01〉 + b |10〉 and fractions
(1−x)/2 of the pure states |00〉 and |11〉. The partial transpose of ρ1 with respect to the
first subsystem is given by

ρTA
1 =


1−x

2
0 0 xa∗b

0 x|a|2 0 0
0 0 x|b|2 0

xab∗ 0 0 1−x
2

 , (5.3)

and the eigenvalues of the partial transpose ρTA
1 of ρ1 are given by the vector

λ1 =

(
x|a|2, x|b|2, (1− x

2
− x|ab|), (1− x

2
+ x|ab|)

)
. (5.4)

The matrix ρTA
1 therefore has a negative eigenvalue when

x >
1

1 + 2|ab|
. (5.5)

This limit can be compared with the limit given by the violation of Bell’s inequalities.
This last limit is given by [9]

x >
1

1 + 2|ab|(
√

2− 1)
, (5.6)

which shows that the Bell inequality test is weaker than the one allowed by Peres’ criterion
(at least in this case).

5.1.2 2× 2 and 2× 3 states

R. Horodecki, P. Horodecki and M. Horodecki introduced an extension of Peres’ criterion
in 1996 in their article Separability of mixed states: necessary and sufficient conditions
[10]. In the case of 2× 2 and 2× 3 quantum states, Peres’ criterion is also sufficient. It
can be stated as follows

Separability Criterion 2. A state ρ acting on C2 ⊗ C2 or C2 ⊗ C3 is separable if and
only if its partial transposition is a positive operator.

As an example, take the Werner state

ρ2 = p
∣∣ψ−〉 〈ψ−∣∣+

1− p
4
I. (5.7)

where p is a real number between 0 and 1. The state can be rewritten

ρ2 =
1

4


1− p 0 0 0

0 1 + p −2p 0
0 −2p 1 + p 0
0 0 0 1− p

 (5.8)
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5.2 Conditional entropy criteria

The partial transpose of ρ2 with respect to the first subsystem is given by

ρTA
2 =

1

4


1− p 0 0 −2p

0 1 + p 0 0
0 0 1 + p 0
−2p 0 0 1− p

 , (5.9)

and the eigenvalues of the partial transpose ρTA
2 of ρ2 are given by the vector

λ1 =

(
1

4
(1 + p),

1

4
(1 + p),

1

4
(1 + p),

1

4
(1− 3p)

)
. (5.10)

Since we have p ≥ 0, the matrix ρTA
2 only has positive eigenvalues when

p <
1

3
. (5.11)

Furthermore, it is known [10] that if condition (5.11) is fulfilled, ρ2 is a separable state.
We consequently see that the criteria we used here is both a necessary and sufficient
condition.

5.2 Conditional entropy criteria

5.2.1 Comparison between entropy of a system and entropies of its subsys-
tems

The third separability criterion we will present was introduced by R. Horodecki, P.
Horodecki and M. Horodecki in 1996 in their article Quantum α-entropy inequalities:
independent condition for local realism? [11]. It is a necessary condition for separability
of quantum states, and can be stated as follows:

Separability Criterion 3. For any separable state ρ on the finite dimensional Hilbert
space, the inequality

Iα(ρ) ≥ max
i=1,2

Iα(ρi) (5.12)

where α > 1 and ρi, i = 1, 2 are the states corresponding to the subsystems of ρ, is satisfied
for α = 1, 2.

Note that Iα(ρ) is the Rényi entropy of order α of state ρ, already defined in section 3.3.
As we are going to see in the next section with the particular case of the von Neumann
entropy, criterion 3 is in fact a condition on the mutual entropies.

5.2.2 Positivity of the conditional entropy

We already introduced the von Neumann entropy of A conditional on B, given by

S(A|B) = S(A,B)− S(B). (5.13)

From this expression, we see that relation (5.12) is similar to the following relations{
S(A|B) ≥ 0

S(B|A) ≥ 0
(5.14)

in terms of von Neumann entropies. We therefore see that if a state ρAB is separable,
than relations (5.14) are satisfied. This leads to the next criterion we will give.
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5.3 Reduction criterion for separability

5.2.3 Conditional amplitude operator

The fourth separability criterion we give was introduced by N. J. Cerf and C. Adami in
1999 in their article Quantum extension of conditional probability [6]. It is a necessary
condition for separability of quantum states based on a new object, the conditional am-
plitude operator. This criterion is in fact based on relations (5.14). It can be stated as
follows.

Separability Criterion 4. Any separable bipartite state satisfies the condition ρA|B 6 1,
where the conditional amplitude operator of A conditional on B ρA|B is defined as

ρA|B = exp2 [log2 ρAB − log2 (IA ⊗ ρB)]

= lim
n→∞

[
ρ

1/n
AB (IA ⊗ ρB)1/n

] (5.15)

The conditional entropy operator ρA|B is not a density operator in general, since its
eigenvalues can exceed one. It is however worth defining, since it gives a criterion which
is in fact stronger than criterion 3.

5.3 Reduction criterion for separability

The fifth separability criterion we give was introduced by N. J. Cerf, C. Adami and R.
M. Gingrich in 1998 in their article Reduction criterion for separability [4]. In order to
state it, let us first define the linear map Λ which maps Hermitian operators on HAB into
Hermitian operators on HAB by

Λ : ρAB → λAB ≡ IA ⊗ ρB − ρAB with ρB = TrA [ρAB] . (5.16)

The separability criterion is given by

Separability Criterion 5. A necessary condition for the separability of the state ρAB
of a bipartite system AB is that it is mapped by Λ into a positive semidefinite operator,
namely

ΛρAB ≥ 0. (5.17)

5.4 Separability criterion based on the theory of majorization

The final separability criterion we show was proved by M. A. Nielsen and J. Kempe in
2001 in their article Separable States Are More Disordered Globally than Locally [19]. It
is a necessary condition for separability of quantum states, based on the majorization
theory. The criterion can be stated as follows

Separability Criterion 6. If the state ρAB is separable, then

λ(ρAB) ≺ λ(ρA) and λ(ρAB) ≺ λ(ρB), (5.18)

where λ(ρA), λ(ρB) and λ(ρAB) are the vectors of eigenvalues of ρAB and the correspond-
ing reduced density matrices. [By convention we append zeros to the vectors λ(ρA) and
λ(ρB) so they have the same dimension as λ(ρAB).]
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6 Going beyond entropic inequalities using the theory of majorization

This criterion is based on the fact that if a state is separable, then the relations given
by system (5.14) are satisfied. The relations are indeed equivalent to

S(AB) ≥ S(A) and S(AB) ≥ S(B). (5.19)

The last inequalities are very similar to the majorization relations (5.18), but they allow
us to establish a stronger criterion than the one based on the von Neumann entropies.

Take for example the pure bipartite state

ψAB =
1√
2

(|00〉+ |11〉) . (5.20)

Because it is a pure state, its only eigenvalue is equal to 1. The state corresponding to
the subsystem A is given by

ρA = Tr [ρAB]

= Tr [|ψAB〉 〈ψAB|]

=
1

2
(|0〉 〈0|+ |1〉 |1〉)

= IA

(5.21)

which has eigenvalues (1/2, 1/2). Using the theory of majorization, we easily see that
condition (5.18) is not satisfied. This is the case because the bipartite state is entangled.

6 Going beyond entropic inequalities using the theory
of majorization

The main objective of the present project is to seek new applications of the majorization
theory in the field of quantum information. In this section, we are going to present
the work that has been done applying the majorization theory to the field of quantum
information. We will of course exhibit the main interesting results we have found, but
we will also present the way we came to find these results, as well as the examples that
allowed us to sometimes illustrate the results, and sometimes to show that what we were
trying to prove was in fact not true.

The first area of research we will be investigating is the one related to the entropic
inequalities. Indeed, in this section, we will try to establish some majorization relations
based on already existing entropic inequalities. We will be working with quantum systems
which can be described by states evolving in Hilbert spaces of finite dimensions. The
Hilbert spaces involved will often be 2-dimensional, which means that any state of these
Hilbert spaces can be written as a linear combination of two orthonormal vectors. In
the following, we will always define these two orthonormal vectors as the two vectors
(in bracket notation) |0〉 and |1〉. Since these two vectors are orthonormal, we have the
properties {

〈0| 1〉 = 〈1| 0〉 = 0

〈0| 0〉 = 〈1| 1〉 = 1
(6.1)

These two vectors in fact allow us, as we already said before, to define the well know
qubit, which can be written as in equation (7.1), and which verifies property (7.2). We
will often work with bipartite states. Here, we repeat some general definitions already
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6.1 Nielsen and Kempe’s result

given in the previous sections just to fix ideas. A bipartite state is a state which represent
a system which is the result of the combination of two subsystems. If the total system
AB is given by the combination of system A represented by states evolving in a Hilbert
space HA and system B represented by states evolving in a Hilbert space HB, then it is
represented by states evolving in a Hilbert space

HAB = HA ⊗HB. (6.2)

The operations of trace, partial trace, transposition and partial transposition described
earlier will allow us to swich from one system to the other.

In this section, we are going to present some majorization relations we found. We will
then study the last one in details, giving examples for which the relation is satisfied and
examples for which it is not. We will then explain why it is not verify in general using the
concept of Schur-concavity of the Rényi entropies, and try to investigate it further when
it is not verified, using the concept of catalysis. Finally, we will introduce an interesting
class of states, the Bell diagonal states, for which the last majorization relation is always
verified.

6.1 Nielsen and Kempe’s result

One very important result using majorization upon which we can rely is the separability
criterion 6. Indeed, Nielsen and Kempe’s idea was to find a majorization relation which
resembles a well known inequality, which is at the root of a property of separability. This
property states that if a state is separable, than the entropy of the total system AB is
greater or equal to the entropy of both subsystems A and B, namely

S(A) ≤ S(A,B) and S(B) ≤ S(A,B), (6.3)

where S(A), S(B) and S(A,B) are the von Neumann entropies of system A, system
B and of the joint system, respectively. If we think "classically", this result is pretty
intuitive. Indeed, if we have a bipartite system AB, and if that system does not exhibit
any entanglement, which means that the system can be described as "classical" (no
"quantum" phenomenon), then obviously, the incertitude about the total system cannot
be smaller than the incertitude of one of the two subsystems. We showed before that the
incertitude on a system (or state) can be described by the von Neumann entropy. This
means that the entropy of the total system AB cannot be smaller than the entropy of
one of the two subsystems A or B. This is in fact the separability criterion 3, with α = 1.
We can therefore say that Nielsen and Kempe’s criterion is based on criterion 3. It is
however stronger. Indeed, It has been shown that criterion 6 implies criterion 3.

In the following, we are going to show how we tried to rely on some existing entropy
inequalities, and how we tried to find majorization relation based on these inequalities.
We will try to explain why the relation is wrong when this is the case, or simply find a
counterexample.

6.2 Positivity of the joint entropy of a separable state in terms
of majorization

The first idea was to take an inequality equivalent to (6.3) and find some similar majoriza-
tion relation based on an inequality involving the conditional entropies. The inequality
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6.3 First adaptation of the subadditivity relation to the theory of majorization

is in fact at the root of the proposition which is the same as criterion 3, but which is
expressed differently. It simply says that if the joint system composed of subsystems A
and B is separable, then

S(B|A) = S(A,B)− S(A) ≥ 0 (6.4)

and
S(A|B) = S(A,B)− S(B) ≥ 0. (6.5)

The idea also involved the fact that the entropy of a pure state is null, and that we
could therefore represent the zero entropy by any pure state. In order to find a state
corresponding to the conditional entropy, we use the definition of the conditional ampli-
tude operator introduced by Cerf and Adami, and which is defined by equation (5.15) in
criterion 4. This idea first led to the following proposition.

Proposition 6. If the state ρAB is separable, then

λ(ρB|A) ≺ λ(ρP ) and λ(ρA|B) ≺ λ(ρP ), (6.6)

for any pure state ρP , where λ(ρ) is the vector of eigenvalues of ρ, and where ρA|B and
ρB|A are the conditional amplitude operators defined by

ρA|B = exp2[log2ρAB − log2(IA ⊗ ρB)]

= lim
n→∞

[ρ
1/n
AB (IA ⊗ ρB)−1/n]n

(6.7)

Conclusion An important characteristic of the majorization relations we are going to
study is the fact that they often involve density matrices. Thereby, this implies that if
one of the sides of the majorization relation contains a density matrix, then the other side
should also be a density matrix. Indeed, when we look at system (1.1), we notice that
the last equality is the sum of the eigenvalues of the vector involved in the majorization
relation. Knowing that the sum of the eigenvalues of a density matrix is always 1 since
the trace of a density matrix is equal to 1, this means that the last equality of system
(1.1) should always be equal to one when a state is involved in the majorization relation,
which means that the other vector of the majorization relation should also be a density
matrix, with trace equal to 1. Therefore, one can say that proposition 6 is not verified
in general, since ρB|A is not a state in general, knowing that its eigenvalues can exceed 1
[5]. Furthermore, it is not very interesting to compare some states to pure states using
the majorization theory, since for pure states, there is only one eigenvalue which is 1. In
fact, any state is majorized by any pure state. This can easily be seen from system (1.1).

6.3 First adaptation of the subadditivity relation to the theory
of majorization

The second idea consisted in finding a relation similar to the subadditivity relation

S(A,B) ≤ S(A) + S(B). (6.8)

The first possibility was to try to take the sum of the two vectors of eigenvalues which
correspond better to S(A) and S(B). Since each side of the majorization relation should
be a vector of trace 1, a possible relation was the following.
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Proposition 7. If A and B are two systems, then

λ(ρAB) � 1

2
(λ↓(ρA) + λ↓(ρB)) (6.9)

where λ(ρ) is the vector of eigenvalues of ρ.

Conclusion Notice that we have chosen to order the vectors λ(ρA) and λ(ρB) in the
majorization relation. Indeed, when some majorization relation is applied, the order of
the elements in the vectors is not important, since the vectors are ordered when verifying
the majorization relation, as it can be seen from the definition of the majorization. Here
we chose to order the vectors in (6.9) in order to have the "worst situation". Indeed, we
can choose to order the vectors λ(ρA) and λ(ρB) however we want in the expression

1

2
(λ(ρA) + λ(ρB)). (6.10)

Since we would like to have a maximum in the right hand term of (6.9), we should order
both λ(ρA) and λ(ρB) before as

1

2
(λ↓(ρA) + λ↓(ρB)). (6.11)

However, choosing to order the vectors before is somehow arbitrary. Furthermore, taking
the sum of two vectors of eigenvalues does not make much sense. Also, it is possible to
find some counterexample to relation (6.9). Take the Werner state

ρAB = p
∣∣ψ−〉 〈ψ−∣∣+

1− p
4
I. (6.12)

where p is a real number between 0 and 1. We saw that its eigenvalues are given by the
vector

λAB =

(
1

4
(1 + p),

1

4
(1 + p),

1

4
(1 + p),

1

4
(1− 3p)

)
. (6.13)

The state corresponding to subsystems A and B can be computed using the partial trace.
They are given by

ρA = TrB [ρAB] =
1

2
(|0〉 〈0|+ |1〉 〈1|) (6.14)

and
ρB = TrA [ρAB] =

1

2
(|0〉 〈0|+ |1〉 〈1|) (6.15)

Their vectors of eigenvalues are therefore given by

λA = (
1

2
,
1

2
) (6.16)

and
λB = (

1

2
,
1

2
). (6.17)

If we apply definition (1.1) of majorization to relation (6.9), we obtain the following
conditions on p: 

p ≥ 1

3
p ≥ 1

p ≥ 1

(6.18)

which are of course not verified in general. Therefore, we can say for sure that relation
(6.9) is not verified in general.
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6.4 Second adaptation of the subadditivity relation to the theory
of majorization

6.4.1 Relation and examples

In the previous section, we saw that taking the sum of two vectors before applying some
majorization relation didn’t make much sense. The idea here is to try to find again a
majorization relation similar to the subbaditivity relation, but without using a sum of
vectors. In order to understand how we thought about the next majorization relation,
let us introduce an interesting property of the von Neumann entropy. Suppose we have a
joint bipartite system AB. Suppose furthermore that there is no entanglement between
the system, and that there is no classical correlations either. In this case, the joint state
of system AB is simply a product state given by

ρAB = ρA ⊗ ρB (6.19)

where ρA and ρB are the density matrices corresponding to systems A and B, respectively.
Let us compute the von Neumann entropy of the joint system. In order to do that, suppose
ρA can be written, in its diagonal representation, as

ρA =
∑
i

λAi
∣∣iA〉 〈iA∣∣ (6.20)

where
∣∣iA〉 are orthogonal states, and λAi are the eigenvalues of ρA. Its von Neumann

entropy is given by
SA = −

∑
i

λAi log λAi = HA (6.21)

where HA is the Shannon entropy H(λAi ) of the probability distribution λAi , since the
eigenvalues can indeed be seen as a probability distribution. We can now compute the
von Neumann entropy of the joint system AB,

SAB = S (ρAB)

= S (ρA ⊗ ρb)

= S

([∑
i

λAi
∣∣iA〉 〈iA∣∣]⊗ ρb)

= H(λAi ) +
∑
i

λAi S(ρB)

= H(λAi ) + S(ρB)

= S(ρA) + S(ρB)

(6.22)

where we used the Joint entropy theorem introduced in section 3.2.3. We therefore see
that when we have a product state of a joint system, the Von Neumann entropy of the
joint system is simply equal to the sum of the von Neumann entropies of the subsystems.
This property led to the following proposition.

Proposition 8. If A and B are two systems, then

λ(ρAB) � λ(ρS) (6.23)
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where
ρS = ρA ⊗ ρB = TrB(ρAB)⊗ TrA(ρAB) (6.24)

and ρAB, ρA and ρB are the density matrices corresponding to the joint system AB,
system A and system B, respectively, and λ(ρ) is the vector of eigenvalues of ρ.

Equation (6.23) seems to be the best adaptation of the subadditivity relation in terms
of majorization theory, because of the property of the entropy of a product state we
introduced just before proposition 8.

Conclusion First notice that relation (6.23) is trivially verified for pure state, since in
this case ρAB only has eigenvalue 1, and for product states, since in this case ρS = ρAB.
However, the relation is not verified in general, even in the case of separable states ρAB.
In order to verify that, take the state [15]

ργAB = g(γ)[|00〉 〈00|+ |11〉 〈11|] +
γ

2
[|00〉 〈11|+ |11〉 〈00|] + (1− 2g(γ) |01〉 〈01| , (6.25)

where γ is a real number between 0 and 1, and g(γ) is defined as

g(γ) =


γ

2
, γ ≥ 2

3
1

3
, γ <

2

3

(6.26)

Before studying relation (6.23) using this state, let us try to establish if ργAB is separable
or entangled. In order to do this, we will apply criterion 2. ργAB can be written in matrix
form as

ργAB =


g(γ) 0 0 γ

2

0 1− 2g(γ) 0 0
0 0 0 0
γ
2

0 0 g(γ)

 . (6.27)

Its partial transpose is given by

ργTA

AB =


g(γ) 0 0 0

0 1− 2g(γ) γ
2

0
0 γ

2
0 0

0 0 0 g(γ)

 (6.28)

and the eigenvalues of the partial transpose ργTA

AB of ργAB are given by the vector

λγTA

AB =
(
g(γ), g(γ), 1− 2g(γ) +

√
(2g(γ)− 1)2 + γ2, 1− 2g(γ)−

√
(2g(γ)− 1)2 + γ2

)
.

(6.29)
The eigenvalues of ργTA

AB are therefore all positive if and only if{
1− 2g(γ) +

√
(2g(γ)− 1)2 + γ2 > 0

1− 2g(γ)−
√

(2g(γ)− 1)2 + γ2 > 0
(6.30)

These inequalities lead to the condition γ = 0, which means that ργTA

AB is separable if and
only if γ = 0.
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Let us now try to investigate relation (6.23) with ργAB. We begin by computing states
ργA and ργB of subsystems A and B, respectively, using the partial trace. We obtain

ργA = TrB [ργAB]

= g(γ) [|0〉 〈0|+ |1〉 〈1|] + (1− 2g(γ)) |0〉 〈0|
(6.31)

and
ργB = TrA [ργAB]

= g(γ) [|0〉 〈0|+ |1〉 〈1|] + (1− 2g(γ)) |1〉 〈1|
(6.32)

The tensor product of ργA and ργB is consequently given by

ργS = ργA ⊗ ρ
γ
B

= [g(γ) (1− g(γ))] (|00〉 〈00|+ |11〉 〈11|)
+
[
(g(γ))2 − 2g(γ) + 1

]
(|01〉 〈01|) + (g(γ))2 (|10〉 〈10|)

(6.33)

The eigenvalues of ργAB are given by

λγAB =
(

1− 2g(γ), g(γ) +
γ

2
, g(γ)− γ

2
, 0
)
, (6.34)

while the eigenvalues of ργS are given by

λγS =
(
g(γ) (1− g(γ)) , (g(γ))2 − 2g(γ) + 1, (g(γ))2, g(γ) (1− g(γ))

)
. (6.35)

Let us first take the case in which ργAB is separable. We therefore have

λγAB =

(
1

3
,
1

3
,
1

3
, 0

)
, (6.36)

and
λγS =

(
2

9
,
2

9
,
4

9
,
1

9

)
. (6.37)

If we order the eigenvalues, we get

λγ↓AB =

(
1

3
,
1

3
,
1

3
, 0

)
, (6.38)

and
λγ↓S =

(
4

9
,
2

9
,
2

9
,
1

9

)
. (6.39)

Since the first elements of the ordered eigenvalues verify λγ↓AB,1 < λγ↓S,1, we can immediately
conclude that relation (6.23) is not verified in the case of separable states.

We will now take the case in which ργAB is entangled. This happens when we have
γ 6= 0. A good way to first test if relation (6.23) is verified in this case is by using
numerical methods. The Matlab program majorization_gamma.m verifies in which
cases the majorization relation (6.23) is verified for state ργAB. Using the program results
in the fact that the majorization relation is verified for γ ∈ [0.23, 1], but it is not for
γ ∈ [0, 0.22]. We therefore see that even in the case of entangled state, the relation is
not verified. In order to be more precise, let us search analytically for which values of γ
relation (6.23) is not verified.
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First case : γ ≥ 2/3 In this case, we have g(γ) = γ/2. The eigenvalues of ργAB and ργS
are therefore respectively given by

λγAB = (1− γ, γ, 0, 0) , (6.40)

and
λγS =

(
γ

2

(
1− γ

2

)
,
γ

2

(
1− γ

2

)
,
(γ

2
− 1
)2

,
γ2

4

)
. (6.41)

If we order these vectors, we get

λγ↓AB = (γ, 1− γ, 0, 0) (6.42)

and
λγ↓S =

((γ
2
− 1
)2

,
γ

2

(
1− γ

2

)
,
γ

2

(
1− γ

2

)
,
γ2

4

)
. (6.43)

In order for relation (6.23) to be true, the following inequalities should be true
γ ≥

(γ
2
− 1
)2

1 ≥
(γ

2
− 1
)2

+
γ

2

(
1− γ

2

)
1 ≥

(γ
2
− 1
)2

+ γ
(

1− γ

2

) (6.44)

After some calculation, we obtain {
γ ≥ 4− 2

√
3

γ ≥ 0
(6.45)

The two inequalities of (6.45) are always verified in the case where γ ≥ 2/3 since we
always have γ ≥ 0.

Second case : γ < 2/3 In this case, we have g(γ) = 1/3. The eigenvalues of ργAB and
ργS are therefore respectively given by

λγAB =

(
1

3
,
γ

2
+

1

3
,
1

3
− γ

2
, 0

)
, (6.46)

and
λγS =

(
2

9
,
2

9
,
4

9
,
1

9

)
. (6.47)

If we order these vectors, we get

λγ↓AB =

(
γ

2
+

1

3
,
1

3
,
1

3
− γ

2
, 0

)
(6.48)

and
λγ↓S =

(
4

9
,
2

9
,
2

9
,
1

9

)
. (6.49)
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In order for relation (6.23) to be true, the following inequalities should be true
γ

2
+

1

3
≥ 4

9
γ

2
+

2

3
≥ 2

3

(6.50)

After some simple calculation, we obtain γ ≥ 2

9
γ ≥ 0

(6.51)

Since we have γ ≥ 0, the two inequalities of (6.51) are always verified in the case where

γ ≥ 2

9
. (6.52)

Consequently, relation (6.23) is verified for state ργAB only when γ ≥ 2/9 (where 2/9 '
0.2222.. in order to fix ideas).

Let us test proposition 8 with a new state. Take the state defined by relation (5.1),
that we rewrite here as

ρxAB =


1−x

2
0 0 0

0 x|a|2 xab∗ 0
0 xa∗b x|b|2 0
0 0 0 1−x

2

 . (6.53)

with |a|2 + |b|2 = 1. As we already showed, the state is separable if and only if (necessary
and sufficient condition since we are in the 2× 2 case)

x >
1

1 + 2|ab|
. (6.54)

Suppose we take a ∈ R, a = [0, 1]. We therefore have

|b|2 = 1− a2. (6.55)

If we take b ∈ R and b ≥ 0, then we have

b =
√

1− a2. (6.56)

In this case, the states are separable if and only if

x >
1

1 + 2ab
. (6.57)

Again, we use numerical methods to test relation (6.23) with state ρxAB which is now
defined by

ρxAB =


1−x

2
0 0 0

0 xa2 xab 0
0 xab xb2 0
0 0 0 1−x

2

 . (6.58)
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since a ∈ R and b ∈ R. Using the Matlab program xab_majorization.m, we in fact
see that relation (6.23) is again not verified for some states. This is another example of
a state for which proposition 8 is not verified.

In fact, it is possible to explain why proposition 8 is not verified in general. In order
to do that, we can use property 3. According to it, if relation (6.23) is true, then relation

φ(λ(ρAB)) ≥ φ(λ(ρS)) (6.59)

should also be verified for all Schur-convex functions φ. Therefore, if we find at least one
Schur-convex function which does not verify equation (6.59), it means that relation (6.23)
is not true in general. Remember that this relation was based on an entropy inequality,
the subadditivity, which we rewrite here. The relation is as follows.

S(A,B) ≤ S(A) + S(B). (6.60)

Notice that it is equivalent to the relation

S(A,B) ≤ S(S). (6.61)

where S(S) is the von Neumann entropy of the tensor product of systems A and B. We
already explained that S(S) = S(A) + S(B) when the state of system S is given by the
simple tensor product of the states of systems A and B. The von Neumann entropy
is Schur-concave. Now, we know that, as we stated before, all the Rényi entropies are
Schur-concave fonctions (which are the negative of Schur-convex functions). Therefore, if
relation (6.23) is true, relation (6.61) should be verified for the negative of all the Rényi
entropies. However, the it is not verified for all the Rényi entropies, as we are going to
show. Take for example the Rényi entropy of order 4. It is given by

I4(X) = −1

3
log

(∑
k

p4
k

)
(6.62)

according to relation (3.29). Let us compute the entropy of order 4 of state ργAB defined
by equation (6.25). Since its vector of eigenvalues is provided by

λγAB =
(

1− 2g(γ), g(γ) +
γ

2
, g(γ)− γ

2
, 0
)
, (6.63)

its Rényi entropy of order 4 is given by

I4(ργAB) = −1

3
log

[
(1− 2g(γ))4 +

(
g(γ) +

γ

2

)4

+
(
g(γ)− γ

2

)4
]
. (6.64)

The vector of eigenvalues of state ργS is given by

λγS =
(
g(γ) (1− g(γ)) , (g(γ))2 − 2g(γ) + 1, (g(γ))2, g(γ) (1− g(γ))

)
. (6.65)

and its Rényi entropy of order 4 is given by

I4(ργS) = −1

3
log
[
2 (g(γ) (1− g(γ)))4 +

(
(g(γ))2 − 2g(γ) + 1

)4
+
(
(g(γ))2

)4
]
. (6.66)

In order to verify relation (6.61) with Rényi’s entropy of order 4, we plot the values of
I4(ργAB) and I4(ργS) using the Matlab program subadditivity_Renyi.m. We obtain
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Figure 6.1: Rényi entropy of order 4 of system AB and of tensor product of systems A
and B, in case of state ργAB.

figure 6.1. We see that for some values of γ, I4(ργAB) is greater than I4(ργS). Therefore, we
immediately conclude that relation (6.61) is not verified for the Rényi entropy of order
4. The latter being Schur-concave, we see that the relation

Γ(λ(ρAB)) ≤ Γ(λ(ρS)) (6.67)

is not verified for a concave function Γ, which also means that relation

φ(λ(ρAB)) ≥ φ(λ(ρS)) (6.68)

is not verified for a convex function φ. Therefore, relation (6.23) should not be true in
general.

It is also possible to give an analytical proof by simply saying that the subadditivity
relation is not verified for all the Rényi entropies (it is verified for the von Neumann
entropy for example, as we already said, but for some others it is not). Indeed, in order
to verify if relation (6.23) was true, we needed to verify that relation (6.61) was true
for the all the Rényi entropies, as we said before. We also stated that relation (6.60) is
equivalent to relation (6.61) for the von Neumann entropy. However, as we saw before,
one of the properties of the Rényi entropy was the additivity, namely

Iα(X, Y ) = Iα(X) + Iα(Y ), (6.69)

for α ≥ 0, α 6= 1. Therefore, if relation (6.61) was true for all the Rényi entropies, than
it would also be the case for relation (6.60). Since the subadditivity is not a property of
all the Rényi entropies, relation (6.23) is not verified in general.

6.4.2 Catalysis

What is really interesting to notice in what we did earlier is the fact that even when
relation (6.23)

λ(ρAB) � λ(ρS) (6.70)
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is not verified, the inverse relation

λ(ρAB) ≺ λ(ρS) (6.71)

is not verified either. Take for example state ργAB, for which relation (6.70) is not verified
when γ ≥ 2/9. In this case, in order for relation (6.71) to be verified, we should have
γ < 0, which is never the case in the definition of state ργAB. Therefore, we say that
states ργAB and ργS are incomparable when γ ≥ 2/9. Similarly, take state ρxAB. Relation
(6.70) is not verified (for the case in which a ∈ R and b ∈ R) according to our program
xab_majorization.m. Now, if we use the same program in order to verify relation
(6.71) this time, we also find that it is not true. In fact, all the examples of states for
which relation (6.70) is not verified also don’t verify relation (6.71). This characteristic
of relation (6.70) suggests the use of a new concept called catalysis.

The idea of catalysis is related to a property we gave when introducing an application
of the theory of majorization. Theorem 1 states that a pure state |ψ〉 transforms to |φ〉
using LOCC if and only if

λψ ≺ λφ, (6.72)

where λψ and λφ are the vectors of eigenvalues of ρψ and ρφ, respectively, with

ρψ ≡ TrB (|ψ〉 〈ψ|) (6.73)

and
ρφ ≡ TrB (|φ〉 〈φ|) . (6.74)

Now the idea is that some of the states are incomparable, in the sense that neither relation
(6.72), neither relation

λψ � λφ (6.75)

is true. In this case, both transformations |ψ〉 → |φ〉 and |φ〉 → |ψ〉 are not possible.
The idea of the catalysis is to use a third bipartite state, called catalysts, in order to
make one of the transformations possible [13]. This is called entanglement-assisted local
transformation. Suppose the catalyst is χ. Suppose furthermore we define states

ρχψ ≡ TrB (|ψ〉 ⊗ |χ〉) (〈ψ| ⊗ 〈χ|) (6.76)

and
ρχφ ≡ TrB (|φ〉 ⊗ |χ〉) (〈φ| ⊗ 〈χ|) (6.77)

along with their respective vectors of eigenvalues λχψ and λχφ. If one of the two relations

λχψ ≺ λχφ (6.78)

and
λχψ � λχφ (6.79)

is verified, then it is possible to perform LOCC using state |χ〉, or entanglement-assisted
local transformation. This application shows the practical importance of states called
catalysts.

In this work, the idea is to try to use the concept of catalysis in order to see if relation
(6.70) becomes verified in case we use catalyst states. However, this can only be done if
it is possible to find catalysts for the states concerned. There is a property which gives
some conditions required for the existence of catalysts. It is as follows [1].
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Figure 6.2: A diagram taken from Plenio’s article [13], illustrating the concept of catalysis.
LQCC stands for Local Quantum operations and classical communication.

Theorem 4. Suppose x and y are two vectors in Rn which verify

xi, yi ≥ 0 i = 1, ..., n (6.80)

and
n∑
i=1

xi = 1
n∑
i=1

yi = 1. (6.81)

If there exists a vector z such that x⊗ z ≺ y ⊗ z, then

Iα(x) ≥ Iα(y) ∀α ≥ 0, α 6= 1, (6.82)

where Iα is the Rényi entropy of order α and

S(x) ≥ S(y), (6.83)

where S is the von Neumann entropy.

This property is usually related to more general norms, but we adapted it to the more
restricted case of Rényi entropies. Our property mainly states that if we want to find
catalysts states for the states that do not verify

λ(ρAB) � λ(ρS) (6.84)

and
λ(ρAB) ≺ λ(ρS), (6.85)

then relation
Iα(AB) ≤ Iα(S) (6.86)

should be verified for all the Rényi entropies (for all the α). We already showed that
this relation is not verified in general for all of them. However, we see from 6.1, for
the entropy of order 4 for example, that for some state that don’t verify both (6.84)
and (6.85), relation (6.86) is still verified. Therefore, in order to find catalysts, we test
relation (6.86) for all the Rényi entropies, for the incomparable states. Let us try to find
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catalysts for state ργAB. We saw that states ργAB and ργS are incomparable for γ ≥ 2/9.
The Matlab program gamma_catalysis.m allows us to verify this. In fact, we find that
for all the incomparable states, it is not possible to find catalysts. We conclude from that
fact that it is not always possible to find catalysts when relation (6.84) is not verified,
which that it is not possible to find a more general property related to relation (6.84)
using the concept of catalysis.

In order to conclude, what we can say about relation (6.84) is that when it is not
verified, the state are incomparable, in the sense that relation (6.85) is never verified.
However, it is not possible to find catalysts in general. In the next section, we are
however going to see that the relation is satisfied for an important class of states, which
therefore makes proposition 8 pretty interesting.

6.4.3 Bell diagonal states

A very interesting state which verifies relation (6.23) can be obtained using the class of
the Bell states, introduced in section 4.2. It is the Bell diagonal state, which is, as its
name suggest, diagonal in the Bell basis. It can be written as

ρBellAB = pI
∣∣φ+
〉 〈
φ+
∣∣+ px

∣∣ψ+
〉 〈
ψ+
∣∣+ py

∣∣ψ−〉 〈ψ−∣∣+ pz
∣∣φ−〉 〈φ−∣∣ (6.87)

where state |φ+〉, |ψ+〉, |ψ−〉 and |φ−〉 are defined by equations (4.14), (4.16), (4.17) and
(4.15), respectively. In matrix form, ρBellAB is given by

ρBellAB =


pI + pz 0 0 pI − pz

0 px + py px − py 0
0 px − py px + py 0

pI − pz 0 0 pI + pz

 . (6.88)

Note that since ρBellAB is a state, its eigenvalues verify relation

pI + px + py + pz = 1. (6.89)

Using this reation, we find that state ρBellA corresponding to subsystem A is given by

ρBellA = TrB
[
ρBellAB

]
=

1

2
(|0〉 〈0|+ |1〉 〈1|) . (6.90)

Similarly, state ρBellB corresponding to subsystem B is given by

ρBellB = TrA
[
ρBellAB

]
=

1

2
(|0〉 〈0|+ |1〉 〈1|) . (6.91)

If we compute state ρBellS given by the tensor product of ρBellA and ρBellB , we obtain

ρBellS = ρBellA ⊗ ρBellB =
1

4
(|00〉 〈00|+ |01〉 〈01|+ |10〉 〈10|+ |11〉 〈11|) . (6.92)

Its matrix can be represented by ρBellS = (1/4)I. Therefore, whatever the values of
pI , px, py and pz, ρBellS is given by the uniform probability distribution on 4 elements.
Consequently, using proposition 1, we see that ρBellS is majorized by any 2 ⊗ 2 bipartite
state. Relation (6.23) is thus verified for any Bell diagonal state. This is interesting since
the Bell diagonal states are often encountered in the field of quantum information.
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6.5 Conclusion

In this section, we have been studying majorization relations based on already existing
entropic inequalities. We began by talking about Nielsen and Kempe’s result in section 6.1
in order to show how they came to introduce it by basing themselves on an already existing
separability criterion based on an entropic inequality. We then proposed in section 6.2
a majorization relation based on the positivity of the joint entropy of a separable state.
The majorization relation turned out to be trivial, since the comparison with the vector
of eigenvalues of a pure state is trivial in general. In section 6.3, we introduced one
first adaptation of the subadditivity relation, which we finally rejected before exhibiting
a second adaptation of it in terms of majorization relation in section 6.4. The last
relation turned out to be the best adaptation for the subadditivity relation, but was still
not verified in general, as we showed using examples. We then tried using the concept
of catalysis in order to find further results, but realized that it was not possible. A
very interesting result was however the fact that the majorization relation was verified
for all the Bell diagonal states, a much used class of states in the field of quantum
information. This could have interesting application when studying measures of disorder
in Bell diagonal states.

In the next section, we are going to study majorization in the field of Gaussian quan-
tum information. Gaussian states being usually the one used in practice when studying
quantum information using quantum optics, studying them in terms of majorization
should lead to some interesting results.

7 Gaussian Quantum Information

Until now, all the states we worked with are part of the field of discrete quantum in-
formation. Indeed, these states evolve in finite-dimensional Hilbert spaces. This is for
example the case for the well-known quantum bit, or qubit, which we already introduced
in the previous sections. The qubit is a quantum system with two distinguishable states,
which can be for example denoted by the two numbers 0 and 1. Indeed, the two vectors
|0〉 and |1〉 form a basis for the 2-dimensional Hilbert Space in which the qubit belongs.
Any state ψ can be written as a superposition of these two vectors, namely

|ψ〉 = α |0〉+ β |1〉 , (7.1)

where α and β are two complex numbers which verify the condition

|α|2 + |β|2 = 1. (7.2)

On the other hand, the field of continuous quantum information treats systems which
are modelled by states evolving in infinite-dimensional Hilbert spaces, described by ob-
servables with continuous spectra. [25] A very important example of a continuous-variable
system is given by the modes of the electromagnetic field, which are bosonic modes, since
the particle of light, the photon, is a boson. Each of these modes can be represented by
a quantum harmonic oscillator. In the following section, we are going to introduce the
mathematical model which will allow us to study these electromagnetic modes, as well
as the states representing them.
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7.1.1 The quantum harmonic oscillator model

We already said that the mathematical model describing the modes of the electromagnetic
field is based on the model of the quantum harmonic oscillator. Suppose we need to
describe N bosonic modes. This means that we have N harmonic oscillators. The N
modes are associated with a Hilbert space H⊗N , which is the result of the tensor product
of N Hilbert spaces, each one of them corresponding to one mode, that is

H⊗N =
N⊗
k=1

Hk (7.3)

where eachHk corresponds to a harmonic oscillator. To each one of them also corresponds
a pair of bosonic field operators, â, called annihilation operator, and â†, called creation
operator. We therefore have N pair of operators, which can be arranged in a vectorial
operator

b̂ :=
(
â1, â

†
1, ..., âN , â

†
N

)T
. (7.4)

Every bosonic field operator must satisfy some bosonic commutation relations. These
relations can be regrouped in the relation[

b̂i, b̂j

]
= Ωij, (7.5)

where

Ω :=
N⊕
k=1

ω =

 ω
. . .

ω

 , ω :=

(
0 1
−1 0

)
. (7.6)

Furthermore, each Hilbert space Hk is spanned by a countable basis {|n〉}∞n=0, called the
Fock basis. The Fock states, or number states, |n〉 are in fact eigenstates of the number
operator n̂ := â†â, which therefore satisfies the relation

n̂ |n〉 = n |n〉 , (7.7)

where n (the eigenvalues) is a non-negative real number. The actions of the bosonic field
operators over the number states can be found using the bosonic commutation relation,
and are given by

â |n〉 =
√
n |n− 1〉 n > 0, (7.8)

and
â† |n〉 =

√
n+ 1 |n+ 1〉 n > 0. (7.9)

The bosonic systems can be equivalently described by other field operators, which are
called quadrature field operators {q̂k, p̂k}Nk=1, and can be arranged in the vector

x̂ := (q̂1, p̂1, ..., q̂N , p̂N)T . (7.10)

The quadrature field operators are related to the bosonic field operators through the
relations {

q̂j = âj + â†j

p̂j = i(â†j − âj)
j = 1, ..., N (7.11)
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and satisfy the canonical commutation relations

[x̂i, x̂j] = 2iΩij. (7.12)

Note that here, the relations are given in natural units (~ = 2).

7.1.2 The Gaussian state

Like in the case of the field of discrete-variables, every N -mode bosonic system is repre-
sented by a quantum state ρ, which is still a trace-one positive operator. In the case of
the field of continuous-variables, the density operator has an equivalent representation in
terms of a quasiprobability distribution. In order to see this, let us introduce the Weyl
operator defined as

D(ξ) := exp(ix̂TΩξ), (7.13)

where we define the elements of ξ ∈ R2N as

ξ := (ξ1, ..., ξ2N)T. (7.14)

Instead of using the density matrix ρ, we can use an equivalent representation given by
the Wigner characteristic function

χ(ξ) = Tr[ρD(ξ)], (7.15)

as well as a representation given by a Wigner function

W (x) =

∫
R2N

d2Nξ

(2π)2N
exp(−ixTΩξ), χ(ξ) (7.16)

which is normalized to 1, and which is in fact related to the Wigner characteristic function
by a Fourier transform. The Wigner function is nonpositive in general, that is why it is
called quasiprobability distribution. Note that the elements of vector x ∈ R2N are the
eigenvalues of quadrature operators x̂.

The most relevant quantities which characterize the Wigner representations (χ or W )
are the statistical moments of the quantum state [25]. The first moment is the mean
value, defined by

x̄ := 〈x̂〉 = Tr(x̂ρ), (7.17)

and the second moment is the covariance matrix V, whose elements are defined by

Vij :=
1

2
〈{∆x̂i,∆x̂j}〉 (7.18)

where ∆x̂i := x̂i − 〈x̂i〉. In fact, these two first moments are sufficient to characterize a
particular class of states in which we are interested here, the Gaussian states. These are
bosonic states whose Wigner representation (χ or W ) is Gaussian, namely

χ(ξ) = exp[−1

2
ξT(ΩVΩT)ξ − i(Ωx̄)Tξ], (7.19)

and

W (x) =
exp[−(1/2)(x− x̄)TV−1(x− x̄)]

(2π)N
√
detV

. (7.20)
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Gaussian states are of fundamental importance in the field of continuous-variable
quantum information. They are indeed the primary tools for analysing continuous-
variable quantum information processing, along with Gaussian transformations. Gaussian
transformations are a type of quantum unitary transformations, which are themselves a
type of quantum operations, also called quantum channels. A quantum operation is a
transformation undergone by a quantum state [25]. It is a linear map L : ρ→ L(ρ) which
is completely positive and trace decreasing, namely

0 ≤ Tr [L(ρ)] ≤ 1. (7.21)

Some particular cases of quantum channels are the ones represented by unitary represen-
tations U−1 = U †. These transformations are reversible, and transform a state according
to

ρ→ UρU †. (7.22)

Now, a quantum operation is Gaussian when it transforms Gaussian states into Gaus-
sian states. Gaussian states and Gaussian transformations are central in the field of
continuous-variable information because they are of great practical importance. States
used in quantum information experiments like the thermal state, for example, are usually
Gaussian states. This is also the case for the operations used in these experiments, like
most of the nonlinear operations, which can be well approximated by Gaussian transfor-
mations.

Consider a general state of one mode (N = 1) of the form

ρ =
∞∑
k=0

ck |k〉 〈k| . (7.23)

This is a state which has a diagonal representation in the Fock basis. We will however see
later that this state, for some particular values of ck, can represent any Gaussian state
of one mode. Like any density matrix, its trace should be equal to 1. The trace of ρ is
given by

Tr [ρ] = Tr

[
∞∑
k=0

ck |k〉 〈k|

]
=
∞∑
n=0

〈n|

[
∞∑
k=0

ck |k〉 〈k|

]
|n〉 =

∞∑
k=0

ck

This results in
∞∑
k=0

ck = 1. (7.24)

We will be using this condition in the following. Let us now compute the first two
statistical moments of the quantum states. The first one, the mean value, is given by the
vector

x̄ := 〈x̂〉 = Tr(x̂ρ), (7.25)

which reduces to the vector
x̄ = (〈q̂〉 , 〈p̂〉) (7.26)
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when N = 1. First, notice that the mean value of any operator Â is given by〈
Â
〉

= Tr
[
Âρ
]

= Tr

[
Â
∞∑
k=0

ck |k〉 〈k|

]

=
∞∑
n=0

〈n|

[
Â
∞∑
k=0

ck |k〉 〈k|

]
|n〉

=
∞∑
k=0

ck 〈k| Â |k〉

The mean value of the quadrature operator q̂ is therefore

〈q̂〉 =
∞∑
k=0

ck 〈k| q̂ |k〉

where the matrix element 〈k| q̂ |k〉 is equal to

〈k| q̂ |k〉 = 〈k|
(
â+ â†

)
|k〉

= 〈k| â |k〉+ 〈k| â† |k〉
=
√
k 〈k| k − 1〉+

√
k + 1 〈k| k + 1〉

= 0

resulting in
〈q̂〉 = 0. (7.27)

Similarly, the mean value of the quadrature operator q̂ is given by

〈p̂〉 = 0. (7.28)

The first statistical moment of the quantum state ρ is therefore

x̄ = 0. (7.29)

Let us now compute the second statistical moment of quantum state ρ, the covariance
matrix, which arbitrary elements are

Vij =
1

2
〈{∆x̂i,∆x̂j}〉 =

1

2
〈{x̂i − 〈x̂i〉 , x̂j − 〈x̂j〉}〉 (7.30)

The first element V11 is
V11 =

1

2
〈{x̂1 − 〈x̂1〉 , x̂1 − 〈x̂1〉}〉

=
〈
(x̂1 − 〈x̂1〉)2〉

=
〈
x̂2

1

〉
− 〈x̂1〉2

=
〈
q̂2
〉
− 〈q̂〉2

where 〈
q̂2
〉

=
∞∑
k=0

ck 〈k| q̂2 |k〉 . (7.31)
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If we compute the mean value of operator q̂2, we obtain

〈k| q̂2 |k〉 = 〈k|
(
â+ â†

)2 |k〉
= 〈k| â2 |k〉+ 〈k| ââ† |k〉+ 〈k| â†â |k〉+ 〈k| â†2 |k〉

(7.32)

Let us now calculate the diagonal matrix elements of operators â2, ââ†, â†â and â†2. We
respectively have

〈k| â2 |k〉 =
√
k
√
k − 1 〈k| k − 2〉 = 0 (7.33)

and
〈k| â†2 |k〉 =

√
k + 1

√
k + 2 〈k| k + 2〉 = 0 (7.34)

for â2 and â†2, but we obtain non-zero elements for the other two operators, given by

〈k| ââ† |k〉 = 〈k| (1 + n̂) |k〉 = 1 + k (7.35)

and
〈k| â†â |k〉 = 〈k| n̂ |k〉 = k. (7.36)

By plugging these results in equations (7.32) and (7.31), we obtain

〈
q̂2
〉

=
∞∑
k=0

ck (1 + 2k) . (7.37)

Since the mean value of operator q̂ is null according to equation (7.27), the first element
of the covariance matrix V is given by

V11 =
∞∑
k=0

ck (1 + 2k) =
∞∑
k=0

ck + 2
∞∑
k=0

kck = 1 + 2
∞∑
k=0

kck

where we used equation (7.24). Similarly, the second diagonal element of covariance
matrix V is given by

V22 =
〈
x̂2

2

〉
− 〈x̂2〉2 =

〈
p̂2
〉
− 〈p̂〉2

where the mean value of operator p̂2 is

〈
p̂2
〉

=
∞∑
k=0

ck 〈k| p̂2 |k〉 . (7.38)

The diagonal element 〈k| p̂2 |k〉 can be computed using again equations (7.35), (7.33),
(7.36) and (7.34), resulting in

〈k| p̂2 |k〉 = 〈k|
(
i
[
â† − â

])2 |k〉
= −〈k| â2 |k〉+ 〈k| ââ† |k〉+ 〈k| â†â |k〉 − 〈k| â†2 |k〉
= (1 + 2k)

If we use condition (7.24), and knowing that the mean value of operator p̂ is null according
to equation (7.28), we obtain for the second diagonal element of the covariance matrix V

V22 =
∞∑
k=0

ck (1 + 2k) = 1 + 2
∞∑
k=0

kck.
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Here, we see that V11 = V22. We are now going to compute the nondiagonal elements of
the covariance matrix V. The first one is given by

V12 =
1

2
〈{x̂1 − 〈x̂1〉 , x̂2 − 〈x̂2〉}〉

=
1

2
〈{q̂ − 〈q̂〉 , p̂− 〈p̂〉}〉

=
1

2
[〈q̂p̂〉+ 〈p̂q̂〉 − 2 〈p̂〉 〈q̂〉]

(7.39)

We begin by computing the mean value of operator q̂p̂

〈q̂p̂〉 =
∞∑
k=0

ck 〈k| q̂p̂ |k〉 . (7.40)

The diagonal element 〈k| q̂p̂ |k〉 is given by

〈k| q̂p̂ |k〉 = 〈k|
(
â+ â†

)
i
(
â† − â

)
|k〉

= i 〈k|
(
ââ† − â2 + â†2 − â†â

)
|k〉

= i

This results in

〈q̂p̂〉 =
∞∑
k=0

ick = i. (7.41)

In order to compute the mean value of operator p̂q̂, we use the canonical commutation
relation (7.12), which reduces in our case to

[q̂, p̂] = 2i

⇒ q̂p̂− p̂q̂ = 2i

⇒ p̂q̂ = q̂p̂− 2i

resulting in
〈k| p̂q̂ |k〉 = 〈k| (q̂p̂− 2i) |k〉 = −i. (7.42)

We consequently have
〈p̂q̂〉 = −i, (7.43)

and since the mean values of p̂ and q̂ are null according to (7.28) and (7.27), we obtain,
using equation (7.39),

V12 = 0. (7.44)
Similarly, if we use relations (7.41), (7.43), and the fact that the mean values of p̂ and
q̂ are null, we obtain the value of the second nondiagonal matrix element of covariance
matrix V

V21 = 0. (7.45)
The covariance matrix of state ρ is then given by the diagonal matrix

V =

(
v 0
0 v

)
, (7.46)

where

v =

(
1 + 2

∞∑
k=0

kck

)
. (7.47)

This expression will be very useful when computing the covariance matrix of a thermal
state, which we are now going to introduce.

M. Jabbour 46



7.2 Thermal states

7.2 Thermal states

7.2.1 Definition and properties

In the previous section, we introduced the Gaussian state, which is of fundamental im-
portance in the field of continuous-variable quantum information. Here, we introduce a
particular state, called the termal state, which, as we are going to point out, is enough
to represent all the Gaussian states. Before showing this, let us introduce the thermal
state, along with some of its properties. By definition, a thermal state is a bosonic state
which maximizes the von Neumann entropy for fixed energy

〈n〉 = Tr
[
ρâ†â

]
(7.48)

where 〈n〉 is the mean number of photons in the bosonic mode [25]. The thermal state is
explicitly given by

ρth(n̄) =
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n| (7.49)

where n̄ is the mean number of photon in the mode,

n̄ = 〈n〉 . (7.50)

Let us begin by computing its trace, in order to make sure is it indeed equal to 1. We
have

Tr(ρth) = Tr
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n|

=
∞∑
k=0

〈k|

(
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n|

)
|k〉

=
∞∑
k=0

∞∑
n=0

n̄n

(n̄+ 1)n+1
〈k| n〉 〈n| k〉

=
∞∑
k=0

∞∑
n=0

n̄n

(n̄+ 1)n+1

=
1

n̄+ 1

∞∑
n=0

(
n̄

n̄+ 1

)n
When n̄ = 0, one easily sees that

Tr(ρth) = 1. (7.51)

In order to see what happens when n̄ 6= 1, we first need to compute the following series:

∞∑
n=0

qn = lim
m→∞

m∑
n=0

qn |q| < 1

= lim
m→∞

1− qm+1

1− q
|q| < 1

=
1

1− q
|q| < 1

(7.52)
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If n̄ > 0, we have
0 <

n̄

n̄+ 1
< 1 ⇒ | n̄

n̄+ 1
| < 1

which leads to, using result (7.52),

∞∑
n=0

(
n̄

n̄+ 1

)n
=

(
1− n̄

n̄+ 1

)−1

= n̄+ 1

Consequently, we have, for n̄ > 0,

Tr(ρth) =
1

n̄+ 1
(n̄+ 1) = 1 (7.53)

We therefore see that the trace over the thermal state is indeed equal to 1, which assures
us that it is indeed a state.

Let us now compute the covariance matrix of the thermal state. Using equations
(7.46) and (7.47), we see that it is given by

Vth =

(
vth 0
0 vth

)
(7.54)

where

vth = 1 + 2
∞∑
k=0

k
n̄k

(n̄+ 1)k+1

vth = 1 +
2

n̄+ 1

∞∑
k=0

k
n̄k

(n̄+ 1)k

In order to compute it, we need the following mathematical result:

∞∑
n=0

nqn =
q

(q − 1)2
|q| < 1 (7.55)

This leads easily to
vth = 1 + 2n̄. (7.56)

The covariance matrix Vth of the thermal state is therefore given by the diagonal matrix

Vth = (1 + 2n̄)I. (7.57)

We are now going to compute the von Neumann entropy of the thermal state. Using
the expression of the von Neumann entropy, we obtain

S(ρth) = −Tr
(
ρth log ρth)

= −Tr

([
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n|

]
log

[
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n|

])

= −
∞∑
k=0

〈k|

([
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n|

]
log

[
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n|

])
|k〉

= −
∞∑
n=0

n̄n

(n̄+ 1)n+1
log

(
n̄n

(n̄+ 1)n+1

)
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If we set q = n̄
n̄+1

, we can rewrite the last expression as

S(ρth) = −
∞∑
n=0

qn

n̄+ 1
log

(
qn

n̄+ 1

)
= − 1

n̄+ 1

∞∑
n=0

qn [log(qn)− log(n̄+ 1)]

= − 1

n̄+ 1

∞∑
n=0

qn log(qn) +
1

n̄+ 1

∞∑
n=0

qn log(n̄+ 1)

= − 1

n̄+ 1

∞∑
n=0

qnn log(q) +
1

n̄+ 1

∞∑
n=0

qn log(n̄+ 1)

= − log(q)

n̄+ 1

∞∑
n=0

nqn +
log(n̄+ 1)

n̄+ 1

∞∑
n=0

qn

If we use results (7.52) and (7.55) again, we obtain

S(ρth) = − log(q)

n̄+ 1

q

(q − 1)2
+

log(n̄+ 1)

n̄+ 1

1

1− q

This leads to the expression of the von Neumann entropy of thermal state ρth with mean
number of photon n̄

S(ρth) = (n̄+ 1) log(n̄+ 1)− n̄ log n̄. (7.58)

This expression will be useful when stating some property of the thermal state related to
its entropy.

7.2.2 Thermal decomposition of Gaussian state

A very powerful characteristic of the thermal state is the fact that it can be used to
represent any Gaussian states of N modes using some unitary transformations, as we are
going to see. In order to give this representation, we first need to give the definition of a
symplectic transformation. A symplectic transformation is characterized by a symplectic
matrix S, namely a matrix S which satisfies the relation [25]

SΩST = Ω, (7.59)

where Ω is given by relation (7.6). Now suppose we have an arbitrary N -mode covariance
matrix V, then there exists a symplectic matrix S which transforms V in the phase space
in the way [25]

V = SV⊕ST (7.60)

where V⊕ is a diagonal matrix defined by

V⊕ =
N⊕
k=1

νkI (7.61)

where the N positive quantities νk are called the symplectic eigenvalues of V. Using
this transformation, one can write the general expression of a Gaussian state in terms of
thermal states. Indeed, the following proposition is true [25].
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Proposition 9. Any Gaussian state ρ(x̄,V), where x̄ and V) are its first and second
statistical moments, respectively, can be written in its thermal decomposition

ρ (x̄,V) = D(x̄)US

[
ρ
(
0,V⊕

)]
U †SD(x̄)† (7.62)

with

ρ
(
0,V⊕

)
=

N⊗
k=1

ρth
(
νk − 1

2

)
(7.63)

where the thermal state ρth (n̄) is defined as

ρth (n̄) =
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n| , (7.64)

the displacement operator D(x) is defined as

D(x) = exp
(
xâ† − x∗â

)
(7.65)

and US is some unitary matrix.

We notice that transformation (7.60) of the covariance matrix V in the phase space
corresponds to a certain transformation (7.62) of the state ρ (x̄,V) in the corresponding
Hilbert space. We consequently from proposition 9 that any Gaussian state can be studied
using a tensor product of thermal states, if we know its symplectic values.

Let us compute the von Neumann entropy of such a Gaussian state, using its thermal
decomposition. We have

S [ρ (x̄,V)] = −Tr [ρ (x̄,V) log ρ (x̄,V)]

= −Tr
[
D(x̄)US

[
ρ
(
0,V⊕

)]
U †SD(x̄)† log

{
D(x̄)US

[
ρ
(
0,V⊕

)]
U †SD(x̄)†

}]
We can make a Taylor decomposition of the logarithm function of the form

log (ρ) = −
∞∑
n=1

(I − ρ)n

n
|ρ| < 1 (7.66)

This results in

S [ρ (x̄,V)] = Tr

D(x̄)US

[
ρ
(
0,V⊕

)]
U †SD(x̄)†

∞∑
n=1

(
I −D(x̄)US [ρ (0,V⊕)]U †SD(x̄)†

)n
n


In the following, we will simply write ρ⊕ instead of ρ (0,V⊕) for simplicity. We therefore
have

S [ρ (x̄,V)] = Tr

D(x̄)USρ
⊕U †SD(x̄)†

∞∑
n=1

(
I −D(x̄)USρ

⊕U †SD(x̄)†
)n

n


=
∞∑
n=1

1

n
Tr
[
D(x̄)USρ

⊕U †SD(x̄)†
(
I −D(x̄)USρ

⊕U †SD(x̄)†
)n]
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After expanding the sum, we obtain

S [ρ (x̄,V)] = Tr
[
D(x̄)USρ

⊕U †SD(x̄)†
(
I −D(x̄)USρ

⊕U †SD(x̄)†
)]

+
1

2
Tr
[
D(x̄)USρ

⊕U †SD(x̄)†
(
I −D(x̄)USρ

⊕U †SD(x̄)†
)2
]

+
1

3
Tr
[
D(x̄)USρ

⊕U †SD(x̄)†
(
I −D(x̄)USρ

⊕U †SD(x̄)†
)3
]

+ ...

Using the Binomial theorem

(1− x)n =
n∑
k=0

(−1)k
(
n

k

)
xk, (7.67)

we end up with

S [ρ (x̄,V)] = Tr
[
D(x̄)USρ

⊕U †SD(x̄)†
(
I −D(x̄)USρ

⊕U †SD(x̄)†
)]

+
1

2
Tr

[
D(x̄)USρ

⊕U †SD(x̄)†
2∑

k=0

(−1)k
(

2

k

)(
D(x̄)USρ

⊕U †SD(x̄)†
)k]

+
1

3
Tr

[
D(x̄)USρ

⊕U †SD(x̄)†
3∑

k=0

(−1)k
(

3

k

)(
D(x̄)USρ

⊕U †SD(x̄)†
)k]

+ ...

S [ρ (x̄,V)] = Tr
[
D(x̄)USρ

⊕U †SD(x̄)† −
(
D(x̄)USρ

⊕U †SD(x̄)†
)2
]

+
1

2
Tr

[
2∑

k=0

(−1)k
(

2

k

)(
D(x̄)USρ

⊕U †SD(x̄)†
)k+1

]

+
1

3
Tr

[
3∑

k=0

(−1)k
(

3

k

)(
D(x̄)USρ

⊕U †SD(x̄)†
)k+1

]
+ ...

Moreover, it is easily seen that(
D(x̄)USρ

⊕U †SD(x̄)†
)k

=
k∏
i=1

D(x̄)USρ
⊕U †SD(x̄)† = D(x̄)US

[
ρ⊕
]k
U †SD(x̄)† (7.68)

We consequently have

S [ρ (x̄,V)] = Tr
[
D(x̄)USρ

⊕U †SD(x̄)† −D(x̄)US

[
ρ⊕
]2
U †SD(x̄)†

]
+

1

2
Tr

[
2∑

k=0

(−1)k
(

2

k

)(
D(x̄)US

[
ρ⊕
]k+1

U †SD(x̄)†
)]

+
1

3
Tr

[
3∑

k=0

(−1)k
(

3

k

)(
D(x̄)US

[
ρ⊕
]k+1

U †SD(x̄)†
)]

+ ...
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S [ρ (x̄,V)] = Tr
[
D(x̄)US

(
ρ⊕ −

[
ρ⊕
]2)

U †SD(x̄)†
]

+
1

2
Tr

[
D(x̄)US

(
2∑

k=0

(−1)k
(

2

k

)[
ρ⊕
]k+1

)
U †SD(x̄)†

]

+
1

3
Tr

[
D(x̄)US

(
3∑

k=0

(−1)k
(

3

k

)[
ρ⊕
]k+1

)
U †SD(x̄)†

]
+ ...

S [ρ (x̄,V)] = Tr
[
D(x̄)USρ

⊕ (I − ρ⊕)U †SD(x̄)†
]

+
1

2
Tr

[
D(x̄)USρ

⊕

(
2∑

k=0

(−1)k
(

2

k

)[
ρ⊕
]k)

U †SD(x̄)†

]

+
1

3
Tr

[
D(x̄)USρ

⊕

(
3∑

k=0

(−1)k
(

3

k

)[
ρ⊕
]k)

U †SD(x̄)†

]
+ ...

If we use relation (7.67) again, we obtain

S [ρ (x̄,V)] = Tr
[
D(x̄)USρ

⊕ (I − ρ⊕)U †SD(x̄)†
]

+
1

2
Tr
[
D(x̄)USρ

⊕ (I − ρ⊕)2
U †SD(x̄)†

]
+

1

3
Tr
[
D(x̄)USρ

⊕ (I − ρ⊕)3
U †SD(x̄)†

]
+ ...

S [ρ (x̄,V)] =
∞∑
n=1

1

n
Tr
[
D(x̄)USρ

⊕ (I − ρ⊕)n U †SD(x̄)†
]

(7.69)

Furthermore, using the cyclic property of the trace, we have

Tr
[
D(x̄)USρ

⊕ (I − ρ⊕)n U †SD(x̄)†
]

= Tr
[
ρ⊕
(
I − ρ⊕

)n
U †SD(x̄)†D(x̄)US

]
= Tr

[
ρ⊕
(
I − ρ⊕

)n
U †SUS

]
= Tr

[
ρ⊕
(
I − ρ⊕

)n] (7.70)

This leads to

S [ρ (x̄,V)] =
∞∑
n=1

1

n
Tr
[
ρ⊕
(
I − ρ⊕

)n]
S [ρ (x̄,V)] = Tr

[
ρ⊕

∞∑
n=1

1

n

(
I − ρ⊕

)n]
Using relation (7.66) again, we obtain

S [ρ (x̄,V)] = Tr
[
ρ⊕ log ρ⊕

]
= Tr

[
ρ
(
0,V⊕

)
log ρ

(
0,V⊕

)]
. (7.71)

We consequently see that the von Neumann entropy of state ρ (x̄,V) is the same as the
von Neumann entropy of state ρ (0,V⊕), namely

S [ρ (x̄,V)] = S
[
ρ
(
0,V⊕

)]
. (7.72)

M. Jabbour 52



7.3 Majorization in a beam splitter

Let us compute the von Neumann entropy of state ρ (0,V⊕). The latter is given by
expression (7.63). We see that it is in fact a product state, being the tensor product
of N thermal states. For such a state, the expression of the von Neumann entropy can
be simplified. Indeed, as we are going to prove later in section 6.4, the von Neumann
entropy S (ρ⊗) of a product state of the form (4.20)

ρ⊗ =
n⊗
k=1

ρk (7.73)

can be simplified into

S (ρ⊗) =
n∑
k=1

S (ρk) . (7.74)

The entropy of state ρ (0,V⊕) can consequently be simplified into

S
(
ρ
[
0,V⊕

)]
=

N∑
k=1

S

[
ρth
(
νk − 1

2

)]
(7.75)

Furthermore, we already computed the von Neumann entropy of a thermal state. It is
indeed given by expression (7.58), which leads to

S

[
ρth
(
νk − 1

2

)]
=

(
νk + 1

2

)
log

(
νk + 1

2

)
−
(
νk − 1

2

)
log

(
νk − 1

2

)
. (7.76)

Finally, after plugging expression (7.76) into (7.75) and using relation (7.72), we get the
von Neumann entropy of state ρ (x̄,V)

S [ρ (x̄,V)] =
N∑
k=1

g (νk) (7.77)

where fonction g : R→ R is defined as

g(x) =

(
x+ 1

2

)
log

(
x+ 1

2

)
−
(
x− 1

2

)
log

(
x− 1

2

)
. (7.78)

This expression generalizes the one we find in the 1-mode thermal case, and will be very
useful when studying N -mode Gaussian states in terms of entropic inequalities, before
adapting them to majorization relations.

7.3 Majorization in a beam splitter

Here we introduce a brief application of the theory of majorization in the field of quantum
optics. This application concerns the evolution of quantum entanglement in a beam
splitter. We will not be explaining the operating mode of a beam splitter, since it is not
part of the study subject of the present report. We are however going to introduce an
interesting results regarding the use of the theory of majorization in the beam splitter.
Let us just say that a beam splitter is an apparatus which, as its name suggests, splits
a ray of light into two. Let

∣∣ψ(k)(θ)
〉
be the output state of a beam splitter if the input

state is |k, 0〉, where θ is a characteristic of the transformation resulting from the beam
splitter. The parameters k and 0 represent the number of photons at the entrance of each
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of the arms of the beam splitter. When comparing the output states corresponding to
two different inputs |k, 0〉 and |k + 1, 0〉, the following majorization relation is satisfied[8]

λ(k+1) ≺ λ(k), (7.79)

where λ(k) is the vector of eigenvalues of the reduced density matrix

ρ
(k)
A = Tr

∣∣ψ(k)(θ)
〉 〈
ψ(k)(θ)

∣∣ . (7.80)

This implies that when we increase the number of photons at the entrance of the beam
splitter, the entanglement of the 2-mode output state can only increase, and the 1-mode
reduced states are getting more disordered, since for all measures of entanglement µ, the
latter increases. This is a consequence of the following theorem [14].

Theorem 5. Define the vector of eigenvalues of the reduced density matrix

ρψA = Tr |ψ〉 〈ψ| (7.81)

by λψ and the vector of eigenvalues of the reduced density matrix

ρφA = Tr |φ〉 〈φ| (7.82)

by λφ. The relation λψ ≺ λφ is satisfied if and only if µ(ψ) ≥ µ(φ) for all measures of
entanglement µ.

With this application to beam splitters, we see that the theory of majorization is
also useful in the field of quantum optics. In the next section, we are going to look for
majorization relation which can be applied to the field of quantum optics, and quantum
Gaussian information in general.

8 Investigating the possible interconversion between
Gaussian states

In this section, we are going to study majorization in the field of continuous-variable
quantum information. We will in fact be mainly studying Gaussian states since they
are, as we already said, of great practical importance in the field of continuous-variable.
Moreover, we will be working with thermal states practically all the time since, as we
showed when introducing proposition 9, we can use thermal decompositions in order to
represent any Gaussian state.

We are first going to study the one-mode case, introducing a majorization relation in
the case of thermal states, before generalizing it to the Gaussian states. We will then
work in the N -mode case, using the one-mode case in order to prove some majorization
relations satisfied by the tensor product of thermal states, before generalizing it to the
N -mode Gaussian states, like in the one-mode case. Finally, we will test the majorization
relations we found with some examples of 2-mode Gaussian states.
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8.1 One-mode Gaussian states

We are first going to study one-mode Gaussian states. Take a thermal state ρth(n̄), where
n̄ is the mean number of photons in the state. We already defined it as

ρth (n̄) =
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n| . (8.1)

First notice that according to relation (7.58), the von Neumann entropy of a thermal
state can be written as

S
[
ρth(n̄)

]
= log

[
(n̄+ 1)n̄+1

n̄n̄

]
(8.2)

Let us see how the entropy of a thermal state evolves in terms of the mean photon number.
Define the function f : R→ R as

f(x) =
(x+ 1)x+1

xx
. (8.3)

Using the relation

∂

∂x

(
U(x)U(x)

)
= U(x)U(x)U ′(x) (log [U(x)] + 1) , (8.4)

one finds that

∂

∂x
f(x) =

1

x2x

[
(x+ 1)x+1 (log[x+ 1] + 1)xx − xx (log[x] + 1) (x+ 1)x+1

]
=

1

x2x
(x+ 1)x+1xx log

[
x+ 1

x

] (8.5)

We therefore have

∂

∂n̄

[
(n̄+ 1)n̄+1

n̄n̄

]
=

1

n̄2n̄
(n̄+ 1)n̄+1n̄n̄ log

[
n̄+ 1

n̄

]
(8.6)

Since n̄ ≥ 0,
n̄+ 1

n̄
≥ 1, (8.7)

and
∂

∂n̄

[
(n̄+ 1)n̄+1

n̄n̄

]
≥ 0. (8.8)

Consequently, when the mean number of photon n̄ increases, the quantity

(n̄+ 1)n̄+1

n̄n̄
(8.9)

increases, as well as the entropy S
[
ρth(n̄)

]
. Therefore the following proposition is true.

Proposition 10. For two thermal states ρth (n̄1) and ρth (n̄2) of respective mean numbers
of photons n̄1 and n̄2, the inequality n̄1 ≥ n̄2 is equivalent to the inequality

S
[
ρth(n̄1)

]
≥ S

[
ρth(n̄2)

]
. (8.10)
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The idea now is to find a similar inequality in terms of majorization relation. The
proposition we introduce is as follows.

Proposition 11. For two thermal states ρth (n̄1) and ρth (n̄2) of respective mean numbers
of photons n̄1 and n̄2, the inequality n̄1 ≥ n̄2 is equivalent to the majorization relation

λ1 ≺ λ2, (8.11)

where λ1 and λ2 are the vectors of eigenvalues of ρth (n̄1) and ρth (n̄2), respectively.

We are now going to show that this proposition is true. First, notice that the ex-
pression (8.1) of a thermal state is given in its diagonal representation. We therefore
immediately conclude that the eigenvalues of a thermal state ρth (n̄) are given by

n̄n

(n̄+ 1)n+1
, (8.12)

for differend values of n, and can be grouped in the vector

λ =

(
1

n̄+ 1
,

n̄

(n̄+ 1)2
,

n̄2

(n̄+ 1)3
, ...

)
. (8.13)

In order to study proposition 11, we need to sort the elements of vector λ in decreasing
order. Again, define the function hm : R→ R as

hm(x) =
mx

(m+ 1)x+1
. (8.14)

The derivative of hm in terms of x is given by

∂

∂x
hm(x) = mx(m+ 1)−x−1 log

[
m

m+ 1

]
. (8.15)

When m is positive, the derivative of hm(x) is negative, which means that when n in-
creases, the eigenvalues (8.12) of ρth (n̄) decrease. The vector λ represented as (8.13) is
therefore already in decreasing order, which means that we have

λ↓ =

(
1

n̄+ 1
,

n̄

(n̄+ 1)2
, ..., 0

)
. (8.16)

Now suppose we have two thermal states ρth (n̄1) and ρth (n̄2). Their vectors of ordered
eigenvalues are respectively given by

λ↓1 =

(
1

n̄1 + 1
,

n̄1

(n̄1 + 1)2
, ..., 0

)
(8.17)

and
λ↓2 =

(
1

n̄2 + 1
,

n̄2

(n̄2 + 1)2
, ..., 0

)
. (8.18)

Let us prove proposition 11. Given these two states and using the first definition of
majorization, λ1 ≺ λ2 if and only if

k∑
i=1

λ↓1i ≤
k∑
i=1

λ↓i2, ∀k

∞∑
i=1

λ1i =
∞∑
i=1

λi2

(8.19)
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Since ρth (n̄1) and ρth (n̄2) are density matrices of quantum states, the second relation of
system (8.19) is always verified. On the other hand, the first relation is true if and only
if

k∑
i=1

n̄i1
(n̄1 + 1)i+1

≤
k∑
i=1

n̄i2
(n̄2 + 1)i+1

, ∀k (8.20)

Since, as we already mentioned,

∞∑
i=1

λ1i =
∞∑
i=1

λi2 = 1, (8.21)

equation (8.20) is true if and only if

1−
∞∑

i=k+1

n̄i1
(n̄1 + 1)i+1

≤ 1−
∞∑

i=k+1

n̄i2
(n̄2 + 1)i+1

, ∀k

⇔
∞∑

i=k+1

n̄i1
(n̄1 + 1)i+1

≥
∞∑

i=k+1

n̄i2
(n̄2 + 1)i+1

, ∀k

⇔ 1

n̄1 + 1

∞∑
i=k+1

(
n̄1

(n̄1 + 1)

)i
≥ 1

n̄2 + 1

∞∑
i=k+1

(
n̄2

(n̄2 + 1)

)i
, ∀k (8.22)

Moreover, when |q| < 1, we have

∞∑
i=m

qi =
∞∑
i=0

qi −
m−1∑
i=0

qi =
1

1− q
− 1− qm

1− q
=

qm

1− q
(8.23)

where we used relation (7.52) and the formula of the sum of a geometric progression.
Consequently, we see after some calculations that relation (8.22) is verified if and only if(

n̄1

n̄1 + 1

)k+1

≥
(

n̄2

n̄2 + 1

)k+1

, ∀k (8.24)

⇔ n̄1

n̄1 + 1
≥ n̄2

n̄2 + 1
(8.25)

As we already did before, define function t : R→ R as

t(x) =
x

x+ 1
. (8.26)

The derivative of t in terms of x is given by

t′(x) =
1

(x+ 1)2
, (8.27)

which is always positive. We therefore deduce that (8.25) will be verified if and only if

n̄1 ≥ n̄2. (8.28)

This proves proposition 11.
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In order to see what consequence proposition 11 has on Gaussian states in general, let
us show that unitary transformations do not change the spectrum of a state. Any state
ρ can always be written in its diagonal representation

ρ =
∑
i

σi |i〉 〈i| , (8.29)

where the σi represent the spectrum of ρ. Suppose a unitary transformation represented
by an operator U verifying

U † = U−1. (8.30)

The transformation of state ρ according to U is given by

UρU † = U
∑
i

σi |i〉 〈i|U † =
∑
i

σiU |i〉 〈i|U † (8.31)

If we define
|xi〉 = U |i〉 , (8.32)

then we have
UρU † =

∑
i

σi |xi〉 〈xi| . (8.33)

We consequently see that a unitary transformation does not change the spectrum, but
only changes the eigenvectors according to relation (8.32). We saw that an arbitrary
one-mode Gaussian state can be written, according to proposition 9, as

ρ (x̄,V) = D(x̄)US

[
ρ
(
0,V⊕

)]
U †SD(x̄)† (8.34)

with
ρ
(
0,V⊕

)
= ρth

(
ν − 1

2

)
(8.35)

where ν are the symplectic eigenvalues of V, and D(x̄) and US are some unitary matrices.
Therefore, the spectra of ρ (x̄,V) and ρ (0,V⊕) are the same. This leads to the following
proposition.

Proposition 12. Let ρ (x̄1,V1) and ρ (x̄2,V2) be two Gaussian states, then inequality
ν1 ≥ ν2 iis equivalent to the majorization relation

λ1 ≺ λ2, (8.36)

where ν1 and ν2 are the symplectic eigenvalues of V1 and V2, respectively, and λ1 and λ2

are the eigenvalues of ρ (x̄1,V1) and ρ (x̄2,V2), respectively.

Before giving the motivation for the the results we found in the 1-mode case, we will
generalize them to the N -mode case in the next section.

8.2 N-mode Gaussian states

The results we got in the one-mode case can be used in order to find more general results
in the N -mode case. Suppose we have two N -mode Gaussian states ρ (x̄A,VA) and
ρ (x̄B,VB). Suppose furthermore that the N symplectic eigenvalues of VA and VB are
given by

νAk , k = 1, ..., N, (8.37)
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and
νBk , k = 1, ..., N, (8.38)

respectively, and that the states can be written, according to proposition 9, as

ρ (x̄A,VA) = D(x̄A)UA
S

[
ρ
(
0,V⊕A

)]
UA†
S DA(x̄)† (8.39)

with

ρ
(
0,V⊕A

)
=

N⊗
k=1

ρth
(
νAk − 1

2

)
(8.40)

and
ρ (x̄B,VB) = D(x̄B)UB

S

[
ρ
(
0,V⊕B

)]
UB†
S DB(x̄)† (8.41)

with

ρ
(
0,V⊕B

)
=

N⊗
k=1

ρth
(
νBk − 1

2

)
(8.42)

where D(x̄A), UA
S , D(x̄B) and UB

S are unitary matrices. We introduce the following
proposition.

Proposition 13. Let λA and λB be the vectors of eigenvalues of ρ
(
0,V⊕A

)
and ρ

(
0,V⊕B

)
,

respectively. Vector λA is majorized by λB, i.e. λA ≺ λB, if

νAk ≥ νBk , ∀k = 1, ..., N, (8.43)

where the νAk are defined by relation

V⊕A =
N⊕
k=1

νAk I, (8.44)

and the νBk are defined by relation

V⊕B =
N⊕
k=1

νBk I. (8.45)

Let us now prove proposition 13. Suppose we have

νAk ≥ νBk , ∀k = 1, ..., N. (8.46)

Obviously, it means that

νAk − 1

2
≥ νBk − 1

2
, ∀k = 1, ..., N. (8.47)

Consequently, according to proposition 11,

λ
(k)
A ≺ λ

(k)
B , ∀k = 1, ..., N, (8.48)

where λ(k)
A and λ

(k)
B are the vectors of eigenvalues of ρth

(
νAk −1

2

)
and ρth

(
νAk −1

2

)
respec-

tively, for all k, which define states (8.40) and (8.42). Using property 1, one can say
that

λ
(k)
A = D(k)λ

(k)
B , ∀k = 1, ..., N (8.49)
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where D(k) is a doubly stochastic matrix for all k. Since λ(k)
A and λ(k)

B are the vectors of
eigenvalues of ρth

(
νAk −1

2

)
and ρth

(
νAk −1

2

)
, we can write them in their diagonal decompo-

sitions as

ρth
(
νAk − 1

2

)
=
∑
pk

λ
(k)
A,pk
|pkA〉 〈pkA| , ∀k = 1, ..., N (8.50)

where |pkA〉 are orthogonal states, for all k, and

ρth
(
νBk − 1

2

)
=
∑
qk

λ
(k)
B,qk
|qkB〉 〈qkB| , ∀k = 1, ..., N (8.51)

where |qkB〉 are orthogonal states, for all k. We therefore have

ρ
(
0,V⊕A

)
=

N⊗
k=1

ρth
(
νAk − 1

2

)

=
N⊗
k=1

(∑
pk

λA,pk |pkA〉 〈pkA|

)
=

∑
p1,p2,...,pN

λA,p1λA,p2 ...λA,pN |p1A, p2A, ..., pNA〉 〈p1A, p2A, ..., pNA|

(8.52)

Relation (8.52) gives a diagonal representation of ρ
(
0,V⊕A

)
, where the vector of eigen-

values of the latter is given by the tensor product

λA =
N⊗
k=1

λ
(k)
A . (8.53)

Similarly, the vector of eigenvalues of ρ
(
0,V⊕B

)
is given by

λB =
N⊗
k=1

λ
(k)
B . (8.54)

Using property 2.16 of the tensor product and equation (8.49), we have

λA =
N⊗
k=1

D(k)λ
(k)
B =

(
N⊗
k=1

D(k)

)(
N⊗
k=1

λ
(k)
B

)
=

(
N⊗
k=1

D(k)

)
λB (8.55)

Let us now show that the tensor product of two bistochastic is also bistochastic. Suppose
A and B are two bistochastic matrices of dimension n, then their tensor product is given
by

C =

 A11B · · · A1nB
... . . . ...

An1B · · · AnnB

 =


A11B11 · · · A11B1n · · · A1nB1n

...

A11Bn1
. . . ...

...
An1Bn1 · · · An1Bnn · · · AnnBnn

 . (8.56)
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We therefore have

∑
i

Cij =
∑
k

Akj

(∑
l

Blj

)
=
∑
k

Akj = 1, (8.57)

and ∑
i

Cji =
∑
k

Ajk

(∑
l

Bjl

)
=
∑
k

Ajk = 1. (8.58)

We consequently see that C is also a bistochastic matrix. Similarly, one can say that the
tensor product

D =
N⊗
k=1

D(k) (8.59)

is a bistochastic matrix. We therefore have

λA = DλB (8.60)

where D is a bistochastic matrix. This leads to the condition λA ≺ λB. Thus, we have
proven proposition 13.

Like in the one-mode case, one can use the fact that the spectra of ρ (x̄,V) and
ρ (0,V⊕), defined by (7.62) and (7.63), respectively, are the same, and introduce the
following proposition.

Proposition 14. Let λA and λB be the vectors of eigenvalues of ρ (x̄A,VA) and ρ (x̄B,VB),
respectively. Vector λA is majorized by vector λB, i.e. λA ≺ λB, if

νAk ≥ νBk , ∀k = 1, ..., N, (8.61)

where the νAk are the symplectic eigenvalues of VA for all k and the νBk are the symplectic
eigenvalues of VB for all k.

Notice that propositions 13 and 14 are only implications, since it is always possible
to find states ρ (x̄A,VA) and ρ (x̄B,VB) that do not verify

νAk ≥ νBk (8.62)

for some values of k between 1 and N , but still verify the condition

λG,A ≺ λG,B. (8.63)

In order to illustrate proposition 14, let us take the case of the two-mode Gaussian
states. Take a two-mode Gaussian state ρ (x̄,V). Its covariance matrix can be written
as [25]

V =

(
A C
CT B

)
, (8.64)

where A = AT, B = BT, and C are 2 × 2 real matrices. Note that for the uncertainty
principle to be verified, the following conditions shoud be verified

V > 0, detV ≥ 1 and ∆ ≤ 1 + detV. (8.65)
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In this case, we have
V⊕ = (ν−I)⊕ (ν+I) (8.66)

where the symplectic spectrum {ν−, ν+} is given by

ν± =

√
∆±

√
∆2 − 4detV

2
, (8.67)

with ∆ = detA + detB + 2detC and det is the determinant. Let us take a particular
case of the two-mode Gaussian states, which is in fact of importance. It has a covariance
matrix of the form

V =

(
aI C
C bI

)
, (8.68)

with
C =

(
c1 0
0 c2

)
, (8.69)

where a, b, c1 and c2 are real numbers. When c1 = −c2 := c ≥ 0, conditions (8.65) are
equivalent to

a+ b±
√

(a+ b)2 − 4(ab− c2) > 0, (8.70)

(ab− c2)(ab+ c2) ≥ 1 (8.71)

and
a2 + b2 − 2c2 − 1− (ab)2 + c4 ≤ 0. (8.72)

Moreover, the symplectic eigenvalues are given by

ν± =

√
y ± (b− a)

2
(8.73)

where y := (a + b)2 − 4c2. Let us take a known state which verifies the last conditions.
The EPR state [25]

ρEPR(r) = |r〉 〈r|EPR , (8.74)

where

|r〉EPR =
√

1− λ2

∞∑
n=0

(−λ)n |n〉a |n〉b , (8.75)

with λ = tanhr ∈ [0, 1], is a Gaussian state with zero mean and covariance matrix

VEPR(η) =

(
ηI

√
η2 − 1Z√

η2 − 1Z ηI

)
, (8.76)

where η = cosh2r and

Z =

(
1 0
0 −1

)
. (8.77)

According to relation (8.73), the symplectic eigenvalues of VEPR(η) are given by

νEPR± = 1. (8.78)

Now take a two-mode Gaussian state given by the tensor product of two thermal states

ρ
(
0,V⊕

)
= ρth

(
ν1 − 1

2

)
⊗ ρth

(
ν2 − 1

2

)
. (8.79)
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The mean number of photon of a thermal state is obviously always non-negative. There-
fore, we have

νi − 1

2
≥ 0 i = 1, 2

⇒ νi ≥ 1 i = 1, 2
(8.80)

This leads to {
ν1 ≥ νEPR+

ν2 ≥ νEPR−
(8.81)

Consequently, according to proposition 14, we should have

λ⊗ ≺ λEPR (8.82)

where λ⊗ and λEPR are the vectors of eigenvalues of ρ (0,V⊕) and ρEPR(r), respectively.
This is in fact indeed the case, since ρEPR(r) is a pure state. This example of a comparison
between the EPR state and a 2-mode thermal state us in the idea that proposition 14 is
true.

The utility of proposition 14 resides in the fact that it can be used to study the
possibility of interconversion between different Gaussian states. Theorem 3 allows us to
know if it is possible to transform a bipartite state |ψ〉 into another bipartite state |φ〉
using LOCC. There is another theorem which studies the possibility to transform any
state (bipartite or not) ρ into another state σ. It is in fact based on Uhlmann’s theorem
3, and is as follows [8].

Theorem 6. State ρ can be obtained from state σ by applying a mixture of unitaries if
and only if

λ(ρ) ≺ λ(σ), (8.83)

where λ(ρ) and λ(σ) are the vectors of eigenvalues of ρ and σ, respectively.

We see from theorem 6 that by simply comparing the eigenvalues of two states ρ and
σ using the theory of majorization, it is possible to know if we can transform one state
into the other. Theorem 6 therefore does not only give the motivation for proposition 14,
but also for the propositions we gave in section 6.

8.3 Conclusion

In this section, we have been looking for majorization relations in the field of Gaussian
quantum information. We began by investigating the 1-mode case, for which we first
proposed a majorization relation between two thermal states of different mean number
of photons. We then generalized the result to the case of 1-mode Gaussian states. Af-
terwards, we looked for majorization relations in the N -mode case, using the results we
obtained in the 1-mode case. Again, the first relation we found concerns thermal states,
giving a comparison between two tensor products of order N of thermal states with dif-
ferent mean number of photons. This result allowed us to introduce our most general
relation applied to the field of Gaussian quantum information. This relation mainly com-
pares N -mode Gaussian states using the theory of majorization. We then applied it to
an example, in which we compared the EPR Gaussian state with a 2-mode thermal state.
Theorem 6 allowed us to introduce the main motivation for the results we obtained. Our
conclusion was that our relations are interesting since they permit us to investigate the
possibility of converting one Gaussian state into another.
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Conclusion

The theory of majorization and the notion of entropic measure of disorder are closely
related. Based on this fact, the aim of this report was to look for majorization relations
similar to already existing entropic inequalities. This was interesting to do for two main
reasons. The first one is the fact that majorization relations are usually stronger than
entropic inequalities, in the sense that they imply these entropic inequalities, but that the
converse is not true. The second reason was the fact that when we dispose of majorization
relations between two different quantum states, we know that we can transform one of the
states into the other using some unitary transformation. The concept of entropy alone
would not allow us to prove such a property.

For the purpose of doing this, we began by introducing the theory of majorization in
the first section without using any concept of quatum mechanics. We gave some useful
properties of majorization and explained its relation with the concept of disorder. The
fundamental notions of the quantum theory we needed were introduced later in section 2.
Thereby, we presented the basic concept of density matrix, along with operations of linear
algebra we would need later. In section 3, we talked about the notion of entropy which
was crucial in order to introduce our majorization relations. We gave both definitions of
the Shannon entropy in classical theory and of the von Neumann entropy in quantum the-
ory. Another important concept we introduced in section 4 was the fascinating resource
of quantum entanglement, which we illustrated with the concept of quantum teleporta-
tion. Entanglement was related to the concepts of entropy and majorization through
the different separability criteria we gave in section 5. Section 6 was dedicated to the
introduction of new majorzation relations, along with some examples and the limitations
of these relations. The main results were linked to the entropic inequality of subaddi-
tivity and the interesting Bell diagonal state. We then introduced the field of Gaussian
quantum information in section 7, in which we presented the notion of Gaussian state
and the particular case of the thermal state, which we showed was of fundamental im-
portance through the concept of thermal decomposition. We used these notions in order
to introduce new majorization relation in section 8, in which we began by investigating
the 1-mode case, before looking into the N -mode case, which we illustrated through an
example.

The main relations we proved in this work exhibit the power of the theory of ma-
jorization. It has not been long since the concept of majorization was first applied to the
quantum theory. This prompts us to say that the potential of the theory of majorization
has not been entirely exploited, and that many mathematical properties have yet to be
discovered using majorization.
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Appendix

A Matlab codes

A.1 Matlab code majorization_gamma.m

1 clear
2 clc
3

4 format long
5

6 gamma = 0:0.01:1;
7

8 for i=1:max(size(gamma))
9

10 if (gamma(i) >= 2/3)
11 g = gamma(i)/2;
12 else
13 g = 1/3;
14 end
15

16 lambda_AB = [1−2*g g+gamma(i)/2 g−gamma(i)/2 0];
17 lambda_S = [g*(1−g) g*(1−g) g^2−2*g+1 g^2];
18 lambda_A = [1−g g];
19

20 major = Major(lambda_AB,lambda_S);
21

22 end

A.2 Matlab code xab_majorization.m

1 % We take a real and a=[0,1]
2 % We also take b real and b>=0
3 % We then have b = sqrt{1−a^2}
4

5 clear
6 clc
7

8 format long
9

10 x = 0:0.1:1;
11 a = 0:0.1:1;
12

13 M = []; %Majorization not verified, incomparable states
14

15 N = []; %Majorization verified
16

17 T = []; %Majorization not verified, inverse relation verified
18

19 for i=1:max(size(x))
20

21 for j=1:max(size(a))
22

23 b = sqrt(1−(a(j))^2);
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24

25 rho_AB = zeros(4,4);
26

27 rho_AB(1,1) = (1−x(i))/2;
28 rho_AB(4,4) = (1−x(i))/2;
29 rho_AB(2,2) = x(i)*abs(a(j))^2;
30 rho_AB(3,3) = x(i)*(abs(b))^2;
31 rho_AB(2,3) = x(i)*a(j)*conj(b);
32 rho_AB(3,2) = x(i)*conj(a(j))*b;
33

34 rho_AB;
35

36 rho_A = TrX23(rho_AB, 2, [2 2]);
37 rho_B = TrX23(rho_AB, 1, [2 2]);
38 rho_S = tensor(rho_A,rho_B);
39

40 lambda_AB = eigs(rho_AB, length(rho_AB));
41 lambda_S = eigs(rho_S, length(rho_S));
42

43 error1 = Major(lambda_AB',lambda_S');
44 error2 = Major(lambda_S',lambda_AB');
45

46 sep = 0;
47

48 if x(i) <= 1/(1 + 2*a(j)*b)
49 sep = 1; % sep=1 means that the state is not separable
50 end
51

52 if error1 == 1
53

54 if error2 == 1
55

56 M = [M; x(i) a(j) b sep];
57

58 else
59

60 T = [T; x(i) a(j) b sep];
61

62 end
63

64 else
65

66 N = [N; x(i) a(j) b sep];
67

68 end
69

70 end
71

72 end
73

74 format short
75

76 M
77

78 N
79

80 T
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A.3 Matlab code subadditivity_Renyi.m

1 clear;
2 clc;
3 close all
4

5 alpha = 4;
6

7 gamma = 0:0.001:1;
8 g = zeros(1,max(size(gamma)));
9 for i=1:max(size(gamma))

10 if (gamma(i) >= 2/3)
11 g(i) = gamma(i)/2;
12 else
13 g(i) = 1/3;
14 end
15 end
16

17 I_AB = 1/(1−alpha)*log2((1−2.*g).^alpha + (g+gamma/2).^alpha + ...
(g−gamma/2).^alpha);

18 I_S = 1/(1−alpha)*log2(2*(g.*(1−g)).^alpha + (g.^2−2.*g+1).^alpha + ...
(g.^2).^alpha);

19

20 plot(gamma, I_AB);
21 hold on;
22 plot(gamma, I_S,'r');
23 xlabel('Value of \gamma.')
24 legend('Renyi entropy of order 4 of system AB.', 'Renyi entropy of ...

order 4 of tensor product of system A and system B.');

A.4 Matlab code gamma_catalysis.m

1 clear
2 clc
3

4 format long
5

6 n = 1000; %Maximum Order of the Renyi Entropy
7

8 gamma = 0:0.01:1;
9

10 for i=1:max(size(gamma))
11

12 if (gamma(i) >= 2/3)
13 g = gamma(i)/2;
14 else
15 g = 1/3;
16 end
17

18 lambda_AB = [1−2*g; g+gamma(i)/2; g−gamma(i)/2; 0];
19 lambda_A = [1−g; g];
20 lambda_B = [1−g; g];
21
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22 S_AB = alpha_entropy(lambda_AB,1);
23 S_A = alpha_entropy(lambda_A,1);
24 S_B = alpha_entropy(lambda_B,1);
25

26 if (S_AB > S_A + S_B)
27 error('No.');
28 end
29

30 for alpha=1:n
31

32 [H_AB,lim_AB] = alpha_entropy(lambda_AB,alpha,0);
33 [H_A, lim_A] = alpha_entropy(lambda_A,alpha,lim_AB);
34 [H_B, lim_B] = alpha_entropy(lambda_B,alpha,lim_AB);
35

36 diff = H_AB−H_A−H_B;
37

38 if (H_AB > H_A + H_B)
39 % alpha
40 % H_AB
41 % H_A
42 % H_B
43 display('No.');
44 gamma_i = gamma(i)
45 alpha
46 pause;
47 break;
48 end
49

50 if lim_AB==1
51 break;
52 end
53

54 end
55

56 end

A.5 Matlab code alpha_entropy.m

1 function [H,lim2] = alpha_entropy(lambda,alpha,lim1)
2

3 lim2=0;
4 H=0;
5

6 if alpha ==1
7

8 for i = 1:max(size(lambda))
9 if lambda(i,1) ~= 0

10 H = H − lambda(i,1)*log2(lambda(i,1));
11 end
12 end
13

14 else
15

16 for i = 1:max(size(lambda))
17 H = H + (lambda(i,1))^alpha;
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18 end
19 H = 1/(1−alpha)*log2(H);
20 if ((H == Inf) || (H == −Inf) || lim1==1)
21 H = min(−log2(lambda));
22 lim2=1;
23 end
24

25 end

A.6 Matlab code Major.m

1 function [error] = Major(lambda_max,lambda_min)
2

3 % error will be equal to 0 if lambda_max majorizes lambda_min, and ...
it will

4 % be equal to 1 if not (in this case, it doesn't necessarily mean that
5 % lambda_min majorizes lambda_max).
6

7 error = 0;
8

9 dim_max = size(lambda_max,2);
10 dim_min = size(lambda_min,2);
11

12 dim = max(dim_max,dim_min);
13

14 lambda_max0 = zeros(1,dim);
15 lambda_min0 = zeros(1,dim);
16

17 lambda_max0(1,1:dim_max) = lambda_max;
18 lambda_min0(1,1:dim_min) = lambda_min;
19

20 lambda_max_maj = sort(lambda_max0,2,'descend');
21 lambda_min_maj = sort(lambda_min0,2,'descend');
22

23 sum_max = cumsum(lambda_max_maj);
24 sum_min = cumsum(lambda_min_maj);
25

26 condition = (sum_max − sum_min) > −1e−10;
27 last_condition = abs(sum_max(end) − sum_min(end)) < 1e−10;
28

29 if ((~all(condition)) || (~all(last_condition)))
30 sum_max;
31 sum_min;
32 %disp('No.');
33 error = 1;
34 else
35 %disp('Ok.');
36 end
37

38

39 end
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A.7 Matlab code tensor.m

Code taken from website http://www.dr-qubit.org/matlab.php.

1 function M = tensor(varargin)
2

3 % TENSOR Tensor product
4 % author: Toby Cubitt
5 % requires: none
6 % license: GPL2
7 %
8 % m = TENSOR(a,b,c,...) returns the kronecker product of its ...

arguments.
9 %

10 % Each argument should either be a matrix, or a cell array ...
containing a

11 % matrix and an integer. In the latter case, the integer specifies the
12 % repeat count for the matrix, e.g. TENSOR(a,{b,3},c) = ...

TENSOR(a,b,b,b,c).
13

14

15 %% Copyright (C) 2004−2009 Toby Cubitt
16 %%
17 %% This program is free software; you can redistribute it and/or
18 %% modify it under the terms of the GNU General Public License
19 %% as published by the Free Software Foundation; either version 2
20 %% of the License, or (at your option) any later version.
21 %%
22 %% This program is distributed in the hope that it will be useful,
23 %% but WITHOUT ANY WARRANTY; without even the implied warranty of
24 %% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 %% GNU General Public License for more details.
26 %%
27 %% You should have received a copy of the GNU General Public License
28 %% along with this program; if not, write to the Free Software
29 %% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
30 %% MA 02110−1301, USA.
31

32

33 M = 1;
34 for j = 1:nargin
35 if iscell(varargin{j})
36 for k = 1:varargin{j}{2}
37 M = kron(M,varargin{j}{1});
38 end
39 else
40 M = kron(M,varargin{j});
41 end
42 end

A.8 Matlab code TrX.m

Code taken from website http://www.dr-qubit.org/matlab.php.

1 function x = TrX(p,sys,dim)
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2

3 % TRX Partial trace
4 % requires: nothing
5 % author: Toby Cubitt
6 % license: GPL2
7 %
8 % RHO = TrX(PSI,SYS,DIM) traces out the subsystems specified in
9 % vector SYS of state PSI (a state vector or densitry matrix) whose

10 % subsystem dimensions are specified by the vector DIM.
11

12

13 %% Copyright (C) 2004−2009 Toby Cubitt
14 %%
15 %% This program is free software; you can redistribute it and/or
16 %% modify it under the terms of the GNU General Public License
17 %% as published by the Free Software Foundation; either version 2
18 %% of the License, or (at your option) any later version.
19 %%
20 %% This program is distributed in the hope that it will be useful,
21 %% but WITHOUT ANY WARRANTY; without even the implied warranty of
22 %% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 %% GNU General Public License for more details.
24 %%
25 %% You should have received a copy of the GNU General Public License
26 %% along with this program; if not, write to the Free Software
27 %% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
28 %% MA 02110−1301, USA.
29

30

31 % check arguments
32 if any(sys > length(dim)) || any(sys < 0)
33 error('Invalid subsystem in SYS')
34 end
35 if (length(dim) == 1 && mod(length(p)/dim,1) ~= 0)...
36 || length(p) ~= prod(dim)
37 error('Size of state PSI inconsistent with DIM');
38 end
39

40

41 % remove singleton dimensions
42 if exist('setdiff')
43 % matlab
44 sys = setdiff(sys,find(dim == 1));
45 else
46 % octave
47 sys = complement(find(dim == 1),sys);
48 end
49 dim = dim(find(dim ~= 1));
50

51

52 % calculate systems, dimensions, etc.
53 n = length(dim);
54 rdim = dim(end:−1:1);
55 keep = [1:n];
56 keep(sys) = [];
57 dimtrace = prod(dim(sys));
58 dimkeep = length(p)/dimtrace;
59
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60

61 if any(size(p) == 1)
62 % state vector
63 if size(p,1) == 1
64 p = p';
65 end
66 % reshape state vector to "reverse" ket on traced subsystems into ...

a bra,
67 % then take outer product
68 perm = n+1−[keep(end:−1:1),sys];
69 x = reshape(permute(reshape(p,rdim),perm),[dimkeep,dimtrace]);
70 x = x*x';
71

72

73 else
74 % density matrix
75

76 % reshape density matrix into tensor with one row and one column index
77 % for each subsystem, permute traced subsystem indices to the end,
78 % reshape again so that first two indices are row and column
79 % multi−indices for kept subsystems and third index is a flattened ...

index
80 % for traced subsystems, then sum third index over "diagonal" entries
81 perm = n+1−[keep(end:−1:1),keep(end:−1:1)−n,sys,sys−n];
82 x = reshape(permute(reshape(p,[rdim,rdim]),perm),...
83 [dimkeep,dimkeep,dimtrace^2]);
84 x = sum(x(:,:,[1:dimtrace+1:dimtrace^2]),3);
85

86 end

A.9 Matlab code TrX23.m

Code taken from website http://www.dr-qubit.org/matlab.php.

1 function x = TrX23(p,sys,dim);
2

3 % TRX23 Partial trace of bi/tri−partite systems
4 % requires: nothing
5 % author: Toby Cubitt
6 % license: GPL2
7 %
8 % X = TrX23(P,SYS,DIM) traces out system SYS of state P (a state
9 % vector or a density matrix) with subsystem dimensions specified

10 % by DIM.
11 %
12 % If only one dimension is specified, i.e. DIM=[dim1], a
13 % dim1 x length(p)/dim1 system is assumed.
14 %
15 % If two are specified, i.e. DIM=[dim1,dim2], a dim1 x dim2
16 % system is assumed.
17 %
18 % DIM=[dim1,dim2,dim3] specifies a dim1 x dim2 x dim3 system
19 % (duh!)
20

21

22 %% Copyright (C) 2004−2009 Toby Cubitt
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23 %%
24 %% This program is free software; you can redistribute it and/or
25 %% modify it under the terms of the GNU General Public License
26 %% as published by the Free Software Foundation; either version 2
27 %% of the License, or (at your option) any later version.
28 %%
29 %% This program is distributed in the hope that it will be useful,
30 %% but WITHOUT ANY WARRANTY; without even the implied warranty of
31 %% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 %% GNU General Public License for more details.
33 %%
34 %% You should have received a copy of the GNU General Public License
35 %% along with this program; if not, write to the Free Software
36 %% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
37 %% MA 02110−1301, USA.
38

39

40 % check arguments
41 if sys > 2 && length(dim) < 3
42 error('SYS greater than number of subsystems')
43 end
44 if (length(dim) == 1 && mod(length(p)/dim,1) ~= 0)...
45 || length(p) ~= prod(dim)
46 error('Size of P inconsistent with DIM');
47 end
48

49

50 % sort out sys and dim arguments
51 switch length(dim)
52 % case 0
53 % dim1 = 2;
54 % dim2 = 1;
55 % dim3 = 2;
56 % if (sys == 2) sys = 3; end
57 case 1
58 dim1 = dim(1);
59 dim2 = 1;
60 dim3 = length(p)/dim1;
61 if (sys == 2) sys = 3; end
62 case 2
63 dim1 = dim(1);
64 dim2 = 1;
65 dim3 = dim(2);
66 if (sys == 2) sys = 3; end
67 case 3
68 dim1 = dim(1);
69 dim2 = dim(2);
70 dim3 = dim(3);
71 end
72

73

74 % calculate partial trace
75 switch any(size(p)==1)
76 case 1
77 % state vector
78 if size(p,1) == 1
79 p = p';
80 end
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81

82 switch sys
83 case 1
84 x = reshape(p,dim2*dim3,dim1);
85 case 2
86 x = ...

reshape(permute(reshape(p,dim3,dim2,dim1),[1,3,2]),dim1*dim3,dim2);
87 case 3
88 x = reshape(p,dim3,dim1*dim2).';
89 end
90 x = x*x';
91

92

93 case 0
94 % density matrix
95 switch sys
96 case 1
97 x=zeros(dim2*dim3);
98 indx=(1:dim2*dim3);
99 for k=0:dim1−1

100 x=x+p(indx+k*dim2*dim3,indx+k*dim2*dim3);
101 end
102

103 case 2
104 x=zeros(dim1*dim3);
105 indx=kron(ones(1,dim1),[1:dim3]) + ...
106 kron(dim2*dim3*[0:dim1−1],ones(1,dim3));
107 for k=0:dim2−1
108 x=x+p(indx+k*dim3,indx+k*dim3);
109 end
110

111 case 3
112 x=zeros(dim1*dim2);
113 indx=dim3*(0:dim1*dim2−1);
114 for k=1:dim3
115 x=x+p(indx+k,indx+k);
116 end
117 end
118 end
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