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Heralded noiseless amplification and attenuation of non-Gaussian states of light
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We examine the behavior of non-Gaussian states of light under the action of probabilistic noiseless amplification
and attenuation. Surprisingly, we find that the mean-field amplitude may decrease in the process of noiseless
amplification—or may increase in the process of noiseless attenuation, a counterintuitive effect that Gaussian
states cannot exhibit. This striking phenomenon could be tested with experimentally accessible non-Gaussian
states, such as single-photon added coherent states. We propose an experimental scheme, which is robust with
respect to the major experimental imperfections, such as inefficient single-photon detection and imperfect photon
addition. In particular, we argue that the observation of mean-field amplification by noiseless attenuation should
be feasible with current technology.
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I. INTRODUCTION

In quantum optics, it has long been known that the
amplification of light unavoidably comes with noise due, for
instance, to spontaneous emission in parametric downcon-
version [1]. This causes a fundamental problem in quantum
communication for noise is generally harmful to quantum
information (e.g., it sets a limit on the amount of secret key
bits that can be shared between two parties in quantum key
distribution, see Ref. [2]). Recently, however, it has been
realized that the amplification process can, in principle, be
made noiseless if one turns to a probabilistic (heralded) process
instead of a deterministic process. Specifically, a heralded
noiseless amplifier can be devised, which brings the added
noise variance arbitrarily close to zero at the price of a
vanishing success probability [3]. Soon after it had been
proposed, this concept of heralded noiseless amplification
was successfully demonstrated in the laboratory by several
teams [4–7]. In these experiments, the input state is typically
a superposition of the vacuum and single-photon states, and
the noiseless amplifier is shown to enhance the single-photon
amplitude in this superposition. One can also devise the dual
process, called heralded noiseless attenuation [8]. Applied
to a superposition of the vacuum and single-photon states, it
decreases the single-photon amplitude without adding noise. In
other experiments, the noiseless amplification of a polarization
qubit was also demonstrated using two noiseless amplifiers,
one for each polarization mode [9,10].

Since the noiseless amplifier enhances the intensity of a
light state without adding noise, it is naturally a good candidate
to improve the performances of quantum communication or
metrology protocols. Its potential applications include, for
instance, continuous-variable quantum error correction [11]
or phase-insensitive single-mode squeezing [12]. It appears
especially useful in the context of quantum key distribution
as it has been shown to improve the key rate of device-
independent discrete-variable protocols [13,14] as well as
the range and tolerable excess noise of continuous-variable
Gaussian protocols [15–18]. Interestingly, the combination
of a noiseless attenuator and amplifier at the two ends of a
communication line provides a means to reduce the line losses

without adding noise [8], which can be exploited in quantum
key distribution (note that the noiseless amplifier or attenuator
does not necessarily need to be realized in practice but can be
emulated via a postselection procedure [16,18]).

Here, we investigate in depth the action of these noise-
less transformations on arbitrary states of light. Since by
construction the noiseless amplifier enhances the mean-field
amplitude (i.e., the mean value of the annihilation operator) of
any coherent state, this behavior has implicitly been assumed
universal as is the case for an ordinary deterministic phase-
insensitive amplifier. Surprisingly, we show here that it is not
necessarily the case when non-Gaussian states of light are
considered. Despite the fact that the mean photon number
always increases via noiseless amplification (or decreases via
noiseless attenuation), we observe that the transformation
of the mean-field amplitude is more subtle. After a brief
presentation of noiseless amplification (attenuation) in Sec. II,
in Sec. III we derive the transformation of the Husimi Q

function that it effects, which allows us to prove that the mean-
field amplitude of any Gaussian state can only increase via
noiseless amplification (or decrease via noiseless attenuation)
in accordance with our intuition. Then, in Sec. IV, we analyze
the counterintuitive effect of amplitude reduction by noiseless
amplification (or amplitude enhancement by noiseless atten-
uation) that can be exhibited by certain non-Gaussian states.
We provide examples of pure and mixed non-Gaussian states
where this striking effect is visible. Finally, Sec. V is devoted to
the proposal of an experimental scheme which could be used to
demonstrate that the mean-field amplitude of a single-photon
added coherent state is increased in the process of noiseless
attenuation. While taking into account the inefficiency of the
single-photon detector and an imperfect source, we show that
this scheme could be accessible with current technology. Our
conclusions are given in Sec. VI.

II. NOISELESS AMPLIFICATION AND ATTENUATION

The noiseless amplifier probabilistically enhances the
amplitude of a coherent state as

|α〉 → |gα〉, (1)
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FIG. 1. Noiseless attenuator using a beam splitter with amplitude
reflectance ν. The lower input mode is set to vacuum, and we
postselect on vacuum in the lower output mode.

where α is a complex number and g > 1 is the amplitude gain.
It can be described by a quantum filter F (a trace-decreasing
completely positive map with a single Kraus operator F ) such
that,

ρ → FρF †, (2)

where the filter F = cgn̂ is diagonal in the Fock basis {|n〉}
and c is a real constant. The trace nonincreasing condition
F †F � 1 implies that |c|2g2n � 1, ∀ n, which is possible only
if c = 0; hence, the success probability Tr(FρF †) of this ideal
noiseless amplifier vanishes. Mathematically, this is because
the operator gn̂ is unbounded for g > 1. However, a nonideal
version of the noiseless amplifier can be defined by truncating
the Fock state basis at |N〉. Then, the trace nonincreasing
condition is fulfilled provided |c|2g2N = 1; hence, the success
probability scales as g−2N and can be made strictly larger than
zero as long as N is finite. In other words, a noiseless amplifier
can be implemented with nonzero success probability only
within a finite-dimensional subspace of the Fock space (see
Ref. [19] for more details). We will ignore this subtlety in the
rest of this paper and will consider the ideal noiseless amplifier
that is simply associated with the quantum filter gn̂.

Noiseless attenuation corresponds to the same quantum
filter but taking g = ν < 1. In contrast with noiseless amplifi-
cation, it corresponds to a bounded operator νn̂ for ν < 1, so it
can be implemented exactly with a success probability that is
strictly larger than zero. Indeed, the quantum filter νn̂ can be
realized, for instance, by processing the input state through a
beam splitter of amplitude reflectance ν whose auxiliary input
port is prepared in the vacuum state |0〉 and then conditioning
on projecting the state of the auxiliary output port onto the
vacuum state |0〉 as shown in Fig. 1 [8].

It is easy to see that for an input state |ψ〉 = ∑
n cn|n〉 with∑

n |cn|2 = 1, the final state will read

|ψ̃〉 ∝
∑

n

νncn|n〉. (3)

Intuitively, we understand that the heralded filtering operation
preferentially keeps low-n Fock states since νn exponentially
decays with n, so in this sense the state is attenuated.
Conversely, if we formally consider amplitude reflectance
larger than 1, we will get an output state which can be
interpreted as a noiselessly amplified state where large-n Fock
states are preferentially postselected. This formal equivalence
allows us to analyze the effect of both conditional operations
simultaneously.

Let us clarify the intuition behind saying that gn amplifies
the state or νn attenuates the state. It so happens that this
intuition holds true as far as the mean photon number 〈n̂〉 is
concerned but may be contradicted if we probe the mean-field
amplitude 〈â〉 of certain non-Gaussian states (cf. Sec. III).
As a first step, we will prove here that 〈n̂〉 is necessarily
increased (decreased) under the action of noiseless amplifier
gn̂ (attenuator νn̂). For simplicity, we consider single-mode
states, but the argument can be extended to multimode states.
An arbitrary input state ρ can be expressed in the Fock basis
as

ρ =
∞∑

n,m=0

ρmn|n〉〈m|, (4)

where ρ � 0 and
∑∞

n=0 ρnn = 1. The amplified (attenuated)
state is

ρ̃ =
∑∞

n,m=0 gn+mρmn|n〉〈m|∑∞
n=0 g2nρnn

, (5)

and its mean photon number is given by

〈ñ〉 =
∑∞

n=0 ng2nρnn∑∞
n=0 g2nρnn

. (6)

We will assume that this state is physical, i.e., the sum in the
denominator exists and has a finite value (this is not necessarily
true for some input states and g > 1). The derivative of Eq. (6)
with respect to g is

d〈ñ〉
dg

= 1

N2

∞∑
m,n=0

n(n − m)enm, (7)

where

N =
∞∑

n=0

g2nρnn, (8)

and

enm = emn = 2g2(n+m)−1ρnnρmm � 0. (9)

Equation (7) can be rewritten as

d〈ñ〉
dg

= 1

N2

∞∑
n=0

n∑
m=0

(n − m)2enm, (10)

from which we conclude that

d〈ñ〉
dg

� 0. (11)

Thus, the mean photon number of any physical state increases
when g increases (amplification) or decreases when g de-
creases (attenuation). If the input state is a Fock state, which is
an eigenstate of the operator gn̂, then the mean photon number
remains constant under noiseless amplification or attenuation.

III. NOISELESS TRANSFORMATION
OF GAUSSIAN STATES

Let us now discuss how noiseless amplification (attenua-
tion) transforms Gaussian states, paying particular attention to
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the properties of the mean field. Let us begin by recalling that
the operator gn̂ transforms a coherent state |α〉 as

gn̂|α〉 = e(g2−1)|α|2/2|gα〉, (12)

where α is a complex number. This transformation suggests
decomposing any input state into the overcomplete basis of
coherent states. Then, one has to evolve every component
coherent state according to the transformation (12). A natural
idea may be to use the Glauber-Sudarshan P representation of
the input state, that is,

ρ =
∫

d2α P (α)|α〉〈α|. (13)

If we apply the transformation of Eq. (12) to both sides of
Eq. (13), we obtain the P representation of the transformed
state ρ̃ ∝ gn̂ρgn̂, namely [20],

P̃ (α) ∝ e(1−1/g2)|α|2P
(

α

g

)
, (14)

where the symbol ∝ indicates that P̃ needs to be normalized.
In the case at hand, we find it more elegant to consider instead
the Husimi Q function. For an arbitrary quantum state ρ, the
Q function is defined as

Q(α) = 1

π
〈α|ρ|α〉. (15)

For a Gaussian state with covariance matrix γ and vector of
mean values of quadrature operators d = (〈x̂〉,〈p̂〉)T , it can be
expressed as

Q(α) = 2

π
√

det(γ + I )
exp[−(r − d)T �(r − d)]. (16)

Here, � = (γ + I )−1, I denotes the identity matrix, and
r = (

√
2αR,

√
2αI )T , where αR and αI denote the real and

imaginary parts of α. We use the normalization convention
where the covariance matrix of the vacuum is equal to
the identity matrix, whereas the variance of the vacuum
quadratures reads 1/2.

We recall that Q(α) can be viewed as the probability density
for the complex outcome α of a heterodyne measurement
performed on state ρ, which consists of projecting onto the
coherent-state basis. It is then possible to backpropagate each
coherent state through the noiseless amplifier or attenuator
as performed in Ref. [16]. The Q function Q̃(α) of the
transformed state ρ̃ ∝ gn̂ρgn̂ can then be written as

Q̃(α) ∝ 1

π
〈α|gn̂ρ̂gn̂|α〉 = e(g2−1)|α|2Q(gα), (17)

where we have used Eq. (12) and the symbol ∝ indicates that
Q̃ needs to be normalized. Note that if Q(α) is expressed as
in Eq. (16), its Gaussian form is preserved by transformation
(17) so that Gaussian input states are mapped onto Gaussian
output states. In particular, the corresponding transformations
on γ and d can be determined by looking at the exponent in
Q̃(α). After some algebra, we find

�̃ = g2� − g2 − 1

2
I, (18)

which implies that the covariance matrix transforms as

γ̃ =
[
g2(γ + I )−1 − g2 − 1

2
I

]−1

− I. (19)

Similarly, the vector of mean values transforms as

d̃ = 2g[(g2 + 1)I − (g2 − 1)γ )]−1d. (20)

Here, the tilde denotes the parameters of the Gaussian state
after noiseless amplification or attenuation. Note that Eq. (20)
agrees with a formula for the displacement of a noiselessly
amplified Gaussian state derived in Ref. [21].

We can also easily check that Eqs. (19) and (20) are
consistent with the formulas obtained in Ref. [12] for the
noiseless amplification of a squeezed state of light, whose
covariance matrix is given by

γ =
(

e−2s 0
0 e2s

)
, (21)

with s being the squeezing parameter. We have

� = (γ + I )−1 =
(

1+tanh s
2 0
0 1−tanh s

2

)
, (22)

implying

�̃ =
(

1+g2 tanh s

2 0

0 1−g2 tanh s

2

)
, (23)

so we conclude that the covariance matrix of the amplified
state is that of another squeezed state,

γ̃ =
(

e−2s ′
0

0 e2s ′

)
, (24)

with stronger squeezing (the output squeezing parameter s ′
satisfies tanh s ′ = g2 tanh s). The transformation of the vector
of mean values Eq. (20) gives(〈x̃〉

〈p̃〉
)

= g

( 1+tanh s
1+tanh s ′ 0

0 1−tanh s
1−tanh s ′

)(〈x〉
〈p〉

)
, (25)

in perfect agreement with Ref. [12].
Now, we treat the case of an arbitrary Gaussian input state.

Since the operator gn̂ commutes with a unitary phase shift eiφn̂,
we can without loss of generality assume that the covariance
matrix is diagonal,

γ =
(

2Vx 0
0 2Vp

)
, (26)

where Vx and Vp denote the variances in amplitude and
phase quadratures, respectively, which obey the Heisenberg
uncertainty relation VxVp � 1

4 . If we insert the diagonal
covariance matrix (26) into Eq. (20), we get

d̃j = 2g

(1 + g2) + 2Vj (1 − g2)
dj , (27)

where j = x,p. The effective amplification gain is thus
different for the amplitude and phase quadratures, and it
depends on the variance Vj of the quadrature j , namely,

Geff,j ≡ d̃j

dj

= 2g

(1 + g2) + 2Vj (1 − g2)
. (28)
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This can be rewritten as

Geff,j − g

Geff,j
= (g2 − 1)(Vj − 1/2), (29)

so that for the noiseless amplifier (g > 1) we have

G
Vj <1/2
eff < g < G

Vj >1/2
eff , (30)

whereas for the noiseless attenuator (g < 1) we have

G
Vj >1/2
eff < g < G

Vj <1/2
eff . (31)

In other words, in both cases, the effective gain is sublinear
for the squeezed quadrature (V < 1/2) and superlinear for
the antisqueezed quadrature (V > 1/2). Of course, in between
these cases, we have simply a linear effective gain G

Vj =1/2
eff =

g. At this point, we note that the squeezed quadrature with
the lowest possible variance must be considered in order to
find the minimum effective gain that the noiseless amplifier
may exhibit as well as the maximum effective gain that the
noiseless attenuator may exhibit.

Let us prove that noiseless amplification always increases
the amplitude of Gaussian states. Remember that noiseless am-
plification may generate unphysical states from certain input
Gaussian states. The amplified state is physical iff the output
covariance matrix is positive definite, which is equivalent to the
matrix inequalities I > g2� + (1 − g2)I/2 > 0. Both these
inequalities are equivalent to

max
j

(Vj ) <
1

2

g2 + 1

g2 − 1
, (32)

and the denominator of Eq. (28) vanishes if the variance Vj

reaches this upper bound, making Geff,j diverge. Taking this
constraint into account, the squeezed quadrature variance of
the input state is lower bounded by

min
j

(Vj ) >
1

2

g2 − 1

g2 + 1
, (33)

which, when plugged into Eq. (28), gives

Geff,j >
1 + g2

2g
> 1. (34)

Thus, when g > 1, one finds that Geff,j > 1 for all Gaussian
input states leading to physical output states.

Similarly, by considering the case g < 1, one can prove
that the noiseless attenuation always reduces the amplitude
of Gaussian states and Geff,j < 1. In this latter case, there is
no physical constraint on the admissible input states because
noiseless attenuation is a physically allowed operation that
can be implemented with finite success probability on any
input state. Thus, the variance of the squeezed quadrature is
simply lower bounded by minj (Vj ) > 0. When plugging this
into Eq. (28), we obtain

Geff,j <
2g

1 + g2
< 1 (35)

for all Gaussian input states.

IV. NOISELESS TRANSFORMATION OF
NON-GAUSSIAN STATES

The heralded noiseless amplifier (attenuator) is a transfor-
mation that increases (decreases) the complex amplitude α of
a coherent state |α〉 without adding noise, that is, |α〉 → |gα〉.
We have proven, in the previous section, that the same behavior
holds true for the mean amplitude of any (possibly mixed)
Gaussian state. One could therefore naively expect that this
remains true for all states. Surprisingly, we will show that
the mean amplitude of a non-Gaussian state can actually be
attenuated by noiseless amplification or can be amplified by
noiseless attenuation. We first illustrate this counterintuitive
effect on two simple and instructive examples of states that
can be expressed as superpositions of a finite number of Fock
states. In a third example, a non-Gaussian mixed state will
also be shown to exhibit this effect. In the next section, we will
design a scheme for experimentally verifying the mean-field
amplification by noiseless attenuation that is robust against
most experimental imperfections.

As a first example, let us consider the superposition of
vacuum and single-photon state,

|
1〉 = c0|0〉 + c1|1〉, (36)

where without loss of any generality we assume that c0 and c1

are real and c2
0 + c2

1 = 1. The coherent amplitude of this state
then reads

A1 ≡ 〈
1|â|
1〉 = c1c0 = c1

√
1 − c2

1, (37)

where â denotes the annihilation operator. After noiseless
amplification with gain g > 1, the state becomes

|
̃1〉 = gn̂|
1〉 = c0|0〉 + gc1|1〉, (38)

and its amplitude changes to

Ã1 =
g

√
1 − c2

1c1

1 + (g2 − 1)c2
1

. (39)

The effective amplification gain is given by Ã1/A1, and we
get

G
(1)
eff = g

1 + (g2 − 1)c2
1

. (40)

If the probability of the single-photon state satisfies c2
1 >

1/(g + 1), then Geff < 1 hence the noiseless amplification
attenuates the complex amplitude of the state. This effect
can be understood by noting that the mean amplitude of
the superpositions (36) is maximized when c0 = c1 = 1/

√
2.

If the amplification gain becomes large enough, then it
enhances the imbalance between the amplitudes of the vacuum
and the single-photon contributions, which results in an
effective reduction in the mean field. In the limit of very large
amplification gain, the noiselessly amplified state approaches
a Fock state |1〉, whose mean field vanishes.

Similar conclusions hold also for the noiseless attenuation.
The effective amplitude gain is given again by Eq. (40) but
with g = ν < 1,

G
(1)
eff = ν

1 + (ν2 − 1)c2
1

. (41)
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If c2
1 > 1/(1 + ν) then G

(1)
eff > 1 because starting from a state

where the single-photon component is dominant, the noiseless
attenuation drives it closer to the balanced superposition
(|0〉 + |1〉)/√2.

As a second example, let us consider superposition of the
three lowest Fock states,

|
2〉 = c0|0〉 + c1|1〉 + c2|2〉, (42)

where for the sake of simplicity we again assume real cj , and
c2

0 + c2
1 + c2

2 = 1. The amplitude reads

A2 = 〈
2|â|
2〉 = c1(c0 +
√

2c2). (43)

Since the formula contains two terms, constructive or de-
structive quantum interference can occur. After noiseless
amplification, the complex amplitude becomes

Ã2 = gc1(c0 + √
2g2c2)

c2
0 + g2c2

1 + g4c2
2

, (44)

and the effective amplification gain can be expressed as

G
(2)
eff = g

c2
0 + g2c2

1 + g4c2
2

c0 + √
2g2c2

c0 + √
2c2

. (45)

By suitably choosing c0 and c2, the factor c0 + √
2g2c2 in

the numerator can be made arbitrarily small, and we may
even achieve zero gain. This can be interpreted as the arising
of a destructive interference between the vacuum and the
two-photon components in the noiselessly amplified state,
hence decreasing its mean field. Similarly, in the case of
noiseless attenuation, we can choose the parameters such that
the factor c0 + √

2c2 will be very small and the gain will
be very large. Here, the destructive interference that makes
the mean field of the initial state very small is disturbed as
a result of noiseless attenuation, hence increasing the mean
field. Interestingly, this mechanism of interference disturbance
is robust against imperfections in the process of noiseless
attenuation, so it is a good candidate for an experimental
demonstration (see Sec. V).

We note that the same type of counterintuitive effects may
also be exhibited by non-Gaussian mixtures of Gaussian states.
Indeed, as a third example, consider the binary mixture of two
coherent states |α〉 and |β〉,

ρ3 = p|α〉〈α| + (1 − p)|β〉〈β|, (46)

where p ∈ [0,1]. The amplitude of this state reads

A3 = Tr(ρ3â) = pα + (1 − p)β. (47)

After noiseless amplification, each coherent state |α〉 is
mapped onto |gα〉 with weight factor e(g2−1)|α|2 . Hence, the
resulting state is also a mixture of two coherent states with
amplified amplitudes and modified weight,

ρ̃3 = p′|gα〉〈gα| + (1 − p′)|gβ〉〈gβ|, (48)

where

p′ = pe(g2−1)|α|2

pe(g2−1)|α|2 + (1 − p)e(g2−1)|β|2 . (49)

Its amplitude is given by

Ã3 = g[p′α + (1 − p′)β], (50)

so that the effective amplification gain reads

G
(3)
eff = g

p′α + (1 − p′)β
p α + (1 − p)β

. (51)

This gain can be complex, and we can have |G(3)
eff | < 1 for

g > 1. To see this, take the example of two coherent states
with real amplitudes α = 1 and β = −0.9 that are mixed with
p = 1/3. If we process this mixture in a noiseless amplifier of
gain g = 2, we get an effective gain G

(3)
eff = 0.063 smaller than

unity. Thus, we observe a mean-field reduction by noiseless
amplification of a non-Gaussian mixture of coherent states.
Conversely, if we set g = ν < 1 in Eq. (51), we get a formula
for the effective gain of the noiseless attenuation of state (46),
and it is easy to find examples where it is larger than 1. Thus,
noiseless attenuation may enhance the mean-field amplitude
of a non-Gaussian mixture of coherent states.

V. EXPERIMENTAL PROPOSAL

In this section, we propose and analyze an optical setup
that enables experimentally demonstrating the counterintuitive
effect of mean-field enhancement by noiseless attenuation. The
suggested scheme is illustrated in Fig. 2. The non-Gaussian
state is generated from an input coherent state by conditional
photon addition. A coherent state |α〉 is injected into the
signal input port of a nonlinear crystal where a nondegenerate
parametric downconversion with a low parametric gain λ � 1
takes place. A click of the trigger avalanche photodiode
(APDT ) heralds the generation of a photon pair in the crystal
and the addition of a photon to the signal beam. The noiseless
attenuation νn̂ is implemented by sending the signal beam
through a beam splitter BS1 with reflectance R = ν2 and
transmittance T = 1 − ν2. The auxiliary input port of BS1

is prepared in vacuum state, and the auxiliary output port
is measured with single-photon detector APD. Assuming
ideal detector with unit detection efficiency, the noiseless

FIG. 2. Proposed experimental setup. Coherent states are injected
into signal and idler ports of a nonlinear crystal where parametric
downconversion with a low gain λ occurs. Conditional photon
addition is heralded by a click of the trigger avalanche photodiode
(APDT ). BS1 is a beam splitter with amplitude reflectance ν, and
noiseless attenuation is heralded by a no click of the single-photon
detector APD. Imperfect detection with efficiency η < 1 is modeled
by coupling to an auxiliary mode C prepared in a vacuum state where
η is the transmittance of BS2.
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attenuation is heralded by a no click of the detector. In practice,
the detection efficiency will be rather low, so conditioning on
no clicks will result in a combination of noiseless attenuation
and usual losses. In what follows, we will first assume
an ideal APD, and then we will provide a more realistic
description which will account for imperfect state preparation
and inefficient single-photon detection.

In order to increase the flexibility of the setup, we suggest
to also inject a weak auxiliary coherent state |λδ〉 to the idler
input port of the nonlinear crystal. The detector APDT can then
be triggered either by the idler photon generated in the crystal
or by a photon from the auxiliary input coherent beam. If these
two photons are indistinguishable, then one obtains a coherent
superposition of the photon addition and identity operations,
and the resulting conditionally prepared state reads

|
〉 = 1√
N

(â† + δ)|α〉. (52)

Here, N = 1 + |α∗ + δ|2 is a normalization factor, and the
parameters α and δ can be independently set to any desired
value by tuning the amplitudes of the coherent beams injected
into the signal and idler ports of the nonlinear crystal,
respectively. Note that in the limit α = 0 the state becomes the
superposition of vacuum and single-photon states as studied in
the previous section. For the sake of simplicity, we will assume
that both α and δ are real. In this case, the complex amplitude
of |
〉 is real as well,

A = α + α + δ

1 + (α + δ)2
. (53)

After noiseless attenuation, the state transforms into

|
̃〉 ∝ νn̂(â† + δ)|α〉 ∝ (νâ† + δ)|να〉, (54)

where we have used the identity νn̂â† = â†νn̂+1. We see that
the structure of the state remains unaltered but its parameters
change according to α → να and δ → δ/ν. Therefore, the
amplitude of the noiselessly attenuated state (54) can be
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FIG. 3. Noiseless attenuation of a non-Gaussian state Eq. (52).
The amplitude gain Geff is plotted as a function of the attenuation
factor ν for four different values of detection efficiency η = 1 (solid
line), η = 0.75 (long dashed line), η = 0.5 (dot-dashed line), and
η = 0.25 (short dashed line). The other parameters read α = 0.25,

δ = −0.55, and p = 1.
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FIG. 4. Dependence of the (a) input amplitude A and (b)
amplitude gain Geff on the displacement parameter δ. The other
parameters read α = 0.25, ν = 1/

√
2 and η = 1, p = 1 (solid line)

or η = 0.25, p = 0.75 (dashed line).

expressed as

Ã = να + να + δ/ν

1 + (να + δ/ν)2
. (55)

The effective gain Geff = Ã/A is plotted in Figs. 3 and 4
as a function of ν and δ, respectively. We can see that the
effective amplitude gain can be both positive and negative
and for suitable parameter values the gain can be much larger
than 1. The large gain occurs in the neighborhood of a point
where A = 0, cf. Fig. 4. In the proposed experiment, one
could seek an optimal working point δopt such that Geff > 1,
while the input and output amplitudes are large enough so
the amplification effect would be observable and not buried in
noise.

Let us now include the effect of inefficient single-photon
detection into our model. As illustrated in Fig. 2, this can be
performed by including another auxiliary mode C, which is
coupled to mode B by the beam splitter BS2 with transmittance
η equal to the detection efficiency of the APD. While mode
B is projected onto vacuum state, mode C is traced over. The
output state before measurement on mode B reads

Û (â† + δ)|α〉A|0〉B |0〉C. (56)

Here, Û is a unitary operation describing the mode coupling
effected by the two beam splitters BS1 and BS2,

U =
⎛
⎝ ν

√
ηT

√
(1 − η)T

−√
T ν

√
η ν

√
1 − η

0 −√
1 − η

√
η

⎞
⎠, (57)

where T = 1 − ν2. Hence,

Û â†Û † = νâ† +
√

T (
√

ηb̂† +
√

1 − ηĉ†), (58)

where b̂† and ĉ† denote creation operators of modes B and C,
respectively, so that the output state before measurement on
mode B can be rewritten as

[νâ† +
√

T ηb̂† +
√

T (1 − η)ĉ† + δ]Û |α〉A|0〉B |0〉C. (59)
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We also use the fact that a passive linear optical network
transforms input coherent states onto output coherent states
so that

Û |α〉A|0〉B |0〉C = |να〉A|
√

T ηα〉B |
√

T (1 − η)α〉C. (60)

After projection of mode B onto vacuum, the unnormalized
conditional state reads

|
̃η〉 = (νa† +
√

T (1 − η)c† + δ)|να〉A|
√

T (1 − η)α〉C. (61)

The amplitude of the output signal mode A is then given by

Ãη = να + να(1 − ηT ) + νδ

[α(1 − ηT ) + δ]2 + 1 − ηT
. (62)

A second effect that we take into account is the imperfect
mode overlap in conditional photon addition. With some
probability, the photon may be added to a different mode,
and in this case the input state remains the coherent state |α〉.
Thus, a realistic input state can be modeled as a mixture of the
state (52) and the coherent state |α〉,

ρ = p|
〉〈
| + (1 − p)|α〉〈α|, (63)

where p ∈ [0,1]. After noiseless attenuation, the (un-
normalized) state of the output signal mode reads

ρout = p

N
TrC[|
̃η〉〈
̃η|] + (1 − p)|να〉〈να|. (64)

The amplitude of this output state can be expressed as

Ãη,p = p′Ãη + (1 − p′)να, (65)

where

p′ = p

p + (1 − p) 1+(α+δ)2

[α(1−ηT )+δ]2+1−ηT

. (66)

As shown in Figs. 4 and 5, the effect of amplitude enhancement
by noiseless attenuation persists even for p = 0.75 and
low detection efficiency η = 0.25, although it becomes less
pronounced with decreasing η. When fixing the parameters
δ, α, and p, there exists a detection efficiency threshold ηth

such that if η � ηth then |Geff| < 1 for any 0 < ν < 1, so the
noiseless attenuation does not any more increase the amplitude
of the considered input state. The dependence of Geff on ν and
η shown in Figs. 3 and 5 suggests that the efficiency threshold
can be derived from the condition,

dGeff

dν

∣∣∣∣
ν=1

= 0, (67)
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FIG. 5. The same as Fig. 3 but p = 0.75 and δ = −0.65.

which yields

ηth = [1 + (α + δ)2][α + α(α + δ)2 + p(α + δ)]

2p2(α + δ)(1 + 2α2 + 2αδ) − 2pα[1 + (α + δ)2]
.

(68)

Explicitly, for α = 0.25, δ = −0.55, and p = 1 (Fig. 3), we
obtain ηth = 0.0284, whereas for α = 0.25, δ = −0.65, and
p = 0.75 (Fig. 5), we obtain ηth = 0.0146. We have also
confirmed these results by numerical calculations.

Note that with a suitable choice of α and δ, the amplitude
amplification by noiseless attenuation can be observed for
any η > 0 and p > 0, in which case ηth = 0. This can be
proved by noting that for a real α satisfying |α| < p/2, there
exists real δ such that the amplitude of the input state (63)
vanishes. After (imperfect) noiseless attenuation, the state will
possess nonzero amplitude, hence the gain will be infinite.
Therefore, by continuity, there exists a region of parameters
for which the initial amplitude is nonzero and |Geff| > 1. Even
severe experimental inefficiencies and imperfections can thus
be compensated, and we can achieve high effective gains by a
careful tuning of α and δ.

In an experimental realization of the proposed setup, values
for the vacuum conditioning efficiency η and for the purity
parameter p such as those used in Figs. 4 and 5 are realistic
and probably even too conservative. An efficient vacuum
conditioning can be obtained by loosening the spectral and
spatial filterings in front of the APD detector to bring losses
in the heralding channel to a minimum. The increased rate
of unwanted background counts can be limited by using
pulsed laser sources for gating the time interval when the
absence of APD clicks should be detected. Note, however,
that higher levels of background counts only decrease the
no-click heralding rate without compromising the quality of
the generated states. Finally, a regime of small coherent-state
amplitude α and high reflectance ν should be preferentially
used in an experiment in order to avoid saturation effects in
the APD detector.

VI. CONCLUSIONS

We have investigated the behavior of quantum states of
light under the action of heralded noiseless amplification and
attenuation. By considering certain non-Gaussian states, we
have found out that noiselessly amplifying the state may
be accompanied by a decrease in its mean-field amplitude
〈â〉. Conversely, noiselessly attenuating the state may come
with an increased coherent amplitude. We have proven that
such counterintuitive effects cannot occur for Gaussian states,
so these are specific to non-Gaussian states. Our work thus
reveals that the intuition based on ordinary deterministic
phase-insensitive amplifiers and lossy channels is not directly
applicable to noiseless amplifiers and attenuators, and some
unexpected relation between the mean-field amplitude and the
mean photon number may occur when noiselessly amplifying
or attenuating non-Gaussian states. We have proposed an
experimental scheme that is feasible with current technology
and should enable the observation of amplitude enhancement
by noiseless attenuation of a coherently displaced single-
photon added coherent state under realistic experimental
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conditions. An alternative way to observe this effect may be
based on the virtual noiseless amplifier or attenuator [16,18]
where the amplification or attenuation effect is emulated by
postprocessing the experimental data.
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